

EXPLORATORY ANALYSIS OF ACCIDENT/DRINKING TIME SERIES

Prepared by
A.I. McLeod, E. Vingilis, R. Mann and J. Seeley

February 7, 2002

CONTENTS

Introduction
Alcohol
Traffic
TIRF: Introduction
TIRF Late-Night Subset: Crosstabs
TIRF Late-Night Subset: Time series
TIRF All-Hours: Crosstabs
TIRF All-Hours: Time series
MTO
MVA
OTR
LPS: Introduction
LPS: Assaults
LPS: Impaired Driving Charges
WPS: Introduction
WPS: Assaults
WPS: Impaired Driving Charges
FARS: Introduction
FARS: Crosstabs
FARS: Time Series
MISTPOL: Introduction
MISTPOL: All Accidents
MISTPOL: Fatal Accidents
MISTPOL: Incapacitating Accidents
Appendix 1: Aspect-Ratio, Trend and Time Series Visualization
Appendix 2: Loess and Robust Loess
Appendix 3: Mann-Kendall Trend Tests

Exploratory Analysis of Motor Vehicle, Trauma, Assault and Alcohol

Introduction

This report is also available in Adobe PDF format on the companion CD under the root directory as ExploratoryAnalysis.pdf.

Datasets compiled in SPSS by Jane Seeley, UWO, Faculty of Medicine are analyzed. These datasets provide information of monthly numbers of fatalities, trauma and arrests for impaired driving and assault. Data on traffic counts and annual alcohol consumption is also briefly examined. The datasets examined are listed below.

Code	Name	\#records	Description
A	ALCOHOL	11	Annual consumption of alcohol, Canada, 1989 to 1999
B	TRAFFIC	1,680	MTO traffic counts, Ontario, 1992.1 - 1996.12
C	TIRF	434	Traffic Injury Research Foundation, Alcohol Fatalities, Manitoba \& Ontario, 1992.1-1998.12
D	MTO	26026	MTO highway driver injury and deaths, Ontario, 1992.1 - 1998.12
E	MVA	84	Ontario Trauma Registry, motor vehicle accidents, May 1992 - April 1999
F	OTR	84	Ontario Trauma Registry, all cases, May 1992 - April 1999
G	LPS	8,920	London Police, Arrests for assault \& impaired driving, 1992.5 - 1999.5
H	WPS	2,943	Windsor Police, Arrests for assault \& impaired driving, 1994.1 - 1998.12
I	FARS	3,956	Fatal Accident Reporting System, Michigan \& New York, 1992.5 - 1999.12
J	MISTPOL	164,931	Police Accident Reports, 3 counties, Michigan, 1992.5 - 1999.12

These datasets were supplied in SPSS format. They were then converted into tabdelimited ascii files using Perl. These data files where input to S-Plus (Version 6 for Windows was used). The location of these files on the companion CD is shown in the table below:

File or Directory Location	Description
EXPLORATORYREPORT.PDF	this report
SPSS	SPSS data files
SPSS \backslash DAT	ASCII tab-delimited data files
REPORT	MS Word 2000 files used to create this report
REPORT \backslash RTF	Above files converted to RTF format for compatibility
MISC	S-Plus Chapter
ALCOHOL	S-Plus Chapter
TRAFFIC	S-Plus Chapter
TIRF	S-Plus Chapter
MTO	S-Plus Chapter
MVA	S-Plus Chapter
OTR	S-Plus Chapter
LPS	S-Plus Chapter
WPS	S-Plus Chapter
FARS	S-Plus Chapter
MISTPOL	S-Plus Chapter

In datasets B through J , the wkgrp variable is defined as a factor with two levels "SunWed" and "ThuSat". The "SunWed" level corresponds to all counts which occur from 11PM on Sunday until Thursday 3AM (4AM for G,H). The complement of this forms the "ThuSat" factor values.

In our analysis tables and figures are usually labelled with numbers. Because the numerous iterations involved in the analysis some figures and/or tables are not shown. For example, you find Figure 1, 2, 4, 5 with no Figure 3. I hope this causes no confusion.

Methods of Exploratory Analysis

Crosstabs Analysis

With crosstabs and frequency analysis we compare the relative proportions of two factors as well as their possible association. For example in MISTPOL we find that 24% of all accidents for which drinking status is reported have drink=yes but when we look at drinking status and injury class we find the following percentages for drink=yes $74.8 \%, 49.6 \%, 48.7 \%, 21.1 \%$ and 20.3% for fatal, incapacitating, non-capacitating, possible-injury and no-injury accidents respectively. Clearly drinking status and accident severity are strongly associated. The Pearson chi-square goodness-of-fit test is used to test statistically the null hypothesis of no association between the factors. In some of the datasets the degrees of freedom is very large so even very unimportant differences could be significant. On the other hand, some of the categories in the tables have sometimes have expectations less than 5 and this means that the chi-square test which is an approximation may be inaccurate. In this case we could resort to bootstrapping could get a more exact answer (this has not yet been done in this report).

With each crosstabs analysis we also examine two additional tables:
(i) Contribution to the Chi-Square, (observedexpected) / Vexpected. This table helps to pinpoint the cells that contribute to the Pearson chi-square goodness of fit test.
(ii) Percentage Error, (observed-expected)/expected. This table helps to pinpoint that may be of interest too.

Time Series Plots, Loess Smoothing, Mann-Kendall Trend Tests

Trellis graphics were introduced by Cleveland (1993). The theory of trellis graphics is further developed in Becker et. al (1996). Trellis graphics, available in S-Plus, represent one of the biggest advances in multivariable data visualization in the last ten years.

Trellis plots are coordinated multi-panel displays of data. Three possible choices for the scales used for the panel axes are:
(i) same scale
(ii) sliced scale
(iii) independent scale

Each method is useful but in particular situations. If the data in each panel vary over roughly the same region then using (i) small scale is a good idea. In this case accurate visual comparisons can quickly be made between panels. However if the data vary across quite different scales, as in the case of fatality rates by drinking status, then using (i) may spoil the resolution on either or both panels. If the resolution is degraded like this it is better to use (ii) or (iii). If the variability in the data is similar in different panels then sliced scaling (ii) is a good idea. Sliced scaling means that the number of data units per centimeter on the graph is kept the same in all panels. For example one panel may have data varying between from 50 to 150 and another panel 450 to 550 . Sliced scaling allows for good data resolution and allows one to compare the variability across panels. However with sliced scaling you must pay closer attention to the indicated axes tick lables to interpret which panel is larger whereas with (i) it is visually obvious. If the variability is very different between panels, as for example is the case when the MISTPOL accidents are compared across injury class then in order to achieve good data resolution it may be necessary to use method (iii) independent scaling. With independent scaling, the scaling is chosen separately for each panel in order that the data region fills up the space available in each panel. With independent scaling, it is crucial that the indicated axes tick marks be carefully examined when interpreting the display.

Data resolution can also be degraded by outliers. It is very important to know about outliers since they may be of great interest in their own right but outliers can also squish the bulk of the data into a small region. To overcome this difficulty we can use a monotonic transformation such as logarithms. This is much preferable to allowing the scale to change as is sometimes seen in scientific journals.

The importance of the choice of aspect-ratio for data visualization was extensively researched by Cleveland and is discussed in his books Cleveland $(1993,1994)$ and also in our Appendix 1. In most of the examples we have chosen to use an aspect-ratio of one since this seems to provide a reasonable comprise to visualizing the trend (which would often require a more extreme aspect-ratio much larger than one if banking to 45° is used) and visualizing the time series itself (which typically implies an aspect-ratio less than one if banking to 45° is used).

The robust loess locally linear smoother, introduced by Cleveland and discussed in his books (Cleveland, 1993, 1994) is used for trend assessment. The application of robust loess to trend assessment of environmental time series was discussed by McLeod et al. (1990). A brief overview of loess is given in Appendix 2.

The Mann-Kendall trend test (Mann, 1945), described in Appendix 3 in more detail, is used to assess the statistical significance of monotonic trends. This test consists of computing the Kendall rank correlation of the time series with the observation number. When seasonality is present we can use the Seasonal-Mann-Kendall test of Hirsch et al. (1982) to test for long-term monotonic trend. We can also apply the regular MannKendall trend test to the STL deseasonalized data. The exact algorithm of Panneton \& Robillard (1972a, 1972b) is used to evaluate the significance level of the Mann-Kendall test. The significance level of the Seasonal Mann-Kendall test is evaluated using a normal approximation. It should be noted that this trend test is of limited relevance since the major focus of this investigation is not monotonic trend but rather on the possible changes in trend that have occurred over the period 1992 to 1999. For this reason, the loess analysis, which is the visualization approach, is expected to be more useful.

STL Analysis

The STL or seasonal-trend loess decomposition (Cleveland et al., 1991; Cleveland, 1993) is used to examine the trend and seasonal pattern in various time series. STL is based on loess smoothers and provides an excellent tool for the estimation of a dynamic and changing seasonal component. STL provides the following decomposition of the data,

$$
\text { DATA }=\text { TREND }+ \text { SEASONAL }+ \text { REMAINDER }
$$

Additional components may also be added to this model to remove other sources of variation.

Given an STL decomposition the deseasonalized series is defined by,

```
DESEASONALIZED SERIES = DATA - SEASONAL
```

The deasonalized series may be tested for trend using the Mann-Kendall trend test.
For the STL analysis eight graphical displays were examined:
(i) SLT decomposition
(ii) Monthplot display of the SEASONAL component.
(iii) Time series plot of deseasonalized series
(iv) Autocorrelation plot of deseasonalized series
(v) Autocorrelation plots of the REMAINDER term
(vi) Normal probability plot of the REMA INDER term
(vii) Residual-Fit or RF-Spread Plot
(viii) Spread-Location or SL-Plot

The basic STL graphical display is comprised of four panels showing a time series trace plot of the original data along with its decomposition into three or more components.
The scales in each panel are independent to permit maximum graphical resolution but a bar at the right side of each panel provides an indication of the scaling in each panel.

The monthplot (Cleveland \& Terpenning, 1984; Cleveland, 1993) of the SEASONAL component is used for visualizing the seasonal effects and how they evolve over time. The monthplot shows the mean level of the seasonal component for each month as a horizontal bar. A time series trace shows the fluctuations over time around this horizontal bar. In this way we can see how the seasonal component changes over time.

The REMAINDER term is like a residual component and should not contain any significant trend or seasonality. In practice the autocorrelation present in the REMAINDER term is close to zero for lower order lags. Also in practice the REMAINDER term is often normally distributed but again this is not required. However if the REMAINDER term is normally distributed and is not autocorrelated then the STL decomposition extracts all information in the data in the sense that what is left over is informationless white noise. STL like most other seasonal adjustments methods over-
corrects for seasonality in the sense that the spectral density of the remainder process has a deficiency at the seasonal frequency and this implies that one can expect a small negative autocorrelation at lag 12 in the REMAINDER term. It is thus information to look at autocorrelation plots of the REMAINDER term. Likewise it is also information to examine a normal probability plot of the residuals. Outliers are always of interest. They can point to possible interesting new phenomenon. The normal probability plot display also includes 0.5% significance limits given by Royston (1993), the W-test for normality (Royston, 1982) and the skewness test for normality.

The RF-Spread Plot (Cleveland, 1993) enables one to visualize how much of the variation in the data is explained by the model. This has traditionally been done using the coefficient of determination, R^{2}, but the RF-Spread Plot is more informative. The RFSpread Plot is a trellis display comprised of two Quantile Plots. Given some data X_{1}, \ldots, X_{n}, let $X_{(I)}, \ldots, X_{(n)}$ denote the data re-arranged in ascending order so that $X_{(l)} \leq X_{(2)} \leq \ldots$ $\leq X_{(n)}$, then the Quantile Plot is simply the scatterplot of $X_{(l)}$ vs. f_{i} where $f_{I}=(i-1 / 2) / n$. This is quite similar to the empirical distribution function plot but it is quite different in both construction and spirit. The first panel of the RF-Spread Plot shows the Quantile Plot for the fitted values with the mean subtracted out and the second panel shows on the same scale the Quantile Plot for the remainder or residual. By comparing the panels, we can see at a glance the amount of variation accounted for by our model.

The SL-Plot (Cleveland, 1993) has been further developed by $\operatorname{McLeod}(1996,1999)$. The purpose of the SL-Plot is to detect montone spread. Monotone spread occurs when the variability of the data increases systematically with the location or level of the data. Montone spread can usually be corrected by a suitable power transformation such as a log or square root or reciprocal. In modelling situations montone spread sometimes indicates an important inadequacy. Also if montone spread is present, data visualization can often be improved by making a suitable power transformation.

References

Becker, R.A., Cleveland, W.S. and Shyu, M. (1996), The Visual Design and Control of Trellis Display, Journal of Computational and Statistical Graphics 5, 123-155.

Cleveland, W.S. (1993), Visualizing Data, Hobart Press: Summit.
Cleveland, W.S. (1994), Elements of Graphing Data, Hobart Press: Summit.
Cleveland, W.S. \& Terpenning, I.J. (1984), Graphical methods for seasonal adjustment, Journal of the American Statistical Association, 77, 52--62.

Cleveland, R.B., Cleveland, W.S., McRae, J.E. \& Terpenning, I. (1991), STL: A seasonal-trend decomposition procedure based on loess, Journal of Official Statistics, 6, 3--73.

Hipel, K.W. \& McLeod, A.I. (1994), Time Series Modelling of Water Resources and Environmental Systems, Amsterdam: Elsevier.

Hipel, K.W., McLeod, A.I. \& Fosu, P. (1983), Empirical power comparisons of some tests for trend, in Statistical Aspects of Water Quality Monitoring, Developments in Water Science, 27, 347--362, Edited by A.H. El-Shaarawi and R.E. Kwiatkowski.

Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982), Techniques for trend assessment for monthly water quality data, Water Resources Research, 18, 107--121.

Mann, H.B. (1945), Nonparametric tests against trend, Econometrica, 13, 245--259.
McLeod, A.I., (1996), Diagnostic checking for monotone spread, Computational Statistics \& Data Analysis, 26, 437--443.

McLeod, A.I. (1999), Improved Spread-Level Visualization, Journal of Computational and Graphical Statistics, 8, 135--141.

McLeod, A.I., Hipel, K.W. Bodo, B.A. (1990), Trend analysis methodology for water quality time series, Environmetrics, 2, 169--200.

Panneton, M. and Robillard, P. (1972a), The Exact Disribution of Kendall's S with Ties in One Ranking, Applied Statistics, 21, 321-323.

Panneton, M. and Robillard, P. (1972b), Algorithm AS 54: Kendall's S Frequency Distribution, Applied Statistics, 21, 345-348.

Royston (1982), The W test for normality. Algorithm AS 181, Applied Statistics, 31, 176--224.
Royston (1993), Graphical detection of non-normality by using Michael's statistic, Applied Statistics, 42, 153--158.

A. Alcohol Dataset

Overview and Summary

1989 to 1999 (annual)
Source: Volume of sales of alcoholic beverages and per capita 15 years and over The numbers are the volume of sales in thousands of litres.
Population is not included.

year	sprtlitr	sprtperc sprtabs	winelitr	wineperc	wineabs	beerlitr	beerperc beerabs
11989	67227	40.026890 .80	84741	13.0	11016.330	836569	5.041828 .45
21990	63866	36.923566 .55	80051	11.7	9365.967	829824	4.940661 .38
31991	59700	36.922029 .30	79166	11.7	9262.422	813304	4.939851 .90
41992	55389	36.920438 .54	78442	11.7	9177.714	788218	4.938622 .68
51993	50565	36.918658 .48	77417	11.7	9057.789	738902	4.936206 .20
61994	48955	36.918064 .40	77174	11.7	9029.358	733285	4.935930 .96
71995	48551	36.917915 .32	79861	11.7	9343.737	747182	4.936611 .92
81996	50131	36.918498 .34	83946	11.7	9821.682	756023	4.937045 .13
91997	51270	36.918918 .63	88591	11.7	10365.147	733674	4.936596 .19
101998	57223	36.921115 .87	91019	11.7	10649.220	740017	4.936260 .83
111999	63173	36.923310 .84	93168	11.7	10900.660	750435	4.936771 .32

Variables:

-sprtlitr, winelitr, and beerlitr
are just the total volumes
-sprtperc, wineperc, and beerperc
are the estimated \% of alcohol for each category
-sprtabs, wineabs, and beerabs
are the volumes multiplied by the $\%$ alcohol to calculate
the volume of sales in thousands of litres of absolute alcohol
(the standard without the population calculation)

Conclusions:

consumption of beer has decreased consumption of spirit alcohol decreased and then increased consumption of wine decreased and increased back to 1989 levels total consumption of alcohol has decreased and is now increasing again

Consumption of Spirits, Wine and Beer

litr and abs are in millions of litres, perc are percentage

B. Traffic Dataset

Overview and Summary

Traffic counts for Ontario, January 1992 to December 1996. TRAFFIC. SAV has 420 records corresponding to each weekday for 5 years $(5 \times 12 \times 7=420)$. The weekday data was aggregated to the level of wkgrp using the definition that SunWed is comprised of all counts starting on Sun at 11PM and running through to Thursday 3AM and the rest is in the ThuSat group. Note that there is no data for 1997 and 1998.

A regression analysis of the log counts on the variables wkgrp, hour, month and year accounts for 96.4% of the variation. However year is still very significant even when it is entered last into the regression. This suggests that it would be very desirable to obtain data for 1997 and 1998.

The STL visualization indicates that the effect of the missing values in the years 1992 and 1996 is quite large (Figure STL).

The traffic counts are split very nearly evenly between the ThuSat and SunWed weekgroups. However there is significant variation in traffic counts over the other variables hour, month and year.

With respect to hour and month we show that the proportions remain relatively stable over the years and so we create a proxy for the traffic counts using the fitted values from the regression for the year 1994.

Instead of this proxy it would be very desirable to get the complete data from 1992 to 1998.

If it can be assumed that the annual total traffic counts are relatively constant from year to year then the proxy variable we have defined is adequate. Furthermore since the regression of log counts on the variables wkgrp, hour, month and year accounts for 96.4% of the variation it would be expected that the proxy variable will not be needed in developing statistical models for traffic fatalities since it is so closely related to the other variables.

Analysis: Regression

We investigated the possible use of a regression model to fill in the missing data. It was found that a log transformation of the counts was helpful in reducing skewness of the residuals and reducing monotone spread. The regression was fit using the year variable last and is summarized below:

```
> lm.traffic4_lm(log(counts) ~hour+wkgrp+month+year, data=traffic.df)
Residual standard error: 0.1071 on 460 degrees of freedom
Multiple R-Squared: 0.964
> anova(lm.traffic4)
Analysis of Variance Table
Response: log(counts)
Terms added sequentially (first to last)
            Df Sum of Sq Mean Sq F Value Pr(F)
        hour 3 93.16887 31.05629 2706.031 0.000000000
    wkgrp 1 0.12913 0.12913 11.251 0.000861592
    month 11 9.20136 0.83649 72.886 0.000000000
    year 4 39.05929 9.76482 850.840 0.000000000
Residuals 460 5.27928 0.01148
```

Notice the fit is quite good in terms of the R-squared but that the year variable is quite important. The variation over years is summarized below in the STL analysis and in the crosstab analysis.

Seasonal-Trend Loess Analysis

The seasonal-trend analysis shows the strong seasonal period and remarkable variation in the traffic counts. I now think the low values for 1992 and 1996 are due to the missing stations.

Figure STL

Monthplot Analysis

There are no surprises here. We would expect July and August to have the largest values.

Traffic counts/100,000, total, monthly

Crosstab Analysis: year

```
> crosstabs(counts~year, data=traffic.df)
Call:
crosstabs(counts ~ year, data = traffic.df)
69372946 cases in table
```


Notice that that there was approximately twice as much traffic in 1994 than in 1992 and 1996. This indicates traffic intensities can vary significantly from year to year. However it may be that relationship between traffic intensities and the covariates wkgrp, hour and month remains linear. In this case a proxy variable for traffic intensity may be useful. This is investigated in the crosstabs analysis in the next section.

Crosstab Analysis: wkgrp, hour and month

The analysis below suggests that the split between SunWed and ThuSat is very close to 50% over the years. Because of the large sample size the factors are not independent but the percentage error between observed and expected under the independence assumption is very small.

A similar story holds for the crosstabs analysis of year with the hour groups. In this case the split over the hour groups "11PM", "12AM", " 1 AM ", " 2 AM " is very close to 0.42 , $0.27,0.18,0.13$ over all the years.

The crosstabs analysis of year and month does indicate some association between the factors but again it is quite small. The traffic intensity as a percentage of the annual totals are shown in the plot below.

We conclude from the analysis that a proxy variable for the traffic intensity developed from the regression model may be useful.

```> crosstabs(counts~year+hour, data=traffic.df) Call: crosstabs(counts ~ year + hour, data = traffic.df) 69372946 cases in table```					
+ N   $\left\|\begin{array}{l}\text { N/RowTotal } \\ \|N / C o l T o t a l\| \\ N \\ N / T o t a l ~\end{array}\right\|$					
year	hour 11PM	\| 12 AM	\| 1AM	\| 2 AM	RowTotl
1992	$\left\lvert\, \begin{aligned} & 4195735 \\ & 0.405 \\ & 0.145 \\ & 0.060 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 2796368 \\ & 0.270 \\ & 0.147 \\ & 0.040\end{aligned}\right.$	1978224   0.191   0.155   0.029	$\|$1401088   0.135   0.160   0.020	10371415 0.15
1993	$\begin{array}{\|l} 7181935 \\ 0.418 \\ 0.249 \\ 0.104 \end{array}$	4743985 0.276 0.249 0.068	$\|$3146447   0.183   0.247   0.045	$\|$2104242   0.123   0.241   0.030	17176609 0.25
1994	$\begin{aligned} & 8228684 \\ & 0.419 \\ & 0.285 \\ & 0.119 \end{aligned}$	5431360 0.277 0.285 0.078	$\|$3579725   0.182   0.281   0.052	2393232   0.122   0.274   0.034	19633001 0.28
1995	5449697   0.415   0.189   0.079	$\left\lvert\, \begin{aligned} & 3598054 \\ & 0.274 \\ & 0.189 \\ & 0.052\end{aligned}\right.$	2409970   0.184   0.189   0.035	$\left\lvert\, \begin{aligned} & 1666881 \\ & 0.127 \\ & 0.191 \\ & 0.024\end{aligned}\right.$	13124602 0.19
1996	$\left\lvert\, \begin{aligned} & 3789281 \\ & 0.418 \\ & 0.131 \\ & 0.055 \end{aligned}\right.$	2478192 0.273 0.130 0.036	$\|$1621661   0.179   0.127   0.023	$\left\lvert\, \begin{aligned} & 1178185 \\ & 0.130 \\ & 0.135 \\ & 0.017\end{aligned}\right.$	9067319 0.13
ColTotal	28845332 0.42	19047959 0.27	$\left\lvert\, \begin{aligned} & 12736027 \\ & 0.18\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 8743628 \\ & 0.13\end{aligned}\right.$	69372946
Test for independence of all factors Chi^2 $=21954.57$ d.f. $=12 \quad(p=0)$ Yates' correction not used					
> get.crosstabs.percenterror(counts~year+hour)					
[1, ]	$3-2$	47			
[2, ]	11	$0-3$			
[3, ]	1	$-1 \quad-3$			
[4, ]	00	$0 \quad 1$			
[5, ]	10	-3 3			


```> crosstabs(counts~year+wkgrp, data=traffic.df) Call: crosstabs(counts ~ year + wkgrp, data = traffic.df) 6 9 3 7 2 9 4 6 ~ c a s e s ~ i n ~ t a b l e ~```				
$\begin{aligned} & +------ \\ & \left\lvert\, \begin{array}{l} \text { N } \\ \text { N/RowT } \\ \text { N/ColT } \\ \text { N/Tota } \end{array}\right. \end{aligned}$	-al\|			
year	--+ wkgrp SunWed	ThuSat	\|RowTotal	
1992	5242486 0.505 0.152 0.076	$\left\lvert\, \begin{aligned} & 5128929 \\ & 0.495 \\ & 0.147 \\ & 0.074\end{aligned}\right.$	$\left\|\begin{array}{l}10371415 \\ 0.15\end{array}\right\|$	
1993	8317516 0.484 0.241 0.120	$\|$8859093 0.516 0.254 0.128	$\left\|\begin{array}{l}17176609 \\ 0.25\end{array}\right\|$	
1994	9683588 0.493 0.280 0.140	$\|$9949413 0.507 0.286 0.143	$\left\lvert\, \begin{aligned} & 19633001 \\ & 0.28\end{aligned}\right.$	
1995	6618902 0.504 0.192 0.095	$\left\lvert\, \begin{aligned} & 6505700 \\ & 0.496 \\ & 0.187 \\ & 0.094\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 13124602 \mid \\ & 0.19\end{aligned}\right.$	
1996	4680669 0.516 0.136 0.067	$\left\lvert\, \begin{aligned} & 4386650 \\ & 0.484 \\ & 0.126 \\ & 0.063\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 9067319 \\ & 0.13\end{aligned}\right.$	
ColTotal	34543161 0.5	$\left\lvert\, \begin{aligned} & 34829785 \\ & 0.5\end{aligned}\right.$	\| $69372946 \mid$	
Test for independence of all factors Chi^2 $=31245.03$ d.f. $=4 \quad(p=0)$ Yates' correction not used				
> get.crosstabs.percenterror (counts~year+wkgrp)				
$\begin{array}{lll} {[1,]} & 2 & -2 \end{array}$				
$[2]-$,				
$[3] \quad-$,				
$[4] \quad 1 \quad-$,				
$[5] \quad 4 \quad-$,				

> crosstabs(counts~year+month, data=traffic.df)
Call:
crosstabs(counts ~ year + month, data = traffic.df)
69372946 cases in table

N N/RowTotal N/ColTotal N/Total														
year	month Jan	Feb	Mar	Apr	May	\| Jun	\| Jul	\| Aug	Sep	Oct	Nov	Dec	RowTotl	
1992	678080	694308	743627	828565	896208	936492	1052864	1118057	940336	928126	767040	787712	10371415	
	0.0654	0.0669	0.0717	0.0799	0.0864	0.0903	0.1015	0.1078	0.0907	0.0895	0.0740	0.0760	0.15	
	0.1495	0.1522	0.1456	0.1522	0.1473	0.1452	0.1480	0.1554	0.1573	0.1555	0.1453	0.1393		
	0.0098	0.0100	0.0107	0.0119	0.0129	0.0135	0.0152	0.0161	0.0136	0.0134	0.0111	0.0114		
1993	1237462	1109775	1227746	1353591	\| 1527770	1568314	1732532	1731086	\| 1455842		1490490	1308602	1433399	17176609\|
	0.0720	0.0646	0.0715	0.0788	0.0889	0.0913	0.1009	0.1008	0.0848	0.0868	0.0762	0.0835	0.25	
	0.2727	0.2432	0.2403	0.2486	0.2511	0.2431	0.2435	0.2407	0.2436	0.2498	0.2478	0.2535		
	0.0178	0.0160	0.0177	0.0195	0.0220	0.0226	0.0250	0.0250	0.0210	0.0215	0.0189	0.0207		
1994	1082227	1296710	1480860	1562039	1704066	1830829	2096297	1975855	1695305	\| 1702239	1529692	1676882	19633001\|	
	0.0551	0.0660	0.0754	0.0796	0.0868	0.0933	0.1068	0.1006	0.0863	0.0867	0.0779	0.0854	0.28	
	0.2385	0.2842	0.2899	0.2869	0.2800	0.2838	0.2947	0.2747	0.2837	0.2852	0.2897	0.2966		
	0.0156	0.0187	0.0213	0.0225	0.0246	0.0264	0.0302	0.0285	0.0244	0.0245	0.0221	0.0242		
1995	893728	843964	986904	1040057	1192341	1248936	1356326	1357078	1096141	1089316	965416	1054395	13124602	
	0.0681	0.0643	0.0752	0.0792	0.0908	0.0952	0.1033	0.1034	0.0835	0.0830	0.0736	0.0803	0.19	
	0.1970	0.1850	0.1932	0.1910	0.1960	0.1936	0.1907	0.1887	0.1834	0.1825	0.1828	0.1865		
	0.0129	0.0122	0.0142	0.0150	0.0172	0.0180	0.0196	0.0196	0.0158	0.0157	0.0139	0.0152		
1996	645575	617684	669201	660020	764507	865842	875961	1010758	788548	757592	709502	702129	9067319	
	0.0712	0.0681	0.0738	0.0728	0.0843	0.0955	0.0966	0.1115	0.0870	0.0836	0.0782	0.0774	0.13	
	0.1423	0.1354	0.1310	0.1212	0.1256	0.1342	0.1231	0.1405	0.1319	0.1269	0.1344	0.1242		
	0.0093	0.0089	0.0096	0.0095	0.0110	0.0125	0.0126	0.0146	0.0114	0.0109	0.0102	0.0101		
ColTotl	4537072	4562441	5108338	5444272	6084892	6450413	7113980	7192834	5976172	5967763	5280252	\| 5654517	69372946	
	0.065	0.066	0.074	0.078	\| 0.088	0.093	0.103	0.104	0.086	0.086	0.076	0.082		

Test for independence of all factors
Chi^2 $=103146.1$ d.f. $=44 \quad(p=0)$
Yates' correction not used
get.crosstabs.percenterror(counts ~year + month, d
ata $=$ traffic.df)
$>$ get.crosstabs.percenterror(counts~year + month)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$	$[, 11]$	$[, 12]$	
$[1]$,	0	2	-3	2	-1	-3	-1	4	5	4	-3	-7	
$[2]$,	10	-2	-3	0	1	-2	-2	-3	-2	1	0	2	
$[3]$,	-16	0	2	1	-1	0	4	-3	0	1	2	5	
$[4]$,	4	-2	2	1	4	2	1	0	-3	-4	-3	-1	
			$[5]$,	9	4	0	-7	-4	3	-6	8	1	-3

Proxy Variable

Since no data is available for 1997 and 1998 we have decided to use a proxy variable for the traffic counts. Alternatively if traffic could be predicted for 1997 and 1998 we could use the predicted traffic intensities to supplement the original data. However since there is a great deal of variation and no simple trend present, we have decided to replace the original data with a proxy.

The proxy variable we use is developed from a regression of the log of the traffic counts regressed on wkgrp, hour, month and year. The expected traffic count for a given set of covariates is then obtained by the transformation,

$$
Y=\exp \left(y+\sigma^{2} / 2\right)
$$

where y is the predicted log count, σ^{2} is the residual variance and Y is estimated expected traffic count. For the proxy we take year=1994 and we use $Y / 10^{5}$. The proxy values are visualized using a dotchart below.

C. TIRF Dataset - Introduction

Introduction

TIRF, Traffic Injury Research Foundation, provided this data on fatal car accidents in Manitoba and Ontario from January 1,1992 to December 31, 1998. This data is for automobile driver deaths only. The data is analyzed in two parts. First the Late Night Subset and second TIRF - All Times

Late Night Subset

The Late Night Subset of the TIRF data set contains 434 records.
The variables of interest in original data set are shown in the table below..

Variables of interest:

drink	alcohol consumption, factor: yes, no, unknown
year	ordered factor, 7 levels:1992 to 1998
month	ordered factor, 12 levels: January to December
wkgrp	ordered factors of week group, 2 levels: SunWed, ThuSat
hour	ordered factors, 5 levels: 11PM, 12AM, 1AM, 2AM, 3AM
prov	factor: Manitoba, Ontario

In the SPSS file the variable is bacpos and the variable drink in our analysis is definied by: drink $=$ yes if bacpos $=7777$ or 8888 or 1
drink $=$ no if bacpos= -7 or 0
drink = unknown, otherise

Missing Data:

There are 434 cases in the original SPSS file but case 343 is missing date and hour so it was deleted. Also hour was missing in additional 33 cases so these records were also deleted. This leaves 400 cases for our analysis. In the remaining 400 cases, there are 44 cases with drink=unknown in Ontario and 2 cases in Manitoba. Of the 400 cases, there are 347 in Ontario and 53 in Manitoba.

TIRF - All Hours (TIRFALL)

There were 2234 cases in the original SPSS datafile. Record 1765 was incomplete with respect to moyr so this record was omitted. Also record 1990 missing crsw (day of week).

An ordered factor hour was created defined by the hour in which the accident occurred. There are 24 levels to this ordered factor. All accidents occurring from 0000 to 0059 were put in $12 \mathrm{PM}, 0100$ to 0159 in 1 AM , etc.

Variables of interest:

drink	alcohol consumption, factor: yes, no, unknown
year	ordered factor, 7 levels:1992 to 1998
month	ordered factor, 12 levels: January to December
wkgrp	ordered factors of week group, 2 levels: SunWed, ThuSat
hour	ordered factors, 24 levels: 12PM, 1AM, ..., 11PM.
prov	factor: Manitoba, Ontario

Missing Variables

There are 2233 cases in the S-Plus dataframe. We see there are 33 cases were hour is missing and 342 cases where drink is unknown.

```
> dim(tirfall.df)
    [1] 2233 10
> sum(tirfall.df$drink=="unknown")
[1] 342
> sum(is.na(tirfall.df$hour))
[1] 33
```


C. TIRF Late-Night Subset - Crosstabs

Summary

TIRF data set contains 434 observations of car fatality accidents from January 1992 to December 1998 in Ontario (376) and Manitoba (58). Each case represents one driver fatality. After deleting all cases where the hour variable was missing we were left with 400 cases. Of these 400 cases, 347 were in Ontario and 53 were in Manitoba.

DRINK-HOUR. In Ontario, about 70% of fatalities involve alcohol. Although the association between alcohol fatalities and hour is not statistically significant ($p=18 \%$) we see that there is a slight increase in alcohol usage associated with deaths at 2AM (11% extra) and 3AM (13\% extra). In Manitoba about 77% of fatalities are alcohol associated. Again the association with hour does not appear to be statistically significant but there is a 15% excess of alcohol fatalities in the 3AM window.

WKGRP. The car fatality accidents in SunWed group count for 62% of total accidents while 38\% in ThuSat group. If accidents were uniformly distributed over the weekdays then the expected number of accidents in the SunWed group would be $(233+142) \times 4 / 7=214.28$ with a binomial standard deviation of 9.583 . So the departure from uniformity is just significant at the 5% level on a two-sided test.

DRINK-WKGRP are associated in Ontario but probably not in Manitoba. Among the accidents, in Ontario, in SunWed group 75% of them were owing to driving after drinking while 63% of the accidents in ThuSat group were owing to drinking. It implies that drunken driving more likely happened in Sunday through Wednesday.

DRINK-MONTH are not associated. There are more car fatality accidents in warm season than in cold season. This is also true in alcohol level.

DRINK-YEAR might be associated. The annual car fatality accidents fluctuated over years. There are more accidents in 1994 (17.5\%) and fewest in $1998(7.6 \%)$. The percentage of accidents with drink=yes for 1998 is relatively high in both Ontario and Manitoba. Figure 0 shows there is considerable variation here. One explanation is that with the increased use of seatbelts, daytime running lights and airbags only very serious crashes with often involve alcohol result in fatalities.

HOUR-WKGRP are likely unassociated. There are 25% more fatalities in the ThuSat-11PM slot and 28% fewer in the ThuSat-3AM slot than expected under the assumption of independence but the difference is not statistically significant.

HOUR-MONTH are not likely associated. However, in Ontario, there are 231% more fatalities than expected in the 2AM-April slot than would be expected under independence.

HOUR-YEAR are associated in Ontario but probably not in Manitoba. Hour and year are associated. There seems to be an excess of fatalities in the 2AM-1998 and 3AM-1997 windows (97% and 110% respectively).

WKGRP-MONTH are associated in Ontario. In Ontario, there are increased fatalities in ThuSatFeb (65\%) and ThuSat-Dec (58\%) and decreased fatalities in ThuSat-May (42\%) and ThuSat-Nov (56\%).

WKGRP-YEAR are not associated.

