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1.  Introduction
We seek to describe the effect of the change in Saskatchewan law decreasing the allowable bac to 0.04.  This law went into effect in August 1996.  From the table below we see that this corresponds to observation number 116.
      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1987:   1   2   3   4   5   6   7   8   9  10  11  12

1988:  13  14  15  16  17  18  19  20  21  22  23  24

1989:  25  26  27  28  29  30  31  32  33  34  35  36

1990:  37  38  39  40  41  42  43  44  45  46  47  48

1991:  49  50  51  52  53  54  55  56  57  58  59  60

1992:  61  62  63  64  65  66  67  68  69  70  71  72

1993:  73  74  75  76  77  78  79  80  81  82  83  84

1994:  85  86  87  88  89  90  91  92  93  94  95  96

1995:  97  98  99 100 101 102 103 104 105 106 107 108

1996: 109 110 111 112 113 114 115 116 117 118 119 120

1997: 121 122 123 124 125 126 127 128 129 130 131 132

1998: 133 134 135 136 137 138 139 140 141 142 143 144

1999: 145 146 147 148 149 150 151 152 153 154 155 156

2000: 157 158 159 160 161 162 163 164 165 166 167 168

2001: 169 170 171 172 173 174 175 176 177 178 179 180

The dependent variables chosen for this study are the fatality rates (per 100,000 licensed drivers) for drivers with BAC levels described in the table below.

	Variable
	Description

	rbac2
	BAC between 40 and 80 mg%.  Rate per 100,000 licensed drivers.

	rbac4
	BAC over 40 mg%.  Rate per 100,000 licensed drivers.

	ralc
	No alcohol involved.  Rate per 100,000 licensed drivers.

	rratio 
	(BAC>0)/(BAC=0).  Rate per 100,000 licensed drivers.


It seems likely that if the legistative change had an effect it could be modelled approximately at least with a step intervention.  That is we might expect to see a permanent change or drop in the fatal accident rates.  More complicated intervention models could also be examined but I don’t think these models would change the analysis in any substantive way.

Since all of the variables showed significant monotonic trend, we should include a trend component in the model.  The most general specification would be to use a lowess nonparametric trend component but as an approximation a linear trend component in the model should suffice.

Thus the intervention analysis model we shall consider may be written,
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where t = 1, …, 180 is the observation number, yt is the fatality rate variable, xt is the unemployment rate,  (0 is a constant,  (1 is regression coefficient for xt, (1 is regression coefficient for the linear trend, ( is the intervention coefficient which indicates the magnitude of the effect,  
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 represents the delay parameter, B is the backshift operator on t, 
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 represents at step intervention which occurred at time T=116, 
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 represents an ARIMA or  SARIMA time series model.  The step intervention function is defined,
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It would be likely that the effect of the intervention would start quite soon after the legistative change so it will be assumed that possible values of b are 0, 1 and 2.  We will use the AIC (Akaike Information Criterion)  to select the final value of b.  The AIC is defined as twice the negative of the loglikelihood plus two times the number of parameters estimated.  If the number of parameters is the same in each model then the AIC is equivalent to using the residual sum of squares criterion.

The backshift operator B on t when applied to a sequence such as shifts the sequences backwards, so 
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The term Nt  represents the autocorrelated error term which is modelled in general by a SARIMA(p,d,q)(ps,ds,qs)s time series.  For Nt this model may be written,
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where
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and 
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 is assumed to be approximately normal and independently distributed with mean zero and variance 
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 are referred to as the AR, MA, SAR, SMA, difference and seasonal-difference operators respectively.  The parameter s is the seasonal period.  For monthly data, 
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.  From the exploratory analysis, we see that the degree of autocorrelation is fairly low and damps out so it may be assumed that 
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  The AR, MA, SAR and SMA model orders, denoted respectively by p, q, ps and qs, may be chosen by examining the autocorrelation function of 
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 as well as using other model identification tools such as the AIC criterion.  Typically these model orders are either 0 or 1 and occassionally possibilty 2 or more for more complex forms of autocorrelation.  
2.  Summary and Conclusions
The model fitting indicated that an adequate model can be achieved in all cases with  p = q = ps = qs = 0.  In other words the more elaborate SARIMA component was not needed.
We also found that there is no statistically signficant effect due to the intervention at T = 116.  

This conclusion would likely change if the linear trend term were omitted from the model.  But I feel that this would not be scientifically valid.