Frequency Analysis of Drink

In Ontario out of a total of 375 cases, there are 44 cases where drink=unknown and only 2 cases in Manitoba. Thus in Ontario there remain 331 cases.

```
>crosstabs(~drink, data=tirf.df, subset=province=="Ontario", na.action=na.exclude)
Call:
crosstabs(formula = ~ drink, data = tirf.df, subset = province == "Ontario",
        na.action = na.exclude)
3 7 5 \text { cases in table}
+-------+
| N
|N/Total
+-------+
drink |
-------+-------+
unknown| 44 |
    | 0.12 |
-- +107 +
no |107 |
-------+--------
yes |224 |
    | 0.6 |
> crosstabs(~drink, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs(formula = ~ drink, data = tirf.df, subset = province == "Manitoba", na.action
= na.exclude)
5 8 ~ c a s e s ~ i n ~ t a b l e ~
+-------+
| N |
|N/Total|
+-------+
drink
-------+--------+
unknown| 2 |
    0.034
-------+--------+
no |12 |
10.21
yes |44 |
-----------
```


Drink and hour are independent

Ontario

About 70% of fatalities involve alcohol. Although the association between alcohol fatalities and hour is not statistically significant ($\mathrm{p}=18 \%$) we see that there is a slight increase in alcohol usage associated with deaths at 2AM (11\% extra) and 3AM (13\% extra).

```
> crosstabs(~drink+hour, data=tirf.df, subset=province=="Ontario", na.action=na.exclude)
Call:
crosstabs( ~ drink + hour, data = tirf.df, subset = province == "Ontario", na.action = na.exclude)
316 cases in table
----------+
| N
|N/RowTotal|
|N/ColTotal|
|N/Total
----------+
drink |hour
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & | 11 PM & | 12AM & | 1AM & 12 AM & | 3AM & | RowTotl| \\
\hline \multirow[t]{4}{*}{no} & 127 & 118 & 127 & 114 & 110 & 196 \\
\hline & 10.281 & 10.188 & 10.281 & 10.146 & 10.104 & 10.3 \\
\hline & 10.370 & 10.305 & 10.360 & 10.226 & 10.213 & | \\
\hline & 10.085 & 10.057 & 10.085 & 10.044 & 10.032 & | \\
\hline \multirow[t]{4}{*}{yes} & 146 & 141 & 148 & 148 & 137 & 1220 \\
\hline & 10.209 & 10.186 & 10.218 & 10.218 & 10.168 & 10.7 \\
\hline & 10.630 & 10.695 & 10.640 & 10.774 & 10.787 & 1 \\
\hline & 10.146 & 10.130 & 10.152 & 10.152 & 10.117 & | \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} \text { ColTotl } & \text { 73 } \\ & 0.23\end{aligned}\)}} & 159 & 175 & 162 & 147 & 1316 \\
\hline & & 10.19 & 10.24 & 10.20 & 10.15 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 6.251495 d.f.= 4 (p=0.1811372)
    Yates' correction not used
> get.crosstabs.percenterror(~drink+hour)
[,1] [,2] [,3] [,4] [,5]
[2,] -9 0
```


Manitoba

In Manitoba about 77\% of fatalities are alcohol associated. Again the association with hour does not appear to be statistically significant but there is a 15% excess of alcohol fatalities in the 3AM window.

```
> crosstabs(~drink+hour, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs( ~ drink + hour, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
53 cases in table
+-----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
drink |hour
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & | 11PM & | 12AM & | 1 AM & | 2AM & | 3AM & |RowTotl| \\
\hline \multirow[t]{4}{*}{no} & 14 & 2 & 13 & | 2 & | 1 & 112 \\
\hline & 10.333 & 10.167 & 10.250 & 10.167 & 10.083 & 10.23 \\
\hline & 10.235 & 10.222 & 10.273 & 10.286 & 10.111 & | \\
\hline & 10.075 & 10.038 & 10.057 & 10.038 & 10.019 & 1 \\
\hline \multirow[t]{4}{*}{yes} & 113 & 17 & 18 & 15 & 18 & 141 \\
\hline & 10.317 & 10.171 & 10.195 & 10.122 & 10.195 & 10.77 \\
\hline & 10.765 & 10.778 & 10.727 & 10.714 & 10.889 & 1 \\
\hline & 10.245 & 10.132 & 10.151 & 10.094 & 10.151 & 1 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} & \text { ColTotl } 117 \\ & \mid 0.32\end{aligned}\)}} & 19 & 111 & 17 & 19 & 153 \\
\hline & & 10.17 & 10.21 & 10.13 & 10.17 & 1 | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 0.9669428 d.f. = 4 (p=0.9147664)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror.man(~drink+hour)
    [,1] [,2] [,3] [,4] [,5]
[1,] 4 -2 20 26 -51
[2,] -1 
```


Drink and wkgrp are associated

Ontario

```
> crosstabs(~wkgrp, data=tirf.df, subset=province=="Ontario")
Call:
crosstabs( ~ wkgrp, data = tirf.df, subset = province == "Ontario")
3 7 5 \text { cases in table}
+-------+
|N |
|N/Total|
+-------+
wkgrp |
-------+-------+
SunWed |233
    |0.62 |
-------+-------+
ThuSat |142
    |.38 |
```

The car fatality accidents in SunWed group count for 62% of total accidents while 38% in ThuSat group. If accidents were uniformly distributed over the weekdays then the expected number of accidents in the SunWed group would be $(233+142) \times 4 / 7=214.28$ with a binomial standard deviation of 9.583 . So the departure from uniformity is just significant at the 5% level on a twosided test.

Among the accidents in SunWed group 75\% of them were owing to driving after drinking while 63% of the accidents in ThuSat group were owing to drinking. It implies that drunken driving more likely happened in Sunday through Wednesday.

```
> crosstabs(~drink+wkgrp, data=tirf.df, subset=province=="Ontario", na.action=na.exclude)
Call:
crosstabs( ~ drink + wkgrp, data = tirf.df, subset = province == "Ontario", na.action = na.exclude)
3 3 1 ~ c a s e s ~ i n ~ t a b l e
+-----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total
+-----------+
drink |wkgrp
    SunWed |ThuSat |RowTotl
\begin{tabular}{l|llll}
-------- \\
no & 56 & | & 51 & \(\mid 107\)
\end{tabular}
```



```
Test for independence of all factors
    Chi^2 = 8.411244 d.f.= 1 (p=0.003729074)
    Yates' correction not used
> get.crosstabs.percenterror.ont(~drink+wkgrp)
        [,1] [,2]
[1,] -18 30
[2,] 8 -15
```


Manitoba

In Manitoba there is no association and the pattern is different from Ontario. In Manitoba 79\% of fatalities involve drinking as compared with 68% in Ontario and 73% of accidents occur in the SunWed wkgrp as compared with 63% in Ontario.

```
> get.crosstabs.percenterror.ont(~drink+wkgrp)
    [,1] [,2]
[1,] -18 30
[2,] 8 -15
> crosstabs(~drink+wkgrp, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs( ~ drink + wkgrp, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
56 cases in table
+-----------+
|N
N/RowTotal
|N/ColTotal|
N/Total |
+----------+
drink |wkgrp
    SunWed |ThuSat |RowTotl|
-------+-------+-------+-------+
\begin{tabular}{|c|c|c|c|}
\hline & 10.750 & 10.250 & 10.21 \\
\hline & 10.220 & 10.200 & | \\
\hline & 10.161 & 10.054 & | \\
\hline \multirow[t]{4}{*}{yes} & 132 & 112 & 144 \\
\hline & 10.727 & 10.273 & 10.79 \\
\hline & 10.780 & 10.800 & | \\
\hline & 10.571 & 10.214 & I \\
\hline \multicolumn{2}{|l|}{ColTotl|41} & 115 & 156 \\
\hline & 10.73 & 10.27 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 0.0248337 d.f. = 1 (p=0.8747821)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror.man(~drink+wkgrp)
        [,1] [,2]
[1,] 2 -7
[2,] -1 2
```


Drink and month are not associated

Ontario

There are more car fatality accidents in warm season than in cold season. This is also true in alcohol level.

Manitoba

Less data but otherwise similar to Ontario.

Drink and year are perhaps associated ($\mathrm{p}=\mathbf{1 0 \%}$).

Ontario

The annual car fatality accidents fluctuated over years. There are more accidents in 1994 (17.5\%) and fewest in 1998 (7.6\%).

Although there are fewest accidents in 1998, 76\% are associated with drinking alcohol. This suggests that the reduction in deaths is more due to improved car design, day time running lights and air bags than is due to the effectiveness of anti-drinking campaigns.

```
> get.crosstabs.percenterror.man(~drink+month)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 133 133 -100 -100 -22 -100 33 0, 4 87 -100 4 -100
```



```
Call:
crosstabs( ~ drink + year, data = tirf.df, subset = province == "Ontario", na.action = na.exclude)
3 3 1 \text { cases in table}
+----------+
|N
|N/RowTotal|
|N/ColTotal|
N/Total |
+----------+
drink |year
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 11992 & 11993 & 11994 & 11995 & 11996 & 11997 & 11998 & | RowTotl| \\
\hline \multirow[t]{4}{*}{no} & 111 & 120 & 113 & 120 & 120 & 117 & | 6 & 1107 \\
\hline & 10.103 & 10.187 & 10.121 & 10.187 & 10.187 & 10.159 & 10.056 & 10.32 \\
\hline & 10.220 & 10.351 & 10.224 & 10.400 & 10.435 & 10.378 & 10.240 & | \\
\hline & 10.033 & 10.060 & 10.039 & 10.060 & 10.060 & 10.051 & 10.018 & | \\
\hline \multirow[t]{4}{*}{yes} & 139 & 137 & 145 & 130 & 126 & 128 & 119 & 1224 \\
\hline & 10.174 & 10.165 & 10.201 & 10.134 & 10.116 & 10.125 & 10.085 & 10.68 \\
\hline & 10.780 & 10.649 & 10.776 & 10.600 & 10.565 & 10.622 & 10.760 & | \\
\hline & 10.118 & 10.112 & 10.136 & 10.091 & 10.079 & 10.085 & 10.057 & | \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ColTotl| \(\mathrm{Sc} \mathbf{0} 0.151\)}} & 157 & 158 & 150 & 146 & 145 & 125 & 1331 \\
\hline & & 10.172 & 10.175 & 10.151 & 10.139 & 10.136 & 10.076 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 10.60544 d.f.= 6 (p=0.1013636)
    Yates' correction not used
> get.crosstabs.percenterror.ont(~drink+year)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -32 
[2,] 15 [-4 15 15 -11 
```

Figure 0. Percent of fatalities with drink=yes in Ontario

Fatalities, drink=yes

Manitoba

The pattern observed in Ontario appears again. Although 1998 had the fewest number of fatalities, 100% of the fatalities were associated with drinking but there were only a total of 5 fatalities recorded in Manitoba for 1998. There is not enough data for the standard test to obtain an accurate p-value.

```
> crosstabs(~drink+year, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs( ~ drink + year, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
56 cases in table
+----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
drink lyear
    |1992 |1993 |1994 |1995 |1996 |1997 |1998 |RowTotl|
\begin{tabular}{llllllllll} 
no & \(\mid 1\) & \(\mid 1\) & \(\mid 2\) & 11 & \(\mid 3\) & \(\mid 4\) & \(\mid 0\) & \(\mid 12\) & \(\mid\) \\
10.083 & 10.083 & 10.167 & 10.083 & 10.250 & 10.333 & 10.000 & 10.21
\end{tabular}
\begin{tabular}{lllllll|}
\(\mid 0.018\) & \(\mid 0.018\) & \(\mid 0.036\) & \(\mid 0.018\) & \(\mid 0.054\) & 10.071 & \(\mid 0.000\)
\end{tabular}\(|\)
\begin{tabular}{llllll} 
yes & 15 & 18 & 19 & \(\mid 4\) & \(\mid 5\)
\end{tabular}
```



```
Test for independence of all factors
    Chi^2 = 4.325773 d.f.= 6 (p=0.6326814)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror.man(~drink+year)
            [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -22 -48 -15 -7 75 56 -100
[2,] 
```

Hour and wkgrp are independent (p-value=17\%)

Ontario

There are 25% more fatalities in the ThuSat-11PM slot and 28% fewer in the ThuSat-3AM slot than expected under the assumption of independence but the difference is not statistically significant.

```
> crosstabs(~wkgrp+hour, data=tirf.df, subset=province=="Ontario", na.action=na.exclude)
Call:
crosstabs( ~ wkgrp + hour, data = tirf.df, subset = province == "Ontario", na.action = na.exclude)
347 cases in table
+------------+
| N
N/RowTotal
N/ColTotal
|N/Total
+-----------
wkgrp |hour
-------+--------+-------+-------+-------+----------------------
\begin{tabular}{rllllll|} 
SunWed & \(\mid 44\) & \(\mid 46\) & \(\mid 50\) & \(\mid 45\) & \(\mid 37\) & \(\mid 222\) \\
& \(\mid 0.198\) & 10.207 & 10.225 & 10.203 & 10.167 & 10.64 \\
& \(\mid 0.550\) & 10.676 & 10.602 & 10.682 & 10.740 & \(\mid\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Thusat & 136 & 122 & 133 & 121 & 113 & 1125 \\
\hline & 10.288 & 10.176 & 10.264 & 10.168 & 10.104 & 10.36 \\
\hline & 10.450 & 10.324 & 10.398 & 10.318 & 10.260 & , \\
\hline & 10.104 & 10.063 & 10.095 & 10.061 & 10.037 & | \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ColTotl| } 80 \\
& 10.23
\end{aligned}
\]}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 168 \\
& 10.20
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 183 \\
& 10.24
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 166 \\
& 10.19
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& -+----- \\
& \mid 50 \\
& \mid 0.14
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1347 \\
& \text { | }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 6.38332 d.f.= 4 (p=0.1722922)
    Yates' correction not used
> get.crosstabs.percenterror.ont(~wkgrp+hour)
    [,1] [,2] [,3] [,4] [,5]
[1,] -14 
[2,] 
```


Manitoba

As in Ontario there are much fewer (55% here) fatalities in the ThuSat-3AM slot but the numbers are small and the difference does not appear to be statistically significant.

```
> crosstabs(~wkgrp+hour, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs( ~ wkgrp + hour, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
53 cases in table
+----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & | 11PM & | 12AM & | 1AM & | 2AM & | 3AM & |RowTotl| \\
\hline \multirow[t]{4}{*}{SunWed} & 113 & 7 & 17 & 15 & 8 & 140 \\
\hline & 10.325 & 10.175 & 10.175 & 10.125 & 10.200 & 10.75 \\
\hline & 10.765 & 10.778 & 10.636 & 10.714 & 10.889 & | \\
\hline & 10.245 & 10.132 & 10.132 & 10.094 & 10.151 & | \\
\hline \multirow[t]{4}{*}{Thusat} & 14 & 12 & 14 & 12 & | 1 & 113 \\
\hline & 10.308 & 10.154 & 10.308 & 10.154 & 10.077 & 10.25 \\
\hline & 10.235 & 10.222 & 10.364 & 10.286 & 10.111 & | \\
\hline & 10.075 & 10.038 & 10.075 & 10.038 & 10.019 & 1 | \\
\hline \multirow[t]{2}{*}{ColTotl} & 117 & 19 & 111 & 17 & 19 & 153 \\
\hline & 10.32 & 10.17 & 10.21 & 10.13 & 10.17 & 1 \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 1.804387 d.f.= 4 (p=0.7716796)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror.man(~wkgrp+hour)
    [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 -16 -5 18
[2,] 
```


Hour and Month

Ontario

Overall there is no strong indication of associated. However there are 231% more fatalities than expected in the 2AM-April slot than would be expected under independence.

Test for independence of all factors
Chi^2 $=53.12007$ d.f. $=44$ ($p=0.1630167$)
Yates' correction not used
Some expected values are less than 5, don't trust stated p-value

Manitoba

[,1]	[,2]	[,3]	[,4]	[,5]	[, 6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	
[1,]	-33	-17	18	-6	-16	33	6	-5	-2	6	4	-25
[2,]	57	-3	-30	-78	-1	18	38	0	-18	0	2	11
[3,]	29	59	52	-82	21	-57	24	12	21	-18	-16	-9
[4,]	-60	0	-76	197	19	-19	-43	3	19	-10	-58	37
[5,]	7	-67	26	-9	-33	42	-44	-15	-33	35	94	-9

$>$ crosstabs(~hour+month, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude) Call:
crosstabs(~ hour + month, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
53 cases in table
+-----------
| N
|N/RowTotal|
|N/ColTotal|
|N/Total

| hour
 \| Jan | \|month | Feb | \| Mar | \| Apr | \| May | I Jun | \| Jul | \| Aug | \| Sep | IOct | \| Nov | \| Dec | \| RowT | 1\| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 PM | 12 | 10 | 10 | 10 | 12 | \| 1 | 12 | 14 | 12 | 13 | 11 | 10 | 117 |
| 10.118 | 10.000 | 10.000 | 10.000 | 10.118 | 10.059 | 10.118 | 10.235 | 10.118 | 10.176 | 10.059 | 10.000 | 10.32 | \| |
| 10.500 | 10.000 | 10.000 | 10.000 | 10.400 | 10.500 | 10.286 | 10.444 | 10.667 | 10.375 | 10.111 | 10.000 | \| | \| |
| 10.038 | 10.000 | 10.000 | 10.000 | 10.038 | 10.019 | 10.038 | 10.075 | 10.038 | 10.057 | 10.019 | 10.000 | । | \| |
| 12AM | 10 | 11 | 10 | 10 | 10 | \| 1 | 13 | 11 | 10 | 11 | 11 | 11 | 19 |
| 10.000 | 10.111 | 10.000 | 10.000 | 10.000 | 10.111 | 10.333 | 10.111 | 10.000 | 10.111 | 10.111 | 10.111 | 10.17 | \| |
| 10.000 | 10.500 | 10.000 | 10.000 | 10.000 | 10.500 | 10.429 | 10.111 | 10.000 | 10.125 | 10.111 | 10.500 | 1 | , |
| 10.000 | 10.019 | 10.000 | 10.000 | 10.000 | 10.019 | 10.057 | 10.019 | 10.000 | 10.019 | 10.019 | 10.019 | I | I |
| 1 AM | 10 | 10 | 11 | 10 | 11 | 10 | 12 | 13 | 10 | 11 | 12 | 11 | 111 |
| 10.000 | 10.000 | 10.091 | 10.000 | 10.091 | 10.000 | 10.182 | 10.273 | 10.000 | 10.091 | 10.182 | 10.091 | 10.21 | \| |
| 10.000 | 10.000 | 11.000 | 10.000 | 10.200 | 10.000 | 10.286 | 10.333 | 10.000 | 10.125 | 10.222 | 10.500 | \| | । |
| 10.000 | 10.000 | 10.019 | 10.000 | 10.019 | 10.000 | 10.038 | 10.057 | 10.000 | 10.019 | 10.038 | 10.019 | \| | \| |
| 2AM | 12 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 14 | 10 | 17 |
| 10.286 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.143 | 10.571 | 10.000 | 10.13 | , |
| 10.500 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.125 | 10.444 | 10.000 | \| | I |
| 10.038 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.019 | 10.075 | 10.000 | \| | । |
| 3AM | 10 | 11 | 10 | 11 | 12 | 10 | 10 | 11 | 11 | 12 | 11 | 10 | 19 |
| 10.000 | 10.111 | 10.000 | 10.111 | 10.222 | 10.000 | 10.000 | 10.111 | 10.111 | 10.222 | 10.111 | 10.000 | 10.17 | 1 |
| 10.000 | 10.500 | 10.000 | 11.000 | 10.400 | 10.000 | 10.000 | 10.111 | 10.333 | 10.250 | 10.111 | 10.000 | \| | I |
| 10.000 | 10.019 | 10.000 | 10.019 | 10.038 | 10.000 | 10.000 | 10.019 | 10.019 | 10.038 | 10.019 | 10.000 | । | \| |
| ColTot | | 12 | 11 | 11 | 15 | 12 | 17 | 19 | 13 | 18 | 19 | 12 | 153 |
| 10.075 | 10.038 | 10.019 | 10.019 | 10.094 | 10.038 | 10.132 | 10.170 | 10.057 | 10.151 | 10.170 | 10.038 | \| | \| |

Test for independence of all factors
Chi^2 $=48.19941$ d.f. $=44$ ($p=0.3068645$)
Yates' correction not used
Some expected values are less than 5, don't trust stated p-value $>$ get.crosstabs.percenterror.man(~hour+month)

$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$	$[, 11]$	$[, 12]$	
$[1]$,	56	-100	-100	-100	25	56	-11	39	108	17	-65	-100
$[2]$,	-100	194	-100	-100	-100	194	152	-35	-100	-26	-35	194
$[3]$,	-100	-100	382	-100	-4	-100	38	61	-100	-40	7	141
$[4]$,	279	-100	-100	-100	-100	-100	-100	-100	-100	-5	237	-100
$[5]$,	-100	194	-100	489	136	-100	-100	-35	96	47	-35	-100

Hour and year are associated in Ontario

Ontario

Hour and year are associated. There seems to be an excess of fatalities in the 2AM-1998 and 3AM-1997 windows (97% and 110% respectively).

Manitoba

The crosstabs are included for Manitoba but since the numbers are so small we can't make any reliable conclusion.

```
> crosstabs(~hour+year, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs( ~ hour + year, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
53 cases in table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{| N |} \\
\hline \multicolumn{9}{|l|}{|N/RowTotal|} \\
\hline \multicolumn{9}{|l|}{|N/ColTotal|} \\
\hline \multicolumn{9}{|l|}{|N/Total |} \\
\hline \multirow[b]{2}{*}{hour} & & & & & & & & \\
\hline & \begin{tabular}{l}
| year \\
| 1992
\end{tabular} & | 1993 & | 1994 & | 1995 & 11996 & | 1997 & 11998 & |RowTotl| \\
\hline \multirow[t]{4}{*}{11 PM} & 10 & 12 & 16 & 11 & 12 & 16 & 10 & 117 \\
\hline & 10.000 & 10.118 & 10.353 & 10.059 & 10.118 & 10.353 & 10.000 & 10.32 \\
\hline & 10.000 & 10.222 & 10.600 & 10.200 & 10.250 & 10.500 & 10.000 & | \\
\hline & 10.000 & 10.038 & 10.113 & 10.019 & 10.038 & 10.113 & 10.000 & | \\
\hline \multirow[t]{4}{*}{12AM} & 11 & 10 & 13 & 12 & 11 & 10 & 12 & 19 \\
\hline & 10.111 & 10.000 & 10.333 & 10.222 & 10.111 & 10.000 & 10.222 & 10.17 \\
\hline & 10.200 & 10.000 & 10.300 & 10.400 & 10.125 & 10.000 & 10.500 & | \\
\hline & 10.019 & 10.000 & 10.057 & 10.038 & 10.019 & 10.000 & 10.038 & | \\
\hline \multirow[t]{4}{*}{1AM} & 11 & 15 & 10 & 11 & 12 & 12 & 10 & 111 \\
\hline & 10.091 & 10.455 & 10.000 & 10.091 & 10.182 & 10.182 & 10.000 & 10.21 \\
\hline & 10.200 & 10.556 & 10.000 & 10.200 & 10.250 & 10.167 & 10.000 & | \\
\hline & 10.019 & 10.094 & 10.000 & 10.019 & 10.038 & 10.038 & 10.000 & I \\
\hline \multirow[t]{4}{*}{2AM} & 10 & 11 & 11 & 10 & 11 & 13 & 11 & 17 \\
\hline & 10.000 & 10.143 & 10.143 & 10.000 & 10.143 & 10.429 & 10.143 & 10.13 \\
\hline & 10.000 & 10.111 & 10.100 & 10.000 & 10.125 & 10.250 & 10.250 & | \\
\hline & 10.000 & 10.019 & 10.019 & 10.000 & 10.019 & 10.057 & 10.019 & | \\
\hline \multirow[t]{4}{*}{3AM} & 13 & 11 & 10 & 11 & 12 & 11 & 11 & 19 \\
\hline & 10.333 & 10.111 & 10.000 & 10.111 & 10.222 & 10.111 & 10.111 & 10.17 \\
\hline & 10.600 & 10.111 & 10.000 & 10.200 & 10.250 & 10.083 & 10.250 & | \\
\hline & 10.057 & 10.019 & 10.000 & 10.019 & 10.038 & 10.019 & 10.019 & | \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} & \text { ColTotl } \\ & 10 \\ & 10.094\end{aligned}\)}} & 19 & 110 & 15 & 18 & 112 & 14 & 153 \\
\hline & & 10.170 & 10.189 & 10.094 & 10.151 & 10.226 & 10.075 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 35.74037 d.f. = 24 (p=0.05815202)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror.man(~hour+year)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -100 -31 87 -38 -22 56 -100
[2,] 18 -100 77 136 -26 -100 194
[3,] -4 168 -100 
[4,] -100 -16 -24 -100 -5 89 89
[5,] 253 -35 -100 18 47 -51 47
```


Wkgrp and month are associated in Ontario (p-value $\approx 1 \%$)

Ontario

There are increased fatalities in ThuSat-Feb (65\%) and ThuSat-Dec (58\%) and decreased fatalities in ThuSat-May (42\%) and ThuSat-Nov (56\%).

Call: crosstabs(~ wkgrp + month, data = tirf.df, subset = province == "Ontario", na.action = na.exclude) 375 cases in table														
\| N														
\|N/RowTotal														
\|N/ColTotal														
\|N/Total														
wkgrp \|month														
SunWed	19	19	113	116	125	127	124	129	119	127	125	110	1233	
	10.039	10.039	10.056	10.069	10.107	10.116	10.103	10.124	10.082	10.116	10.107	10.043	10.62	
	10.562	10.375	10.542	10.667	10.781	10.692	10.632	10.659	10.514	10.643	10.833	10.400	\|	
	10.024	10.024	10.035	10.043	10.067	10.072	10.064	10.077	10.051	10.072	10.067	10.027	।	
ThuSat	17	115	111	18	17	112	114	115	118	115	15	115	1142	
	10.049	10.106	10.077	10.056	10.049	10.085	10.099	10.106	10.127	10.106	10.035	10.106	10.38	
	10.438	10.625	10.458	10.333	10.219	10.308	10.368	10.341	10.486	10.357	10.167	10.600	।	
	10.019	10.040	10.029	10.021	10.019	10.032	10.037	10.040	10.048	10.040	10.013	10.040	,	
ColTotl\|16		124	124	124	132	139	138	144	137	142	130	125	1375	
	10.043	10.064	10.064	10.064	10.085	10.104	10.101	10.117	10.099	10.112	10.080	10.067	\|	
Test for independence of all factors														
Chi^2 $=24.726$ d.f. $=11$ ($\mathrm{p}=0.00999656$)														
Yates' correction not used														
> get.crosstabs.percenterror.ont (~wkgrp + month)														
$\begin{array}{rrr} & {[, 1]} & {[, 2]} \\ {[1,]} & -9 & -40 \end{array}$		$[, 3][, 4][, 5]$		[,6] [,7	$[, 8][, 9][, 10]$		[,11]	[,12]						
		-13	726	11	26	-17	34	-36						
[2,]	1665	21	$12-42$	-19 -	- -10	28	-56	58						

Manitoba

The numbers are too small to draw any conclusion.

Wkgrp and year are not associated

Ontario

```
> crosstabs(~wkgrp+year, data=tirf.df, subset=province=="Ontario", na.action=na.exclude)
Call:
crosstabs( ~ wkgrp + year, data = tirf.df, subset = province == "Ontario", na.action = na.exclude)
375 cases in table
+----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
wkgrp |year
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 11992 & 11993 & 11994 & 11995 & 11996 & 11997 & 11998 & |RowTotl| \\
\hline \multirow[t]{4}{*}{SunWed} & 137 & 141 & 142 & 130 & 130 & 134 & 119 & 1233 \\
\hline & 10.159 & 10.176 & 10.180 & 10.129 & 10.129 & 10.146 & 10.082 & 10.62 \\
\hline & 10.607 & 10.631 & 10.677 & 10.556 & 10.625 & 10.586 & 10.704 & | \\
\hline & 10.099 & 10.109 & 10.112 & 10.080 & 10.080 & 10.091 & 10.051 & | \\
\hline \multirow[t]{4}{*}{ThuSat} & 124 & 124 & 120 & 124 & 118 & 124 & 18 & | 142 \\
\hline & 10.169 & 10.169 & 10.141 & 10.169 & 10.127 & 10.169 & 10.056 & 10.38 \\
\hline & 10.393 & 10.369 & 10.323 & 10.444 & 10.375 & 10.414 & 10.296 & | \\
\hline & 10.064 & 10.064 & 10.053 & 10.064 & 10.048 & 10.064 & 10.021 & । \\
\hline \multirow[t]{2}{*}{ColTotl} & 161 & 165 & 162 & 154 & 148 & 158 & 127 & 1375 \\
\hline & 10.163 & 10.173 & 10.165 & 10.144 & 10.128 & 10.155 & 10.072 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 2.988713 d.f.= 6 (p=0.8102621)
    Yates' correction not used
> get.crosstabs.percenterror.ont(~wkgrp+year)
\begin{tabular}{lrrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} & {\([, 7]\)} \\
{\([1]\),} & -2 & 2 & 9 & -11 & 1 & -6 & 13 \\
{\([2]\),} & 4 & -2 & -15 & 17 & -1 & 9 & -22
\end{tabular}
```


Manitoba

```
> crosstabs(~wkgrp+year, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs( ~ wkgrp + year, data = tirf.df, subset = province == "Manitoba", na.action = na.exclude)
58 cases in table
+----------+
|N
N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 11992 & | 1993 & | 1994 & 11995 & 11996 & | 1997 & 11998 & |RowTotl| \\
\hline \multirow[t]{4}{*}{SunWed} & 15 & 15 & 17 & 14 & 17 & 19 & 14 & 141 \\
\hline & 10.122 & 10.122 & 10.171 & 10.098 & 10.171 & 10.220 & 10.098 & 10.71 \\
\hline & 10.833 & 10.556 & 10.636 & 10.667 & 10.875 & 10.692 & 10.800 & | \\
\hline & 10.086 & 10.086 & 10.121 & 10.069 & 10.121 & 10.155 & 10.069 & | \\
\hline \multirow[t]{4}{*}{ThuSat} & 11 & 14 & 14 & 12 & 11 & 14 & 11 & 117 \\
\hline & 10.059 & 10.235 & 10.235 & 10.118 & 10.059 & 10.235 & 10.059 & 10.29 \\
\hline & 10.167 & 10.444 & 10.364 & 10.333 & 10.125 & 10.308 & 10.200 & , \\
\hline & 10.017 & 10.069 & 10.069 & 10.034 & 10.017 & 10.069 & 10.017 & | \\
\hline \multirow[t]{2}{*}{ColTotl} & & 19 & 111 & 16 & 18 & 113 & 15 & 158 \\
\hline & 10.103 & 10.155 & 10.190 & 10.103 & 10.138 & 10.224 & 10.086 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 3.082463 d.f.= 6 (p=0.798428)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror.man(~wkgrp+year)
            [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] rrrrrrrrrrrer
[2,] -43 52 24 14 -57 5 - <ll
```


C. TIRF Dataset: Late Night Subset
 TIME SERIES

Summary

TIRF data set contains 400 observations of car-driver fatality accidents from January 1992 to December 1998. There were actually 434 cases in the original SPSS file but after deleting all cases where the hour variable was missing we were left with 400 cases. Of these 400 cases, 347 were in Ontario and 53 were in Manitoba.

Figure 1 and Table 1 show time series of total car fatality accidents per month for January 1992 to December 1998. In Manitoba there are fewer fatalities and there no noticeable change over time. In Ontario there is an increasing trend for about the first two years and this is followed by a decreasing trend starting around 1994. The table below indicates the death rate has been halved.

Estimated mean death rate/month from loess smooth.

	Beginning of 1992	End of 1998	Percentage Change
Ontario	4.5	2.3	49
Manitoba	0.32	0.37	-13

Figure 2 shows that in Ontario there was a marked downward trend starting around 1995 in fatalities with drink=yes. There also appears a slight decline in Manitoba for fatalities with drink=yes but the numbers are smaller and there is a lot of variability. The number of fatalities in Ontario with drink=no has also started to decline since about 1995 or 1996.

Figure $3 \mathrm{a} \& \mathrm{~b}$. The comparisons between driving with drink and without drink within drink factor, and between ThuSat and SunWed within wkgrp factor are shown in Fig 3 (a) and (b). There more fatalities with drink=yes and there are are more accidents in SunWed. In Ontario, both SunWed and ThuSat have a downward trend.

Figure 6a,b-I,b-ii, fatalities by hour, drink and province. In each hour slot the accidents are larger in drinking alcohol group than no drinking alcohol group. In Figure 4b-ii, there is an increasing trend in Ontario in the 2 AM slot and decreasing trends at $11 \mathrm{PM}, 12 \mathrm{AM}$ and 1 AM .

Figure 4 a and 4 b are the fatalities by wkgrp and hour. In each hour slot the accidents are larger in SunWed group than in ThuSat group. There are declining trends at 1AM in both weekgroups. At 2AM-ThuSat there is a downward trend. The other panels do not exhibit noticeable trends.

Tables 5a-5d. Monthly time series, deaths by province, hour and wkgrp. Mann-Kendall tests. Ontario 1AMSunWed and 2AMThuSat downward trend ($<5 \%$) and Manitoba 2AMSunWed upward trend ($<5 \%$).

Tables 7a-d. Annual total fatalities are decomposed by hour, wkgrp and drink for Ontario and Manitoba. Table 6 b shows that there has been a shift in fatalities from early evening to late evening starting around 1996. The Mann-Kendall trend test is statistically significant on a twosided test for Ontario fatalities with drink=yes for Total, 11PM, 1AM, SunWed and ThuSat and in all cases the sign of tau indicates a downward trend. The trend test is not significant for drink $=$ no in Ontario. There are no trends in Manitoba for either drink=yes or drink=no.

No Figure 7 in this report.
Figures 8a,b,c,d. STL analysis for monthly time series with drink=yes and drink=no in Ontario. For drink=yes, a change occurred in 1996 and this is reflected in the trend and seasonal component. The peaks are higher in the seasonal after 1996 and the troughs are lower pre-1996. The shape of the seasonal component has changed. The seasonal component shows fatalities with drink peak in Aug and reach a minimum in Jan. There is a secondary peak in Oct. The trend is upward for Sep, Oct and Jan but is elsewhere downward and or level.

Figures 9a,b,c,d. STL analysis, Ontario, drink=no, downward trend since 1996. Although Mann-Kendall test is not significant the loess trend indicates a downward trend in recent years (Figure 9d) Seasonal component is very irregular and changing. Peak in July and trough in Apr. There is a lot of change over time.

Figures 10a,b 11a,b STL analysis for monthly time series with drink=yes and drink=no in Manitoba.

Data Visualization 1. All fatalities, Ontario and Manitoba

In the data visualization plots we have used a 60% robust linear smoother.
Table 1a. Monthly fatalities, Ontario
> tirf.ont.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	4	4	4	6	10	3	3	5	6	5	6
1993:	4	4	4	4	6	9	8	9	2	5	3	3
1994:	2	5	5	5	4	4	7	5	4	7	5	3
1995:	1	2	1	3	5	6	5	6	7	7	2	5
1996:	1	2	5	2	7	3	6	8	3	7	2	0
1997:	2	4	3	3	1	4	7	8	6	6	6	3
1998:	2	0	0	2	2	3	1	2	4	3	2	3
> sum(tirf.ont.ts)= 347												
> SeasonalMannKendall (tirf.ont.ts)												

Table 1b. Monthly fatalities, Manitoba

Table 1c-i. Estimated mean death rate/month from loess smooth.

	Beginning of 1992	End of 1998	Percentage Change
Ontario	4.5	2.3	49
Manitoba	0.32	0.37	-13

Figure 1. Time series trellis plot of total car fatality accidents per month for January 1992 to December 1998. In Manitoba there are fewer fatalities and there no noticeable change over time. In Ontario there is an increasing trend for about the first two years and this is followed by a decreasing trend starting around 1994. Because of the extremely low death rates for car fatalities in Manitoba, it does not seem to provide any useful information. It just gets in the way of understanding the Ontario data so it will be omitted from further graphical displays.

2. Fatalities by hour

Table 2. Time series tabulation by province and hour
> ont.11PM.ts

> SeasonalMannKendall (ont.1AM.ts)
tau $=-0.283, \quad$ sl $=0.4093 \%$
> ont.2AM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: $0 \begin{array}{llllllllllll}1\end{array}$
1993: $0 \begin{array}{lllllllllllll}1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$
1994: $1 \begin{array}{llllllllllll} & 0 & 0 & 4 & 0 & 2 & 2 & 1 & 1 & 2 & 0 & 2\end{array}$
1995: $0 \begin{array}{llllllllllll}19 & 1 & 0 & 2 & 3 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$

1997: $0 \begin{array}{llllllllllll}1 \\ 1998: & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 4 & 2 & 0 & 0 \\ 1\end{array}$
$>$ SeasonalMannKendall (ont.2AM.ts)
tau $=-0.129, \quad$ sl $=20.03 \%$
> ont.3AM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1992:	1	0	0	0	0	2	0	0	0	2	1	0
1993:	0	0	1	0	1	1	0	1	0	1	3	2
1994:	0	0	0	1	0	0	2	1	0	0	0	0
1995:	0	0	0	0	1	1	0	1	0	0	0	0
1996:	0	0	0	1	0	1	1	2	0	2	0	0
1997:	0	1	3	1	1	2	0	0	2	3	3	0
1998:	1	0	0	0	0	1	0	0	1	0	0	1

> SeasonalMannKendall(ont.3AM.ts)
tau $=0.0634$, sl $=52.9 \%$
> sum(ont.11PM.ts+ont.12AM.ts+ont.1AM.ts+ont.2AM.ts+ont.3AM.ts)
[1] 347

Figure 2a. Time series line plot by hour

TIRF, deaths by hour, Ontario.

Figure 2b. Time series loess analysis by hour

TIRF, deaths by hour, Ontario.

3. Fatalities by wkgrp

```
> ont.ThuSat.ts
\begin{tabular}{lrrrrrrrrrrrr} 
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1992: & 1 & 2 & 2 & 2 & 2 & 1 & 2 & 0 & 3 & 2 & 0 & 4 \\
1993: & 1 & 2 & 2 & 2 & 0 & 4 & 3 & 3 & 0 & 2 & 1 & 2 \\
1994: & 1 & 3 & 3 & 2 & 1 & 1 & 2 & 1 & 1 & 0 & 0 & 1 \\
1995: & 0 & 2 & 1 & 0 & 2 & 4 & 1 & 2 & 5 & 2 & 0 & 2 \\
1996: & 0 & 2 & 2 & 0 & 1 & 1 & 3 & 3 & 2 & 4 & 0 & 0 \\
1997: & 2 & 1 & 1 & 0 & 0 & 1 & 3 & 5 & 2 & 4 & 0 & 2 \\
1998: & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 2
\end{tabular}
> SeasonalMannKendall(ont.ThuSat.ts)
tau = -0.243, sl =1.29%
> ont.SunWed.ts
\begin{tabular}{lrrrrrrrrrrrr} 
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1992: & 0 & 2 & 2 & 2 & 4 & 9 & 1 & 3 & 2 & 4 & 5 & 2 \\
1993: & 3 & 2 & 2 & 2 & 6 & 5 & 5 & 6 & 2 & 3 & 2 & 1 \\
1994: & 1 & 2 & 2 & 3 & 3 & 3 & 5 & 4 & 3 & 7 & 5 & 2 \\
1995: & 1 & 0 & 0 & 3 & 3 & 2 & 4 & 4 & 2 & 5 & 2 & 3 \\
\(1996:\) & 1 & 0 & 3 & 2 & 6 & 2 & 3 & 5 & 1 & 3 & 2 & 0 \\
\(1997:\) & 0 & 3 & 2 & 3 & 1 & 3 & 4 & 3 & 4 & 2 & 6 & 1 \\
\(1998:\) & 2 & 0 & 0 & 1 & 1 & 3 & 1 & 1 & 3 & 3 & 2 & 1
\end{tabular}
> SeasonalMannKendall(ont.SunWed.ts)
tau = -0.228, sl =1.836%
> sum(ont.SunWed.ts+ont.ThuSat.ts)
[1] 347
```

Figure 3a. Time series line plot by wkgrp

TIRF, deaths by wkgrp, Ontario.