3.  rbac2
Our previous exploratory analysis indicated that this series had very little autocorrelation.  This suggests that we can use ordinary multiple linear regression. Our diagnostic checks will allow us to check this assumption.

The table below shows the residual sum-of-squares for models with b=0, b=1 and b=2.  It is seen that the best model occurs with b=0.

> SumSq

      b=0      b=1      b=2 

 1.333935 1.335004 1.335426

The display below shows the result of the least squares fitting.  Note that the correlation between the intervention component estimate and the trend estimate is 0.7352.  This shows that the effect of the step intervention may be confounded or mixed-up with the trend effect.
> summary(y.lm)

Call: lm(formula = y ~ x + t + St)

Residuals:

      Min       1Q   Median      3Q    Max 

 -0.09717 -0.05315 -0.03768 0.06679 0.3984

Coefficients:

              Value Std. Error t value Pr(>|t|) 

(Intercept)  0.1875  0.0553     3.3921  0.0009 

          x -0.0160  0.0068    -2.3462  0.0201 

          t -0.0004  0.0002    -1.8236  0.0699 

         St  0.0114  0.0258     0.4435  0.6579 

Residual standard error: 0.08706 on 176 degrees of freedom

Multiple R-Squared: 0.05704 

F-statistic: 3.549 on 3 and 176 degrees of freedom, the p-value is 0.01569 

Correlation of Coefficients:

   (Intercept)       x       t 

 x -0.7753                    

 t -0.6872      0.1178        

St -0.2896     -0.3377  0.7352

The plot below shows that the residual autocorrelations are not significantly different from zero and hence the model is adequate.
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A normal probability plot was also done to check for possible outliers and other departures from the normal distribution assumption.  As might be expected the normality assumption is violated since the bac2 variable is basically small counts.  As a more exact modelling exercise we could use a Poisson regression.  However, from my experience I know that this would not alter the basic conclusion reached from the normal least-squares regression in this situation.
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4.  rbac4
Our previous exploratory analysis of rbac4 indicated that this series had small positive autocorrelations at lags 1 and 12.  As a first step in model identification we fit the multiple linear regression assuming the p = q = ps = qs =0.  By examining the residual autocorrelation we can then determine if any of SARIMA components are needed.
The table below shows the residual sum-of-squares for models with b=0, b=1 and b=2.  It is seen that the best model occurs with b=1.

> SumSq

      b=0      b=1      b=2 

 18.37071 18.36919 18.37045

The display below shows the result of the least squares fitting.  Note that the correlation between the intervention component estimate and the trend estimate is 0.73.  This shows that the effect of the step intervention may be confounded or mixed-up with the trend effect.
> summary(y.lm)

Call: lm(formula = y ~ x + t + St)

Residuals:

     Min      1Q    Median    3Q   Max 

 -0.6042 -0.2456 -0.002325 0.197 1.182

Coefficients:

              Value Std. Error t value Pr(>|t|) 

(Intercept)  1.1109  0.2064     5.3833  0.0000 

          x -0.0648  0.0251    -2.5827  0.0106 

          t -0.0022  0.0008    -2.6649  0.0084 

         St  0.0135  0.0943     0.1434  0.8861 

Residual standard error: 0.3231 on 176 degrees of freedom

Multiple R-Squared: 0.08685 

F-statistic: 5.58 on 3 and 176 degrees of freedom, the p-value is 0.001115 

Correlation of Coefficients:

   (Intercept)       x       t 

 x -0.7800                    

 t -0.6991      0.1427        

St -0.3079     -0.3120  0.7324

There is a small positive residual autocorrelation at lag one which suggests that an AR(1) model would provide a slightly better fit but this would not change the conclusion already reached with the normal least squares fit.  Note that the effect of positive autocorrelation is generally to overstate the significance level.  Since we found no effect for the intervention, a more elaborate analysis would certainly not change the conclusion that there is no detectable intervention effect.
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A normal probability plot was also done to check for possible outliers and other departures from the normal distribution assumption.  The residuals exhibit slight skewness and two outliers in the left tail corresponding to observation numbers 36 and 4 are evident.  However the departure is too small to have any appreciable effect on the conclusion reached with the normal least-squares fit.