Figure 3b. Time series line plot.

TIRF, deaths by wkgrp, Ontario.

4. Fatalities by hour and wkgrp

Figure 4 a and 4 b are the fatalities by wkgrp and hour. There are declining trends at 1 AM in both weekgroups. At 2AM-ThuSat there is a downward trend. The other panels do not exhibit noticeable trends.

Figure 4a. Loess analysis

TIRF, deaths by wkgrp and hour, Ontario.

Figure 4b. Line plot of time series

Table 5a to 5d
Monthly time series, deaths by province, hour and wkgrp. Mann-Kendall tests.
Ontario 12AMSunWed, 1AMSunWed and 1AMThuSat downward trend ($<5 \%$) and Manitoba 2AMSunWed upward trend ($<5 \%$).
Table 4a. Ontario-SunWed

Table 5b. Ontario-ThuSat
ont.11PMThuSat.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	1	0	2	0	0	1	0	0	0	0	2
1993:	1	0	0	1	0	0	1	1	0	1	0	0
1994:	0	1	3	0	0	0	1	0	1	0	0	0
1995:	0	0	1	0	0	4	0	2	1	0	0	0
$1996:$	0	1	1	0	1	1	1	0	0	1	0	0
1997:	0	0	0	0	0	1	0	2	0	1	0	0
$1998:$	0	0	0	0	0	0	0	1	0	0	0	0

> MannKendall(ont.11PMThuSat.ts)
tau $=-0.125$, sl $=15.5 \%$
$>$ ont.12AMThuSat.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

$1992:$	0	0	1	0	0	1	0	0	0	1	0	1
$1993:$	0	0	0	0	0	2	0	0	0	0	0	0
$1994:$	0	1	0	0	0	0	0	0	0	0	0	0
$1995:$	0	0	0	0	0	0	0	0	3	0	0	0
$1996:$	0	0	1	0	0	0	0	2	0	0	0	0
$1997:$	1	0	0	0	0	0	3	1	1	1	0	2
$1998:$	0	0	0	0	0	0	0	0	0	0	0	0

> MannKendall(ont.12AMThuSat.ts)
tau $=0.00359$, \quad sl $=97.22 \%$
$>$ ont.1AMThuSat.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	1	1	0	1	0	1	0	3	0	0	0
1993:	0	1	1	0	0	1	2	2	0	1	0	0
1994:	0	1	0	0	1	0	0	1	0	0	0	0
1995:	0	1	0	0	0	0	1	0	0	2	0	2
1996:	0	1	0	0	0	0	1	1	2	1	0	0
$1997:$	1	0	0	0	0	0	0	1	0	0	0	0
$1998:$	0	0	0	0	1	0	0	0	0	0	0	0

> MannKendall (ont. 1AMThuSat.ts)
tau $=-0.192$, sl $=2.867 \%$
$>$ ont.2AMThuSat.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1992:	0	0	0	0	1	0	0	0	0	1	0	1
1993:	0	1	1	1	0	0	0	0	0	0	0	1
$1994:$	1	0	0	1	0	1	1	0	0	0	0	1
$1995:$	0	1	0	0	2	0	0	0	1	0	0	0
$1996:$	0	0	0	0	0	0	0	0	0	1	0	0
$1997:$	0	0	0	0	0	0	0	1	1	0	0	0
$1998:$	0	0	0	1	0	0	0	0	0	0	0	1

> MannKendall(ont.2AMThuSat.ts)
tau $=-0.114, \quad$ sl $=20.46 \%$
> ont.3AMThuSat.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	0	0	0	0	0	0	0	0	0	0	0
1993:	0	0	0	0	0	1	0	0	0	0	1	1
1994:	0	0	0	1	0	0	0	0	0	0	0	0
1995:	0	0	0	0	0	0	0	0	0	0	0	0
1996:	0	0	0	0	0	0	1	0	0	1	0	0
1997:	0	1	1	0	0	0	0	0	0	2	0	0
$1998:$	0	0	0	0	0	0	0	0	1	0	0	1

> MannKendall(ont.3AMThuSat.ts)
tau $=0.0693, \quad$ sl $=44.35 \%$

Table 5c. Manitoba-SunWed

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	0	0	0	0	0	0
1993:	0	0	0	0	1	0	0	0	1	0	0	0
1994:	0	0	0	0	0	0	0	3	1	1	0	0
1995:	0	0	0	0	1	0	0	0	0	0	0	0
1996:	1	0	0	0	0	1	0	0	0	0	0	0
1997:	1	0	0	0	0	0	2	0	0	0	0	0
1998:	0	0	0	0	0	0	0	0	0	0	0	0
> MannKendall(man.11PMSunWed.ts)												
tau $=-0.0179, \quad$ sl $=84.69 \%$												
> man.12AMSunWed.ts												
Jan Feb Mar				Apr	May Jun		Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	1	0	0	0	0	0
1993:	0	0	0	0	0	0	0	0	0	0	0	0
1994:	0	0	0	0	0	0	1	0	0	1	0	0
1995:	0	0	0	0	0	0	0	0	0	0	0	1
1996:	0	1	0	0	0	0	0	0	0	0	0	0
1997:	0	0	0	0	0	0	0	0	0	0	0	0
1998:	0	0	0	0	0	1	0	0	0	0	1	0
> MannKendall (man.12AMSunWed.ts)												
tau $=0.0489, \quad$ sl $=59.33 \%$												
> man.1AMSunWed.ts												
	Jan Feb Mar			Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	0	0	0	0	0	0
1993:	0	0	0	0	0	0	2	1	0	0	0	0
1994:	0	0	0	0	0	0	0	0	0	0	0	0
1995:	0	0	1	0	0	0	0	0	0	0	0	0
1996:	0	0	0	0	0	0	0	1	0	0	0	0
1997:	0	0	0	0	1	0	0	0	0	0	1	0
1998:	0	0	0	0	0	0	0	0	0	0	0	0
> MannKendall(man.1AMSunWed.ts)												
$\operatorname{tau}=0.0195$			sl	$1=83$	3.5%							
$>$ man.2AMSunWed.ts												
	Jan Feb Mar			Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	0	0	0	0	0	0
1993:	0	0	0	0	0	0	0	0	0	0	0	0
1994:	0	0	0	0	0	0	0	0	0	0	0	0
1995:	0	0	0	0	0	0	0	0	0	0	0	0
1996:	0	0	0	0	0	0	0	0	0	0	1	0
1997:	2	0	0	0	0	0	0	0	0	1	0	0
1998:	0	0	0	0	0	0	0	0	0	0	1	0
> MannKendall (man.2AMSunWed.ts)												
$\text { tau }=0.193, \quad \text { sl }=3.221$												
> man. 3AMSunWed.ts												
	Jan Feb Mar Apr				May	Jun		Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	1	0	0	0	1	0	1	0	0
1993:	0	0	0	0	0	0	0	0	0	0	0	0
1994:	0	0	0	0	0	0	0	0	0	0	0	0
1995:	0	1	0	0	0	0	0	0	0	0	0	0
1996:	0	0	0	0	1	0	0	0	0	0	1	0
1997:	0	0	0	0	0	0	0	0	1	0	0	0
1998:	0	0	0	0	1	0	0	0	0	0	0	0
```> MannKendall(man.3AMSunWed.ts) tau = -0.0302, sl = 74.32%```												

Table 5d. Manitoba-ThuSat


## 6. Fatalities by drink

Table 6. Time series tabulation and Mann-Kendall trend test for fatalities by province (ont or man) and drinking class (yes or no)

```
> ont.yes.ts
```

|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992: | 1 | 3 | 3 | 3 | 4 | 6 | 3 | 2 | 4 | 3 | 2 | 5 |
| 1993: | 2 | 3 | 2 | 3 | 4 | 6 | 4 | 4 | 1 | 5 | 3 | 0 |
| 1994: | 0 | 4 | 4 | 5 | 4 | 4 | 6 | 5 | 3 | 4 | 3 | 3 |
| 1995: | 0 | 1 | 0 | 2 | 3 | 2 | 3 | 5 | 4 | 6 | 1 | 1 |
| 1996: | 0 | 0 | 3 | 2 | 2 | 1 | 3 | 7 | 3 | 2 | 2 | 0 |
| 1997: | 2 | 3 | 2 | 1 | 1 | 2 | 2 | 4 | 3 | 3 | 5 | 0 |
| 1998: | 2 | 0 | 0 | 2 | 1 | 3 | 1 | 1 | 4 | 2 | 1 | 1 |

> SeasonalMannKendall(ont.yes.ts)
tau $=-0.336$, sl $=0.0459$ \%
> ont.no.ts

|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992: | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 1 | 2 | 2 | 1 |
| 1993: | 0 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 0 | 0 | 3 |
| 1994: | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 2 | 0 |
| 1995: | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 3 | 1 | 1 | 2 |
| 1996: | 1 | 1 | 2 | 0 | 5 | 2 | 3 | 0 | 0 | 5 | 0 | 0 |
| 1997: | 0 | 1 | 1 | 0 | 0 | 1 | 4 | 3 | 2 | 1 | 0 | 2 |
| 1998: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |

> SeasonalMannKendall(ont.no.ts)
tau $=-0.147$, sl $=13.3 \%$
$>$ man.yes.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	1	0	0	1	1	0	1	0	0
1993:	0	0	0	0	1	0	2	1	1	2	0	1
1994:	0	0	0	0	0	0	1	3	0	3	1	0
1995:	0	1	1	0	1	0	0	0	0	0	0	1
1996:	0	0	0	0	1	1	0	1	0	0	2	0
1997:	2	0	0	0	0	0	1	1	0	2	2	0
1998:	0	0	0	0	1	1	0	0	0	0	2	0

> SeasonalMannKendall (man.yes.ts)
tau $=-0.029$, sl $=77.77 \%$
$>$ man.no.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	0	0	0	0	1	0
1993:	0	0	0	0	0	0	0	0	0	0	1	0
1994:	0	0	0	0	0	0	0	1	1	0	0	0
1995:	0	0	0	0	0	0	1	0	0	0	0	0
1996:	1	1	0	0	0	0	0	1	0	0	0	0
1997:	1	0	0	0	1	0	1	0	1	0	0	0
1998:	0	0	0	0	0	0	0	0	0	0	0	0

> SeasonalMannKendall (man.no.ts)
tau $=0.0843$, sl $=53.38 \%$

Figure 5.
Figure 5 shows that in Ontario there was a marked downward trend starting around 1994 in fatalities with drink=yes. . The number of fatalities in Ontario with drink=no has also started to decline since about 1995 or 1996.

TIRF deaths by drink, Ontario


## 6. Fatalities by drink and hour

Figure 6, fatalities by hour, drink and province. In each hour slot the accidents are larger in drinking alcohol group than no drinking alcohol group. There is an increasing trend in Ontario in the 2 AM slot and decreasing trends at $11 \mathrm{PM}, 12 \mathrm{AM}$ and 1 AM .



Figure 6a. Loess Analysis

TIRF, deaths by hour and drink, Ontario.


Figure 6b. Line plot of time series

TIRF, deaths by hour and drink, Ontario.


## 7. Fatalities by drink and wkgrp

	Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	1	0	0	0	3	0	0	0	0	2	0
1993:	0	1	1	1	2	2	2	2	1	0	0	1
1994:	1	0	0	0	0	0	1	0	0	3	2	0
1995 :	1	0	0	1	1	0	1	0	1	0	1	1
1996:	1	0	1	0	4	2	1	0	0	2	0	0
1997:	0	1	0	0	0	0	1	1	0	1	0	1
1998:	0	0	0	0	1	0	0	0	0	1	0	1
> MannKendall (ont. SunWedno.ts)												
tau $=-0.0886, \quad$ sl $=30.53 \%$												
$>$ ont.ThuSatno.ts												
Jan Feb Mar				Apr	May Jun		Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	1	0	0	0	0	0	1	2	0	1
1993:	0	0	1	0	0	0	1	0	0	0	0	2
1994:	1	1	1	0	0	0	0	0	1	0	0	0
1995 :	0	1	1	0	1	3	1	1	2	1	0	1
1996:	0	1	1	0	1	0	2	0	0	3	0	0
1997:	0	0	1	0	0	1	3	2	2	0	0	1
1998:	0	0	0	0	0	0	0	0	0	0	0	1
```> MannKendall(ont.ThuSatno.ts) tau = 0.0129, sl = 88.56% > ont.1AMno.ts```												
Jan Feb			Mar Apr			Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	1	0	0	1	0	0	0
1993:	0	1	1	0	1	1	2	1	0	0	0	0
1994:	1	1	0	0	0	0	0	0	0	1	1	0
1995:	1	1	0	0	0	0	1	0	0	1	1	2
1996:	0	0	1	0	1	0	2	0	0	1	0	0
1997:	0	0	0	0	0	0	0	1	0	0	0	0
1998:	0	0	0	0	0	0	0	0	0	0	0	1
ont.SunWedyes.ts												
Jan Feb Mar				Apr		Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	1	2	2	3	6	1	2	2	3	2	2
1993:	1	1	1	1	4	3	2	2	1	3	2	0
1994:	0	2	2	3	3	3	4	4	3	4	3	2
1995 :	0	0	0	2	2	1	3	4	1	5	1	1
1996:	0	0	2	2	2	0	2	5	1	1	2	0
1997:	0	2	2	1	1	2	2	2	3	1	5	0
1998:	2	0	0	1	0	3	1	0	3	2	1	0
> MannKendall (ont.SunWedyes.ts) tau $=-0.147, \quad$ sl $=7.105 \%$												
	Jan Feb Mar			Apr		Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	2	1		1	0	2	0	2	0	0	3
1993:	1	2	1	2	0	3	2	2	0	2	1	0
1994:	0	2	2	2	1	1	2	1	0	0	0	1
1995 :	0		0	0	1	1	0	1	3	1	0	0
1996:	0	0	1	0	0	1	1	2	2	1	0	0
1997:	2	1	0	0	0	0	0	2	0	2	0	0
1998:	0	0	0		1	0	0	1	1	0	0	1
> MannKendall (ont.ThuSatyes.ts) tau $=-0.239, \quad$ sl $=0.4885 \%$												

Figure 7. The comparisons between driving with drink and without drink within drink factor, and between ThuSat and SunWed within wkgrp factor are shown in Fig 3. There are more fatalities with drink=yes and there are are more accidents in SunWed. In Ontario, both SunWed and ThuSat have a downward trend.

TIRF deaths by WKGRP and Drink, Ontario, panels scaled independently.

8. Annual Time Series

Table 8a. Annual fatalities, Ontario and Manitoba. There are 347 deaths in Ontario and 53 in Manitoba. The death rate for Total in Ontario has declined from 57 to 24 which represents an average annual rate of decrease of about 13%.

```
> tirf.annual.ont
    Total PM11 AM12 AM1 AM2 AM3 SunWed ThuSat
1992 57 12 18 11 10 6 % 10 36 l
1993 61 10 7 7 24 10 10 
```



```
1995 50 14 11 12 10 10 3 0
1996 4. 46 15 0
```



```
1998 24 4 4 2 5 5 9 4 4 l
> MannKendallMatrix(tirf.annual.ont)
    Total PM11 AM12 AM1 AM2 AM3 SunWed ThuSat
tau -0.71 -0.10 -0.14 -0.49 -0.48 0
sl% 3.55 87.93 76.39 17.16 20.40 100 13.31 27.23
```

	Total	PM11	AM12	AM1	AM2	AM3	SunWed	ThuSat	
1992	5	0	1	1	0	3	4	1	
1993	9	2	0	5	1	1	5	4	
1994	10	6	3	0	1	0	7	3	
1995	5	1	2	1	0	1	4	1	
1996	8	2	1	2	1	2	7	1	
1997	12	6	0	2	3	1	9	3	
1998	4	0	2	0	1	1	4	0	
> MannKendallMatrix(tirf.annual.man)									
	otal	PM11	AM12		AM1	AM2	AM3	SunWed	ThuSat
tau	0	0.10	0	-0.	. 10	0.47	-0.17	0.26	-0.37
Sl\%	100	87.64	100	87.	. 64	23.45	73.77	52.54	34.08
Annual rate of decline in Total fatalities in Ontario$\begin{aligned} & >1-(24 / 57)^{\wedge}(1 / 6) \\ & {[1] 0.1342562} \end{aligned}$									

Tables 8b(i)-(iv). Annual total fatalities are decomposed by hour, wkgrp and drink for Ontario and Manitoba. Table $8 b$ might suggest that there has been a shift in fatalities from early evening to late evening starting around 1996. The Mann-Kendall trend test is statistically significant on a two-sided test for Ontario fatalities with drink=yes for Total, 11PM, 1AM, SunWed and ThuSat and in all cases the sign of tau indicates a downward trend. The trend test is not significant for drink $=$ no in Ontario. There are no trends in Manitoba for either drink=yes or drink=no.

Table 8b(i). Annual Fatalities, Ontario, drink=no
> tirf.drink.no.annual.ont[,-1]
Total PM11 AM12 AM1 AM2 AM3 SunWed Thusat

1992	11	2	4	2	2	1	6	5
1993	17	4	0	7	4	2	13	4
1994	11	3	2	4	1	1	7	4
1995	19	7	2	7	3	0	7	12
1996	19	7	3	5	0	4	11	8
1997	15	3	7	1	3	1	5	10
1998	4	1	0	1	1	1	3	1

	Total	PM11	AM12	AM1	AM2	AM3	SunWed	Thusat
tau	-0.05006262	-0.05006262	0.05006262	-0.3504383	-0.2503131	-0.05634362	-0.3903600	
sl	1.00000000	1.00000000	1.00000000	0.3564410	0.5387009	1.00000000	0.2876112	

Table 8b(ii). Annual Fatalities, Ontario, drink=yes

Table 8b(iii). Annual Fatalities, Manitoba, drink=no

Table 8b(iv). Annual Fatalities, Manitoba, drink=yes
> tirf.drink.yes.annual.man[,-1]

9. STL Analysis

$$
\mathrm{R}-\mathrm{sq}=53.9 \%
$$

Figure 9a.

STL TIRF deaths, Ontario

ss.window $=7$,ss.robust $=$ TRUE , fc. window $=50.4$, fc.degree $=2$

Figure 9b. Monthplot of Seasonal Component. May through October are high and November through April are relatively lower. Upward trends exist in August and September and to a lesser extent in January and November.

Monthplot, seasonal, TIRF deaths Ontario

Figure 9c. Loess trend analysis of deseasonalized TIRF.
$\operatorname{tau}=-0.28, \quad$ sl $=0.01655 \%$
The loess trend line has decreased from a monthly death-rate of 4.32 in January 1992 to 1.78 in December 1998. This corresponds to an annual rate of decrease of 12%.
> pc.change(tirf.deseasonalized.ts)
[1] $5.117620 \quad 2.08625459 .233909$
> 1-(2.086254/5.117620)^(1/7)
[1] 0.1203124

TIRF, deseasonalilzed deaths

C. TIRF All Hours - Crosstabs

Frequency Analysis of Drink Variable

In Ontario out of a total of 375 cases, there are 44 cases where drink=unknown and only 2 cases in Manitoba. Thus in Ontario there remain 331 cases.

```
>crosstabs(~drink, data=tirf.df, subset=province=="Ontario", na.action=na.exclude)
Call:
crosstabs(formula = ~ drink, data = tirf.df, subset = province == "Ontario",
    na.action = na.exclude)
3 7 5 ~ c a s e s ~ i n ~ t a b l e
+-------+
| N |
|N/Total
+-------+
drink |
-------+-------+
unknown| 44
    |.12 |
-------+-------+
10.29
yes |224 |
    | 0.6 |
> crosstabs(~drink, data=tirf.df, subset=province=="Manitoba", na.action=na.exclude)
Call:
crosstabs(formula = ~ drink, data = tirf.df, subset = province == "Manitoba", na.action
= na.exclude)
5 8 ~ c a s e s ~ i n ~ t a b l e
+-------+
| N
|N/Total
+-------+
drink |
-------+-------+
unknown| 2 |
    |0.034 |
-------+-------+
no |12 |
    |.21 |
-------+---------
yes |44 |
    | 0.76 |
```


Frequency Analysis of Hour Variable Ontario

```
barchart.hour()
1AM 2AM 3AM 4AM 5AM 6AM 7AM 8AM 9AM 10AM 11AM 12AM 1PM 2PM 3PM 4PM 5PM 6PM 7PM 8PM 9PM 10PM 11PM 12PM \(\begin{array}{llllllllllllllllllllllllllll}79 & 91 & 56 & 44 & 34 & 48 & 70 & 87 & 77 & 73 & 70 & 77 & 89 & 89 & 103 & 116 & 104 & 110 & 119 & 79 & 70 & 80 & 82 & 64\end{array}\)
```


Deaths, Ontario

Frequency Analysis, hour, Manitoba

```
> barchart.hour.man()
    1AM 2AM 3AM 4AM 5AM 6AM 7AM 8AM 9AM 10AM 11AM 12AM 1PM 2PM 3PM 4PM 5PM 6PM 7PM 8PM 9PM 10PM 11PM 12PM
```


Frequency Analysis of Day Variable, Ontario

```
> barchart.day()
    Sun Mon Tue Wed Thu Fri Sat
    281 251 264 226 271 344 301
```


Deaths, Ontario

Frequency Analysis of Day Variable, Manitoba

```
> barchart.day.man()
    Sun Mon Tue Wed Thu Fri Sat
    44
```


Frequency Analysis of Drink Variable, Ontario

In Ontario 53.2% of drivers who are killed had been drinking while in Manitoba, 83.5% of drivers who are killed had been drinking.

```
> barchart.drink()
    unknown no yes
        3031068 568
>barchart.drink.man()
    unknown no yes
        39139116
```


Drink and hour are not independent

Ontario

It is clear that drinking is more involved with late-night accidents.

```
> crosstabs(~hour+drink, data=tirfall.df, subset=prov=="Ont", na.action=na.exclude)
Call:
crosstabs(formula = ~ hour + drink, data = tirfall.df, subset = prov == "Ont", na.action =
    na.exclude)
1 9 1 1 ~ c a s e s ~ i n ~ t a b l e
+-----------+
|N/RowTotal|
|N/ColTotal|
|N/Total
hour |drink
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{| unknown | no} & | yes & |RowTotl| \\
\hline \multirow[t]{4}{*}{1AM} & 19 & 121 & 149 & 179 \\
\hline & 10.11 & 10.27 & 10.62 & 10.041 \\
\hline & 10.031 & 10.02 & 10.087 & 1 \\
\hline & 10.0047 & 10.011 & 10.026 & | \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{2AM} & 17 & 128 & 156 & 101 \\
\hline & 10.077 & 10.31 & 10.62 & 10.048 \\
\hline & 10.024 & 10.026 & 10.099 & | \\
\hline & 10.0037 & 10.015 & 10.029 & | \\
\hline \multirow[t]{4}{*}{3AM} & 15 & 112 & 139 & 156 \\
\hline & 10.089 & 10.21 & 10.7 & 10.029 \\
\hline & 10.017 & 10.011 & 10.069 & | \\
\hline & 10.0026 & 10.0063 & 10.02 & | \\
\hline \multirow[t]{4}{*}{4AM} & 12 & 110 & 132 & 144 \\
\hline & 10.045 & 10.23 & 10.73 & 10.023 \\
\hline & 10.0069 & 10.0095 & 10.057 & | \\
\hline & 10.001 & 10.0052 & 10.017 & | \\
\hline \multirow[t]{4}{*}{5AM} & 12 & 113 & 119 & 134 \\
\hline & 10.059 & 10.38 & 10.56 & 10.018 \\
\hline & 10.0069 & 10.012 & 10.034 & | \\
\hline & 10.001 & 10.0068 & 10.0099 & | \\
\hline \multirow[t]{4}{*}{6AM} & 13 & 128 & 117 & 148 \\
\hline & 10.062 & 10.58 & 10.35 & 10.025 \\
\hline & 10.01 & 10.026 & 10.03 & | \\
\hline & 10.0016 & 10.015 & 10.0089 & | \\
\hline \multirow[t]{4}{*}{7AM} & 113 & 144 & 113 & 170 \\
\hline & 10.19 & 10.63 & 10.19 & 10.037 \\
\hline & 10.045 & 10.042 & 10.023 & | \\
\hline & 10.0068 & 10.023 & 10.0068 & | \\
\hline \multirow[t]{4}{*}{8AM} & 114 & 162 & 111 & 187 \\
\hline & 10.16 & 10.71 & 10.13 & 10.046 \\
\hline & 10.048 & 10.059 & 10.02 & | \\
\hline & 10.0073 & 10.032 & 10.0058 & | \\
\hline \multirow[t]{4}{*}{9AM} & 116 & 158 & 13 & 177 \\
\hline & 10.21 & 10.75 & 10.039 & 10.04 \\
\hline & 10.055 & 10.055 & 10.0053 & | \\
\hline & 10.0084 & 10.03 & 10.0016 & | \\
\hline \multirow[t]{4}{*}{10AM} & 116 & 149 & 18 & 173 \\
\hline & 10.22 & 10.67 & 10.11 & 10.038 \\
\hline & 10.055 & 10.046 & 10.014 & | \\
\hline & 10.0084 & 10.026 & 10.0042 & | \\
\hline
\end{tabular}
```

11AM	118	145	17	170
	10.26	10.64	10.1	10.037
	10.062	10.043	10.012	1
	10.0094	10.024	10.0037	\|
12AM	18	163	16	177
	10.1	10.82	10.078	10.04
	10.028	10.06	10.011	\|
	10.0042	10.033	10.0031	\|
1 PM	125	159	15	189
	10.28	10.66	10.056	10.047
	10.086	10.056	10.0089	\|
	10.013	10.031	10.0026	।
2 PM	122	158	19	189
	10.25	10.65	10.1	10.047
	10.076	10.055	10.016	\|
	10.012	10.03	10.0047	\|
3 PM	116	172	115	1103
	10.16	10.7	10.15	10.054
	10.055	10.068	10.027	\|
	10.0084	10.038	10.0078	\|
4 PM	122	174	120	1116
	10.19	10.64	10.17	10.061
	10.076	10.07	10.035	\|
	10.012	10.039	10.01	\|
5 PM	116	172	116	1104
	10.15	10.69	10.15	10.054
	10.055	10.068	10.028	\|
	10.0084	10.038	10.0084	\|
6 PM	122	169	119	1110
	10.2	10.63	10.17	10.058
	10.076	10.065	10.034	\|
	10.012	10.036	10.0099	\|
7 PM	112	171	136	1119
	10.1	10.6	10.3	10.062
	10.041	10.067	10.064	\|
	10.0063	10.037	10.019	\|
8PM	116	128	135	179
	10.2	10.35	10.44	10.041
	10.055	10.026	10.062	\|
	10.0084	10.015	10.018	\|
9 PM	13	138	129	170
	10.043	10.54	10.41	10.037
	10.01	10.036	10.051	\|
	10.0016	10.02	10.015	\|
10 PM	112	128	140	180
	10.15	10.35	10.5	10.042
	10.041	10.026	10.071	\|
	10.0063	10.015	10.021	\|
11 PM	17	136	139	182
	10.085	10.44	10.48	10.043
	10.024	10.034	10.069	\|
	10.0037	10.019	10.02	,
12 PM	14	119	141	164
	10.062	10.3	10.64	10.033
	10.014	10.018	10.073	\|
	10.0021	10.0099	10.021	\|
ColTo	1290	11057	\| 564	11911

Manitoba

Accidents involving alcohol tend to happen more in late night hours in Manitoba too.
We exclude drink="unknown" since there are so few cases.

```
> crosstabs(~hour+drink, data=tirfall.df, subset=(prov=="Man")&drink!="unknown",
    na.action=na.exclude)
Call:
crosstabs(formula = ~ hour + drink, data = tirfall.df, subset = (prov == "Man") & drink !=
    "unknown", na.action = na.exclude)
252 cases in table
+----------+
|N/RowTotal|
|N/ColTotal|
|N/Total |
hour |drink
\begin{tabular}{|c|c|c|c|}
\hline & | no & | yes & |RowTotl| \\
\hline \multirow[t]{4}{*}{1AM} & 12 & 17 & 19 \\
\hline & 10.22 & 10.78 & 10.036 \\
\hline & 10.014 & 10.062 & | \\
\hline & 10.0079 & 10.028 & | \\
\hline \multirow[t]{4}{*}{2AM} & 13 & 18 & 111 \\
\hline & 10.27 & 10.73 & 10.044 \\
\hline & 10.022 & 10.071 & | \\
\hline & 10.012 & 10.032 & | \\
\hline \multirow[t]{4}{*}{3AM} & 12 & 18 & 110 \\
\hline & 10.2 & 10.8 & 10.04 \\
\hline & 10.014 & 10.071 & | \\
\hline & 10.0079 & 10.032 & | \\
\hline
\end{tabular}
\begin{tabular}{l|lll}
4 AM & \(\mid 2\) & 7 & \(\mid 9\) \\
& 10.22 & 10.78 & 10.036 \\
& 0.014 & 10.062 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 10.0079 & 10.028 & \\
\hline 5AM & 10 & 14 & 14 \\
\hline & 10 & 11 & 10.016 \\
\hline & 10 & 10.035 & | \\
\hline & 10 & 10.016 & I \\
\hline 6AM & | 2 & | 5 & 17 \\
\hline & 10.29 & 10.71 & 10.028 \\
\hline & 10.014 & 10.044 & | \\
\hline & 10.0079 & 10.02 & | \\
\hline 7AM & 16 & 13 & 19 \\
\hline & 10.67 & 10.33 & 10.036 \\
\hline & 10.043 & 10.027 & 1 \\
\hline & 10.024 & 10.012 & | \\
\hline 8AM & 16 & 12 & 18 \\
\hline & 10.75 & 10.25 & 10.032 \\
\hline & 10.043 & 10.018 & | \\
\hline & 10.024 & 10.0079 & | \\
\hline 9AM & 18 & | 2 & 110 \\
\hline & 10.8 & 10.2 & 10.04 \\
\hline & 10.058 & 10.018 & 1 \\
\hline & 10.032 & 10.0079 & | \\
\hline \multirow[t]{3}{*}{10AM} & 14 & \multicolumn{2}{|l|}{+ 317} \\
\hline & 10.57 & 10.43 & 10.028 \\
\hline & 10.029 & 10.027 & | \\
\hline
\end{tabular}
```

	10.016	10.012	\|
11AM	18	\| 4	112
	10.67	10.33	10.048
	10.058	10.035	\|
	10.032	10.016	।
12AM	18	12	110
	10.8	10.2	10.04
	10.058	10.018	\|
	10.032	10.0079	।
1 PM	112	13	115
	10.8	10.2	10.06
	10.086	10.027	\|
	10.048	10.012	I
2 PM	18	12	110
	10.8	10.2	10.04
	10.058	10.018	\|
	10.032	10.0079	\|
3 PM	111	12	113
	10.85	10.15	10.052
	10.079	10.018	\|
	10.044	10.0079	।
4 PM	19	12	111
	10.82	10.18	10.044
	10.065	10.018	\|
	10.036	10.0079	\|
5 PM	110	13	113
	10.77	10.23	10.052
	10.072	10.027	,
	10.04	10.012	\|
6 PM	18	13	111
	10.73	10.27	10.044
	10.058	10.027	\|
	10.032	10.012	I
7 PM	18	13	111
	10.73	10.27	10.044
	10.058	10.027	\|
	10.032	10.012	,
8PM	17	19	116
	10.44	10.56	10.063
	10.05	10.08	\|
	10.028	10.036	\|
9PM	15	16	111
	10.45	10.55	10.044
	10.036	10.053	\|
	10.02	10.024	,
10 PM	15	17	112
	10.42	10.58	10.048
	10.036	10.062	\|
	10.02	10.028	,
11 PM	13	17	110
	10.3	10.7	10.04
	10.022	10.062	,
	10.012	10.028	I
12 PM	12	111	113
	10.15	10.85	10.052
	10.014	10.097	\|
	10.0079	10.044	I

ColTotl\|139	1113	1252
10.55	10.45	\|

Test for independence of all factors
Chi^2 = 62.88204 d.f.= 23 ($p=0.00001448521$)
Yates' correction not used
Some expected values are less than 5, don't trust stated p-value
$>\mathrm{x}<-\mathrm{get} . \mathrm{crosstabs.contrib.man(} \mathrm{\sim hour+drink)}$
Contribution to chi-sq:
> dimnames(x) list(levels(tirfall.df\$hour), levels(tirfall.df\$drink) [2:3])
$>$ x
no yes
1AM -1.33 1.48
2AM -1.25 1.38
3AM -1.50 1.66
4AM -1.33 1.48
5AM -1.49 1.65
6AM -0.95 1.05
7AM $0.46-0.52$
8AM 0.76-0.84
9AM $1.06-1.17$
10AM $0.07-0.08$
11AM $0.54-0.60$
$12 \mathrm{AM} \quad 1.06-1.17$
$1 \mathrm{PM} \quad 1.30-1.44$
$2 \mathrm{PM} \quad 1.06-1.17$
3PM 1.43-1.59
$4 \mathrm{PM} \quad 1.19-1.32$
5PM 1.06 -1.17
6PM $0.78-0.87$
$7 \mathrm{PM} \quad 0.78-0.87$
8PM -0.61 0.68
9PM -0.43 0.48
10PM -0.63 0.70
$11 \mathrm{PM}-1.07 \quad 1.19$
12PM -1.93 2.14>

Drink and day are associated

Ontario

There are more fatalities on Saturday and Sunday and fewer on Wednesday.

```
> crosstabs(~drink+day, data=tirfall.df, subset=(prov=="Ont")&drink!="unknown",
na.action=na.exclude)
Call:
crosstabs(formula = ~ drink + day, data = tirfall.df, subset = (prov == "Ont") & drink !=
"unknown", na.action = na.exclude)
1635 cases in table
+----------+
| N
N/RowTotal|
N/ColTotal|
|N/Total |
+----------+
drink | day
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & I Sun & | Mon & | Tue & I Wed & | Thu & |Fri & |Sat & | RowTotl| \\
\hline \multirow[t]{4}{*}{no} & 1128 & | 157 & 1178 & 1141 & 1160 & 1171 & 1132 & 11067 \\
\hline & 10.12 & 10.15 & 10.17 & 10.13 & 10.15 & 10.16 & 10.12 & 10.65 \\
\hline & 10.53 & 10.74 & 10.78 & 10.77 & 10.69 & 10.62 & 10.51 & | \\
\hline & 10.078 & 10.096 & 10.11 & 10.086 & 10.098 & 10.1 & 10.081 & | \\
\hline \multirow[t]{4}{*}{yes} & 1114 & 155 & 150 & 142 & | 71 & 1107 & 1129 & 1568 \\
\hline & 10.2 & 10.097 & 10.088 & 10.074 & 10.12 & 10.19 & 10.23 & 10.35 \\
\hline & 10.47 & 10.26 & 10.22 & 10.23 & 10.31 & 10.38 & 10.49 & | \\
\hline & 10.07 & 10.034 & 10.031 & 10.026 & 10.043 & 10.065 & 10.079 & | \\
\hline \multirow[t]{2}{*}{ColTot} & 1242 & 1212 & 1228 & 1183 & 1231 & 1278 & 1261 & 11635 \\
\hline & 10.15 & 10.13 & 10.14 & 10.11 & 10.14 & 10.17 & 10.16 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 79.46879 d.f.= 6 (p=4.551914e-015)
    Yates' correction not used
> fix(get.crosstabs.contrib.ont)
> x<-get.crosstabs.contrib.ont(~drink+day)
Contribution to chi-sq:
> dimnames(x) list(levels(tirfall.df$drink)[2:3],levels(tirfall.df$day))
> x
\begin{tabular}{rrrrrrr} 
Sun & Mon & Tue Wed Thu Fri & Sat \\
no -2.38 & 1.59 & 2.39 & 1.97 & 0.75 & -0.77 & -2.94
\end{tabular}
yes 3.26 -2.17 -3.28 -2.71 -1.03 1.06 4.03
```

Manitoba
There are more fatalities on Saturday and fewer on Wednesday.

```
> crosstabs(~drink+day, data=tirfall.df, subset=(prov=="Man")&drink!="unknown",
    na.action=na.exclude)
Call:
crosstabs(formula = ~ drink + day, data = tirfall.df, subset = (prov == "Man") & drink !=
    "unknown", na.action = na.exclude)
255 cases in table
+----------+
|N
N/RowTotal
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & I Sun & | Mon & | Tue & \| Wed & | Thu & |Fri & | Sat & |RowTotl| \\
\hline \multirow[t]{4}{*}{no} & 119 & 115 & 112 & 125 & 122 & 127 & 119 & 1139 \\
\hline & 10.14 & 10.11 & 10.086 & 10.18 & 10.16 & 10.19 & 10.14 & 10.55 \\
\hline & 10.49 & 10.56 & 10.6 & 10.81 & 10.61 & 10.52 & 10.38 & | \\
\hline & 10.075 & 10.059 & 10.047 & 10.098 & 10.086 & 10.11 & 10.075 & | \\
\hline \multirow[t]{4}{*}{yes} & 120 & 112 & 18 & 16 & 114 & 125 & 131 & 1116 \\
\hline & 10.17 & 10.1 & 10.069 & 10.052 & 10.12 & 10.22 & 10.27 & 10.45 \\
\hline & 10.51 & 10.44 & 10.4 & 10.19 & 10.39 & 10.48 & 10.62 & | \\
\hline & 10.078 & 10.047 & 10.031 & 10.024 & 10.055 & 10.098 & 10.12 & | \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} \text { ColTotl| } & 39 \\ & 0.15\end{aligned}\)}} & 127 & 120 & 131 & 136 & 152 & 150 & 1255 \\
\hline & & 10.11 & 10.078 & 10.12 & 10.14 & 10.2 & 10.2 & \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 15.59117 d.f.= 6 (p=0.01612495)
    Yates' correction not used
> x<-get.crosstabs.contrib.man(~drink+day)
Contribution to chi-sq:
> dimnames(x) list(levels(tirfall.df$drink)[2:3],levels(tirfall.df$day))
> x
Sun Mon Tue Wed Thu Fri Sat
no -0.49 0.07 0.33 1.97 0.54 -0.25 -1.58
yes 0.54 -0.08 -0.36 -2.16 -0.59 0.28 1.73
```


C. TIRF Dataset: All Hours Dataset TIME SERIES

Monthly Time Series

There is an estimated 44% decline in death-rate per month in Ontario but no decline in Manitoba.
Ontario

```
> tirf.ont.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 16 22 20 22 21 32 22 41 22 24 33 36
1993: 23 29 24 19 30 33 34 28 23 30 28 36
1994: 27 25 21 17 19 23 28 31 18
1995: 17 23 16 22 20 27 30 29 27 27 26 22 
1996: 32 28 28 10 20 17 23 26 15 15 35 24 14
1997: 33 24 15 12 19 25 18
1998: 11 7 8 12 13 9 18 19 17 16 14 23
> sum(tirf.ont.ts)
[1] 1910
> SeasonalMannKendall(tirf.ont.ts)
tau = -0.424, sl =4.404e-4%
> pc.change(tirf.ont.ts)
[1] 25.03410 13.91354 44.42162
```


Manitoba

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	2	2	2	7	1	6	5	1	6	6	2
1993:	2	1	4	0	5	0	7	4	1	8	5	6
1994:	0	1	2	2	3	3	7	9	3	4	3	7
1995:	4	2	3	6	1	4	9	5	5	3	2	4
1996:	2	5	0	2	1	4	2	4	3	0	6	4
1997:	8	1	6	0	5	1	4	4	4	5	3	4
1998:	0	1	2	0	3	4	6	4	3	3	7	2

> sum(tirf.man.ts)
[1] 289
> SeasonalMannKendall(tirf.Man.ts)
Problem: Object "tirf.Man.ts" not found
> SeasonalMannKendall(tirf.man.ts)
tau $=-0.0833$, sl $=38.47 \%$
> pc.change(tirf.man.ts)
[1] 2.733141 3.326042-21.693007

Estimated mean death rate/month from loess smooth.

	Beginning of 1992	End of 1998	Percentage Change
Ontario	25.0	13.9	44
Manitoba	0.32	0.37	-13

TIRF, deaths, scales free

Drink Time Series, Ontario

All series show declines.

```
drink = no
> ont.no.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:}1
1993: 12 13 12 10 18 16 15 % 7 0 8 12 14 14 27
```



```
1995: 14 14 13 14 10 16 16 15 15
1996: 27 20 14 6 6 11 12 12 12 9 0
1997: 20 17 9
1998: 6 2 4 6 6 7 7 4 11 12 11 11 11 
> SeasonalMannKendall(ont.no.ts)
tau = -0.187, sl =4.367%
> sum(ont.no.ts)
[1] 1056
drink = yes
> ont.yes.ts
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 3 7 7 0 8 10
1993: 6 9 9 % 7 7 7 7 7 8 8 11 12 12 10
1994: 4 10 7 7 8 8 6 % 8 12 12 11 
1995:
1996: 1 5 5 10 3 % 7 5 5 % 8 11 
1997: 7 7 5 % 4 
```



```
tau = -0.491, sl =1.488e-5%
> sum(ont.yes.ts)
[1] 564
drink = unknown
> ont.unknown.ts
\begin{tabular}{lrrrrrrrrrrrr} 
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1992: & 2 & 5 & 5 & 2 & 4 & 3 & 3 & 9 & 1 & 5 & 4 & 8 \\
1993: & 5 & 7 & 5 & 2 & 5 & 9 & 8 & 9 & 5 & 3 & 7 & 7 \\
1994: & 4 & 2 & 7 & 1 & 5 & 2 & 0 & 3 & 0 & 4 & 0 & 4 \\
1995: & 0 & 6 & 0 & 1 & 1 & 5 & 7 & 5 & 2 & 2 & 1 & 8 \\
1996: & 4 & 3 & 4 & 1 & 2 & 0 & 3 & 6 & 1 & 2 & 4 & 2 \\
1997: & 6 & 2 & 2 & 3 & 7 & 8 & 2 & 4 & 1 & 4 & 2 & 3 \\
\(1998:\) & 1 & 4 & 0 & 1 & 2 & 1 & 1 & 3 & 0 & 2 & 3 & 3
\end{tabular}
1998: 
tau = -0.315, sl =0.08059%
> sum(ont.unknown.ts)
[1] 290
```


Drink Time Series, Manitoba

Clear downward trends in Ontario. The downward trend starts around 1996 for drink=no in Ontario. There may be a small downward trend for drink=unknown in Manitoba and a possible recent upward swing in drink=no in Manitoba.

TIRF, drink, scales free

Year

STL Analysis

$\mathrm{R}-\mathrm{sq}=63.4 \%$

STL TIRF deaths, Ontario

ss.window $=7$,ss.robust $=$ TRUE , fc. window $=50.4$, fc.degree $=2$

Monthplot of Seasonal Component

Decreasing trend in June and increasing trends in January, September and October. Seasonal minimum in April and local minimum in September. Seasonal maximum in August and in October.

Monthplot, seasonal, TIRF deaths Ontario

Loess Trend Analysis of Deasonalized Series

tau $=-0.412, \quad$ sl $=2.964 e-6 \%$
In summary there appears to be a gradual decline starting in 1992 which turns into a steeper drop starting in the first quarter of 1996.

TIRF, deseasonalilzed deaths

D. MTO Dataset

Summary

The data set of Ministry of Transportation Collision of Ontario, from January 1992 to December 1998, was analyzed by using crosstabs and data visualization.

There are 26,026 records. Each record corresponds to an injured driver in a traffic accident on Ontario's highways (only non-emergency, motorized, highway vehicles). There are four injury classes: mimimal (48.3\%), minor (39.8%), major (9.7%) and fatal (2.3%). The four injury classes should be analyzed separately.

All injury classes show increases from 1992 up to 1995 and then a decline. In the fatal accidents the decline post 1995 is much less steep than for the other three injury classes. See fatal, major, minor and minimal time series plots.

There is an increase in deaths in the 2AM-ThuSat window and corresponding decreases in 1AM-ThuSat and 12AM-ThuSat. Also there is a decrease in deaths in 1AM-SunWed window. See trellis plot and Mann-Kendall tests.

Major Injuries decreased in the 12AM and 1AM for both weekgroups but the decrease was stronger in the ThuSat window. See trellis plot and Mann-Kendall tests.

Minor injuries showed decreased slightly in the 12AM-SunWed window. There were strong decreases also in the 1AM SunWed and ThuSat windows. There was a strong increase in the 2AM SunWed window. See trellis plot and Mann-Kendall tests.

Minimal injuries decreased strongly in the 1AM window for both SunWed and ThuSat. There was a strong increase in the 2AM SunWed window and a slight increase in the 2AM ThuSat window. See trellis plot and Mann-Kendall tests.

The mixture of increasing and decreasing trends in the Minor and Minimial injuries could possibly be caused by a change in drinking habits.

STL Analysis of Fatilities suggests a sharply increasing trend to 1995 followed by a decline. The seasonal component quite variables and changing. July and August have the highest deaths. The trend is mildly down for July and sharply increasing for August. See STL and Monthplot.

STL Analysis of Major Injuries shows an increasing trend to about 1995 followed a shart drop to a new low. The seasonal pattern is fairly stable. Highest number of injuries are in July and August. There is an increasing trend in April and decreasing trend in March. See STL and Monthplot.

Frequencies

Injury					
					Cumulative Percent
Valid	Minimal	12576	48.3	48.3	48.3
	Minor	10348	39.8	39.8	88.1
	Major	2512	9.7	9.7	97.7
	Fatal	590	2.3	2.3	100.0
	Total	26026	100.0	100.0	

Vehicle Province or State

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Alberta	38	. 1	. 1	. 1
	British Columbia	33	. 1	. 1	. 3
	Manitoba	38	. 1	. 1	. 4
	New Brunswick	18	. 1	. 1	. 5
	Newfoundland	5	. 0	. 0	. 5
	Nova Scotia	19	. 1	. 1	. 6
	Ontario	25072	96.3	96.3	96.9
	Prince Edward Island	3	. 0	. 0	96.9
	Quebec	270	1.0	1.0	98.0
	Saskatchewan	13	. 0	. 0	98.0
	Yukon and North West Territories	2	. 0	. 0	98.0
	U.S.A.	284	1.1	1.1	99.1
	Other Foreign	1	. 0	. 0	99.1
	Unknown	230	. 9	. 9	100.0
	Total	26026	100.0	100.0	

Crosstabs

Vehicle Province or State * Injury Crosstabulation

Count

		Injury				Total
		Minimal	Minor	Major	Fatal	
Vehicle Province or State	Alberta	16	16	5	1	38
	British Columbia	10	17	6		33
	Manitoba	22	14	1	1	38
	New Brunswick	7	7	4		18
	Newfoundland	3	1	1		5
	Nova Scotia	9	7	2	1	19
	Ontario	12146	9969	2392	565	25072
	Prince Edward Island		2	1		3
	Quebec	129	109	27	5	270
	Saskatchewan	7	4	2		13
	Yukon and North West Territories	1		1		2
	U.S.A.	138	111	27	8	284
	Other Foreign			1		1
	Unknown	88	91	42	9	230
Total		12576	10348	2512	590	26026

Injury * Late Night Time Period Crosstabulation

Count

		Late Night Time Period				
		Midnight to 1 am	One am to 2 am	Two am to 3 am	Eleven to Midnight	
Injury	Minimal	2836	3052	2451	4237	12576
	Minor	2308	2684	2165	3191	10348
	Major	580	708	591	633	2512
	Fatal	130	162	144	154	590
Total		5854	6606	5351	8215	26026

Fatalities

Monthly Overall Deaths

```
> mto4.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993:
1994: 5 8 11 11 13 13 13 11 
1995: 2 4 6 6 8 8 7 12 11 11 14 14 14 6 9
1996: 4 6 % 8 2 2 12 3
1997: 
```

MTO deaths/month

STL Analysis: Fatalities

ss. window $=7$, ss.robust $=$ TRUE, fc. window $=50.4$, fc. degree $=2$, lambda $=1$

Seasonal Component Plot

Seasonal Component, MTO, deaths/month

Weekgroup \& Hour Time Series: Fatalities

	Jan		Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	1	0	0	1	0	0	1	0	0	0
1993:	0	1	1	0	1	1	0	2	0	0	0	3
1994:	0	1	1	1	1	0	2	2	1	3	1	0
1995:	0	0	1	1	0	6	0	2	3	2	0	1
1996:	0	0	1	0	3	1	1	1	1	1	0	0
1997:	0	0	2	0	2	1	1	3	1	3	0	1
1998:	0	0	0	1	0	1	0	1	2	0	0	0
```> MannKendall(mto4.11PMSunWed.ts) tau = 0.0745, sl =38.24% > mto4.12AMSunWed.ts```												
Jan Feb Mar Apr					May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	1	0	0	2	1	3	0	1	1	1	0
1993:	0	2	0	0	1	0	3	1	1	1	0	1
1994:	0	0	1	0	1	0	1	0	0	1	1	2
1995:	0	1	0	0	1	0	1	0	3	1	0	0
1996:	0	0	0	0	0	1	1	3	0	2	0	0
1997:	1	0	1	0	1	2	2	1	1	1	0	2
1998:	1	0	0	0	0	0	0	2	0	0	1	0
$\begin{aligned} & >\text { MannKendall(mto4.12AMSunWed.ts) } \\ & \text { tau }=-0.0582, \quad \text { sl }=50.03 \% \end{aligned}$												
$>\text { mto }$	4.1AM	Feb	Ned.t Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	2	0	2	0	0	2	0	1	2	2	2
1993:	0	0	1	0	1	0	0	1	1	2	2	0
1994:	0	1	2	0	1	1	1	3	0	0	2	1
1995:	0	1	0	1	0	1	0	2	1	3	0	4
1996:	0	1	0	0	1	0	2	5	1	1	1	0
1997:	0	0	0	1	0	1	0	1	0	0	1	0
1998:	0	0	0	0	0	1	1	0	0	0	1	0
```> MannKendall(mto4.1AMSunWed.ts) tau = -0.174, sl =4.123% > mto4.2AMSunWed.ts```												
Jan Feb Mar Apr					May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	0	0	1	1	0	1	1	0	0	0	0
1993:	0	1	0	0	0	0	1	0	0	1	0	0
1994:	2	0	0	2	0	3	3	1	1	0	0	3
1995:	0	1	1	0	2	0	1	2	1	0	1	0
1996:	0	0	0	1	0	1	0	1	0	0	1	0
1997:	0	0	1	0	0	0	1	1	0	0	0	1
1998:	0	0	0	1	1	1	2	0	1	0	0	0
$\begin{aligned} & >\text { Manr } \\ & \operatorname{tau}= \end{aligned}$	$\begin{gathered} \text { nKenc } \\ -0.0 \end{gathered}$	$\begin{aligned} & d a l l \\ & 23, \end{aligned}$	$\begin{array}{r} (\mathrm{mt} \circ 4 \\ \mathrm{s} \end{array}$	$\begin{aligned} & 4.2 \mathrm{AM} \\ & 1=79 \end{aligned}$	$\begin{aligned} & \text { MSunW } \\ & 9.43 \% \end{aligned}$	Ned.	s)					

	Jan	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	1	1	0	0	1	2	0	1	2	1	0
1993:	1	0	0	0	2	0	2	0	1	2	0	1
1994:	1	2	3	0	2	4	2	0	2	1	1	0
1995:	1	0	0	1	1	1	2	0	3	3	1	0
1996:	0	1	2	0	4	0	0	0	0	1	2	0
1997:	1	1	0	3	0	0	1	0	0	2	4	0
1998:	2	0	0	1	0	1	1	3	0	3	1	1
> MannKendall (mto4.11PMThuSat.ts)												
tau $=0.00375, \quad$ sl $=96.74 \%$												
> mto4.12AMThuSat.ts												
Jan Feb Mar Apr					May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0		0	0	1	0	1	1	1	1	0	0
1993:	0	0	0	1	3	0	3	0	1	0	0	1
1994:	0	2	1		2	3	1	1	1	4	0	0
1995:	0	0	0		2	1	2	0	0	2	1	1
1996:	2	1	1	1	1	0	2	1	0	1	0	1
1997:	2	1	1	1	0	0	5	2	2	0	1	0
1998:	1	0	0	1	0	0	0	1	2	0	1	0
> MannKendall (mto4.12AMThuSat.ts)												
tau $=0.0321$, sl												
> mto4.1AMThuSat.ts												
Jan Feb Mar Ap					May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	2	1	2	1	2	0	0	1	1	0
1993:	0	0	1	3	0	2	0	0	2	3	1	0
1994:	1	1	2	3	4	2	2	1	2	3	1	2
1995:	1	1	3	0	0	2	4	2	1	1	1	1
1996:	0	1	4	0	1	0	2	0	1	1	0	2
1997:	2	0	0	1	1	0	1	1	1	2	0	0
1998:	0	0	0	0	1	2	0	3	0	4	1	2
> MannKendall (mto4.1AMThuSat.ts)												
tau $=-0.0472, \quad$ sl $=57.12 \%$												
> mto4.2AMThuSat.ts												
Jan Feb Mar Ap					May	Jun		Aug	Sep	Oct	Nov	Dec
1992:	0	0	1	0	1	1	0	1	1	0	3	2
1993:	0	0	0	0	2	3	1	1	1	1	1	0
1994:	1	1	1	4	2	0	1	3	1	2	0	0
1995:	0	0	1	4	1	1	1	3	2	2	2	2
1996:	2	2	0	0	2	0	2	1	0	2	1	1
1997:	0	3	0	2	1	1	1	2	2	2	0	0
1998:	0	0	0	2	2	1	2	0	4	2	1	2
$>\text { Manr }$ $\text { tau }=$	$\begin{array}{r} \text { nKend } \\ 0.13 \end{array}$	$\begin{aligned} & \text { dall } \\ & 32, \end{aligned}$	$\begin{gathered} \text { (mto4 } \\ \text { sl } \end{gathered}$	$\begin{gathered} 4.2 \mathrm{AM} \\ =11 . \end{gathered}$	MThuS . 38\%	sat.	S)					

Time series trellis plot. Fatalities. Same scales.

Time series trellis plot. Fatalities. Scales free.

Major Injuries

Monthly Overall Major Injuries

```
> mto3.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 20 22 18 28 41 35 36 44 24 31 25 19
1993: 23 20 15 39 22 23 37 37 35 35
1994: 23 29 36 44 44 52 51 44 45 42 51 42
1995: 36 27 32 35 41 53 51 44 33 34 32 
1996: 15 23 33 15 24 25 25 53 32 25 26 21
1997: 21 14 25 30 29 23 35 30
```


MTO major injuries/month

STL: Major Injuries

Seasonal Component: Major Injuries

Seasonal Component, MTO, Major Injuries/month

Weekgroup \& Hour Time Series: Major Injuries

Time series trellis plot. Major injury. Same scales.

Time series trellis plot. Major injury. Scales free.

Minor Injuries

Monthly Overall Minor Injuries

```
> mto2.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 83 94 102 102 128 141 137 134 127 152 119 96
1993: 84 81 72 94 102 141 147 153 112 136 113 113
1994: 122 95 138 147 162 141 166 186 155 149 157 154
1995: 111 100 146 126 113 159 192 159 130 144 123 134
1996: 143 136 135 105 139 153 114 153 137 130 142 123
1997: 109 94 110 83 121 133 125 142 89 96 120 97
1998: 97 72 106 92 124 99 109 142 104 95 108 99
```

MTO minor injuries/month

STL Analysis - Minor Injuries

Seasonal Component - Minor Injuries

Seasonal Component, MTO, Minor Injuries/month

Weekgroup \& Hour Time Series: Minor Injuries

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	12	9	11	9	16	29	26	19	22	12	17	19
1993:	9	11	11	9	12	30	20	26	21	10	14	24
1994:	14	18	22	24	27	20	24	18	20	16	21	24
1995 :	16	14	23	18	17	23	30	22	15	23	27	19
1996 :	19	27	19	14	16	19	31	24	20	17	20	11
1997:	20	18	10	16	14	21	30	9	13	12	15	19
1998:	13	14	16	11	18	17	16	21	18	14	18	19
```> MannKendall(mto2.11PMSunWed.ts) tau = -0.0112, sl = 88.61% > mto2.12AMSunWed.ts```												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	11	8	10	11	6	12	11	5	16	15	13	13
1993 :	6	2	10	4	7	14	12	12	12	15	8	8
1994:	9	8	11	20	15	13	14	23	16	12	12	20
1995:	8	9	18	8	16	14	23	15	9	10	16	17
1996:	13	11	18	10	28	17	11	16	19	11	12	22
1997:	17	7	13	4	11	8	15	22	9	10	7	14
1998:	11	8	6	10	12	19	11	13	19	9	13	16
```> MannKendall(mto2.12AMSunWed.ts) tau = 0.124, sl =10.53% > mto2.1AMSunWed.ts```												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	12	18	10	17	7	11	23	10	17	15	20	16
1993:	13	10	5	9	11	7	19	23	10	11	13	19
1994:	13	7	17	24	16	11	23	21	18	19	10	23
1995:	8	8	17	18	8	20	11	23	7	14	11	10
1996:	18	22	21	8	18	17	9	10	12	12	10	12
1997:	13	5	9	7	12	14	9	12	8	4	16	5
1998:	11	2	11	15	12	10	22	9	4	10	8	4
$\begin{aligned} & >\text { MannKendall(mto2.1AMSunWed.ts) } \\ & \text { tau }=-0.203, \quad \text { sl }=0.7782 \% \\ & >\text { mto2.2AMSunWed.ts } \end{aligned}$												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	7	7	7	14	4	5	9	10	7	7	4	11
1993:	10	4	5	10	7	14	10	6	3	5	2	11
1994:	12	5	11	10	8	19	14	16	9	6	14	12
1995:	9	11	13	10	5	15	19	14	7	8	10	15
1996:	14	17	8	11	12	8	10	13	8	9	15	11
1997:	12	9	14	10	7	15	12	20	14	6	11	9
1998:	14	9	13	8	5	12	13	13	9	12	6	8
$\begin{aligned} & >\text { MannKendall (mto2.2AMSunWed.ts) } \\ & \text { tau }=0.2, \quad \text { sl }=0.9057 \% \end{aligned}$												

```
> #
mto2.11PMThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 13 12 11 19 19 26 27 30 31 11 
1993: 17 14 9 14 20 26 29 21 18 26 18 18 13
1994: 16 18 23 18 25 26 24 25 27 13 27 17
1995: 26 16 23 13 20 30 28 25 19 19 28 16 18
1996: 23 17 23 13 17 21 17 17 23 22 26 26 19
1997: 15 \begin{tabular}{lllllllllll}
18 & 21 & 12 & 27 & 25 & 21 & 29 & 8 & 18 & 19 & 17
\end{tabular}
1998: 17 19 20 19 28 7 7 16 25 16 16 16 15
> MannKendall(mto2.11PMThuSat.ts)
tau = -0.0344, sl =65.33%
> mto2.12AMThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 11 13 12 13 19 19 13 15 17 13 13 20 10
1993: 15 13 10 19 10 12 19 22 11 18 18 19 10
1994: 23 8 11 15 25 12 23 23 19 23 22 18
```



```
1996: 16 14 11 9 17 19 19 9
1997: \(11 \quad 9 \quad 8 \quad 14 \quad 18 \quad 14\)
1998: 13 9 20 12 18 10 13 18 18 15 9
> MannKendall(mto2.12AMThuSat.ts)
tau = -0.0346, sl =65.31%
> mto2.1AMThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 14 19 24 10 30 26 13 24 24 22 42 22 10
1993: 8 20 15 20 24 23 25 23 18
1994: 22 16 23 17 31 24 21 32 22 33 27 17
1995: 17 18 26 23 22 24 34 23 3 (17 33 26 19 19 22
1996: 24 18 23 18 13 25 17 23 17 24 24 12 20
1997: 8 12 11 14 11 13 13 11 
1998: 8 7 7 6 9 19 15 9 0
> MannKendall(mto2.1AMThuSat.ts)
tau = -0.327, sl =0.001491%
> mto2.2AMThuSat.ts
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 3 8 17 9 20 18 10
1993: 6 7 7 7 7 9 11 15 13 20
1994: 13 15 20 19 15 16 23 28 24 27 24 23
1995: 19 12 12 18 11 16 19
1996: 16 10 12 22 18 27 10
```



```
1998: 10 4 14 8 12 9 9 9 21 17 13 16 12
> MannKendall(mto2.2AMThuSat.ts)
tau = 0.022, sl =77.45%
```

Time series trellis plot. Minor injury. Same scales.

Time series trellis plot. Minor injury. Scales free.

Minimal Injuries

Monthly Overall Minimal Injuries

```
> mtol.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 110 105 110 139 151 155 146 169 117 159 145 139
1993: 98 116 96 105 137 137 153 166 129 154 107 131
1994: 169 154 146 155 193 169 185 169 166 196 151 187
1995: 184 140 146 152 162 192 213 199 151 192 203 189
1996: 168 181 188 126 156 199 183 153 150 182 157 123
1997: 178 138 158 94 158 154 148 173 122 160 155 132
1998: 119 92 124 110 144 136 139 150 124 98 132 135
```

MTO minimal injuries/month

STL: Minimal Injuries

Seasonal Component: Minimal Injuries

Seasonal Component, MTO, Minimal Injuries/month

Weekgroup \& Hour Time Series: Minimal Injuries

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	11	16	15	28	13	26	25	25	10	18	24	32
1993:	13	12	12	18	26	16	18	27	18	16	13	27
1994:	29	33	27	21	28	27	24	25	20	30	24	27
1995:	19	33	30	23	31	25	41	47	23	26	46	25
1996:	25	26	40	18	29	32	44	23	16	26	30	14
1997:	50	16	24	15	18	26	31	30	19	17	17	28
1998:	18	19	21	16	20	36	28	22	17	14	18	26
> MannKendall (mtol.11PMSunWed.ts)												
tau $=0.0894$, sl $=23.7$												
> mto1.12AMSunWed.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	10	8	7	14	10	12	11	18	7	17	25	22
1993:	14	11	24	15	9	20	17	18	14	12	8	21
1994:	15	10	17	12	18	18	18	22	18	10	18	24
1995:	13	19	15	21	20	19	23	23	20	14	29	21
1996:	11	17	27	15	17	18	23	18	7	19	12	13
1997:	23	11	15	11	8	11	23	17	12	34	21	11
1998:	16	8	12	14	9	12	19	10	9	11	12	17
> MannKendall (mtol.12AMSunWed.ts)												
tau $=0.00619$,												
> mtol.1AMSunWed.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	17	13	9	15	11	22	15	17	13	14	13	12
1993:	9	8	9	12	8	15	20	12	16	17	4	14
1994:	19	21	17	18	20	23	24	22	17	17	15	18
1995:	15	14	21	14	20	25	17	22	14	6	17	20
1996:	21	25	17	15	8	13	12	18	10	23	13	8
1997:	19	6	20	11	8	15	11	13	10	10	11	13
1998:	12	3	13	13	6	11	13	4	4	12	8	13
$\text { tau }=-0.18, \quad \text { sl }=1.826 \%$												
> mtol.2AMSunWed.ts												
	Jan		Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	8	3	9	4	6	6	7	7	8	10	5	13
1993:	7	6	5	10	12	11	11	9	13	5	11	9
1994:	11	14	14	12	6	10	17	11	12	15	8	9
1995:	11	7	10	12	11	15	13	15	6	11	15	12
1996:	12	11	13	10	16	11	18	24	11	17	14	17
1997:	9	14	9	11	14	21	16	18	8	15	11	12
1998:	13	9	8	11	11	6	11	13	7	6	11	9
> Mann tau =	KKend 0.25	$\begin{aligned} & \text { dall } \\ & 53, \end{aligned}$	(mtol	$\begin{aligned} & 1.2 \mathrm{AM} \\ & =0.1 \end{aligned}$	MSunW	Ned.t	s)					

```
> #
mto1.11PMThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
```



```
1993: 17 23 13 15 25 18
1994: 32 25 17 30 38 28 31 27 34 34 27 35
1995: 37 26 21 24 25 34 40
1996: 26 26 30 22 32 49
1997: 36 31 27 13 34 30 29 29 32 18
1998: 25 25 21 20 43 27 23 25 36 13 28 14
> MannKendall(mto1.11PMThuSat.ts)
tau = 0.064, sl = 40.07%
> mto1.12AMThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
```



```
1993: 21 16 9
1994: 23 14 13 20 30 18 20 22 21 28 14 26
1995: 15 14 12 19 27 26 26 27 27 19 % 32 16 19 19
1996: 25 15 16 9 21 22 15 14 14 18
1997: 13 18 19 7 7 27 12 13 18 18 14 12 16 16 18
1998: 11 8 15 13 20 23 16 25 22 16 23 21
> MannKendall(mtol.12AMThuSat.ts)
tau = 0.0111, sl =88.61%
> mto1.1AMThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
```



```
1993: 11 26 14 16 24 25 20 26 20
1994: 21 23 25 23 33 27 26 24 25 41 25 26
1995: 27 12 23 30 14 25 34 26 21 4 45 28 35
1996: 33 37 21 24 16 26 28 20 30 25 19 15
1997: 11 18 23 13 20 25 10
1998: 12 8 24 13 14 12 16 23 10 15 10
> MannKendall(mto1.1AMThuSat.ts)
tau = -0.226, sl =0.2818%
> mto1.2AMThuSat.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 17 10 13 14 25 19 14 21 14
1993: 6 14 10 12 15 17 13 23 12 12 18 12 12
1994: 19 14 16 19 20 18 25 16 19 21 20 22
1995: 47 15 14 9
1996: 15 24 24 13 17 28 17 17 25 18 18 23 18
1997: 17 \begin{tabular}{llllllllllll}
17 & 24 & 21 & 13 & 29 & 14 & 15 & 24 & 22 & 26 & 29 & 14
\end{tabular}
1998: 12 12 10 10 21 9
> MannKendall(mto1.2AMThuSat.ts)
tau = 0.123, sl =10.47%
```

Time series trellis plot. Minimal injury. Same scales.

Time series trellis plot. Minimal injury. Scales free.

D. MTO DRC Dataset: Crosstabs

Summary

MTODRC dataset is the MTO dataset with the added variable, driver, which has two values, sober or drunk. The database given has 26,026 records. Each record contains the variable injury which is the driver injury in one of four categories: minimal, minor, major, killed. Another variable, prov, indicates the license plate on the vehicle. The frequency tabulation indicates the number of accidents involving each value of the prov variable. After Ontario the next two are USA and "unknown" code $=-1$.

Driver+Injury: Drunk drivers tend not to be involved in minimal injury accidents and are more likely to be involved in major injury or fatal accidents. Overall, for about 30% of all accidents, the driver is drunk. Overall about $48 \%, 40 \%, 10 \%$ and 2% of accidents are respectively minimal injury, minor injury, major injury and fatal.

Driver+Wkgrp: As expected drunk drivers are relatively more common in the ThuSat weekgroup. Overall, about 43% and 57% of all accidents occur respectively in the SunWed and ThuSat weekgroups.

Driver + Hour: Drunk drivers are more prevalent at 1AM and 2AM. Overall about $32 \%, 22 \%, 25 \%$ and 21% of accidents in the respective hour windows beginning at $11 \mathrm{PM}, 12 \mathrm{AM}, 1 \mathrm{AM}$ and 2AM.

Driver + Province: USA and Quebec drivers involved in accidents tend to be relatively more sober. Drivers in the "unknown" vehicle province category tend to be relatively more drunk.

Frequencies: Province

After Ontario the next two are USA and "unknown" code $=-1$.

Vehicle Province or State

	quency	Percent
Valid -1	230	. 9
Alberta	38	. 1
British	33	. 1
Columbia		
Manitoba	38	. 1
New	18	. 1
Brunswick		
Newfoundl	5	. 0
and		
Nova	19	. 1
Scotia		
Ontario	25072	96.3
Prince	3	. 0
Edward Island		
Quebec	270	1.0
Saskatche	13	. 0
wan		
Yukon and	2	. 0
North		
West		
Territories		
U.S.A.	284	1.1
Other	1	. 0
Foreign		
Total	26026	100.0

Driver + Injury

Drunk drivers tend not to be involved in minimal injury accidents and are more likely to be involved in major injury or fatal accidents.

```
Call:
crosstabs(formula = ~ driver + injury, data = mto.df, na.action =
na.exclude)
26026 cases in table
+----------+
driver injury
    |minimal|minor |major |killed |RowTotl|
```



```
Test for independence of all factors
    Chi^2 = 1088.853 d.f.= 3 (p=0)
    Yates' correction not used
    Chi-sq decomposition: (obs-exp)/sqrt(exp)
        minimal minor major killed
sober 9.86 -2.99 -10.92 -10.47
drunk -14.79 4.49 16.38 15.70
```


Driver + Wkgrp

As expected drunk drivers are relatively more common in the ThuSat weekgroup.

```
Call:
crosstabs(formula = ~ driver + wkgrp, data = mto.df, na.action =
na.exclude)
26026 cases in table
|+----------+
driver |wkgrp
|SunWed |ThuSat |RowTotl|
```



```
Test for independence of all factors
            Chi^2 = 52.3307 d.f.= 1 (p=4.689582e-013)
            Yates' correction not used
    Chi-sq decomposition: (obs-exp)/sqrt(exp)
            SunWed ThuSat
sober 3.02 -2.64
drunk -4.54 3.96
```


Driver + Hour

Drunk drivers are more prevalent at 1AM and 2AM.

```
Call:
crosstabs(formula = ~ driver + hour, data = mto.df, na.action =
na.exclude)
26026 cases in table
|+----------+
driver | hou
\begin{tabular}{|c|c|c|c|c|c|}
\hline sober & \[
\begin{aligned}
& 6581 \\
& 0.37 \\
& 0.8 \\
& 0.25
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 4192 \\
& 0.23 \\
& 0.72 \\
& 0.16
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 4069 \\
& 0.23 \\
& 0.62 \\
& 0.16
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 3179 \\
& 0.18 \\
& 0.59 \\
& 0.12
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 18021 \\
& 0.69
\end{aligned}\right.
\] \\
\hline drunk & \[
\begin{aligned}
& 1634 \\
& 0.2 \\
& 0.2 \\
& 0.063
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 1662 \\
& 0.21 \\
& 0.28 \\
& 0.064
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 2537 \\
& 0.32 \\
& 0.38 \\
& 0.097
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 2172 \\
& 0.27 \\
& 0.41 \\
& 0.083
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 8005 \\
& 0.31
\end{aligned}\right.
\] \\
\hline ColTotl & 8215
0.32 & 5854
0.22 & 6606
0.25 & 5351
0.21 & 26026 \\
\hline
\end{tabular}
Test for independence of all factors
        Chi^2 = 895.2281 d.f.= 3 (p=0)
        Yates' correction not used
    Chi-sq decomposition: (obs-exp)/sqrt(exp)
                11PM 12AM 1AM 2AM
sober 11.84 2.18 -7.47 -8.64
drunk -17.76 -3.27 11.21 12.97
```


Driver + Province

USA and Quebec drivers involved in accidents tend to be relatively more sober. Drivers in the "unknown" vehicle province category tend to be relatively more drunk.

```
Call:
crosstabs(formula = ~ prov + driver, data = mto.df, na.action = na.exclude)
26026 cases in table
++----------+
\begin{tabular}{|c|c|c|c|}
\hline prov & \begin{tabular}{l}
driver \\
sober
\end{tabular} & |drunk & |RowTotl \\
\hline Al & \begin{tabular}{|r}
24 \\
0.63
\end{tabular} & \begin{tabular}{|r}
14 \\
0.37
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& 38 \\
& 0.0015
\end{aligned}\right.
\] \\
\hline BC & 24
0.73 & 9
0.27 & \(|\)\begin{tabular}{l|l|}
33 \\
0.0013
\end{tabular} \\
\hline Man & 31
0.82 & |r \(\begin{array}{r}7 \\ 0.18\end{array}\) & \[
\left\lvert\, \begin{aligned}
& 38 \\
& 0.0015
\end{aligned}\right.
\] \\
\hline NB & \[
\begin{array}{|r}
10 \\
\mid 0.56
\end{array}
\] & \[
\begin{array}{r}
8 \\
\mid 0.44
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 18 \\
& 6.9 e-4
\end{aligned}\right.
\] \\
\hline NWFLD & \[
\mid 0.8^{4}
\] & \[
\mid 0.2^{1}
\] & \[
\left\lvert\, \begin{aligned}
& 5 \\
& 1.9 e-4
\end{aligned}\right.
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline NS & \[
\begin{array}{r}
10 \\
0.53
\end{array}
\] & \[
\begin{array}{r}
9 \\
0.47
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 19 \\
& 7.3 e-4
\end{aligned}\right.
\] \\
\hline Ont & \[
\left\lvert\, \begin{aligned}
& 173397733 \\
& 0.69
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 25072 \\
& 0.31
\end{aligned}\right.
\] & 10.96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline PEI & 1
0.33 & 2
0.67 & \begin{tabular}{|l|}
3 \\
\(1.2 e-4\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Que & \[
\begin{array}{r}
212 \\
0.79
\end{array}
\] & \[
\begin{array}{|r}
58 \\
0.21
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 270 \\
& 0.01
\end{aligned}\right.
\] \\
\hline Sask & \[
\begin{array}{r}
11 \\
0.85
\end{array}
\] & \[
\begin{array}{r}
2 \\
0.15
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 13 \\
& 5 . e-4
\end{aligned}\right.
\] \\
\hline YNWT & \[
0.5^{1}
\] & \[
0.5^{1}
\] & \[
\left\lvert\, \begin{aligned}
& 2 \\
& 7.7 e-5
\end{aligned}\right.
\] \\
\hline USA & \[
\begin{array}{r}
225 \\
0.79
\end{array}
\] & 59
0.21 & \[
\left\lvert\, \begin{aligned}
& 284 \\
& 0.011
\end{aligned}\right.
\] \\
\hline Other & \[
0^{0}
\] & & \[
\left\lvert\, \begin{aligned}
& 1 \\
& 3.8 e-5
\end{aligned}\right.
\] \\
\hline Unknown & \[
\begin{array}{r}
129 \\
0.56
\end{array}
\] & \[
\left\lvert\, \begin{array}{r}
101 \\
0.44
\end{array}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 230 \\
& 0.0088
\end{aligned}\right.
\] \\
\hline ColTotal & \[
\begin{aligned}
& 18021 \\
& 0.69
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 8005 \\
& 0.31
\end{aligned}\right.
\] & | 26026 \\
\hline
\end{tabular}
```

```
Test for independence of all factors
            Chi^2 = 56.71319 d.f.= 13 (p=2.017336e-007)
            Yates' correction not used
            Some expected values are less than 5, don't trust stated p-value
    Chi-sq decomposition: (obs-exp)/sqrt(exp)
                sober drunk
            Al -0.45 0.68
            BC 0.24 -0.36
            Man 0.91 -1.37
            NB -0.70 1.05
    NWFLD 0.29 -0.43
            NS -0.87 1.31
            Ont -0.16 0.24
            PEI -0.75 1.12
            Que 1.83 -2.75
            Sask 0.67 -1.00
            YNWT -0.33 0.49
            USA 2.02 -3.03
    Other -0.83 1.25
Unknown -2.40 3.60
```


D. MTO DRC Dataset: Time Series

Summary

Fatalities: Data and Trellis
Upward trend in 2AMSunWedSober and downward in 1AMSat ThuDrunk. Data are small counts, mostly 0 some 1's 2's 3's and 4's.