[image: image23.wmf]Standard Normal Quantiles

Empirical Quantiles

-2

-1

0

1

2

-0.5

0.0

0.5

1.0

36

4

Skewness Coefficient: g_1 =  0.5452864 , s.l. =  0.001719574

Michael's Statistic: D_sp =  0.07593152 , s.l. =  0.003572127

Wilk-Shapiro Statistic: W =  0.9696146 , s.l. =  0.02562451

# 180

rbac4 residuals


5.  ralc
Our previous exploratory analysis indicated that this series had very little autocorrelation.  This suggests that we can use ordinary multiple linear regression. Our diagnostic checks will allow us to check this assumption.

The table below shows the residual sum-of-squares for models with b=0, b=1 and b=2.  It is seen that the best model occurs with b=1.

> SumSq

      b=0      b=1      b=2 

 20.19491 20.14218 20.19874

The display below shows the result of the least squares fitting.  As expected the trend coefficient is significant but the intervention component is not.  Note that the correlation between the intervention component estimate and the trend estimate is 0.7352.  This shows that the effect of the step intervention may be confounded or mixed-up with the trend effect.
> summary(y.lm)

Call: lm(formula = y ~ x + t + St)

Residuals:

     Min      1Q  Median    3Q   Max 

 -0.6452 -0.2589 -0.0293 0.206 1.185

Coefficients:

              Value Std. Error t value Pr(>|t|) 

(Intercept)  1.2381  0.2161     5.7299  0.0000 

          x -0.0861  0.0263    -3.2782  0.0013 

          t -0.0021  0.0009    -2.3661  0.0191 

         St  0.0955  0.0988     0.9673  0.3347 

Residual standard error: 0.3383 on 176 degrees of freedom

Multiple R-Squared: 0.11 

F-statistic: 7.254 on 3 and 176 degrees of freedom, the p-value is 0.0001289 

Correlation of Coefficients:

   (Intercept)       x       t 

 x -0.7800                    

 t -0.6991      0.1427        

St -0.3079     -0.3120  0.7324

The plot below shows that the residual autocorrelations are not significantly different from zero and hence the model is adequate.
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A normal probability plot was also done to check for possible outliers and other departures from the normal distribution assumption.  The residuals exhibit slight skewness and two outliers in the left tail corresponding to observation numbers 4 and 95 are evident.  However the departure is too small to have any appreciable effect on the conclusion reached with the normal least-squares fit.
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6.  rratio
Our previous exploratory analysis indicated that this series had very little autocorrelation.  This suggests that we can use ordinary multiple linear regression. Our diagnostic checks will allow us to check this assumption.

The table below shows the residual sum-of-squares for models with b=0, b=1 and b=2.  It is seen that the best model occurs with b=1.

> SumSq

     b=0      b=1      b=2 

 3.89152 3.891316 3.891945

The display below shows the result of the least squares fitting.  As expected the trend coefficient is significant but the intervention component is not.  Note that the correlation between the intervention component estimate and the trend estimate is 0.73.  This shows that the effect of the step intervention may be confounded or mixed-up with the trend effect.
> summary(y.lm)

Call: lm(formula = y ~ x + t + St)

Residuals:

     Min       1Q   Median      3Q    Max 

 -0.2097 -0.08237 -0.04124 0.03736 0.7214

Coefficients:

              Value Std. Error t value Pr(>|t|) 

(Intercept)  0.2700  0.0966     2.7955  0.0058 

          x -0.0047  0.0117    -0.3997  0.6899 

          t -0.0009  0.0004    -2.2767  0.0240 

         St -0.0197  0.0439    -0.4472  0.6553 

Residual standard error: 0.15 on 173 degrees of freedom

Multiple R-Squared: 0.05516 

F-statistic: 3.367 on 3 and 173 degrees of freedom, the p-value is 0.01994 

Correlation of Coefficients:

   (Intercept)       x       t 

 x -0.7824                    

 t -0.7006      0.1488        

St -0.3101     -0.3061  0.7313

The plot below shows that the residual autocorrelations are not significantly different from zero and hence the model is adequate.


[image: image26.wmf]lag

autocorrelation

0

2

4

6

8

10

12

-1.0

-0.5

0.0

0.5

1.0

rratio residuals


A normal probability plot was also done to check for possible outliers and other departures from the normal distribution assumption.  There are a few outliers as well as evident skewness but these are not sufficient to alter the overall conclusion that there is no statistically significant effect due to the intervention.
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