Major Injury: Data and Trellis
Downward trends: 12AMSunWed.drunk.ts, 1AMSunWed.drunk.ts, 12AMThuSat.drunk.ts, 1AMThuSat.drunk.ts.

Minor Injury: Data and Trellis
Upward trend: 12AMSunWed.sober.ts, 2AMSunWed.sober.ts
Downward trend: 12AMThuSat.sober.ts, 1AMThuSat.sober.ts,
1AMSunWed.drunk.ts, 11PMThuSat.drunk.ts,
12AMThuSat.drunk.ts, 1AMThuSat.drunk.ts
Minimal Injury Data and Trellis
upward trend: 11PMSunWed.sober.ts, 2AMSunWed.sober.ts, 11PMThuSat.sober.ts, 2AMThuSat.sober.ts, 2AMSunWed.drunk.ts downward trend: 1AMThuSat.sober.ts, 11PMSunWed.drunk.ts, 12AMSunWed.drunk.ts, 1AMSunWed.drunk.ts, 11PMThuSat.drunk.ts, 12AMThuSat.drunk.ts, 1AMThuSat.drunk.ts

Fatalities

Upward trend in 2AMSunWedSober and downward in 1AMSat ThuDrunk. Data are small counts, mostly 0 some 1's 2's 3's and 4's.

Data Listing

	Jan	Feb	Mar	Apr	May	Jun		Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	1	0	0	0	0	0	0
1993:	0	0	1	0	1	0	0	1	0	0	0	1
1994:	0	0	0	1	0	0	0	1	1	1	0	0
1995:	0	0	1	0	0	3	0	1	0	0	0	0
1996:	0	0	0	0	2	1	0	1	0	0	0	0
1997:	0	0	0	0	2	1	0	1	1	3	0	1
1998:	0	0	0	1	0	0	0	1	2	0	0	0
```> MannKendall(mto4.11PMSunWed.sober.ts) tau = 0.125, sl =15.8%```												
> mto4.12AMSunWed.sober.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	0	0	1	1	0	0
1993:	0	0	0	0	1	0	2	0	0	0	0	0
1994:	0	0	0	0	0	0	1	0	0	0	1	1
1995:	0	0	0	0	0	0	0	0	1	0	0	0
1996:	0	0	0	0	0	1	0	1	0	1	0	0
1997:	0	0	1	0	0	2	2	1	1	0	0	1
1998:	1	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & >\text { MannKendall(mto4.12AMSunWed.sober.ts) } \\ & \text { tau }=0.0825, \quad \text { sl }=35.62 \% \end{aligned}$												
$>$ mto4.1AMSunWed.sober.ts												
	Jan	Feb	Mar	Apr	May			Aug	Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	1	0	0	0	0	0
1993:	0	0	0	0	0	0	0	0	0	0	1	0
1994:	0	1	0	0	1	1	0	0	0	0	0	0
1995:	0	1	0	0	0	0	0	0	0	1	0	3
1996:	0	1	0	0	0	0	1	1	0	1	0	0
1997:	0	0	0	0	0	1	0	1	0	0	1	0
1998:	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & \text { > MannKendall (mto4.1AMSunWed.sober.ts) } \\ & \text { tau }=0.035, \quad \text { sl }=70.03 \% \end{aligned}$												
> mto4.2AMSunWed.sober.ts												
Jan Feb Mar Apr May						Jun Jul Aug			Sep	Oct	Nov	Dec
1992:	0	0	0	0	0	0	0	1	0	0	0	0
1993:	0	0	0	0	0	0	0	0	0	0	0	0
1994:	1	0	0	0	0	0	1	0	0	0	0	0
1995:	0	1	0	0	2	0	0	0	1	0	1	0
1996:	0	0	0	1	0	0	0	0	0	0	0	0
1997:	0	0	1	0	0	0	0	0	0	0	0	1
1998:	0	0	0	0	1	1	1	0	0	0	0	0
> Mann tau =	nKend 0.11	$\begin{aligned} & \text { dall } \\ & 12, \end{aligned}$	$\begin{gathered} \text { (mto4 } \\ \text { sl } \end{gathered}$	$\begin{gathered} 4.2 \mathrm{Al} \\ =21 \end{gathered}$	$\begin{aligned} & \text { MSunW } \\ & .21 \% \end{aligned}$	Ned.	sobe	r.ts)				

```
> #
mto4.11PMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993:}0
1994:}0
1995:
1996:}0
1997: 0
1998: 0
tau = 0.0348, sl =69.44%
> mto4.12AMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 0 0 1 0 0 0 0
```




```
1995:}0000
1996:
1997:
1998:
> MannKendall(mto4.12AMThuSat.sober.ts)
tau = 0.095, sl =28.25%
> mto4.1AMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 0 0 1 1 1 0 0 0 0
```



```
1994:
1995:
1996: 0
1997:
```



```
> MannKendall(mto4.1AMThuSat.sober.ts)
tau = 0.0271, sl = 76.53%
> mto4.2AMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 0 0 1 0 0 0 0
```



```
1994: 0
1995:}0000
1996:}0
1997:}0000
1998: 0 0 0 0 1 0
> MannKendall(mto4.2AMThuSat.sober.ts)
tau = 0.171, sl =5.763%
```




## Trellis Time Series Plots. Same Scale on Each Page.




## Major Injury

Downward trends: 12AMSunWed.drunk.ts, 1AMSunWed.drunk.ts, 12AMThuSat.drunk.ts, 1AMThuSat.drunk.ts

## Data Listing

	Jan	Feb		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	1	0	1	0	4	9	1	1	1	4	2
1993:	3	1	0	0	1	2	3	1	3	2	2	3
1994:	0	2	4	5	2	5	6	5	3	1	1	2
1995:	2	1	1	2	4	9	2	3	1	1	4	0
1996:	2	5	3	0	3	1	2	3	7	1	1	2
1997:	5	0	2	4	2	0	5	3	0	2	2	3
1998:	1	0	1	2	3	6	5	3	1	2	4	0
> MannKendall (mto3.11PMSunWed.sober.ts)												
$\mathrm{tau}=0.069, \quad$ sl $=38.87 \%$												
> mto3.12AMSunWed.sober.ts												
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	2	0	2	3	0	3	2	2	4	1	1
1993:	0	0	0	3	3	1	2	3	1	1	0	1
1994:	4	1	3	0	2	3	2	0	2	3	3	3
1995:	3	1	1	1	3	1	4	5	2	0	2	5
1996:	0	0	3	0	1	1	3	1	2	0	0	3
1997:	1	1	2	2	0	1	3	1	3	2	0	1
1998:	0	1	1	1	2	0	2	1	2	1	0	1
$\begin{aligned} & >\text { MannKendall (mto3.12AMSu } \\ & \operatorname{tau}=-0.1, \quad \text { sl }=22.11 \% \end{aligned}$												
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	0	1	1	1	2	2	3	3	0	1	2
1993:	1	1	0	1	0	0	3	1	1	0	3	0
1994:	0	1	1	2	6	2	2	6	2	1	2	1
1995:	2	4	4	4	2	4	3	2	1	1	1	2
1996:	0	1	0	0	0	0	0	3	2	5	1	0
1997:	2	0	0	0	1	1	7	0	1	0	4	2
1998:	1	0	0	0	0	1	1	3	1	2	2	1
```> MannKendall(mto3.1AMSunWed.sober.ts) tau = -0.0698, sl =39.45% > mto3.2AMSunWed.sober.ts```												
Jan Feb Mar Apr May									Sep	Oct	Nov	Dec
1992:	2	2	0	1	0	1	1	3	0	1	0	0
1993:	2	0	0	2	0	0	0	2	0	3	1	0
1994:	0	2	1	1	0	1	3	1	2	0	2	2
1995:	5	1	1	0	1	0	3	5	2	0	1	0
1996:	3	2	1	2	0	0	2	3	1	1	1	0
1997:	1	1	1	0	0	2	0	2	1	1	0	0
1998:	1	0	0	0	1	1	4	1	0	2	1	1
> Man	KKend	dall	(mto3	3. 2AM	MSunW	Ned.	sober	r.ts)				
tau $=$	-0.00	00304	4,		$=97.4$							

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	1	0	2	2	3	1	0	3	2	2	0	1
1993:	2	3	1	5	1	4	0	2	2	1	2	1
1994:	1	2	4	0	8	5	6	3	7	1	2	2
1995:	6	0	4	2	0	5	1	6	3	4	1	0
1996:	0	3	4	0	2	1	0	2	2	2	2	2
1997:	3	0	3	4	5	4	4	1	3	3	1	2
1998:	1	1	2	1	1	1	4	3	1	2	2	0
$\begin{aligned} & >\text { MannKendall (mto3.11PMThuSat.sober.ts) } \\ & \text { tau }=0.018, \quad \text { sl }=82.52 \% \end{aligned}$												
> mto3.12AMThuSat.sober.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	3	1	0	2	1	5	3	2	3	6	2
1993:	4	0	3	6	2	2	1	3	3	4	3	2
1994:	3	4	1	4	4	8	4	7	1	2	2	8
1995:	2	3	1	2	5	1	5	1	2	5	2	1
1996:	2	2	1	0	1	3	0	3	5	2	2	3
1997:	2	1	4	2	5	1	2	1	1	1	2	0
1998:	0	0	3	1	5	3	1	2	2	2	4	1
```> MannKendall(mto3.12AMThuSat.sober.ts) tau = -0.127, sl =11.19%```												
$>$ mto3.1AMThuSat.sober.ts												Dec
1992:	2	0	1	2	3	3	1	4	1	2	1	0
1993:	2	0	0	4	2	2	4	0	6	1	2	3
1994:	1	3	0	7	3	1	3	3	4	6	4	3
1995:	1	1	2	0	1	7	4	3	2	3	2	3
1996:	1	1	2	0	6	1	4	3	3	1	3	3
1997:	1	0	1	2	2	0	3	3	1	3	3	0
1998:	0	1	1	0	0	3	2	2	3	1	3	2
> MannKendall(mto3.1AMThuSat.sober.ts) tau $=-0.0385, \quad$ sl $=63.51 \%$												
$>$ mto3.2AMThuSat.sober.ts										Oct	Nov	Dec
1992:	2	1	0	2	0	0	1	2	3	1	0	1
1993:	1	1	1	3	3	2	3	2	2	2	0	1
1994:	1	1	2	1	2	3	5	3	4	5	4	5
1995:	3	3	2	2	0	2	5	2	2	5	2	0
1996:	1	0	3	1	4	4	2	6	1	2	2	1
1997:	0	0	2	0	3	4	3	2	0	2	3	0
1998:	1	0	3	1	1	3	0	2	2	0	3	0
> Mann tau =	$\begin{array}{r} \text { nKend } \\ 0.01 \end{array}$	$\begin{aligned} & \text { dall } \\ & 112, \end{aligned}$	(mto3 sl	$\begin{aligned} & 3.2 \mathrm{AM} \\ & 1=89 \end{aligned}$	$\begin{aligned} & \text { MThus } \\ & 9.3 \% \end{aligned}$	at.	sober	r.ts				


mto3.11PMSunWed.drunk.ts												
Jan Feb Mar Apr May						Jun Jul Aug			Sep	Oct	Nov Dec	
1992:	0	0	0	2	2	4	0	1	0	0	1	1
1993:	0	1	0	1	0	4	3	2	3	3	0	0
1994:	2	4	1	2	0	2	4	2	2	3	2	2
1995:	1	2	1	1	3	0	0	3	0	1	2	1
1996:	1	1	0	1	0	2	1	3	1	0	0	1
1997:	1	0	0	1	0	0	1	1	1	1	1	0
1998:	1	1	2	1	0	0	2	1	3	1	1	1
$\begin{aligned} & >\text { MannKendall (mto3.11PMSunWed.drunk.ts) } \\ & \text { tau }=-0.062, \quad \text { sl }=45.63 \% \end{aligned}$												
> mto3.12AMSunWed.drunk.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	0	2	1	2	1	2	4	2	3	1	1
1993:	1	1	0		0	0	2	2	1	1	1	1
1994:	1	1	0	2	2	2	0	1	2	3	2	1
1995:	0	1	2	3	2	5	2	1	1	0	1	0
1996:	0	0	1	1	1	1	0	4	1	0	0	1
1997:	1	1	0	2	0	1	0	0	1	0	1	0
1998:	1	2	1	2	2	1	1	0	0	1	1	1
```> MannKendall(mto3.12AMSunWed.drunk.ts) tau = -0.147, sl =8.024%```												
> mto3.1AMSunWed.drunk.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	3	2	2	3	2	3	0	1	0	2	1
1993:	0	5	1	2	0	2	2	4	0	2	2	3
1994:	0	0	4	4	2	5	6	3	4	2	6	2
1995:	3	3	5	3	3	5	5	4	5	5	5	1
1996:	0	2	3	3	1	1	0	2	0	1	0	0
1997:	2	1	3	6	1	3	1	3	1	0	1	0
1998:	1	2	2	0	1	1	0	1	1	2	0	0
```> MannKendall (mto3.1AMSunWed.drunk.ts) tau = -0.142, sl =7.573%```												
> mto3.2AMSunWed.drunk.ts												
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	0	2	0	2	2	2	3	0	4	1	0
1993:	1	3	2	2	1	0	3	2	0	1	2	4
1994:	1	2	2	2	3	1	1	0	4	2	1	0
1995:	2	0	1	3	3	1	3	1	1	3	1	0
1996:	2	1	4	0	2	1	1	3	3	1	5	0
1997:	2	0	2	1	2	0	1	2	3	1	0	1
1998:	4	1	0	1	0	2	1	2	1	2	3	2
```> MannKendall(mto3.2AMSunWed.drunk.ts) tau = -0.0241, sl =77.07%```												


												mto3.11PMThuSat.drunk.ts
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	1	1	3	4	3	2	2	0	3	2	2
1993:	2	0	0	3	3	1	4	2	0	1	2	1
1994:	1	0	2	3	2	5	1	2	2	4	1	4
1995:	0	0	2	1	3	4	2	1	4	1	1	0
1996:	1	1	5	1	1	1	0	4	0	3	1	1
1997:	0	1	1	0	0	3	1	1	2	5	3	0
1998:	1	2	1	2	2	5	1	2	1	1	1	2
> MannKendall (mto3.11PMThuSat.drunk.ts)												
tau $=-0.0872, \quad$ sl $=28.45 \%$												
> mto3.12AMThuSat.drunk.ts												
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	0	2	2	4	5	3	0	4	1	3	2	2
1993:	1	1	3	2	2	1	2	1	5	1	3	0
1994:	3	2	0	2	2	4	3	2	1	0	1	1
1995:	2	3	0	3	2	5	2	2	1	0	2	3
1996:	1	1	1	1	0	3	3	2	0	2	1	0
1997:	0	3	2	1	4	2	1	0	3	3	2	0
1998:	1	0	2	1	0	0	2	0	0	1	3	1
```> MannKendall (mto3.12AMThuSat.drunk.ts) tau = -0.197, sl =1.555%```												
> mto3.1AMThuSat.drunk.ts												
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	4	3	5	7	7	3	8	2	1	0	1
1993:	2	2	2	1	2	2	2	7	7	6	6	2
1994:	3	4	6	5	2	4	3	2	4	7	12	2
1995:	2	1	1	5	2	2	6	1	3	1	3	4
1996:	0	3	2	4	0	0	3	6	2	1	5	1
1997:	0	3	1	2	4	0	0	4	1	5	1	0
1998:	0	1	1	2	0	1	2	1	0	4	1	0
> MannKendall(mto3.1AMThuSat tau $=-0.301, \quad$ sl $=0.01401 \%$												
> mto3.2AMThuSat.drunk.ts												
Jan Feb Mar Apr May						Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	3	1	0	4	1	2	1	4	3	3	2
1993:	1	1	2	3	2	0	3	3	1	4	0	1
1994:	2	0	5	4	4	1	2	4	1	2	6	4
1995:	2	3	4	3	7	2	4	4	3	4	2	3
1996:	1	0	0	1	2	5	4	5	2	3	2	3
1997:	0	2	1	3	0	1	3	6	3	0	4	4
1998:	0	0	3	2	6	2	3	3	3	3	1	1
$\begin{aligned} & >\operatorname{Mann} \\ & \operatorname{tau}= \end{aligned}$	$\begin{array}{r} \text { nKend } \\ 0.03 \end{array}$	$\begin{aligned} & \text { dall } \\ & 399, \end{aligned}$	$\begin{array}{r} \text { (mto3 } \\ \mathrm{sl} \end{array}$	$\begin{aligned} & 3.2 \mathrm{AM} \\ & 1=62 \end{aligned}$	MThuS   \%	$\text { Sat. } 0$	drun	k.ts				

## Trellis Time Series Plots: Common scale on each page.




## Minor Injury

Upward trend: 12AMSunWed.sober.ts, 2AMSunWed.sober.ts
Downward trend: 12AMThuSat.sober.ts, 1AMThuSat.sober.ts, 1AMSunWed.drunk.ts, 11PMThuSat.drunk.ts, 12AMThuSat.drunk.ts, 1AMThuSat.drunk.ts

## Data Tabulation

> mto2.11PMSunWed.sober.ts

	Jan	Feb	Mar	Apr	May	Jun	Ju	Aug	Sep	Oc	Nov	D
1992:	10	8	10	9	12	23	16	16	17	6	15	13
1993:	8	9	10	6	7	20	18	21	15	7	10	18
1994:	13	17	17	21	22	14	19	13	18	13	19	20
1995:	13	13	20	15	13	18	25	17	11	17	25	
1996:	13	27	15	11	14	18	26	20	18	11	14	
1997:	17	15	8	12	11	18	23	8	9	8	13	
1998:	12	11	12	9	17	12	12	18	15	13	14	15
```> MannKendall(mto2.11PMSunWed.sober.ts) tau = 0.0177, sl = 81.92% > mto2.12AMSunWed.sober.ts```												
	Jan	eb		r	May	Jun	Jul	Aug	Sep	Oct	Nov	De
1992:	10	5	8	9	3	6	8	3	9	9	7	10
1993:	5	2	8	2	5	10	10	10	8	7	6	
1994:	7	7	6	16	12	13	13	14	11	7	9	1
1995:	6	8	5	8	9	9	16	8	6	6	14	16
1996:	10	9	14	7	23	12	10	12	19	9	8	18
1997:	13	6	11	1	8	6	13	20	4	9	6	1
1998:	8	7	4	8	10	12	8	9	15	5	10	

> MannKendall (mto2.12AMSunWed.sober.ts)
tau $=0.161, \quad$ sl $=3.675 \%$
> mto2.1AMSunWed.sober.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	6	11	4	8	3	7	13	5	9	9	13	12
1993:	9	3	3	6	7	2	8	9	3	6	6	10
1994:	11	2	8	11	9	8	13	14	7	7	6	15
1995:	4	5	11	11	3	13	3	12	2	8	9	6
1996:	12	11	13	3	11	11	7	4	6	9	7	10
1997:	11	5	6	3	4	10	8	5	4	3	10	5
1998:	8	1	7	11	9	10	16	8	2	8	7	2

> MannKendall(mto2.1AMSunWed.sober.ts)
tau $=-0.0459, \quad$ sl $=55.27 \%$
> mto2.2AMSunWed.sober.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	3	5	3	8	3	3	5	9	5	4	0	2
1993:	6	2	1	4	4	10	4	3	2	1	0	9
1994:	10	2	9	6	5	11	9	9	4	4	9	11
1995:	7	6	8	5	1	7	13	12	6	4	4	6
1996:	9	11	2	8	9	5	3	7	5	5	9	8
1997:	8	3	8	7	4	7	7	13	10	4	8	6
1998:	7	5	9	5	3	6	11	7	5	7	5	6

> MannKendall (mto2.2AMSunWed.sober.ts)
tau $=0.186, \quad$ sl $=1.634 \%$

```
> #
mto2.11PMThuSat.sober.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 9 7 7 8 14 20 20 21 20 20
1993: 13 10 4 10 16 20 19 15 15 16 21 13 11
1994: 13 14 14 9 14 14 19 18 18 18 9
1995: 21 9 17 8 15 20 22 19 19 14 21 
1996: 19 14 14 10 12 16 16 12 14 14 19 17 17 20 14
1997: 14 15 21 8 18 18 22 16 25 15 6 15
1998: 12 14 14 15 22 3 14 23 16 13 1 9 9 14
> MannKendall(mto2.11PMThuSat.sober.ts)
tau = 0.079, sl = 30.48%
> mto2.12AMThuSat.sober.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 10 8 6 6 10
1993: 8 8 8 7 9 9 9 9 5 5 13 16 16 8 10 
1994: 21 5 7 7 8 8 15 11 14 15 15 14 14 14 12
1995: 5 7 7 11 9 5 5 10
1996: 9 9 9 9 4 4 11 13 13 
1997: 
> MannKendall(mto2.12AMThuSat.sober.ts)
tau = 0.117, sl =13.07%
> mto2.1AMThuSat.sober.ts
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 5 10 17 6 6 12 13 13 8
1993: 4 12 10 12 11 17 10 11 10 10 20 13 11
1994: 14 8 14 10 25 12 15 15 19 14 17 18 18 10
1995: 14 13 8 8 8 11 10 19 12 17 17 16 13 14
1996: 14 12 10 9 0 8 1 17 17 16 14 14 11 
1997: 7 7 8 5 5 0.9 9 6 
1998: 6 2 4 4 4 4 9 % 8 % 8 13 % 3
> MannKendall(mto2.1AMThuSat.sober.ts)
tau = -0.239, sl =0.1736%
> mto2.2AMThuSat.sober.ts
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993: 4 4 4 3 3 4 4 7 7 0
1994: 9 10 13 9 5 5 10 17 17 15 20 11 14
```



```
1996: 14 5 % 8 13 9 16 16 3 14 14 8
1997: 
> MannKendall(mto2.2AMThuSat.sober.ts)
tau = 0.0881, sl =25.11%
```



```
> #
mto2.11PMThuSat.drunk.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 4 5 5 3 5lllllllllllll
1993:
1994: 3 4 4 9 9 9 11 12 % 5 0
```



```
1996: 
1998:
> MannKendall(mto2.11PMThuSat.drunk.ts)
tau = -0.186, sl =1.792%
> mto2.12AMThuSat.drunk.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993: 7 7 5 < 3 10 10, 1 % 7 0
1994: 2 3 3 4 4 7 7 10 1 1 % 9
1995:
1996:
1997: 
> MannKendall(mto2.12AMThuSat.drunk.ts)
tau = -0.209, sl =0.7314%
> mto2.1AMThuSat.drunk.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 9 9 0 7 4 4 18 13 1, 5
1993: 
1994: 8 8 9 % 7 6 12 12 6 13 
1995: 3 5 5 18 15 11 14 14 15 111 16 10
```



```
1997: 
> MannKendall(mto2.1AMThuSat.drunk.ts)
tau = -0.316, sl =0.003663%
> mto2.2AMThuSat.drunk.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 2 5 % 8 5 5 6 10
```



```
1994: 4 5 5 7 7 10 10 6 6 6 6
1995:
1996: 2 5 5 4 9 9 9 11 
1997: 2 5 5 11 
1998: 4 1 4 5 3 3 6 % 2 % 5 10
> MannKendall(mto2.2AMThuSat.drunk.ts)
tau = -0.0346, sl =65.77%
```


Trellis Time Series Plots

MTO, Minor Injury, Sober, Common Scale

MTO, Minor Injury, Drunk, Common Scale

Minimal Injury

upward trend: 11PMSunWed.sober.ts, 2AMSunWed.sober.ts, 11PMThuSat.sober.ts, 2AMThuSat.sober.ts, 2AMSunWed.drunk.ts
downward trend: 1AMThuSat.sober.ts, 11PMSunWed.drunk.ts, 12AMSunWed.drunk.ts, 1AMSunWed.drunk.ts, 11PMThuSat.drunk.ts, 12AMThuSat.drunk.ts, 1AMThuSat.drunk.ts

Data Tabulation

> mto1.11PMSunWed.sober.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	10	13	11	23	8	21	23	17	7	14	19	29
1993:	10	10	10	14	25	14	13	20	16	13	11	22
1994:	27	30	24	20	25	20	23	21	20	27	18	22
1995:	16	30	26	21	30	21	35	40	18	23	44	18
1996:	22	22	35	14	27	29	38	17	15	24	28	12
1997:	50	15	23	12	16	26	29	30	17	15	16	27
1998:	17	16	21	11	17	35	26	19	14	14	18	25
```> MannKendall(mto1.11PMSunWed.sober.ts) tau = 0.158, sl =3.673% > mto1.12AMSunWed.sober.ts```												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	8	7	5	9	8	9	7	14	5	12	19	19
1993:	12	9	20	10	6	12	11	12	11	8	7	14
1994:	14	9	15	9	16	11	12	17	9	5	10	16
1995:	11	16	10	16	18	14	19	14	16	10	24	19
1996:	10	14	24	12	13	17	18	13	6	17	10	13
1997:	20	10	12	10	7	10	15	16	12	28	17	11
1998:	13	8	10	9	7	11	14	6	6	8	10	15

> MannKendall (mto1.12AMSunWed.sober.ts)
tau $=0.0858, \quad$ sl $=26.26 \%$
$>$ mto1.1AMSunWed.sober.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: $1210 \quad 8 \quad 6 \quad 5 \quad 18 \quad 10$

	1993:	4	4	5	7	1	9	9	7	8	11			2	12



1995: 11 | 12 | 13 | 6 | 16 | 17 | 12 | 13 | 8 | 6 | 12 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1996: 15 14 15 11 6


1998: 11 | 12 | 10 | 10 | 5 | 8 | 9 | 4 | 2 | 11 | 8 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

> MannKendall(mto1.1AMSunWed.sober.ts)
tau $=-0.0302, \quad$ sl $=69.53 \%$
> mto1.2AMSunWed.sober.ts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	5	3	4	2	4	3	3	4	4	6	5	5
1993:	5	5	4	8	8	9	9	6	9	4	6	4
1994:	9	9	12	10	5	8	8	8	8	8	5	7
1995:	9	4	5	9	4	11	10	7	4	9	11	10
$1996:$	9	9	9	8	13	8	14	18	6	13	14	14
$1997:$	6	11	6	9	9	17	12	13	6	11	9	7
$1998:$	6	4	4	6	5	4	8	9	4	6	8	5

> MannKendall (mto1.2AMSunWed.sober.ts)
tau $=0.252$, sl $=0.1183 \%$

```
> #
mto1.11PMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 21 12 22 21 18 26 21 26 14 14 22 21 20
1993: 15 20 10 11 19 15 15 24 22 13 13 28 15 15
1994: 31 22 13 24 35 23 25 23 27 28 21 28
1995: 36 21 15 16 20 27 33 19 19 21
1996: 23 21 24 19 27 47 18 13 13 32 26 21 25
1997: 35 25 24 10 32 26 25 28 28 11
1998: 25 20 21 19 39 26 19 23 % 32 12 25 11
> MannKendall (mto1.11PMThuSat.sober.ts)
tau = 0.139, sl =6.696%
> mto1.12AMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 5 6 6 5 % 8 20 14 14 15 15 5 5
1993: 18 12 6 3 13 10 15 22 10
1994: 19 12 12 14 25 12 15 13 16 121
1995: 12 10 5 14 20 21 23 22 13 13 24 11 14
1996: 18 11 13 7 7 16 19
1997: 12 18 19 7 19 19 10 13 12 11
1998: 11 8 10 7 17 17 18 14 18 17 15 20
> MannKendall(mtol.12AMThuSat.sober.ts)
tau = 0.0881, sl =24.83%
> mto1.1AMThuSat.sober.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 11 18 14 12 24 10 10
1993: 7 19 9 10 13 18 18 20 10 22 11 11
1994: 14 15 19 14 23 16 17 16 19 30 16 16
1995: 22 7 17 20 11 21 24 17 16 19
1996: 27 25 13 17 11 16 19 19
1997: 9 12 17 8 8 17 19 9
1998: 11 5 22 11 12 6 6 11 19 19 8
> MannKendall(mto1.1AMThuSat.sober.ts)
tau = -0.134, sl =7.736%
> mto1.2AMThuSat.sober.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 13 5 6 6 % 7 16 10}7
1993:
1995:
1996: 10 14 17 9 11 16 16 12 11
1997: 9 17 15 12 18 18 10 9
1998: 7 4 4 6 5 5 13 4 4 9 9 18 14 % 7 17 17
> MannKendall(mto1.2AMThuSat.sober.ts)
tau = 0.173, sl =2.367%
```



	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	3	3	9	7	7	5	6	5	4	3	1
1993:	2	3	3	4	6	3	9	4	4	4	5	2
1994:	1	3	4	6	3	5	6	4	7	6	6	7
1995:	1	5	6	8	5	7	7	2	5	3	4	4
1996:	3	5	6	3	5	2	8	6	1	5	2	3
1997:	1	6	3	3	2	4	4	4	7	4	1	0
1998:	0	5	0	1	4	1		2	4	1	3	3
> MannKendall(mtol.11PMThuSat.drunk.ts) tau $=-0.189$, sl $=1.594 \%$												
> mtol.12AMThuSat.drunk.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:	2	7	5	4	6	8	3	9	2	8	3	5
1993:	3	4	3	4	5	5	6	3	3	7	7	5
1994:	4	2	1	6	5	6	5	9	5	7	7	3
1995:	3	4	7	5	7	5	3	5	6	8	5	5
1996:	7	4	3	2	5	3	4	3	4	5	3	2
1997:	1	0	0	0	8	2	0	6	3	5	5	5
1998:	0	0	5	6	3	5	2	7	5	1	3	2
```> MannKendall (mto1.12AMThuSat.drunk.ts) tau = -0.191, sl =1.527%```												
> mtol.1AMThuSat.drunk.ts												
	Jan	Feb	Mar	Apr	May	Jun			Sep	Oct	Nov	Dec
1992:	6	9	8	10	11	5	13	10	7	12	11	1
1993:	4	7	5	6	11	7	2	6	10	7	9	2
1994:	7	8	6	9	10	11	9	8	6	11	9	10
1995:	5	5	6	10	3	4	10	10	2	12	7	8
1996:	6		8	7	5	10	9	4	9	6	5	2
1997:	2	6	6	5	3	6	1	7	8	9	7	1
1998:	1	3	2	2	2	6	5	4	2	5	4	3
```> MannKendall(mto1.1AMThuSat.drunk.ts) tau = -0.317, sl =0.003898% > mto1.2AMThuSat.drunk.ts```												
Jan Feb Mar Apr May						Jun	Jul Aug		Sep	Oct	Nov	Dec
1992:	4	5	7	7	9	12	11	5	11	7	8	3
1993:	1	4	4	3	7	3	4	9	2	7	3	4
1994:	3	4	9	9	6	9	11	8	5	6	6	5
1995:	11	4	4	7	2	10	7	8	8	7	8	2
1996:	5	10	7	4	6	12	5	6	5	7	13	4
1997:	8	7	6	1	11	4	6	9	8	7	8	6
1998:	5	8	4	5	8	5		10	5	4	5	5
```> MannKendall(mto1.2AMThuSat.drunk.ts) tau = 0.0118, sl = 88.24%```												

Trellis Time Series Plots

MTO, Minimal Injury, Sober, Common Scale

MTO, Minimal Injury, Drunk, Common Scale

E. MVA Dataset

Summary

The MVA dataset is comprised of 84 records over the period May 1992 to April 1999 of serious trauma caused by motor vehicle accidents in Ontario. The data are obtained from the Ontario Trauma Registry. About 45\% of OTR cases occur in the 3AMPlus group. Since we are primarily interested in the other groups, the data corresponding to this subgroup was analysed separately.

HOUR: The uniformity hypothesis is rejected by a chi-square test at less than 0.04%. The major departure is due to fewer than expected traumas in the 12AM and 1 AM windows.

June-to-Sep June-to-Sep account for 45% so these months have a much higher share. Assuming cases are uniformly distributed over the months, yields an observed chi-squared goodness-of-fit statistic of 73.79 on 11 df which is statistically significant at less than 10^{-10}..

Hour and month are not associated

Hour and year are may be associated The largest departures from expected occur in the hourly windows in 1999.
Figure 1a. MVA counts/month (excluding 3AMPlus) show an initial upward trend followed by a downward trend starting about 1995

Figure 1b. MVA counts/month 3AMPlus show an initial upward trend to about 1995 and a downward trend post1995.

Figure 2a and Figure 2 b show there has been a strong downward trend since about 1995 for each hour 11AM, 12PM, 1AM, 2AM.

Table 2. Counts by hour - monotonic trend not detected at 12AM and 2AM.
Figure 3a STL, MVA. A peak is reached in 1995 is followed by a downward trend.
Figure 3b. MVA Seasonal The seasonal has a well defined peak in August, smaller peak in Nov and minimum in February. There is a downward trend in Apr and an upward trend Jul. and Nov

Figure 4a. STL, MVA, 3AMPlus. Increasing trend to 1995 and decreasing thereafter. The seasonal pattern changes in 1996 with the Jul-Aug peak becoming less prominent and the smaller Oct peak increasing.

Figure 4b. MVA, 3AMPlus Seasonal. Well defined peaks in Mar, Aug and Oct and minimum in Feb, Apr and Sep. The Oct peak has increased since 1996 and the Aug peak has decreased since 1996.

Introduction

The data set of Ontario Trauma Registry (OTR) contains the both motor vehicle accident and non motor vehicle accident cases (ISS Scale > 12, severe injury) from May 1992 to April 1999.

The hour factor variable includes 11:00pm-12:00am, 12:00am-1:00am, 1:00am-2:00am, 2:00am 3:00am and 3:00am -10:59pm.

Variables of interest:

counts	number of mva cases with ISS Scale > 12 (severe injury)
year	ordered factor, 8 levels: 1992 to 1999
month	ordered factor, 12 levels: January to December
hour	ordered factor with 5 levels:"11PM","12AM","1AM", "2AM","3AMPlus"

About 44% of MVA cases occur in the 3AMPlus group. Since we are primarily interested in the other groups, the data corresponding to this subgroup was analysed separately. Also notice that there is no wkgrp variable for this data.

```
> crosstabs(counts~hour, data=mva.df)
Call:
crosstabs(counts ~ hour, data = mva.df)
1964 cases in table
+-------+
| N
|N/Total|
+-------+
hour |
-------+-------+
11PM | 285
    | 0.15 |
-------+-------+
12AM | 220
    | 0.11 |
-------+-------+
1AM | 318
    | 0.16 |
-------+-------+
2AM | 271 |
    | 0.14 |
-------+-------+
3AMPlus|870 |
    | 0.44 |
```


Crosstabs Analysis

Hour

The uniformity hypothesis is rejected by a chi-square test at less than 0.04%. The major departure is due to fewer than expected traumas in the 12 AM and 1 AM windows.

```
> crosstabs(counts~hour, data=mval.df)
Call:
crosstabs(counts ~ hour, data = mval.df)
1094 cases in table
+-------+
|N |
|N/Total|
+-------+
hour
-------+-------+
11PM | 285 |
    | 0.26 |
-------+-------+
12AM | 220 |
    |.20 |
-------+-------+
1AM lll
-------+-------+
2AM ll | 271 |
-------+-------+
> cs.test(c(285,220,318,271))
$Xsq:
[1] 18.21207
$Pval:
[1] 0.0003976996
$Decomp:
[1] 0.48354662 10.46526508 7.24040219 0.02285192
```


Hour and month are not associated (p-value $=0.8024353$)

June-to-Sep account for 45% so these months have a much higher share. Assuming cases are uniformly distributed over the months, yields an observed chi-squared goodness-of-fit statistic of 73.79 on 11 df which is statistically significant at less than 10^{-10}.

There is no dependence between hour and month.
> crosstabs(counts~hour+month, data=mva.df, subset=!mva.df\$hour=="3AMPlus")
Call:
crosstabs(counts ~ hour + month, data = mva.df, subset = !(mva.df\$hour == "3AMPlus"))
1094 cases in table

$\mid N$ $\|N / R o w T o t a l\|$ $\|N / C o l T o t a l\|$ $\|N / T o t a l ~\|$														
hour	\|month \| Jan	\| Feb	\| Mar	\| Apr	\| May	\| Jun	\| Jul	\| Aug	\| Sep	IOct	\| Nov	\| Dec	\|RowTotl	
11 PM	115	119	117	116	122	129	133	130	132	123	128	121	1285	
	10.0526	10.0667	10.0596	10.0561	10.0772	10.1018	10.1158	10.1053	10.1123	10.0807	10.0982	10.0737	10.26	
	10.2632	10.3519	10.2429	10.1951	10.2558	10.2636	10.2481	10.2174	10.2857	10.2706	10.3111	10.2727	।	
	10.0137	10.0174	10.0155	10.0146	10.0201	10.0265	10.0302	10.0274	10.0293	10.0210	10.0256	10.0192	।	
12 AM	114	15	114	115	122	120	123	128	120	117	123	119	1220	
	10.0636	10.0227	10.0636	10.0682	10.1000	10.0909	10.1045	10.1273	10.0909	10.0773	10.1045	10.0864	10.20	
	10.2456	10.0926	10.2000	10.1829	10.2558	10.1818	10.1729	10.2029	10.1786	10.2000	10.2556	10.2468	\|	
	10.0128	10.0046	10.0128	10.0137	10.0201	10.0183	10.0210	10.0256	10.0183	10.0155	10.0210	10.0174	।	
1 AM	115	116	121	136	123	133	144	135	132	124	119	120	1318	
	10.0472	10.0503	10.0660	10.1132	10.0723	10.1038	10.1384	10.1101	10.1006	10.0755	10.0597	10.0629	10.29	
	10.2632	10.2963	10.3000	10.4390	10.2674	10.3000	10.3308	10.2536	10.2857	10.2824	10.2111	10.2597	।	
	10.0137	10.0146	10.0192	10.0329	10.0210	10.0302	10.0402	10.0320	10.0293	10.0219	10.0174	10.0183	।	
2 AM	113	114	118	115	119	128	133	145	128	121	120	117	1271	
	10.0480	10.0517	10.0664	10.0554	10.0701	10.1033	10.1218	10.1661	10.1033	10.0775	10.0738	10.0627	10.25	
	10.2281	10.2593	10.2571	10.1829	10.2209	10.2545	10.2481	10.3261	10.2500	10.2471	10.2222	10.2208	।	
	10.0119	10.0128	10.0165	10.0137	10.0174	10.0256	10.0302	10.0411	10.0256	10.0192	10.0183	10.0155	।	
$\begin{aligned} \text { ColTotl } & 57 \\ & \mid 0.052 \end{aligned}$		154	170	182	186	1110	1133	1138	1112	185	190	177	11094	
		10.049	10.064	10.075	10.079	10.101	10.122	10.126	10.102	10.078	10.082	10.070		

Test for independence of all factors
Chi^2 = 29.64457 d.f.= 33 ($\mathrm{p}=0.6349629$)
Yates' correction not used
> get.crosstabs.percenterror (counts~hour+month)

	[,1]	[,2]	[,3]	[,4]	[,5]	[, 6]	[,7]	[,8]	[,9] [,	[,10]	$1]$ [,		
[1,]	1	35	-7	-25	$5-2$	1	-5	-17	10	4	19	5	
[2,]	22	-54	-1	-9	27	-10	-14	1	-11	-1	27	23	
[3,]	-9	2	3	51	-8	3	14	-13	-2	-3	-27	11	
[4,]	-8	5	4	-26	-11	3	0	32	1	0	-10	-11	
contribution to chi-sq:													
	[,1]	[, 2]		3]	[, 4]	[,5]	[, 6]	[,7]	[,8]	8] [,9]	[,10]	[,11]	[,12]
[1,]	0.04	1.32	-0.	29 -1	-1.16	-0.09	0.06	-0.28	-0.99	$99 \quad 0.52$	0.18	0.94	0.21
[2,]	0.75	-1.78	8 -0.	$02-0$	-0.37	1.13	-0.45	-0.72	0.05	-0.53	-0.02	1.15	0.89
[3,]	-0.39	0.08	8.	14	2.49	-0.40	0.18	0.86	-0.81	-0.10	-0.14	-1.40	-0.50
[4,]	-0.30	0.17		16 -1	-1.18	-0. 50	0.14	0.01	1.85	550.05	-0.01	-0.49	-0.4

Hour and year are may be associated (p-value about 10\%)

The largest departures from expected occur in the hourly windows in 1999.

```
> crosstabs(counts~hour+year, data=mva.df, subset=!mva.df$hour=="3AMPlus")
Call:
crosstabs(counts ~ hour + year, data = mva.df, subset = !(mva.df$hour == "3AMPlus"))
1094 cases in table
+----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline hour & \[
\begin{aligned}
& \text { Iyear } \\
& 11992
\end{aligned}
\] & 11993 & 11994 & 11995 & 11996 & | 1997 & 11998 & 11999 & | Row' \\
\hline 11 PM & \[
\begin{aligned}
& 130 \\
& 10.10526 \\
& 10.30928 \\
& 10.02742
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 10.17544 \\
& 10.31056 \\
& 10.04570
\end{aligned}
\] & \[
\begin{aligned}
& 147 \\
& 10.16491 \\
& 10.23383 \\
& 10.04296
\end{aligned}
\] & \[
\begin{aligned}
& 144 \\
& 10.1543 \\
& 310.2256 \\
& 510.0402
\end{aligned}
\] & \[
\begin{aligned}
& 144 \\
& 910.1543 \\
& 410.2732 \\
& 210.0402
\end{aligned}
\] & \[
\begin{aligned}
& 135 \\
& 910.1228 \\
& 910.224 \\
& 210.031
\end{aligned}
\] & \[
\begin{aligned}
& 127 \\
& 110.094 \\
& 610.252 \\
& 910.024
\end{aligned}
\] & \[
\begin{gathered}
18 \\
410.028 \\
210.470 \\
810.007
\end{gathered}
\] & \[
\begin{aligned}
& 1285 \\
& 10.26 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline 12AM & \[
\begin{aligned}
& 113 \\
& 10.05909 \\
& 10.13402 \\
& 10.01188
\end{aligned}
\] & \[
\begin{aligned}
& 127 \\
& 10.12273 \\
& 10.16770 \\
& 10.02468
\end{aligned}
\] & \[
\begin{aligned}
& 139 \\
& 310.17727 \\
& 10.19403 \\
& 10.03565
\end{aligned}
\] & \[
\begin{aligned}
& 146 \\
& 10.2090 \\
& 310.2359 \\
& 10.0420
\end{aligned}
\] & \[
\begin{aligned}
& 141 \\
& 910.1863 \\
& 010.2546 \\
& 510.0374
\end{aligned}
\] & \[
\begin{aligned}
& 134 \\
& 610.1545 \\
& 610.2179 \\
& 810.0310
\end{aligned}
\] & \[
\begin{aligned}
& 119 \\
& 510.086 \\
& 510.1792 \\
& 810.017
\end{aligned}
\] & \[
\begin{gathered}
11 \\
610.004 \\
510.058 \\
710.000
\end{gathered}
\] & \[
\begin{aligned}
& 1220 \\
& 5 \mid 0.20 \\
& 2 \mid \\
& 1 \mid
\end{aligned}
\] \\
\hline 1AM & \[
\begin{aligned}
& 130 \\
& 10.09434 \\
& 10.30928 \\
& 10.02742
\end{aligned}
\] & \[
\begin{aligned}
& 147 \\
& 10.14780 \\
& 10.29193 \\
& 10.04296
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 10.21384 \\
& 10.33831 \\
& 10.06216
\end{aligned}
\] & \[
\begin{aligned}
& 162 \\
& 10.1949 \\
& 10.3179 \\
& 10.0566
\end{aligned}
\] & \[
\begin{aligned}
& 138 \\
& 710.1195 \\
& 510.2360 \\
& 710.0347
\end{aligned}
\] & \[
\begin{aligned}
& 140 \\
& 010.125 \\
& 210.256 \\
& 310.0365
\end{aligned}
\] & 126
910.0817
110.24528
610.0237 & \[
\begin{aligned}
& 17 \\
& 610.022 \\
& 810.411 \\
& 710.006
\end{aligned}
\] & \[
\begin{aligned}
& 1318 \\
& 1 \mid 0.29 \\
& 6 \mid \\
& 0 \mid
\end{aligned}
\] \\
\hline 2AM & \[
\begin{aligned}
& 124 \\
& 10.08856 \\
& 10.24742 \\
& 10.02194
\end{aligned}
\] & \[
\begin{aligned}
& 137 \\
& 10.13653 \\
& 10.22981 \\
& 10.03382
\end{aligned}
\] & \[
\begin{aligned}
& 147 \\
& 310.17343 \\
& 10.23383 \\
& 10.04296
\end{aligned}
\] & \[
\begin{aligned}
& 143 \\
& 310.1586 \\
& 310.2205 \\
& 510.0393
\end{aligned}
\] & \[
\begin{aligned}
& 138 \\
& 7 \mid 0.1402 \\
& 1 \mid 0.2360 \\
& 1 \mid 0.0347
\end{aligned}
\] & \[
\begin{aligned}
& 147 \\
& 210.173 \\
& 210.3012 \\
& 310.042
\end{aligned}
\] & \[
\begin{aligned}
& 134 \\
& 310.125 \\
& 810.320 \\
& 610.031
\end{aligned}
\] & \[
\begin{gathered}
11 \\
610.003 \\
510.058 \\
810.000
\end{gathered}
\] & \[
\begin{array}{ll}
1271 \\
9 \mid 0.25 \\
2 \mid & 1 \\
1 & 1
\end{array}
\] \\
\hline Colt & \[
\begin{aligned}
& 1197 \\
& 10.089
\end{aligned}
\] & \[
\begin{aligned}
& \mid 161 \\
& 10.147
\end{aligned}
\] & \[
\begin{aligned}
& \mid 201 \\
& 10.184
\end{aligned}
\] & \[
\begin{aligned}
& \mid 195 \\
& 10.178
\end{aligned}
\] & \[
\begin{aligned}
& \mid 161 \\
& 10.147
\end{aligned}
\] & \[
\begin{aligned}
& 1156 \\
& 10.143
\end{aligned}
\] & \[
\begin{aligned}
& \mid 106 \\
& 10.097
\end{aligned}
\] & \[
\begin{aligned}
& 117 \\
& 10.016
\end{aligned}
\] & \[
11094
\] \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 30.08949 d.f. = 21 (p=0.09020436)
    Yates' correction not used
    Some expected values are less than 5, don't trust stated p-value
> get.crosstabs.percenterror(counts~hour+year)
\begin{tabular}{lrrrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} & {\([, 7]\)} & {\([, 8]\)} \\
{\([1]\),} & 19 & 19 & -10 & -13 & 5 & -14 & -2 & 81 \\
{\([2]\),} & -33 & -17 & -4 & 17 & 27 & 8 & -11 & -71 \\
{\([3]\),} & 6 & 0 & 16 & 9 & -19 & -12 & -16 & 42 \\
{\([4]\),} & 0 & -7 & -6 & -11 & -5 & 22 & 29 & -76
\end{tabular}
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.94 1.24 -0.74 -0.95 0.32 -0.88 -0.12 1.70
[2,] -1.47 -0.94 -0.22 1.08 1.52 0.47 -0.50 -1.31
[3,] 0.34 0.03 1.25 0.71 -1.29 -0.79 -0.87 0.93
[4,] -0.01 -0.46 -0.40 -0.76 -0.30 1.34 1.51 -1.56
```


Data Visualization

In our time series plots we use a 60% robust locally linear smoother to visualize the trend except in the STL analysis where a 60% robust locally quadratic smoother is used for trend. Monotonic trend test significant in both cases.

Table 1a.
OTR monthly time series, excluding 3AMPlus window.

```
> mva.tot.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 13 15 13 10
1993: 5 13 4 4 18 15 18 12 21 22 10
1994: 7 7 7 14 21 15 12 25 24 19 20 17 20
1995: 17 8 17 12 14 25 28 29 16 % 7 13 13 9
1996: 7 10 16 8 13 11 20 24 18 12 15 7
1997: 10 6 14 13 11 18 16 19
```



```
1999: 6 5 1 5
> SeasonalMannKendall(mva.tot.ts)
tau = -0.262, sl =0.4841%
```

Table 1b
MVA monthly time series, 3AMPlus window.

```
> mva0.tot.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 14 11 16 17 15 16 14 16
1993: 13 12 11 15 15 16 23 22 16 17 20 16
1994: 15 13 14 15 19 22 20 25 21 
1995: 18 17 20 18 19 23 25 25 21 20
1996: 16 15 21 15 21 23 22 23 20 20 22 16
1997: 15 17 17 12 19 20 21 21 18 22 14 17
1998: 15 14 14 18 19 20 23 22 21 
1999: 16 12 12 14
> SeasonalMannKendall(mva0.tot.ts)
tau = 0.249, sl =0.8697%
```

Figure 1a. MVA counts/month (excluding 3AMPlus) show an initial upward trend followed by a downward trend starting about 1995.

Figure 1a.

Figure 1b. MVA counts/month 3AMPlus show an initial upward trend to about 1995 and a downward trend post-1995.

Figure 1b.

Figure 2a.
MVA counts by hour. Common scale.
The downward trend does not appear as step in the 2AM window.

Figure 2b.

Table 2. Tabulations and Seasonal Mann-Kendall Tests

Monotonic trend test significant for 11PM and 1 AM at $<5 \%$ but not for 12 AM and 2AM.

```
> count.11PM.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 3 6 6 6 3
```



```
1995: 2 4 4 3 0
```



```
1997:}2
1998: 1 1 3 2 2 1 1 1 cllllllllll
1999: 4 2 0 2
> SeasonalMannKendall(count.11PM.ts)
tau = -0.195, sl =3.875%
> count.12AM.ts
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 0
```



```
1994:
1995: 5 2 2 2 4 4 5 4 4 9
1996: 3 0 3 0
1997: 3 0 5 4 4 2 5 5 3 < 3 % 3 0
1998: 0 2 0 0 1 2 2 1 1 1 < 2 0
1999: 0 0 0 1
> SeasonalMannKendall(count.12AM.ts)
tau = -0.0132, sl =89.06%
> count.1AM.ts
\begin{tabular}{llllllllrrrrrr} 
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1992: & & & & & 4 & 5 & 5 & 3 & 7 & 1 & 1 & 4 \\
1993: & 1 & 1 & 1 & 12 & 5 & 4 & 3 & 8 & 6 & 1 & 2 & 3 \\
1994: & 1 & 4 & 4 & 9 & 6 & 1 & 12 & 9 & 7 & 7 & 5 & 3 \\
1995: & 7 & 2 & 6 & 4 & 2 & 12 & 10 & 7 & 4 & 3 & 1 & 4 \\
1996: & 1 & 4 & 4 & 4 & 3 & 3 & 3 & 2 & 5 & 5 & 3 & 1 \\
1997: & 3 & 2 & 4 & 4 & 2 & 6 & 5 & 2 & 2 & 3 & 4 & 3 \\
1998: & 1 & 0 & 1 & 1 & 1 & 2 & 6 & 4 & 1 & 4 & 3 & 2
\end{tabular}
1999: 1 3 1 2
> SeasonalMannKendall(count.1AM.ts)
tau = -0.231, sl =1.457%
> count.2AM.ts
\begin{tabular}{lllllllrrrrrrr} 
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1992: & & & & & 6 & 2 & 1 & 2 & 1 & 6 & 2 & 4 \\
1993: & 1 & 8 & 1 & 2 & 2 & 6 & 3 & 5 & 3 & 2 & 4 & 0 \\
1994: & 3 & 0 & 4 & 5 & 2 & 4 & 5 & 6 & 5 & 5 & 4 & 4 \\
1995: & 3 & 0 & 6 & 3 & 1 & 2 & 8 & 9 & 6 & 1 & 2 & 2 \\
1996: & 0 & 2 & 4 & 1 & 3 & 4 & 6 & 9 & 3 & 1 & 3 & 2 \\
1997: & 2 & 4 & 2 & 2 & 4 & 3 & 5 & 11 & 7 & 2 & 3 & 2 \\
1998: & 3 & 0 & 1 & 2 & 1 & 7 & 5 & 3 & 3 & 4 & 2 & 3
\end{tabular}
1999: 1 0 0 0
> SeasonalMannKendall(count.2AM.ts)
tau = -0.0387, sl =68.38%
```

A peak is reached in 1995 is followed by a downward trend. There is a change in the shape of the seasonal component occuring in 1996.
$\mathrm{R}-\mathrm{sq}=69.2 \%$

Figure 3a

STL, MVA (Excluding 3AMPlus)

ss.window = 7 ,ss.robust = TRUE fr. windnw $=504$ fr. dearee $=$?

Figure 3b. The seasonal has a well defined peak in August, smaller peak in Nov and minimum in February. There is a downward trend in Apr and an upward trend Jul. and Nov

Figure 3b.

Seasonal Component, MVA Excluding 3AMPlus

Figure 3c. Normal probability plot.
Reasonably normal. No strong indication of outliers.

Skewness Coefficient: g_1 = -0.1394417, s.l. $=0.288189$ Michael's Statistic: D_sp = 0.05841193 , s.l. $=0.4598983$ Wilk-Shapiro Statistic: $\mathrm{W}=0.9680623$, s.I. $=0.1442419$

Figure 3d.
Deseasonalized series. Strong downward trend since 1995. Mann-Kendall test highly significant.
tau $=-0.226, \quad$ sl $=0.2146 \%$

MVA counts (excluding 3AM), deseasonalilzed

STL Decomposition, OTR Excluding 3AMPlus

Figure 4a. A peak is reached in 1995 is followed by a downward trend. There is a change in the shape of the seasonal component occuring in 1996.

Figure 4a.

STL, MVA (Excluding 3AMPlus)

ss.window $=7$,ss.robust = TRUE, fc. window $=50.4$, fc.degree $=2$

STL Decomposition, OTR 3AMPlus

Figure 4a. Increasing trend to 1995 and decreasing thereafter. The seasonal pattern changes in 1996 with the Jul-Aug peak becoming less prominent and the smaller Oct peak increasing.

STL, MVA 3AMPlus

ss.window = 7 ,ss.robust = TRUE ,
fc. window = 50.4, fc.degree = 2

Figure 4b. Well defined peaks in Mar, Aug and Oct and minimum in Feb, Apr and Sep. The Oct peak has increased since 1996 and the Aug peak has decreased since 1996.

Seasonal Component, MVA, 3AMPlus

F. OTR Dataset

Summary

The data of both motor vehicle accident and non-motor vehicle trauma cases in Ontario from May 1992 to April 1999. About 45% of OTR cases occur in the 3AMPlus group. Since we are primarily interested in the other groups, the data corresponding to this subgroup was analysed separately.

HOUR: The uniformity hypothesis is rejected by a chi-square test at less than 0.1%. The major departure is due to fewer than expected trauma's in the 12AM window.

June-to-Sep account for 42% so these months have a much higher share. Assuming cases are uniformly distributed over the months, yields an observed chi-squared goodness-of-fit statistic of 73.79 on 11 df which is statistically significant at less than 10^{-10}.

Hour and month are not associated

Hour and year are not associated

Figure 1a. OTR counts/month (excluding 3AMPlus) show a convex pattern of an initial upward trend followed by a downward trend starting about 1995. No monotonic trend so Mann-Kendall not significant as expected - Table 1a.

Figure 1b. OTR counts/month 3AMPlus show an initial upward trend to 1996 and a flattening out. Seasonal Mann-Kendall test is significant at less than 1% indicating an upward trend - Table 1b.

Table 2. Time series disaggregated into hourly windows. No monotonic trends indicated by Seasonal Mann-Kendall tests.

Figure 2a and Figure 2b: nearly flat for 2AM but others show an upward movement followed by downward.

Figure 3a. STL, OTR. A peak is reached in 1995 is followed by a downward trend. There is a change in the shape of the seasonal component occuring in 1996.

Figure 3b. OTR. The seasonal has a well defined peak in August and minimum in February. There is a downward trend in Apr and an upward trend Jul. and Nov This results in two peaks after about 1996 - the second peak being in Nov.

Figure 4a. OTR, 3AMPlus. A gradual increase until it levels off in 1996. Slight change in seasonal shape after 1996

Figure 4b. OTR, 3AMPlus. Well defined peaks in Aug and Oct and minimum in Feb. The Oct peak has increased since 1996 and the Aug peak has decreased since 1996.

Figure 4d - loess analysis of deseasonalized OTR, 3AMPlus is similar to Figure 1b as expected.

Introduction

The data set of Ontario Trauma Registry (OTR) contains the both motor vehicle accident and non motor vehicle accident cases (ISS Scale > 12, severe injury) from May 1992 to April 1999.

The hour factor variable includes 11:00pm-12:00am, 12:00am-1:00am, 1:00am-2:00am, 2:00am 3:00am and 3:00am -10:00am

Variables of interest:

counts	number of mva cases with ISS Scale > 12 (severe injury)
year	ordered factor, 8 levels: 1992 to 1999
month	ordered factor, 12 levels: January to December
hour	ordered factor with 5 levels:"11PM","12AM", "1AM", "2AM","3AMPlus"

About 45% of OTR cases occur in the 3AMPlus group. Since we are primarily interested in the other groups, the data corresponding to this subgroup was analysed separately. Also notice that there is no wkgrp variable for this data.

```
> crosstabs(counts~hour, data=otr.df)
Call:
crosstabs(counts ~ hour, data = otr.df)
3368 cases in table
+-------+
|N |
|N/Total|
+-------+
hour |
-------+-------+
11PM | 492 |
    |.15 |
-------+-------+
12AM | 394 |
    |0.12 |
-------+-------+
1AM | 500 |
    |.15 |
-------+-------+
-------+-------+
3AMPlus|1509
    |0.45 |
-------+-------+
```


Crosstabs Analysis

Hour

The uniformity hypothesis is rejected by a chi-square test at less than 0.1%. The major departure is due to fewer than expected traumas in the 12AM window.

```
> crosstabs(counts~hour, data=otrl.df)
Call:
crosstabs(counts ~ hour, data = otrl.df)
1859 cases in table
+-------+
|N |
|N/Total|
+-------+
hour |
-------+-------+
11PM | 492 |
    |0.26 |
-------+-------+
12AM | 394 |
    |.21 |
-------+-------+
1AM | 500 |
    |.27 |
-------+-------+
2AM ll
```


Hour and month are not associated (p-value $=0.8024353$)

June-to-Sep account for 42% so these months have a much higher share. Assuming cases are uniformly distributed over the months, yields an observed chi-squared goodness-of-fit statistic of 73.79 on 11 df which is statistically significant at less than 10^{-10}.

There is no dependence between hour and month.

Call: crosstabs(counts ~ hour + month, data = otr.df, subset = !(mva.df\$hour == "3AMPlus")														
\|N														
\|N/RowTotal														
\|N/ColTotal														
\|N/Total														
hour														
	\|month \| Jan	\| Feb	\| Mar	\| Apr	\| May	\| Jun	\| Jul	\| Aug	\| Sep	\| Oct	\| Nov	\| Dec	\| RowTotl	
11 PM	139	134	128	137	139	148	149	149	154	132	146	137	1492	
	10.079	10.069	10.057	10.075	10.079	10.098	10.100	10.100	10.110	10.065	10.093	10.075	10.26	
	10.300	10.318	10.207	10.278	10.247	10.286	10.241	10.222	10.310	10.225	10.324	10.253	\|	
	10.021	10.018	10.015	10.020	10.021	10.026	10.026	10.026	10.029	10.017	10.025	10.020	\|	
12AM	132	119	130	124	135	134	145	150	133	132	132	128	1394	
	10.081	10.048	10.076	10.061	10.089	10.086	10.114	10.127	10.084	10.081	10.081	10.071	10.21	
	10.246	10.178	10.222	10.180	10.222	10.202	10.222	10.226	10.190	10.225	10.225	10.192		
	10.017	10.010	10.016	10.013	10.019	10.018	10.024	10.027	10.018	10.017	10.017	10.015	\|	
1 AM	131	130	139	146	146	143	160	153	142	138	130	142	1500	
	10.062	10.060	10.078	10.092	10.092	10.086	10.120	10.106	10.084	10.076	10.060	10.084	10.27	
	10.238	10.280	10.289	10.346	10.291	10.256	10.296	10.240	10.241	10.268	10.211	10.288	\|	
	10.017	10.016	10.021	10.025	10.025	10.023	10.032	10.029	10.023	10.020	10.016	10.023	1	
2AM	128	124	138	126	138	143	149	169	145	140	134	139	1473	
	10.059	10.051	10.080	10.055	10.080	10.091	10.104	10.146	10.095	10.085	10.072	10.082	10.25	
	10.215	10.224	10.281	10.195	10.241	10.256	10.241	10.312	10.259	10.282	10.239	10.267		
	10.015	10.013	10.020	10.014	10.020	10.023	10.026	10.037	10.024	10.022	10.018	10.021	\|	
$\begin{aligned} \text { ColTotl } & \text { \| } 130 \\ & 0.070\end{aligned}$		1107	1135	1133	1158	1168	1203	1221	1174	1142	1142	1146	11859	
		10.058	10.073	10.072	10.085	10.090	10.109	10.119	10.094	10.076	10.076	10.079		

Test for independence of all factors
Chi^2 = 28.33842 d.f. $=33$ ($p=0.6985065$)
Yates' correction not used

Hour and year are independent

There are 62% more in the $11 \mathrm{PM}-1999$ window than might be expected under independence but the result is only significant at about 12.5%.

```
> crosstabs(counts~hour+year, data=otr.df, subset=!otr.df$hour=="3AMPlus")
Call:
crosstabs(counts ~ hour + year, data = otr.df, subset = !(otr.df$hour ==
    "3AMPlus"))
1859 cases in table
+----------+
| N
|N/RowTotal|
|N/ColTotal|
N/Total
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline hour & \begin{tabular}{l}
| year \\
| 1992
\end{tabular} & | 1993 & | 1994 & | 1995 & 11996 & | 1997 & | 1998 & | 1999 & |RowTotl| \\
\hline \multirow[t]{4}{*}{11 PM} & 137 & 175 & 179 & 188 & 173 & 166 & 153 & 121 & 1492 \\
\hline & 10.0752 & 10.1524 & 10.1606 & 10.1789 & 10.1484 & 10.1341 & 10.1077 & 10.0427 & 10.26 \\
\hline & 10.2450 & 10.3036 & 10.2516 & 10.2716 & 10.2786 & 10.2324 & 10.2325 & 10.4286 & | \\
\hline & 10.0199 & 10.0403 & 10.0425 & 10.0473 & 10.0393 & 10.0355 & 10.0285 & 10.0113 & \\
\hline \multirow[t]{4}{*}{12AM} & 131 & 145 & 170 & 173 & 163 & 156 & 147 & 19 & | 394 \\
\hline & 10.0787 & 10.1142 & 10.1777 & 10.1853 & 10.1599 & 10.1421 & 10.1193 & 10.0228 & 10.21 \\
\hline & 10.2053 & 10.1822 & 10.2229 & 10.2253 & 10.2405 & 10.1972 & 10.2061 & 10.1837 & | \\
\hline & 10.0167 & 10.0242 & 10.0377 & 10.0393 & 10.0339 & 10.0301 & 10.0253 & 10.0048 & | \\
\hline \multirow[t]{4}{*}{1AM} & 142 & 170 & 190 & 195 & 160 & 177 & 154 & 112 & 1500 \\
\hline & 10.0840 & 10.1400 & 10.1800 & 10.1900 & 10.1200 & 10.1540 & 10.1080 & 10.0240 & 10.27 \\
\hline & 10.2781 & 10.2834 & 10.2866 & 10.2932 & 10.2290 & 10.2711 & 10.2368 & 10.2449 & | \\
\hline & 10.0226 & 10.0377 & 10.0484 & 10.0511 & 10.0323 & 10.0414 & 10.0290 & 10.0065 & 1 | \\
\hline \multirow[t]{4}{*}{2AM} & 141 & 157 & 175 & 168 & 166 & 185 & 174 & 17 & 1473 \\
\hline & 10.0867 & 10.1205 & 10.1586 & 10.1438 & 10.1395 & 10.1797 & 10.1564 & 10.0148 & 10.25 \\
\hline & 10.2715 & 10.2308 & 10.2389 & 10.2099 & 10.2519 & 10.2993 & 10.3246 & 10.1429 & | \\
\hline & 10.0221 & 10.0307 & 10.0403 & 10.0366 & 10.0355 & 10.0457 & 10.0398 & 10.0038 & | \\
\hline \multirow[t]{2}{*}{ColTo} & 1151 & 1247 & 1314 & 1324 & 1262 & 1284 & 1228 & 149 & 11859 \\
\hline & 10.081 & 10.133 & 10.169 & 10.174 & 10.141 & 10.153 & 10.123 & 10.026 & 1 | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 28.56446 d.f.= 21 (p=0.1248566)
    Yates' correction not used
> get.crosstabs.percenterror(counts~hour+year)
            [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 
[2,] 
[3,] 3 5 5 7 7 9 0
```



```
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] -0.47 1.19 -0.45 0.24 0.44 -1.06 -0.95 2.23
[2,] -0.18 -1.02 0.42 0.52 1.00 -0.54 -0.19 -0.43
[3,] 0.22 0.44 0.60
[4,] 0.42 -0.74 -0.55 -1.59 -0.08 1.50 2.10 -1.55
```


Data Visualization

In our time series plots we use a 60% robust locally linear smoother to visualize the trend except in the STL analysis where a 60% robust locally quadratic smoother is used for trend. Monotonic trend test is significant at $<1 \%$ for 3AMPlus for not for aggregated 11PM-to-2AM windows. Upward trend for 3AMPlus.

Table 1a.
OTR monthly time series, excluding 3AMPlus window.

```
> otr.tot.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 21 23 18 19
1993: 12 20 6 27 22 24 23 26 31 18 20 18
1994: 20 13 26 28 25 15 35 40
1995: 25 19 30 23 27 40 37 43 21 17 23 19
1996: 15 21 24 11 22 22 27 38 28 17 21 16
1997: 22 11 27 22 23 29 23 31 24 21 28 
1998: 20 11 14 9 18 15 40 24 21 18
1999: 16 12 8 13
> SeasonalMannKendall(otr.tot.ts)
tau = -0.0567, sl =54%
```

Table 1b.
OTR monthly time series, 3AMPlus window.

```
> otr0.tot.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 14 11 16 17 15 16 14 16
1993: 13 12 11 15 15 16 23 22 16 17 17 20 16
1994: 15 13 14 15 19 22 20 25 21 
1995: 18 17 20 18 19 23 25 25 21 
1996: 16 15 21 15 21 23 22 23 20 20
1997: 15 17 17 12 19 20 21 21 18 22 14 17
1998: 15 14 14 18 19 20 23 22 21 23 17 20
1999: 16 12 12 14
> SeasonalMannKendall(otr0.tot.ts)
tau = 0.249, sl =0.8697%
```

Figure 1a. OTR counts/month (excluding 3AMPlus) show a convex pattern of an initial upward trend followed by a downward trend starting about 1995.

Figure 1b. OTR counts/month 3AMPlus show an initial upward trend to 1996 and a less step downward trend post-1996.

OTR Counts/month for 3AMPlus

Figure 2a
OTR by hour with common scale.
Nearly flat for 2AM but others show an upward movement followed by downward.

Figure 2b.
Independent scaling.

Table 2. Data tabulations and Seasonal Mann-Kendall tests No monotonic trend significant at 5\%

STL Decomposition, OTR Excluding 3AMPlus

Figure 3a. A peak is reached in 1995 is followed by a downward trend. There is a change in the shape of the seasonal component occuring in 1996. R-sq $=62.5 \%$

STL, OTR (Excluding 3AMPlus)

ss. window $=7$,ss.robust = TRUE ,

$$
\text { fc. window }=50.4, \text { fc. degree }=2
$$

Figure 3b. The seasonal has a well defined peak in August and minimum in February. There is a downward trend in Apr and an upward trend Jul. and Nov This results in two peaks after about 1996 - the second peak being in Nov.

Seasonal Component, Excluding 3AMPlus

Figure 3c. Normal proablity plot of remainder component and normality tests suggest the normal approximation is adequate.

Skewness Coefficient: g_1 = -0.1499071, s.l. $=0.2741649$
Michael's Statistic: D_sp $=0.04209311$, s.l. $=0.5012842$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9856928$, s.l. $=0.8398335$

Figure 3d. Loess trend analysis of deseasonalized data and Mann-Kendall test.

$$
\operatorname{tau}=-0.0666, \quad s l=36.92 \%
$$

MVA counts (excluding 3AM), deseasonalilzed

STL Decomposition, OTR 3AMPlus

Figure 4a. A gradual increase until it levels off in 1996. Slight change in seasonal shape after 1996. Seasonal peak has decreased. $\mathrm{R}-\mathrm{sq}=80.3 \%$. There is a significant upward trend.

STL, OTR 3AMPlus

ss.window = 7 ,ss.robust = TRUE ,
fc. window $=50.4$, fc.dearee $=2$

Figure 4b. Well defined peaks in Aug and Oct and minimum in Feb. The Oct peak has increased since 1996 and the Aug peak has decreased since 1996.

Seasonal Component, 3AMPlus

Figure 4c.
Normal probability plot - no outiers or non-normality evident.

Skewness Coefficient: g_1 = 0.1061209 , s.l. $=0.3351077$
Michael's Statistic: D_sp = 0.03207909 , s.l. $=0.06057737$
Wilk-Shapiro Statistic: $W=0.9789253$, s.I. $=0.5259117$

Figure 4d.
Trend analysis of deaseasonalized series. Upward trend detected but it levels off.

$$
\text { tau }=0.212, \quad \text { sl }=0.4091 \%
$$

MVA 3AMPlus, deseasonaliized

G. LPS Dataset

Introduction

London Police Data set contains 8920 observations regarding with person being charged due to assault or impaired driving from May 1992 to May 1999. There are 3257 assault charges and 5663 impaired driving charges.

And only cases from 11:00pm to 4:00am are analyzed. The time of charge happened, such as hour, week, month and year, was also recorded.

Variables of interests in the data set

persons	person number (1 for first person, 2 for second, etc)
counts	number of charges
type	factor with 2 levels: "assault", "impaired"
wkgrp	ordered factor with 2 levels: "SunWed", "ThuSat"
hour	ordered factor with 5 levels: "11PM", "12AM", "1AM", "2AM", "3AM"
year	ordered factor with 8 levels: 1992 to 1999
month	ordered factor with 12 levels: January to December

The distribution of the number of person charged is shown in the table below.

```
> table(lps.df$persons,lps.df$type)
persons assault impaired
1 3079 5654
2 138 9
3 35 0
4 4 0
5 1 0
```

The following table shows the 4 incidents where 4 persons were charged with assault.

	persons	counts type	concord	wkgrp	hour	month	day	year	charges
7517	4	1 assault	1420	SunWed	12AM	Feb	Thu	1996	4
8093	4	2 assault	1430	ThuSat	12AM	Sep	Sat	1998	8
8094	4	2 assault	1430	ThuSat	12AM	Sep	Sat	1998	8
8102	4	1 assault	1420	SunWed	3AM	Sep	Mon	1998	4

The response variable chosen to analyze was counts.

G. LPS Dataset: Assaults

Summary

The LPS assault data include sexual assault. There were 3257 assault cases in London from May of 1992 to May of 1999. Table 1. There was an extreme outlier in March 1999. To improve data visualization a log transformation has been used.

Crosstabs. Assaults are more frequent ThuSat (62\%) than in SunWed (38\%). Assaults from 1:00am to 2:00am count for most cases (24%) while $3: 00 \mathrm{am}$ to $4: 00 \mathrm{am}$ only 13%. Assaults are more frequent ThuSat (63%) than in SunWed (37%). In SunWed slot, there are 17% more assaults than expected in 11PM and 11% and 17% fewer than expected in the 2 AM and 3 AM slots respectively. As might be expected from the loess analysis, hour and year are related. See Figure 3b.

Figure 1a. and Figure 1b. Assaults decreased slighly to about mid-1994 and have remained flat since.

Figure 2. Since 1996 there has been a slight decline in SunWed and slight increase in ThuSat.
Figure 3b. Loess analysis by hour show there is an upward trend in 2AM and 3AM and a downward trend in 1AM and 12AM. Monotonic trend tests are significant for 2AM and 1AM. The trend at 1AM accelerates after 1996.

Figure 4b From Figure 4b we see that since 1996 there has been an upward shift at 2AM and 3AM and a downward trend at 1AM for both SunWed and ThuSat. For 11PM-SunWed the downward trend in progress before 1996 flattened out after 1996 while for 11PM-ThuSat this downward trend switched to an increase after 1996. For 12AM-SunWed there is a slight downward trend for post1996 and an apparent shift downward for 12AM-ThuSat.

Figure 5a. STL: The logged data is used. The seasonal component is very unstable and increases in amplitude after 1996. $\mathrm{R}-\mathrm{sq}=52.5 \%$

Figure 5b. The overall seasonal pattern is with a March maximum and with November minimum. Large trend upward in March and large downward in May. Smaller downward trends in October and November. July and August are relatively high and don't vary much.

Figure 5c. Tests for normality are fine. The two largest and smallest values in the normal probability plot are indicated -- see also Table 1.

Crosstabs Analysis

Hour and wkgrp are associated

Assaults are more frequent ThuSat (62\%) than in SunWed (38\%). Assaults from 1:00am to 2:00am count for most cases (24%) while 3:00am to $4: 00 \mathrm{am}$ only 13%. Assaults are more frequent ThuSat (63\%) than in SunWed (37\%). In SunWed slot, there are 17% more assaults than expected in 11 PM and 11% and 17% fewer than expected in the 2 AM and 3 AM slots respectively.

```
Call:
crosstabs(formula = counts ~ wkgrp + hour, data = lps.df, subset = lps.df$type ==
"assault",
        na.action = na.exclude)
3 3 0 1 ~ c a s e s ~ i n ~ t a b l e
+-----------
|N
|N/RowTotal|
|N/ColTotal|
|N/Total
+----------+
wkgrp |hour
    |11\textrm{PM}||\mp@code{|AM |1AM | |AM | 3AM | |owTotl|}
llllol
Test for independence of all factors
    Chi^2 = 24.84403 d.f.= 4 (p=0.00005407599)
    Yates' correction not used
> get.crosstabs.percenterror(counts~wkgrp+hour)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
    [,1] [,2] [,3] [,4] [,5]
[1,] 
[2,] -10 -4 1 % % 10
> contrib(counts~wkgrp+hour)
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] 2.50 1.23 -0.20 -1.73 -2.17
[2,] -1.94 -0.95 0.15 1.34 1.68
```


Hour and Year are associated

As might be expected from the loess analysis, hour and year are related. See Figure 3b.

```
> crosstabs(counts~hour+year, data=lps.df, na.action=na.exclude, subset=lps.df$type=="assault")
Call:
crosstabs(formula = counts ~ hour + year, data = lps.df, subset = lps.df$type == "assault",
    na.action = na.exclude)
3 3 0 1 ~ c a s e s ~ i n ~ t a b l e
+----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 11992 & 11993 & 11994 & 11995 & 11996 & | 1997 & | 1998 & | 1999 & |RowTotl| \\
\hline \multirow[t]{4}{*}{11 PM} & | 66 & 183 & | 80 & | 70 & 1106 & | 64 & 1102 & | 34 & 1605 \\
\hline & 10.11 & 10.14 & 10.13 & 10.12 & 10.18 & 10.11 & 10.17 & 10.056 & 10.18 \\
\hline & 10.2 & 10.17 & 10.19 & 10.16 & 10.22 & 10.15 & 10.22 & 10.15 & | \\
\hline & 10.02 & 10.025 & 10.024 & 10.021 & 10.032 & 10.019 & 10.031 & 10.01 & | \\
\hline \multirow[t]{4}{*}{12AM} & 162 & 1112 & 1109 & 1119 & 1131 & 190 & 198 & | 77 & 1798 \\
\hline & 10.078 & 10.14 & 10.14 & 10.15 & 10.16 & 10.11 & 10.12 & 10.096 & 10.24 \\
\hline & 10.19 & 10.23 & 10.26 & 10.27 & 10.27 & 10.21 & 10.21 & 10.35 & | \\
\hline & 10.019 & 10.034 & 10.033 & 10.036 & 10.04 & 10.027 & 10.03 & 10.023 & | \\
\hline \multirow[t]{4}{*}{1 AM} & 1103 & 1138 & 195 & 1114 & 1109 & 95 & 188 & | 31 & 1773 \\
\hline & 10.13 & 10.18 & 10.12 & 10.15 & 10.14 & 10.12 & 10.11 & 10.04 & 10.23 \\
\hline & 10.31 & 10.28 & 10.23 & 10.26 & 10.22 & 10.22 & 10.19 & 10.14 & | \\
\hline & 10.031 & 10.042 & 10.029 & 10.035 & 10.033 & 10.029 & 10.027 & 10.0094 & | \\
\hline \multirow[t]{4}{*}{2 AM} & | 56 & | 91 & | 79 & | 97 & 1 95 & 1116 & 1112 & | 43 & 1689 \\
\hline & 10.081 & 10.13 & 10.11 & 10.14 & 10.14 & 10.17 & 10.16 & 10.062 & 10.21 \\
\hline & 10.17 & 10.18 & 10.19 & 10.22 & 10.19 & 10.27 & 10.24 & 10.19 & | \\
\hline & 10.017 & 10.028 & 10.024 & 10.029 & 10.029 & 10.035 & 10.034 & 10.013 & | \\
\hline \multirow[t]{4}{*}{3AM} & 148 & | 69 & | 57 & | 44 & | 47 & | 61 & 173 & | 37 & 1436 \\
\hline & 10.11 & 10.16 & 10.13 & 10.1 & 10.11 & 10.14 & 10.17 & 10.085 & 10.13 \\
\hline & 10.14 & 10.14 & 10.14 & 10.099 & 10.096 & 10.14 & 10.15 & 10.17 & | \\
\hline & 10.015 & 10.021 & 10.017 & 10.013 & 10.014 & 10.018 & 10.022 & 10.011 & | \\
\hline \multirow[t]{2}{*}{ColTot} & 1335 & 1493 & 1420 & 1444 & 1488 & 1426 & 1473 & 1222 & 13301 \\
\hline & 10.1 & 10.15 & 10.13 & 10.13 & 10.15 & 10.13 & 10.14 & 10.067 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 90.20904 d.f.= 28 (p=1.838906e-008)
    Yates' correction not used
> get.crosstabs.percenterror(counts~hour+year)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 
[2,] -23 
[3,]
[4,] 
[5,] 8
\(>\) contrib(counts~hour+year)
contribution to chi-sq:
\begin{tabular}{lrrrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} & {\([, 7]\)} & {\([, 8]\)} \\
{\([1]\),} & 0.59 & -0.77 & 0.34 & -1.26 & 1.75 & -1.59 & 1.64 & -1.05 \\
{\([2]\),} & -2.11 & -0.66 & 0.74 & 1.13 & 1.20 & -1.28 & -1.53 & 3.18 \\
{\([3]\),} & 2.77 & 2.10 & -0.34 & 0.98 & -0.49 & -0.48 & -2.16 & -2.91 \\
{\([4]\),} & -1.67 & -1.17 & -0.93 & 0.45 & -0.68 & \(\mathbf{2} .87\) & 1.34 & -0.49 \\
{\([5]\),} & 0.56 & 0.48 & 0.20 & -1.91 & -2.17 & 0.63 & 1.33 & 1.42
\end{tabular}
```


LPS Assault Data

There is a mild decrease from 1992 to mid-1994 and then leveling off. There is an exception outlier occurring in March of 1999. The two largest and smallest values in the normal probablity plot of the remainder component in the STL analysis of the logged series are shown in bold -- see Figure 5c.

Table 1.

```
> assault.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
```



```
1993: 49 32 32 34 34 55 42 
1994: 32 29 35 32 40 33 51 31 36 35 35
1995: 28 31 37 35 56 33 45 52 28 29 
1996: 37 51 63 30 28 44 34 40
1997: 31 22 48
1998: 32 35 45 46 36 47 43 46
1999: 45 35 \underline{76}}3
> SeasonalMannKendall(assault.ts)
tau = 0.0195, sl =83.07%
```


March 1999

Investigating why March 1999 had 76 assault charges, we found that there were numerous cases of large numbers of assaults occuring on ThuSat-12AM slot. There were a total of 74 records corresponding to March 1999 in the original database and 50 of these records correspond to ThuSat. The distribution is summarized below:

counts	1	2	6	9
$\#$ records	44	2	2	2

Because ThuSat-12AM-March 1999 is such a large outlier, all crosstabs involving these categories are highly significant at much less than 1%.

Figure 1.

Figure 1b. Logged series

The outlier in March 1999 has the effect of squishing the data into a smaller area on the graph. Graphical resolution is improved by using a log transformation. Specifically a log to the base 2 transformation. This particular version of the log transformation means that we can interpret a one unit change as a doubling.

LPS assault, log(counts,2)

Figure 2. By wkgrp.
There is a very small downward trend in SunWed group.

Table 2.

```
> assault.SunWed.ts
            Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 21 13 18 22 15 15
1993: 10 11 11 18 14 23 16 18
1994: 11 13 17 9 12 16 20 11 10 12 13 16
1995: 12 13 21 12 29 8
1996: 17 23 15 13 9 15 11 19 19 16 17 11 
1997: 10 11 18 17 8 14 26 18 11 14 14 9 18
1998: 17 18 11 16 16 24 14 20 11 16 10 13
1999: 8 10 14 5 11
> SeasonalMannKendall(assault.SunWed.ts)
tau = -0.131, sl =15.57%
> assault.ThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 36 25 26 23 23 27 27 16
1993: 39 21 21 16 20 32 26 31 31 
```



```
1995: 16 18 16 23 27 25 30 26 19 23 17 30
1996: 20 28 48 17 19 29 23 21 27 26 20 28
1997: 21 11 30 23 19 30 24 29
1998: 15 17 34 30 20 23 29 26 28 17 22 
1999: 37 25 62 28 22
> SeasonalMannKendall(assault.ThuSat.ts)
tau = 0.0277, sl =76.33%
```

Figure 3a. By hour. Common Scaling

Figure 3b. By hour. Independent vertical scaling.
Loess analysis by hour show there is an upward trend in 2AM and 3AM and a downward trend in 1 AM and 12 AM . Monotonic trend tests are significant for 2 AM and 1 AM . The trend at 1 AM accelerates after 1996.

Tabulation and Mann-Kendall Tests

Figure 4a. By hour and wkgrp. Common Scaling.

LPS assault by wkgrp and hour. Log(counts+1,2)

Figure 4b. By hour and wkgrp. Independent Scaling.
From Figure 4b we see that since 1996 there has been an upward shift at 2AM and 3AM and a downward trend at 1AM for both SunWed and ThuSat. For 11PM-SunWed the downward trend in progress before 1996 flattened out after 1996 while for 11PM-ThuSat this downward trend switched to an increase after 1996. For 12AM-SunWed there is a slight downward trend for post-1996 and an apparent shift downward for 12AM-ThuSat.

LPS assault by wkgrp and hour, log(counts $+1,2$)

free vertical scale

Tabulations and Seasonal Mann-Kendall Tests

Figure 5a. STL Analysis
The seasonal component is very unstable and increases in amplitude after 1996. $R-s q=52.5 \%$

Figure 5b. Monthplot of Seasonal Component
The overall seasonal pattern is with a March maximum and with November minimum. Large trend upward in March and large downward in May. Smaller downward trends in October and November. July and August are relatively high and don't vary as much.

Figure 5c. Normal Probability Plot Several outliers are noted

Skewness Coefficient: g_1 = 0.1470086 , s.l. $=0.2769828$
Michael's Statistic: D_sp $=0.05115758$, s.l. $=0.8479853$
Wilk-Shapiro Statistic: $W=0.9802696$, s.l. $=0.5878957$

```
> counter.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 1 1 2 < 3 4 4
1993: 9 10 11 12 13 14 15 16 17 18 19 20
1994: 21 22 23 24 25 26 27 28 29 30 31 
1995: 33 34 35 36 37 38 39 40
1996: 45 46 47 48 49 50 51 52 53 54 55 56
1997: 57 58 59 60 61 62 63 64 65 66 66 67 68
1998: 69 70 71 72 73 74 75 76 70 77 78 79 80
1999: 81 82 83 84 85
See Table 1.
```

Figure 5d.
Loess analysis of deseasonalized series
Mann-Kendall test: tau $=0.0213$, sl $=77.59 \%$
LPS assaults, deseasonalilzed, logged

G. LPS Dataset: Impaired

Summary

There were 5663 impaired driving charges in London from May of 1992 to May of 1999. Table 1.
Crosstabs. The ThuSat slot accounts for 65% of the impaired charges. About 33% of charges were in the 1 AM slot and only 9.6% in the 3 AM

HOUR-WKGP: There is a 9% excess of charges in the 3AM-SunWed group but overall hour-wkgrp are not associated (not statistically significant at 10\%).

HOUR-YEAR: As would be expected from our loess analysis in Figure 3b and Figure 3c there has been a swing to later hours post 1996.

Figure 1a. and Figure 1b. Impaired driving charges are declining linearly on a log-scale. The rate of decline is about 13% per year. Because the log transformation simplifies the change to an almost linear decrease, all the data were logged for the remainder of the analysis.

Figure 2. Both SunWed and ThuSat exhibit a nearly linear downward slope on log scale. The downward slope for ThuSat is slightly greater. The table below shows the slope of the linear least squares fit to each group.

Wkgrp	Slope of fit to $\log ($ data,2)	Annual rate of decrease \%
SunWed	-0.173	11%
ThuSat	-0.229	15%

Figure 3a. For the hour window only 12AM looks linear on a log scale. The curves are all different. It is interesting that 3AM actually increases after 1996 and the rate of decline for 2AM is much slower than at other hours.

Figure 3b. When the scale is free, we see that the 1AM has had a much faster rate of decline since 1996 than that of the data as whole (Figure 1b).

Figure 4b From Figure 4b we see that the SunWed-3AM has had the biggest increase since 1996 For both SunWed and ThuSat there is a shift from early evening to late evening post 1996. This is seen not only in the case of SunWed-3AM where an actual increase has occurred but also in the much smaller slope or rate of decline in the 2AM-SunWed, 2AM-ThuSat and 3AM-ThuSat than indicated for the overall series in Figure 1b. It is intended to model this further using intervention analysis.

Figure 5a. There is a linear downward trend on the \log scale. The seasonal component has lots of local maxima and minima.
$R-s q=81.6 \%$

Figure 5b. Local maximum in February, May and October and local minimum in December, April and July. But the seasonal component is variable and shows a lot of changes over time. There is an increasing trend for December, January, May and August.

Figure 5c. The normality tests indicate no significant departure from normality in the remainder component.

Figure 5d. Loess analysis of deseasonalized series. The thicker line shows the linear least-squares fit and the thinner line shows the loess curve. The least-squares line has a slope of 0.200 almost the same as in Figure 1b. A slight lack of fit of the linear least-squares line is evident at the beginning and end of the series. The residuals from the least-squares line are approximately normally distributed with no evident outliers. However further diagnostic checks indicate that the variablility about the line increases with Year.

Crosstabs Analysis

Hour and wkgrp are not associated

The ThuSat slot accounts for 65% of the impaired charges. About 33% of charges were in the 1 AM slot and only 9.6% in the 3 AM .

There is a 9% excess of charges in the 3AM-SunWed group but overall hour-wkgrp are not associated (not statistically significant at 10%).

```
> crosstabs(charges~wkgrp+hour, data=lps.df, subset=lps.df$type=="impaired",
na.action=na.omit)
Call:
crosstabs(formula = charges ~ wkgrp + hour, data = lps.df, subset = lps.df$type ==
    "impaired", na.action = na.omit)
5674 cases in table
+-----------+
|N
N/RowTotal
|N/ColTotal|
|N/Total |
+----------+
wkgrp |hour
    |11PM |12AM |1AM | 2AM |3AM |RowTotl|
cluclol
Test for independence of all factors
    Chi^2 = 6.282868 d.f.= 4 (p=0.178996)
    Yates' correction not used
> get.crosstabs.percenterror(charges~wkgrp+hour)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
    [,1] [,2] [,3] [,4] [,5]
[1,] 0
[2,] 0
> contrib(charges~wkgrp+hour)
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] -0.03 -0.41 -1.19 1.06 1.18
[2,] 0.02 0.30 0.87 -0.78 -0.86
```

Hour and Year are associated: As would be expected from our loess analysis in Figure 3b and Figure 3c there has been a swing to later hours post 1996.
$>$ crosstabs (charges~hour+year, data=lps.df, subset=lps.df\$type=="impaired", na.action=na.omit) Call:
crosstabs(formula $=$ charges \sim hour + year, data $=$ lps.df, subset $=$ lps.df\$type $==$
"impaired", na.action = na.omit)
5674 cases in table

$\mid N$ $\|N / R o w T o t a l\|$ $\|N / C o l T o t a l\|$ $\|N / T o t a l ~\|$										
hour	\| year 11992	11993	\| 1994	11995	11996	\| 1997	11998	11999	\| RowTotl	
11 PM	1119	1131	1151	\| 86	1103	\| 75	\| 82	1 34	1781	
	10.15	10.17	10.19	10.11	10.13	10.096	10.1	10.044	10.14	
	10.14	10.13	10.16	10.12	10.13	10.12	10.16	10.15	\|	
	10.021	10.023	10.027	10.015	10.018	10.013	10.014	10.006	\|	
12 AM	1181	1249	1174	1144	1166	1112	1101	\| 39	11166	
	10.16	10.21	10.15	10.12	10.14	10.096	10.087	10.033	10.21	
	10.21	10.24	10.19	10.2	10.21	10.18	10.2	10.17	\|	
	10.032	10.044	10.031	10.025	10.029	10.02	10.018	10.0069		
1 AM	1328	1366	1346	1282	1230	1154	1127	138	\| 1871	
	10.18	10.2	10.18	10.15	10.12	10.082	10.068	10.02	10.33	
	10.38	10.36	10.37	10.38	10.3	10.25	10.25	10.17		
	10.058	10.065	10.061	10.05	10.041	10.027	10.022	10.0067	\|	
2AM	1191	1200	$\mid 174$	1166	$\text { \| } 194$				11310	
	10.15	10.15	10.13	10.13	10.15	10.14	10.098	10.053	10.23	
	10.22	10.2	10.19	10.23	10.25	10.31	10.25	10.31	\|	
	10.034	10.035	10.031	10.029	10.034	10.033	10.023	10.012	\|	
3AM	\| 51	\| 77	182	\| 57	180	182	\| 74	\| 43	1546	
	10.093	10.14	10.15	10.1	10.15	10.15	10.14	10.079	10.096	
	10.059	10.075	10.088	10.078	10.1	10.13	10.14	10.19	।	
	10.009	10.014	10.014	10.01	10.014	10.014	10.013	10.0076	1 \|	
ColTot	1870	11023	1927	1735	1773	1610	1512	1224	\| 5674	
	10.15	10.18	10.16	10.13	10.14	10.11	10.09	10.039	\|	

Test for independence of all factors
Chi^2 $=185.3234$ d.f. $=28$ ($p=0$)
Yates' correction not used
> get.crosstabs.percenterror (charges~hour+year)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
$\left[\begin{array}{lllllllll}{[1,]} & -1 & -7 & 18 & -15 & -3 & -11 & 16 & 10\end{array}\right.$
$\left[\begin{array}{lllllllll}{[2,]} & 1 & 18 & -9 & -5 & 5 & -11 & -4 & -15\end{array}\right.$
$\left[\begin{array}{lllllllll}{[3,]} & 14 & 8 & 13 & 16 & -10 & -23 & -25 & -49\end{array}\right.$
$\left[\begin{array}{lllllllll}{[4,]} & -5 & -15 & -19 & -2 & 9 & 33 & 8 & 35\end{array}\right.$
$\left[\begin{array}{llllllll}{[5,]} & -39 & -22 & -8 & -19 & 8 & 40 & 50 \\ 99\end{array}\right.$
$>$ contrib(charges~hour+year)
contribution to chi-sq:
$[, 1][, 2] \quad[, 3] \quad[, 4] \quad[, 5] \quad[, 6] \quad[, 7][, 8]$
$[1]-0.07-,0.83 \quad 2.07-1.51-0.33-0.98 \quad 1.37 \quad 0.57$
$[2] \quad 0.17 \quad 2.67-1.20-,0.57 \quad 0.57-1.19-0.41-1.04$
$\left[\begin{array}{llllllll}{[3,]} & 2.43 & 1.56 & 2.31 & 2.55 & -1.56 & -3.32 & -3.22\end{array} \mathbf{- 4 . 1 7}\right.$
$[4]-0.70-2.35-2.74-,0.28 \quad 1.16 \quad 3.89 \quad 0.90 \quad 2.54$
$[5]-3.58-2.16-0.76-,1.63 \quad 0.65 \quad 3.04 \quad 3.52 \quad 4.62$

LPS IMPAIRED Data

There is a mild decrease from 1992 to mid-1994 and then leveling off. Possible outliers detected in logged series, Figure 5c, are in bold font below - although they are not significant at 10% on the normality tests for skewness, Michael's test and the Wilk-Shapiro test.

Table 1.
> imp.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: $107118128121107138 \quad 8170$
1993: $90 \quad 81 \quad 95 \quad 85 \quad 88 \quad 77 \quad 75 \quad 86$
1994: $83 \quad 93 \quad 88 \quad 73 \quad 79 \quad 99 \quad 73 \quad 58 \quad 74$
1995: $42 \quad 70 \quad 64 \quad 71 \quad 69 \quad 66 \quad 65 \quad 42 \quad 65$
1996: $62 \quad 57 \quad 76 \quad 57 \quad 82 \quad 58 \quad 48 \quad 63 \quad 64 \quad 84$
1997: $43 \quad 67 \quad 63 \quad 46 \quad 51 \quad 45 \quad 43$
1998: $60 \quad 41 \quad 37 \quad 26 \quad 51 \quad 45 \quad 46$
1999: 4946285447
> SeasonalMannKendall(imp.ts)
tau $=-0.725$, sl $=1.776 e-13 \%$

Figure 1.

LPS impaired-driving charges

Figure 1b. Logged series

Figure 1 b shows the time series after a log transformation. Specifically a \log to the base 2 transformation. This particular version of the log transformation means that we can interpret a one unit change as a doubling and an increase by 0.5 units on the vertical scale corresponds to an increase of about 41% in the original data.

The transformation reveals that the decline in impaired charges is almost linear. Figure 1 b shows a thicker line that corresponds to the least squares linear fit. The loess curve is the thinner line which stops at the last observed data value. There is a slight lack of fit of the least-squares line at the very beginning and very end of the series. The slope of the least-squares line is about -0.202 which implies that impaired charges have been declining at the rate of about 13% per year over 1992 to 1999.

Note: $2^{-0.202} \approx 0.869$

LPS impaired, log(charges,2)

Figure 2. By wkgrp.
Both exhibit a nearly linear downward slope on log scale. The downward slope for ThuSat is slightly greater. The table below shows the slope of the linear least squares fit to each group.

Wkgrp	Slope of fit to log(data,2)	Annual rate of decrease \%
SunWed	-0.173	11%
ThuSat	-0.229	15%

Table 2.

```
> imp.SunWed.ts
            Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 36 32 52 39 42 40
1993: 32 17 35 25 24 38 29 32 31 
1994: 29 20 35 18 32 40 33 17 35 26 26 
1995: 14 25 31 20 28 27 24 13 13 30 17 26 
1996: 20 14 18 21 27 13 14 25 25 
1997: 23 20 22 18 13 10 15 25 24 19 19 23
1998: 25 8 17 20 21 21 10
1999: 15 14 12 30 22
> SeasonalMannKendall(imp.SunWed.ts)
tau = -0.508, sl =3.036e-6%
> imp.ThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 71 86 76 82 65 98 65 48
1993: 58 64 60 60 64 39 46 54 47 73 56 51
1994: 54 73 53 55 47 59 40 41 39 57 45 32
1995: 28 45 33 51 41 39 41 29 35 42 48 40
1996: 42 43 58 36 55 45 34 38 39
1997: 20 47 41 28 38 35 28 47 32 29 17 17
1998: 35 33 20 6 30 24 36 23 24 37 22 
1999: 34 32 16 24 25
> SeasonalMannKendall(imp.ThuSat.ts)
tau = -0.707, sl =8.438e-13%
```

Figure 3a. By hour. Common Scaling
For the hour window only 12 AM looks linear on a log scale. The curves are all different. It is interesting that 3AM actually increases after 1996 and the rate of decline for 2AM is much slower than at other hours.

Figure 3b. By hour. Independent vertical scaling.
When the scale is free, we see that the 1AM has had a much faster rate of decline since 1996 than that of the data as whole (Figure 1b).

LPS impaired by hour, log(charges $+1,2$)

Figure 3c.
Least square line fit (thick red line) to data from 1996 to present. The slope of the least squares line to post-1996 is -0.489 which corresponds to a annual rate of decrease of about 28.7%. Since 1998 , the actual impaired driving charges are decreasing slightly faster than this.

```
> 1-2^-0.489
```

[1] 0.2874812

LPS impaired at 1AM, log(charges,2)

Tabulation and Mann-Kendall Tests
$>$ imp.11PM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1992:					17	14	21	11	14	17	12
1993:	7	9	15	9	11	12	14	8	9	18	11
1994:	18	14	15	15	7	21	17	12	12	8	5
1995:	3	6	16	12	10	3	7	4	7	8	6
$1996:$	8	6	11	4	10	3	5	13	7	19	12
$1997:$	3	5	10	11	2	6	9	7	10	1	9
19											
$1998:$	9	5	7	3	5	14	11	7	4	6	7
$1999:$	7	10	8	6	3						4

> SeasonalMannKendall(imp.11PM.ts)
tau $=-0.42$, sl $=5.079 \mathrm{e}-4 \%$
$>$ imp.12AM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 18 26 $25 \quad 25 \quad 25 \quad 29 \quad 20$

1993: 14	17	21	18	23	16	19	18	32	25	18	28

1994: 11	13	15	11	13	25	17	7	16	18	16	12

1995: $6 \quad 9 \quad 8 \quad 16 \quad 14 \quad 13 \quad 19 \quad 12 \quad 12 \quad 12 \quad 14 \quad 9$

1997:	10	19	10	7	7	10	7	10	12	5	9	6
1998:	8	8	9	3	13	15	10	3	7	8	10	7

1999: $7 \quad 4 \quad 2 \quad 17 \quad 9$
> SeasonalMannKendall(imp.12AM.ts)
tau $=-0.603, \quad$ sl $=3.71 \mathrm{e}-9 \%$
> imp.1AM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: $\quad 40 \quad 43 \quad 41 \quad 57 \quad 34 \quad 64$
1993: $38 \quad 36 \quad 29 \quad 37 \quad 33 \quad 28 \quad 21 \quad 29 \quad 16 \quad 41 \quad 34 \quad 24$
1994: $28 \quad 40 \quad 38 \quad 16 \quad 32 \quad 33 \quad 22 \quad 21$
1995: $20 \quad 37 \quad 25 \quad 26 \quad 28 \quad 24 \quad 25 \quad 12 \quad 23 \quad 24 \quad 26 \quad 12$
1996: 18 28 26 22 23 22 11
1997: $9 \quad 15 \quad 22 \quad 13 \quad 16 \quad 13 \quad 5 \quad 15$

1998:	12	5	11	6	16	8	10	6	15	13	5	20
$1999:$	16	7	4	7	4							

$>$ SeasonalMannKendall(imp.1AM.ts)
tau $=-0.767, \quad$ sl $=0 \%$
$>$ imp.2AM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

$1992:$					28	27	31	24	24	22	20	15
$1993:$	23	15	22	15	17	15	11	16	15	21	14	16
$1994:$	15	18	14	17	21	15	13	15	9	13	14	10
$1995:$	11	11	14	9	12	18	12	12	18	12	17	20
$1996:$	13	9	18	13	20	12	15	17	16	29	22	10
$1997:$	14	23	15	15	19	10	16	26	14	16	6	13
$1998:$	20	14	3	8	12	6	11	18	9	14	7	6

1999: $1215 \quad 10 \quad 19 \quad 14$
> SeasonalMannKendall(imp.2AM.ts)
tau $=-0.283, \quad$ sl $=0.2022 \%$
$>$ imp.3AM.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1993: $\begin{array}{rllllllllllll}8 & 4 & 8 & 6 & 4 & 6 & 10 & 15 & 6 & 0 & 5 & 5\end{array}$
1994: $11 \begin{array}{llllllllllll} & 11 & 8 & 6 & 14 & 6 & 5 & 4 & 3 & 7 & 9 & 3\end{array}$
1995: $20 \begin{array}{lllllllllll}7 & 1 & 8 & 5 & 8 & 2 & 2 & 5 & 3 & 11 & 3\end{array}$
$\begin{array}{rrrrrrrrrrrrr}1996: & 5 & 3 & 2 & 5 & 7 & 9 & 9 & 5 & 9 & 5 & 16 & 5 \\ 1997: & 7 & 5 & 6 & 0 & 7 & 6 & 6 & 14 & 7 & 11 & 2 & 11\end{array}$
1998: $11 \begin{array}{lllllllrrrrr}11 & 9 & 7 & 6 & 5 & 2 & 4 & 2 & 4 & 9 & 1 & 14\end{array}$
1999: 7 10 4 57
> SeasonalMannKendall(imp.3AM.ts)
tau $=0.016, \quad$ sl $=86.28 \%$

Figure 4a. By hour and wkgrp. Common Scaling.

LPS impaired by wkgrp and hour. Log(charges+1,2)

Figure 4b. By hour and wkgrp. Independent Scaling.
From Figure 4b we see that the SunWed-3AM has had the biggest increase since 1996 For both SunWed and ThuSat there is a shift from early evening to late evening post 1996. This is seen not only in the case of SunWed-3AM where an actual increase has occurred but also in the much smaller slope or rate of decline in the 2AM-SunWed, 2AM-ThuSat and 3AM-ThuSat than indicated for the overall series in Figure 1b. It is intended to model this further using intervention analysis.

LPS impaired by wkgrp and hour, log(charges+1,2)

LPS impaired by wkgrp and hour, log(charges+1,2)

Tabulations and Seasonal Mann-Kendall Tests

	Jan	Feb	Mar			Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					4	4	4	5	4	5	2	5
1993:	4	6	4	1	5	6	6	4	1	7	2	0
1994:	7	3	3	2	4	10	10	2	5	2	2	2
1995:	0	6	6	5	4	3	3	2	2	1	5	0
1996:	2	3	3	2	2	1	1	4	3	8	4	2
1997:	1	1	4	6	0	2	2	4	8	1	4	1
1998:	2	0	2	3	3	3	4	0	0	1	2	0
1999:	2	5	5	1	1							
> SeasonalMannKendall(imp.11PMSunWed.ts) tau $=-0.26$, sl $=0.5501 \%$												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					8	5	9	9	10	7	3	4
1993:	3	3	3	6	10	8	9	10	11	6	8	12
1994:	5	4	7	4	1	8	7	2	9	4	6	4
1995:	3	1	2	4	7	2	8	6	5	2	2	0
1996:	9	3	5	4	7	4	1	5	4	3	0	1
1997:	6	7	4	2	2	4	4	2	4	3	5	2
1998:	6	1	5	2	4	8	5	2	2	2	3	4
1999:	2	0	0	11	2							
$\begin{aligned} & >\text { SeasonalMannKendall(imp.12AMSunWed.ts) } \\ & \text { tau }=-0.387, \quad \text { sl }=0.003343 \% \end{aligned}$												
> imp.1AMSunWed.ts												
	Jan	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					14	12	16	17	12	22	6	6
1993:	15	7	16	13	3	16	10	8	8	12	7	10
1994:	6	10	15	3	15	15	7	10	14	12	11	9
1995:	8	10	12	4	10	13	7	0	11	9	11	2
1996:	3	3	6	9	9	3	2	6	8	13	2	1
1997:	4	1	5	6	3	2	1	3	4	5	5	2
1998:	4	0	3	4	6	4	1	3	7	5	3	6
1999:	4	3	2	2	3							
> SeasonalMannKendall(imp.1AMSunWed.ts) tau $=-0.573, \quad$ sl $=6.011 \mathrm{e}-8 \%$												
> imp.2AMSunWed.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					10	10	15	8	11	5	5	5
1993:	10	1	10	3	6	4	4	5	6	7	7	5
1994:	6	3	8	4	8	5	7	0	4	7	7	4
1995:	3	8	10	3	7	7	6	3	11	4	6	6
1996:	5	4	4	4	6	4	7	8	6	6	4	3
1997:	6	10	9		6	0	4	9	6	5	3	9
1998:	5	5	1	5	6	4	0	8	4	2	0	2
1999:	3	6	3									
> SeasonalMannKendall(imp.2AMSunWed.ts) tau $=-0.227$, sl $=1.543 \%$												
> imp.3AMSunWed.ts												
Jan Feb Mar						Jun Jul		Aug Sep		Oct	Nov Dec	
1992:					0	1	8	0	5	1	0	2
1993:	0	0	2	2	0	4	0	5	5	0	2	3
1994:	5	0	2	5	4	2	2	3	3	1	0	2
1995:	0	0	1	4	0	2	0	2	1	1	2	0
1996:	1	1	0		3	1	3	2	4	3	4	2
1997:	6	1	0		2	2	4	7	2	5	2	9
1998:	8	2	6		2	2	0	0	2	3	0	7
1999:	4	0	2		9							
$\operatorname{tau}=0.17, \quad \text { sl }=7.306 \%$												

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					13	10	17	6	10	12	10	8
1993:	3	3	11	8	6	6	8	4	8	11	9	8
1994:	11	11	12	13	3	11	7	10	7	6	3	5
1995:	3	0	10	7	6	0	4	2	5	7	1	4
1996:	6	3	8	2	8	2	4	9	4	11	8	3
1997:	2	4	6	5	2	4	7	3	2	0	5	1
1998:	7	5	5	0	2	11	7	7	4	5	5	4
1999:	5	5	3	5	2							
$\begin{aligned} & >\text { SeasonalMannKendall(imp.11PMThuSat.ts) } \\ & \text { tau }=-0.412, \quad \text { sl }=8.248 e-4 \% \end{aligned}$												
> imp.12AMThuSat.ts												
	Jan	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					10	21	16	16	15	22	17	9
1993:	11	14	18	12	13	8	10	8	21	19	10	16
1994:	6	9	8	7	12	17	10	5	7	14	10	8
1995:	3	8	6	12	7	11	11	6	7	10	12	9
1996:	9	8	14	9	15	8	7	8	13	4	17	8
1997:	4	12	6	5	5	6	3	8	8	2	4	4
1998:	2	7	4	1	9	7	5	1	5	6	7	3
1999:	5	4	2	6	7							
$\begin{aligned} & >\text { SeasonalMannKendall (imp.12AMThuSat.ts) } \\ & \text { tau }=-0.576, \quad \text { sl }=4.119 \mathrm{e}-8 \% \end{aligned}$												
> imp.1AMThuSat.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					26	31	25	40	22	42	22	15
1993:	23	29	13	24	30	12	11	21	8	29	27	14
1994:	22	30	23	13	17	18	15	11	16	23	22	9
1995:	12	27	13	22	18	11	18	12	12	15	15	10
1996:	15	25	20	13	14	19	9	9	7	11	17	6
1997:	5	14	17	7	13	11	4	12	9	10	5	6
1998:	8	5	8	2	10	4	9	3	8	8	2	14
1999:	12	4	2	5	1							
$\begin{aligned} & >\text { SeasonalMannKendall(imp.1AMThuSat.ts) } \\ & \text { tau }=-0.689, \quad \text { sl }=5.906 \mathrm{e}-12 \% \end{aligned}$												
> imp.2AMThuSat.ts												
	Jan		Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					18	17	16	16	13	17	15	10
1993:	13	14	12	12	11	11	7	11	9	14	7	11
1994:	9	15	6	13	13	10	6	15	5	6	7	6
1995:	8	3	4	6	5	11	6	9	7	8	11	14
1996:	8	5	14	9	14	8	8	9	10	23	18	7
1997:	8	13	6	11	13	10	12	17	8	11	3	4
1998:	15	9	2	3	6	2	11	10	5	12	7	
1999:	9	9	7	8	7							
$>$ SeasonalMannKendall(imp.2AMThuSat.ts)												
$\text { tau }=-0.267, \quad \text { sl }=0.3793$												
> imp.3AMThuSat.ts												
	Jan	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					4	7	2	4	5	5	1	6
1993:	8	4	6	4	4	2	10	10	1	0	3	2
1994:	6	8	4		2	3	2	0	4	8	3	4
1995:	2	7	0		5	6	2	0	4	2	9	3
1996:	4	2	2		4	8	6	3	5	2	12	3
1997:	1	4	6		5	4	2	7	5	6	0	2
1998:	3		1		3	0	4	2	2	6	1	7
1999:	3	10										
> SeasonalMannKendall(imp.3AMThuSat.ts)												
tau $=-0.0616, \quad$ sl $=51 \%$												

Figure 5a. STL Analysis
There is a linear downward trend on the log scale. The seasonal component has lots of local maxima and minima.
R-sq $=81.6 \%$

Figure 5b. Monthplot of Seasonal Component
Local maximum in February, May and October and local minimum in December, April and July. But the seasonal component is variable and shows a lot of changes over time. There is an increasing trend for December, January, May and August.

Figure 5c. Normal Probability Plot

The normality tests indicate no significant departure from normality in the remainder component.

Skewness Coefficient: g_1 = 0.1413422 , s.l. $=0.2846118$
Michael's Statistic: D sp = 0.03992539 , s.l. $=0.3756397$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9919533$, s.I. $=0.9854363$

```
> counter.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 1
1993: 9 10 11 12 13 14 15 16 17 18 19 20
1994: 21 22 23 24 25 26 27 28 29 29 30 31 
1995: 33 34 35 36 37 38
1996: 45 46 47 48 49 50 51 52 53 54 55 56
1997: 57 58 59 60 61 62 63 64 65 66 67 68
1998: 69 70 71 72 73 74 74 75 76 70 77 78 79 80
1999: 81 82 83 84 85
See Table 1.
```


Figure 5d.

Loess analysis of deseasonalized series

$$
\text { Mann-Kendall test: tau }=-0.711, \quad \text { sl }=0 \%
$$

The thicker line shows the linear least-squares fit and the thinner line shows the loess curve. The least-squares line has a slope of -0.200 almost the same as in Figure 1b. A slight lack of fit of the linear least-squares line is evident at the beginning and end of the series. The residuals from the least-squares line are approximately normally distributed with no evident outliers. However further diagnostic checks indicate that the variablility about the line increases with Year.

LPS impaired, deseasonalilzed, logged

H. WPS Dataset

Introduction

WPS (Windsor Police dataset) is comprised of 2943 records covering January 1994 to December 1998. There are 1370 arrests for assault and 1573 arrests for impaired driving. Only data in hourly windows from 11PM to 3:59AM is included.

The WPS dataset differs slightly in structure from the LPS dataset. One difference is that the WPS assaults do not include sexual assault whereas LPS does. Our response variable is simply counts.

Variables of interests in the WPS dataset

counts	number of charges
type	factor with 2 levels: "assault", "impaired"
wkgrp	ordered factor with 2 levels: "SunWed", "ThuSat"
hour	ordered factor with 5 levels: "11PM", "12AM", "1AM", "2AM", "3AM"
year	ordered factor with 8 levels: 1994 to 1999
month	ordered factor with 12 levels: January to December

Note that there are only five complete years of data.

H. WPS Dataset: Assaults

Summary

The WPS assaults do not include sexual assaults. There were 1370 assault cases in the Windsor area from May of 1992 to May of 1999. Table 1.

Crosstabs. In SunWed slot, there are 30% more assaults than expected in 11PM and fewer than expected in the 1AM, 2AM and 3AM slots. In 1994 there were more than the usual number of assaults in the 1 AM window.

Figure 1a. and Figure 1b. Assault rate has not changed much over 1994 to 1998.
Figure 2. There is a very small downward trend in SunWed group starting around 1996.
Figure 3b. Since 1996 there have been assaults have increased at 2AM and also at 3AM and have decreased at 11PM and held steady at 12AM. There is a slight decrease in recent assaults at 1AM.

Figure 4b From Figure 4b we see that since 1996 there has been an upward shift at 2AM and 3AM and a downward trend at 11PM for both SunWed and ThuSat. For both weekgroups, 11PM and 12PM are relatively flat. The upward shifts are larger with the ThuSat group.

Figure 5a. The seasonal component is reasonably stable. There is a slight increase in amplitude of the seasonal oscillations.

Figure 5b. The overall seasonal pattern is with March, July and December maxima and with January, May and September minimum. The seasonal is relatively stable. There are trends up in June and down in September and October..

Figure 5c Several possible outliers are noted but all statistical tests for normality are fine.. See also Table 1. I think that perhaps there could be an error and that some 1996 assaults in June and July were mis-recorded as occuring in 1997.

Crosstabs Analysis

Hour and wkgrp are associated

In SunWed slot, there are 30% more assaults than expected in 11PM and fewer than expected in the $1 \mathrm{AM}, 2 \mathrm{AM}$ and 3AM slots.

```
> crosstabs(counts~wkgrp+hour, data=wps.df, na.action=na.exclude,
subset=wps.df$type=="assault")
Call:
crosstabs(formula = counts ~ wkgrp + hour, data = wps.df, subset = wps.df$type ==
"assault", na.action = na.exclude)
1612 cases in table
+-----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
+-----------
wkgrp |hour
    |11PM |12AM |1AM |2AM |3AM |RowTotl|
\--------+--------+--------+--------+--------+-------+-----------
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 10.52 \\
& 10.12
\end{aligned}
\] & \[
\begin{aligned}
& 10.24 \\
& 10.45 \\
& 10.094
\end{aligned}
\] & \[
\begin{aligned}
& 10.21 \\
& 10.33 \\
& 10.082
\end{aligned}
\] & \[
\begin{aligned}
& 10.17 \\
& 10.34 \\
& 10.069
\end{aligned}
\] & \[
\begin{aligned}
& 10.087 \\
& 10.31 \\
& 10.035
\end{aligned}
\] & \\
\hline \multirow[t]{4}{*}{ThuSat} & 1178 & 1185 & 1269 & 1214 & 1125 & 1971 \\
\hline & 10.18 & 10.19 & 10.28 & 10.22 & 10.13 & 10.6 \\
\hline & 10.48 & 10.55 & 10.67 & 10.66 & 10.69 & | \\
\hline & 10.11 & 10.11 & 10.17 & 10.13 & 10.078 & | \\
\hline \multirow[t]{2}{*}{ColTotl} & 1368 & 1336 & | 401 & 1326 & 1181 & 11612 \\
\hline & 10.23 & 10.21 & 10.25 & 10.2 & 10.11 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 43.1059 d.f.= 4 (p=9.837309e-009)
    Yates' correction not used
> get.crosstabs.percenterror(counts~wkgrp+hour)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
    [,1] [,2] [,3] [,4] [,5]
[1,] }30\quad13 -17 -14 -22
[2,] -20 
> contrib(counts~wkgrp+hour)
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] 3.61 1.50 -2.17 -1.55 -1.88
[2,] -2.93 -1.22 1.77 1.26 1.53
```


Hour and Year are associated

In 1994 there were more than the usual number of assaults in the 1AM window.
> crosstabs(counts~hour+year, data=wps.df, na.action=na.exclude, subset=wps.df\$type=="assault") Call:
crosstabs(formula $=$ counts \sim hour + year, data $=$ wps.df, subset $=$ wps.df\$type == "assault", na.action = na.exclude)
1612 cases in table

Test for independence of all factors
Chi^2 $=58.5987$ d.f. $=16$ ($p=8.997489 \mathrm{e}-007$)
Yates' correction not used
> get.crosstabs.percenterror(counts~hour+year)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
[,1] [,2] [,3] [,4] [,5]
$\left[\begin{array}{llllll}{[1,]} & 18 & -3 & 19 & -10 & -23\end{array}\right.$
$\left[\begin{array}{llllll}{[2,]} & -12 & 20 & 17 & -25 & 4\end{array}\right.$
$[3] \quad 33 \quad-,3 \quad-20 \quad 2 \quad-13$

[5,] $-26 \quad-3 \quad-5 \quad 24 \quad 6$
$>$ contrib(counts~hour+year)
contribution to chi-sq:

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4] \quad[, 5]
$$

$[1] \quad 1.54-,0.24 \quad 1.63-0.93-1.95$
$\left[\begin{array}{llllll}{[2,]} & -1.01 & 1.64 & 1.35 & -2.14 & 0.33\end{array}\right.$
$[3] \quad 2.97-0.27-,1.78 \quad 0.15-1.14$
$[4]-2.76-1.00-,0.92 \quad 1.87 \quad 2.70$
$[5]-1.54-0.16-,0.27 \quad 1.51 \quad 0.38$

LPS Assault Data

Possible outliers detected in logged series, Figure 5c, are in bold font below.
Table 1.

```
> assault.ts
            Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994: 22 24 25 28 30 25 45 22 18
1995: 27 23 19 21 19 34 44 41 24 18
1996: 16 35 33 18
1997: 26 18 33 35 16 49
1998: \(30 \quad 33 \quad 19 \quad 30 \quad 27 \quad 28 \quad 40\)
> SeasonalMannKendall(assault.ts)
tau = -0.00844, sl =94.32%
```

Figure 1.
Assault rate has not changed much over 1994 to 1998.

Figure 2. By wkgrp.
There is a very small downward trend in SunWed group starting around 1996.

Table 2.

```
> assault.SunWed.ts
            Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994: 2 4 10 12 9
1995: 10 9 10 10 8 14 13 21 12 12 10 9
1996: 8 18 12 10 8 8 8 6 14 12 12 12 
1997: 11 6 11 14 9 21 30 11 
1998: 11 8 6 7 7 6 11 15 18 7 7 5 14 5
> SeasonalMannKendall(assault.SunWed.ts)
tau = -0.00867, sl =94.23%
> assault.ThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994: 20 20 15 16 21 12 20 13 12 21 21 14
1995: 17 14 9 11 11 20 31 20 12 
1996: 8 17 21 8 17 6 10 15 13 13 25 29
1997: 15 12 22 21 
1998: 19 25 13 23 21 17 25 16 11 14 12 9
> SeasonalMannKendall(assault.ThuSat.ts)
tau = 0.0426, sl =72.03%
```

Figure 3a. By hour. Common Scaling
Since 1996 there have been assaults have increased at 2AM and also at 3AM and have decreased at 11 PM and held steady at 12 AM . There is a slight decrease in recent assaults at 1 AM .

Figure 3b. By hour. Independent vertical scaling.

Tabulation and Mann-Kendall Tests

	Jan	Feb	Mar	Apr	May			Aug	Sep	Oct	Nov	Dec
1994:	5	8	9	5	11	3	23	3	3	2	11	4
1995:	6	7	6	5	7	9	4	9	7	2	1	6
1996:	5	7	11	4	4	8	5	9	10	3	5	13
1997:	5	4	2	9	3	8	16	6	2	2	6	9
1998:	6	3	3	9	5	7	4	10	2	4	1	2
```> SeasonalMannKendall(assault.11PM.ts) tau = -0.116, sl =33.74%```												
> assault.12AM.ts												
1994:	3	3	2	6	7	10	7	6	2	2	5	6
1995:	8	4	7	5	4	5	17	8	2	2	10	6
1996:	3	13	7	10	6	2	3	8	2	4	9	8
1997:	1	1	2	4	3	15	10	6	2	5	1	5
1998:	8	3	5	2	11	5	13	6	5	3	6	2
> SeasonalMannKendall(assault.12AM.ts)   tau $=-0.0546, \quad$ sl $=65.35 \%$												
> assault.1AM.ts												
1994:	10	8	9	15	2	6	5	9	7	19	8	9
1995:	6	10	1	6	5	10	5	10	9	4	3	6
1996:	4	9	9	3	9	1	3	3	6	3	6	5
1997:	8	2	13	11	4	10	11	6	3	5	9	7
1998:	2	14	5	5	7	6	12	2	2	3	7	4
> SeasonalMannKendall(assault.1AM.ts) tau $=-0.179, \quad$ sl $=13.26 \%$												
$>$ assault.2AM.ts												
1994:	2	3	4	0	5	5	4	2	6	3	8	1
1995:	5	1	2	2	2	8	9	10	2	9	3	2
1996:	1	3	5	0	3	1	4	3	5	11	4	15
1997:	6	9	14	5	6	10	3	8	6	4	10	6
1998:	11	8	3		3		8	12	7	8	8	2
$\begin{aligned} & >\text { SeasonalMannKendall(assault.2AM.ts) } \\ & \text { tau }=0.345, \quad \text { sl }=0.3892 \% \end{aligned}$												
$>$ assault.3AM.ts												
1994:	2	2	1	2	5	1	6	2	0	3	1	2
1995:	2	1	3	3	1	2	9	4	4	1	1	3
1996:	3	3	1	1	3	2	1	6	2	4	7	0
1997:	6	2	2	6	0	6	10	5	2	4	3	3
1998:	3	5	3	3	1	5	3	4	2	1	4	4
$\begin{aligned} & >\text { Sea } \\ & \text { tau }= \end{aligned}$	$\begin{aligned} & \text { sonal } \\ & 0.30 \end{aligned}$	Mann $05 \text {, }$	nKend sl	$\begin{gathered} \text { dall } \\ =1.2 \end{gathered}$	$\begin{aligned} & \text { (assa } \\ & 204 \% \end{aligned}$	ault.	$3 \mathrm{AM}$	.ts)				

Figure 4a. By hour and wkgrp. Common Scaling.



Figure 4b. By hour and wkgrp. Independent Scaling.
From Figure 4b we see that since 1996 there has been an upward shift at 2AM and 3AM and a downward trend at 11PM for both SunWed and ThuSat. For both weekgroups, 11PM and 12PM are relatively flat. The upward shifts are larger with the ThuSat group.


WPS assault by wkgrp and hour




Year
free vertical scale

## Tabulations and Seasonal Mann-Kendall Tests

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	1	4	5	3	2	2	18	1	2	0	6	0
1995:	1	4	4	2	4	5	1	6	2	2	1	3
1996:	2	3	8	4	4	4	2	8	5	1	2	1
1997:	3	1	2	4	0	4	12	4	0	1	4	1
1998:	5	1	3	3	2	4	0	7	2	2	1	1
> SeasonalMannKendall(assault.11PMSunWed.ts) tau $=-0.0091, \quad$ sl $=94.04 \%$												
> assault.12AMSunWed.ts												
Jan Feb Mar Apr					May		Jul Aug			Oct	Nov	Dec
1994:	0	0	1	3	2	6	3	4	1	1	3	2
1995:	6	0	3	3	1	3	6	4	1	1	7	2
1996:	1	10	1	5	3	2	0	3	1	4	2	7
1997:	1	0	0	2	1	7	2	2	1	3	0	3
1998:	4	2	1	0	2	2	5	3	1	2	4	1
$\begin{aligned} & >\text { SeasonalMannKendall(assault.12AMSunWed.ts) } \\ & \text { tau }=-0.108, \quad \text { sl }=39.47 \% \end{aligned}$												
> assault.1AMSunWed.ts												
Jan Feb Mar Apr					May	Jun			Sep Oct		Nov	Dec
1994:	1	0	3	6	0	4	2	2	1	5	1	3
1995:	2	5	0	2	2	3	1	5	8	2	0	3
1996:	2	2	2	0	1	0	1	1	2	2	1	1
1997:	5	1	3	3	3	5	8	1	0	2	0	4
1998:	0	2	1	0	2	2	4	1	2	1	5	1
$\begin{aligned} & >\text { SeasonalMannKendall(assault.1AMSunWed.ts) } \\ & \text { tau }=-0.0991, \quad \text { sl }=41.44 \% \end{aligned}$												
> assault.2AMSunWed.ts												
Jan Feb Mar Apr					May	Jun			Sep Oct		Nov	Dec
1994:	0	0	1	0	3	1	0	1	2	2	2	1
1995:	1	0	2	1	1	3	3	4	1	6	2	0
1996:	1	2	1	0	0	1	2	1	4	4	0	3
1997:	1	4	5	2	5	2	2	1	2	2	2	3
1998:	2	1	0	3	0	2	4	7	2	0	3	1
```> SeasonalMannKendall(assault.2AMSunWed.ts) tau = 0.24, sl =4.958%```												
> assault.3AMSunWed.ts												
Jan Feb Mar Apr					May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	0	0	0	0	2	0	2	1	0	0	0	2
1995:	0	0	1	2	0	0	2	2	0	1	0	1
1996:	2	1	0	1	0	1	1	1	0	1	1	0
1997:	1	0	1	3	0	3	6	3	2	2	0	1
1998:	0	2	1	1	0	1	2	0	0	0	1	1
$>$ Seas tau =	$\begin{aligned} & \text { sonal } \\ & 0.20 \end{aligned}$	Manr 3	nKend sl	$\begin{array}{r} \text { dall } \\ =10 \end{array}$	$\begin{aligned} & \text { (assa } \\ & .55 \% \end{aligned}$	ault.	3AM	SunWe	ed.ts			

			Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	4		4	2	9	1	5	2	1	2	5	4
1995:	5	3	2	3	3	4	3	3	5	0	0	3
1996:	3	4	3	0	0	4	3	1	5	2	3	12
1997:	2	3	0	5	3	4	4	2	2	1	2	8
1998:	1	2	0	6	3	3	4	3	0	2	0	1
```> SeasonalMannKendall(assault.11PMThuSat.ts) tau = -0.217, sl =7.364%```												
> assault.12AMThuSat.ts												Dec
1994:	3	3	1	3	5	4	4	2	1	1	2	4
1995:	2	4	4	2	3	2	11	4	1	1	3	4
1996:	2	3	6	5	3	0	3	5	1	0	7	1
1997:	0	1	2	2	2	8	8	4	1	2	1	2
1998:	4	1	4	2	9	3	8	3	,	1	2	1
$\begin{aligned} & >\text { SeasonalMannKendall(assault.12AMThuSat.ts) } \\ & \text { tau }=-0.0742, \quad \mathrm{sl}=54.42 \% \end{aligned}$												
> assault.1AMThuSat.ts												Dec
1994:		8	6	9	2	2	3	7	6	14	7	6
1995:	4	5	1	4	3	7	4	5	1	2	3	3
1996:	2	7	7	3	8	1	2	2	4	1	5	4
1997:	3	1	10	8	1	5	3	5	3	3	9	3
1998:	2	12	4	5	5	4	8	1	0	2	2	3
```> SeasonalMannKendall(assault.1AMThuSat.ts) tau = -0.215, sl =7.144% > assault.2AMThuSat.ts```												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	2	3	3	0	2	4	4	1	4	1	6	0
1995:	4	1	0	1	1	5	6	6	1	3	1	2
1996:	0	1	4	0	3	0	2	2	1	7	4	12
1997:	5	5	9	3	1	8	1	7	4	2	8	3
1998:	9	7	3	8	3	3	4	5	5	8	5	1
> SeasonalMannKendall(assault.2AMThuSat.ts) tau $=0.328$, \quad sl $=0.6099 \%$												
> ass	Jan	3AM Feb	Mar	Apr	May		Jul	Aug	Sep	Oct	Nov	Dec
1994:	2	2	1	2	3	1	4	1	0	3	1	0
1995:	2	1	2	1	1	2	7	2	4	0	1	2
1996:	1	2	1	0	3	1	0	5	2	3	6	0
1997:	5	2	1	3	0	3	4	2	0	2	3	2
1998:	3	3	2	2	1	4	1	4	2	1	3	3
```> SeasonalMannKendall(assault.3AMThuSat.ts) tau = 0.211, sl =8.443%```												

Figure 5a. STL Analysis
The seasonal component is reasonably stable. There is a slight increase in amplitude of the seasonal oscillations. $\mathrm{R}-\mathrm{sq}=43 \%$

ss. window $=5$,ss.robust $=$ TRUE, fc. window $=36, \mathrm{fc}$. degree $=1$

Figure 5b. Monthplot of Seasonal Component
The overall seasonal pattern is with March, July and December maxima and with January, May and September minimum. The seasonal is relatively stable. There are trends up in June and down in September and October.


Figure 5c. Normal Probability Plot
Several possible outliers are noted but all statistical tests for normality are fine.


Skewness Coefficient: $g_{-} 1=-0.2457219$, s.l. $=0.1990065$
Michael's Statistic: D_sp $=0.06000243$, s.l. $=0.7382427$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9830784$, s.l. $=0.7981366$

```
> counter.ts
\begin{tabular}{lrrrrrrrrrrrr}
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1994: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1995: & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
1996: & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 \\
1997: & 37 & 38 & 39 & 40 & 41 & \(\mathbf{4 2}\) & \(\mathbf{4 3}\) & 44 & 45 & 46 & 47 & 48 \\
1998: & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60
\end{tabular}
```

See Table 1.

Figure 5d.
Loess analysis of deseasonalized series
Mann-Kendall test: tau $=0.00565$, sl $=95.42 \%$

WPS assaults, deseasonalilzed


## H. WPS Dataset: Impaired

## Summary

There were 1573 impaired driving charges in Windsor from January 1994 to December 1998.. Table 1.

Crosstabs. The ThuSat slot accounts for $56 \%$ of the impaired charges. About $33 \%$ of charges were in the 1 AM slot and only $10 \%$ in the 3AM. Almost the same as with LPS impaired.

HOUR-WKGP: Unlike the LPS impaired the association between hour and wkgrp is statistically significant at less than $1 \%$. SunWed at 1AM window has more than expected and SunWed at 2AM has fewer than expected if these factors were independent.

HOUR-YEAR: As would be expected from our loess analysis in Figure 3b and Figure 3c there has been a swing to later hours post 1996.

Figure 1a. and Figure 1b. In order to facilitate comparison with the LPS IMPAIRED series we will again use a $\log$ transformaton. The slope of the least-squares line is about -0.113619 which implies that impaired charges have been declining at the rate of about $7.6 \%$ per year over 1994 to 1998. There is a slight lack of fit of the least-squares line post 1996.

Figure 2. Both exhibit a nearly linear downward slope on log scale. The downward slope for SunWed is slightly greater. The table below shows the slope of the linear least squares fit to each group. Seasonal Mann-Kendall test is significant at $\ll 1 \%$ for both cases.

Wkgrp	Slope of fit to log(data,2)	Annual rate of decrease \%
SunWed	-0.119	$7.9 \%$
ThuSat	-0.109	$7.3 \%$

Figure 3a. and Figure 3b. The curves are all different. It is interesting that 2 AM and 3AM actually increases after 1996 and the rate of decline for 1AM seems to have increased after 1996. I intend to model this data further with an intervention analysis.

Figure 4 a and Figure 4b For SunWed 2AM and 3AM windows show an initial increase post-1996 but then a decline in recent years. SunWed 12AM the decline starting in 1994 flattens out in post1996. SunWed-1AM there is a drop after 1996 but then it levels off. ThuSat shows strong monotonic decrease at 1AM and the rate seemed to increase slighlty post-1996. ThuSat also shows a strong increase at 2AM post-1996 and a small increase post-1996 for the ThuSat-3AM window. The linear decrease for ThuSat at 12AM seems to have flattened out post-1996 for both 11PM and 12AM.

Figure 5a. There is a linear downward trend on the log scale. The seasonal component has lots of local maxima and minima. $\mathrm{R}-\mathrm{sq}=63.4 \%$

Figure 5b. Local maximum in January, March, April, August-September and November and local minimum in February, April, July and December. But the seasonal component is variable and shows a lot of changes over time. There is are increasing trends for February and March and a decreasing trend for October.

Figure 5c. The normality tests indicate no significant departure from normality in the remainder component.

Figure 5d. Deseasonalized time series trend analysis. Mann-Kendall test: tau $=-0.424$, sl $=1.779 \mathrm{e}-4 \%$ The thicker line shows the linear least-squares fit and the thinner line shows the loess curve. The least-squares line has a slope of -0.1129019 almost the same as in Figure 1b. A slight lack of fit of the linear least-squares line is evident. The residuals from the leastsquares line are approximately normally distributed with no evident outliers and spread-level diagnostics do not reveal any monotone spread.

## Crosstabs Analysis

## Hour and wkgrp are associated

The ThuSat slot accounts for $56 \%$ of the impaired charges. About $33 \%$ of charges were in the 1 AM slot and only $10 \%$ in the 3 AM . Almost the same as with LPS impaired.

Unlike the LPS impaired the association between hour and wkgrp is statistically significant at less than $1 \%$. SunWed at 1 AM window has more than expected and SunWed at 2AM has fewer than expected if these factors were independent.

```
> crosstabs(counts~wkgrp+hour, data=wps.df, subset=wps.df$type=="impaired",
na.action=na.omit)
Call:
crosstabs(formula = counts ~ wkgrp + hour, data = wps.df, subset = wps.df$type ==
"impaired", na.action = na.omit)
2855 cases in table
+-----------
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+-----------
wkgrp |hour
 |11\textrm{PM}||\mp@code{|2AM |1AM | |AM | 3AM | |owTotl|}
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 10.48 \\
& 10.057
\end{aligned}
\] & \[
\begin{aligned}
& 10.41 \\
& 10.073
\end{aligned}
\] & \[
\begin{aligned}
& 10.49 \\
& 10.16
\end{aligned}
\] & \[
\begin{aligned}
& 10.39 \\
& 10.1
\end{aligned}
\] & \[
\begin{aligned}
& 10.41 \\
& 10.042
\end{aligned}
\] & | \\
\hline \multirow[t]{4}{*}{Thusat} & 1178 & | 301 & 1486 & 1468 & 1172 & 11605 \\
\hline & 10.11 & 10.19 & 10.3 & 10.29 & 10.11 & 10.56 \\
\hline & 10.52 & 10.59 & 10.51 & 10.61 & 10.59 & | \\
\hline & 10.062 & 10.11 & 10.17 & 10.16 & 10.06 & | \\
\hline \multicolumn{2}{|l|}{\(\begin{aligned} & \text { ColTotl| } 341 \\ & 10.12\end{aligned}\)} & 1510
10.18 & 1949
10.33 & 1764
10.27 & 1291
10.1 & \[
12855
\] \\
\hline
\end{tabular}
Test for independence of all factors
 Chi^2 = 22.39313 d.f.= 4 (p=0.0001673517)
 Yates' correction not used
> get.crosstabs.percenterror(counts~wkgrp+hour)
Crosstabs - percentage error: 100*(Obs-Exp)/Exp,
 [,1] [,2] [,3] [,4] [,5]
[1,]
[2,]
> contrib(counts~wkgrp+hour)
contribution to chi-sq:
[1,] [,1]
[2,] -0.99 0.84 -2.06 1.86 0.66
```

Hour and Year are associated: As would be expected from our loess analysis in Figure 3b and Figure 3c there has been a swing to later hours post 1996.


## WPS Impaired Data

The normality tests on the remainder component indicate the data may be assumed normal with no outliers. However the observations corresponding to the largest and smallest two residuals are identified below in bold red. Test for monotonic trend is significant at $\ll 1 \%$.

Table 1.

```
> imp.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994: 66 47 47 81 47 47 66 51 63 46 56 52
1995: 66 45 46 51 55 40 37 46 57 65 49 36
1996: 50 43 51 38 50 53 37 49
1997: 63 49 55 27 49 38 28 46 30 50 56 33
1998:47 42 48 51 33 22 43
> SeasonalMannKendall(imp.ts)
tau = -0.4, sl =0.07634%
```

Figure 1.


## Figure 1b. Logged series

In order to facilitate comparison with the LPS IMPAIRED series we will again use a log transformaton. Figure 1b shows the time series after a log transformation. Specifically a log to the base 2 transformation. This particular version of the log transformation means that we can interpret a one unit change as a doubling and an increase by 0.5 units on the vertical scale corresponds to an increase of about $41 \%$ in the original data.

The transformation reveals that the decline in impaired charges is almost linear. Figure 1 b shows a thicker line that corresponds to the least squares linear fit. The loess curve is the thinner line which stops at the last observed data value. There is a slight lack of fit of the least-squares line post 1996. The slope of the least-squares line is about -0.113619 which implies that impaired charges have been declining at the rate of about $7.6 \%$ per year over 1994 to 1998 .
Note: $1-2^{-0.113619} \approx 0.07573337$


Figure 2. By wkgrp.
Both exhibit a nearly linear downward slope on $\log$ scale. The downward slope for SunWed is slightly greater. The table below shows the slope of the linear least squares fit to each group. Seasonal Mann-Kendall test is significant at $\ll 1 \%$ for both cases.

Wkgrp	Slope of fit to log(data,2)	Annual rate of decrease \%
SunWed	-0.119	$7.9 \%$
ThuSat	-0.109	$7.3 \%$



Table 2.

```
> imp.SunWed.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994: 37 17 14 32 26 21 22 28 20 19 25 23
1995: 36 20 19 17 23 16 18 27 30 31 28 19
1996: 21 19 10 17 17 28 21 17 23 17 29 24
1997: 38 17 25 16 17 19 12 18
1998: 17 20 20 13 16 12 19 18 9 16 24 19
> SeasonalMannKendall(imp.SunWed.ts)
tau = -0.38, sl =0.1468%
> imp.ThuSat.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994: 29 30 33 49 21 26 44 23 43 27 31 29
1995: 30 25 27 34 32 24 19
1996: 29 24 41 21 33 25 16 32 22 37 40 16
1997: 25 32 30 11 32 19 16 28 19 29 33 14
1998: 30 22 28 38 17 10 24 21 24 21 27 25
> SeasonalMannKendall(imp.ThuSat.ts)
tau = -0.288, sl =1.516%
```

Figure 3a. By hour. Common Scaling
The curves are all different. It is interesting that 2AM and 3AM actually increases after 1996 and the rate of decline for 1AM seems to have increased after 1996. I intend to model this data further with an intervention analysis.


Figure 3b. By hour. Independent vertical scaling.


Figure 3c.
Least square line fit (thick red line) to data from 1996 to present. The slope of the least squares line to post-1996 is -0.453 which corresponds to a annual rate of decrease of about $27.0 \%$. Since 1998, the actual impaired driving charges are decreasing slightly slower than this.

WPS impaired at 1AM, log(charges,2)


Tabulation and Mann-Kendall Tests

	Jan	Feb		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	2	5	6	11	7	10	7	2	3	7	15	6
1995:	8	9	4	6	10	5	7	2	8	10	8	8
1996:	9	1	0	2	6	4	4	6	6	9	10	3
1997:	6	5	2	2	3	4	4	4	6	4	3	5
1998:	6	2	8	0	6	8	7	4	3	6	9	8
> SeasonalMannKendall(imp.11PM.ts)												
tau $=-0.231, \quad$ sl $=5.615 \%$												
> imp.12AM.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	22	10	9	7	12	8	16	11	12	11	9	11
1995:	11	12	6	11	9	12	3	7	8	16	8	5
1996:	2	7	11	8	6	10	2	7	13	5	9	6
1997:	12	6	6	8	21	5	3	8	1	3	4	11
1998:	9	10	6	8	5	6	9	11	5	4	10	7
> SeasonalMannKendall (imp.12AM.ts)												
tau $=-0.211, \quad$ sl $=7.898 \%$												
> imp.1AM.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	22	19	20	46	19	15	28	21	31	8	22	25
1995:	26	15	19	18	21	12	16	35	31	15	18	15
1996:	26	22	19	20	15	15	8	6	14	16	19	9
1997:	12	9	11	11	10	10	10	12	7	9	18	8
1998:	8	13	15	15	5	1	5	10	12	6	20	6
> SeasonalMannKendall (imp.1AM.ts)												
> imp.2AM.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	10	11	10	11	6	8	10	15	13	15	9	6
1995:	14	6	13	12	9	7	7	2	6	16	9	5
1996:	13	9	19	6	15	15	17	17	8	18	26	22
1997:	23	23	27	4	12	12	7	13	12	27	18	9
1998:	16	10	11	22	13	5	22	10	12	15	9	17
> SeasonalMannKendall(imp.2AM.ts)												
> imp.3AM.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	10	2	2	6	3	6	5	2	4	5	1	4
1995:	7	3	4	4	6	4	4	0	4	8	6	3
1996:	0	4	2	2	8	9	6	13	4	6	5	0
1997:	10	6	9	2	3	7	4	9	4	7	13	0
1998:	8	7	8	6	4	2	0	4	1	6	3	6
> SeasonalMannKendall (imp.3AM.ts)												

Figure 4a. By hour and wkgrp. Common Scaling.
For SunWed 2AM and 3AM windows show an initial increase post-1996 but then a decline in recent years. SunWed 12AM the decline starting in 1994 flattens out in post-1996. SunWed-1AM there is a drop after 1996 but then it levels off.


ThuSat shows strong monotonic decrease at 1 AM and the rate seemed to increase slighlty post1996. ThuSat also shows a strong increase at 2AM post-1996 and a small increase post-1996 for the ThuSat-3AM window. The linear decrease for ThuSat at 12 AM seems to have flattened out post-1996 for both 11PM and 12AM.


Figure 4b. By hour and wkgrp. Independent Scaling.

Cf. Figure 1b

WPS impaired by wkgrp and hour, log(counts $+1,2$ )


WPS impaired by wkgrp and hour, log(counts $+1,2$ )


Tabulations and Seasonal Mann-Kendall Tests


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	2	2	6	4	3	6	5	2	3	2	7	6
1995:	0	5	1	2	3	3	3	0	4	4	6	4
1996:	7	1	0	1	4	0	0	6	2	4	4	3
1997:	4	3	2	2	2	1	4	4	4	2	3	4
1998:	2	0	4	0	4	4	2	0	3	2	3	4
```> SeasonalMannKendall(imp.11PMThuSat.ts) tau = -0.259, sl =3.237%```												
> imp.12AMThuSat.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	7	4	7	7	6	2	8	3	10	7	8	6
1995:	9	4	4	8	7	8	3	3	2	6	2	5
1996:	2	2	9	4	6	4	2	7	11	3	9	4
1997:	2	4	4	2	11	3	2	5	1	1	4	3
1998:	6	7	6	4	2	2	7	9	3	2	6	6
$\begin{aligned} & >\text { SeasonalMannKendall(imp.12AMThuSat.ts) } \\ & \operatorname{tau}=-0.166, \quad \mathrm{sl}=16.62 \% \end{aligned}$												
> imp.1AMThuSat.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	8	17	12	28	9	6	22	8	14	0	12	11
1995:	16	9	10	12	11	7	7	14	17	10	4	5
1996:	14	10	17	12	6	5	1	2	7	14	6	3
1997:	4	7	6	5	8	4	4	3	5	3	9	6
1998:	6	7	7	12	2	0	3	2	7	2	8	0
> SeasonalMannKendall(imp.1AMThuSat.ts) tau $=-0.479$, sl $=0.005638 \%$												
$>$ imp.2AMThuSat.ts												
1994:	6	5	8	4	2	8	8	8	13	13	4	4
1995:	2	4	9	8	7	4	4	2	2	10	5	1
1996:	6	9	13	2	15	12	9	10	2	14	18	6
1997:	8	14	15	0	8	6	6	8	7	17	12	1
1998:	10	6	7	16	7	2	12	8	10	13	7	11
> SeasonalMannKendall(imp.2AMThuSat.ts) tau $=0.242$, $s l=4.295 \%$												
> imp.3AMThuSat.ts												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	6	2	0	6	1	4	1	2	3	5	0	2
1995:	3	3	3	4	4	2	2	0	2	4	4	2
1996:	0	2	2	2	2	4	4	7	0	2	3	0
1997:	7	4	3	2	3	5	0	8	2	6	5	0
1998:	6	2	4	6	2	2	0		1	2	3	4
$\begin{aligned} & >\text { Seas } \\ & \text { tau }= \end{aligned}$	$\begin{gathered} \text { sonal } \\ 0.02 \end{gathered}$	$\begin{aligned} & \text { LManr } \\ & 27, \end{aligned}$	nKend sl	$\begin{array}{r} \text { dall } \\ =82 \end{array}$	$\begin{aligned} & \text { (imp } \\ & .42 \% \end{aligned}$. 3AMT	hus	at.ts)				

Figure 5a. STL Analysis
There is a linear downward trend on the log scale. The seasonal component has lots of local maxima and minima.
$R-s q=63.4 \%$

Figure 5b. Monthplot of Seasonal Component
Local maximum in January, March, April, August-September and November and local minimum in February, April, July and December. But the seasonal component is variable and shows a lot of changes over time. There is are increasing trends for February and March and a decreasing trend for October.

Figure 5c. Normal Probability Plot

The normality tests indicate no significant departure from normality in the remainder component.

Skewness Coefficient: g_1 = 0.1242394, s.l. $=0.3333537$
Michael's Statistic: $\bar{D} \overline{s p}=0.0486953$, s.l. $=0.580161$
Wilk-Shapiro Statistic: $\mathrm{W}=0.982025$, s.l. $=0.7582085$

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994:	1	2	3	$\mathbf{4}$	5	6	7	8	9	10	11	12
1995:	13	14	15	16	17	18	19	20	21	22	23	24
1996:	25	26	27	28	29	30	31	32	33	34	35	36
1997:	37	38	39	$\mathbf{4 0}$	41	42	43	44	45	46	47	48
1998:	49	50	51	52	53	$\mathbf{5 4}$	55	56	57	58	59	60
See Table 1.												

Figure 5d.

Loess analysis of deseasonalized series
Mann-Kendall test: tau $=-0.424$, sl $=1.779 \mathrm{e}-4 \%$
The thicker line shows the linear least-squares fit and the thinner line shows the loess curve. The least-squares line has a slope of -0.1129019 almost the same as in Figure 1b. A slight lack of fit of the linear least-squares line is evident. The residuals from the least-squares line are approximately normally distributed with no evident outliers and spread-level diagnostics do not reveal any monotone spread.

WPS impaired, deseasonalilzed, logged

I. FARS Dataset

Introduction

Abstract

Fatality Accident Reporting System (FARS) Michigan and New York States May 1992 to December 1999, 3956 records Each record in the database corresponds to an accident in which one or more fatalities occurred between the hours of 11PM and 4AM. The number of fatalities is in the field occ\#. This field was used to compute the number of deaths in an aggregated dataset. This aggregated datasets gives the number of deaths for each combination of the following factors:

Factors/Covariates of Interest:

year - year of accident (ordered factor)
month - month of accident (ordered factor)
wkgrp - ordered factor variable with labels "SunWed" and "ThuSat"
hour - ordered factor with levels "11PM", "12AM", "1AM", "2AM", "3AM"
bacfactor - levels: "absent", "present"
Response Variables:
FARS Deaths (Totals)
FARS Deaths with bacfactor present
FARS Deaths with bacfactor absent
It should be noted that Totals is not just the sum of the other two. There are 45% more data in the totals because so many BAC measurements are missing.

I. FARS Dataset

Summary

ThuSat accounts for 86% of deaths. Among the hour groups 2 AM slot (ie. 2AM to 3 AM) accounted for most deaths (24%) while 3AM to 4AM (16\%) the least and deaths where uniformly distributed over 11PM to 2AM. Of course the traffic intensities might be expected to be less in some cases. The larger number of deaths in the 2 AM slot could be due to the patrons of bars leaving at closing time.

BAC is missing in 38% of the records which corresponds to 45% of the deaths. For the remaining 3205 deaths, alcohol was involved about 70% of the time. Crosstabs analysis shows that this percentage, 70%, has not changed over the years. This suggests that the no-drinking \& driving campaigns have not been very effective and improvements are due to other safety factors such as day-time running lights, increased use of seatbealts and airbags and improved car design.

Many of the crosstab analyses that were done are statistically significant.

Crosstab Analysis

Wkgrp and hour not independent (significant at 0.09\%).

The SunWed group has the strongest interactions with hour. There are 20% more deaths at in the 12AM slot in SunWed than would be expected under the hypothesis of independence. Recall this actually means deaths on Monday not Sunday.

```
Call:
crosstabs(deaths ~ wkgrp + hour, data = fars.df, na.action = na.exclude)
5 7 9 4 \text { cases in table}
+----------+
|N
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & | 11 PM & | 12AM & | 1AM & | 2AM & | 3AM & |RowTotl| \\
\hline \multirow[t]{4}{*}{SunWed} & 156 & | 195 & 180 & | 173 & | 109 & 1813 \\
\hline & 10.192 & 10.240 & 10.221 & 10.213 & 10.134 & 10.14 \\
\hline & 10.131 & 10.169 & 10.159 & 10.122 & 10.121 & | \\
\hline & 10.027 & 10.034 & 10.031 & 10.030 & 10.019 & 1 | \\
\hline \multirow[t]{4}{*}{ThuSat} & 11038 & | 959 & | 952 & 11242 & | 790 & 14981 \\
\hline & 10.208 & 10.193 & 10.191 & 10.249 & 10.159 & 10.86 \\
\hline & 10.869 & 10.831 & 10.841 & 10.878 & 10.879 & | \\
\hline & 10.179 & 10.166 & 10.164 & 10.214 & 10.136 & 1 | \\
\hline \multirow[t]{2}{*}{ColTotl} & 11194 & 11154 & 11132 & 11415 & 1899 & 15794 \\
\hline & 10.21 & 10.20 & 10.20 & 10.24 & 10.16 & 1 | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 18.59653 d.f. = 4 (p=0.0009431474)
    Yates' correction not used
>Contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] -0.89 2.60 1.68 -1.81 -1.53
[2,] 0.36 -1.05 -0.68 0.73 0.62
```

(Observed-Expected)/Expected Times 100 rounded to nearest integer:

```
> get.crosstabs.percenterror(deaths~wkgrp+hour)
    [,1] [,2] [,3] [,4] [,5]
[1,] -7 20 13 -13 -14
[2,] 1
```

Bacfactor is missing in about $\mathbf{3 8 \%}$ of the cases but in the remaining 3205 deaths where bacfactor is available, 70% are with bacfactor at a positive level.
> sum(is.na(fars.df\$bacfactor))/nrow(fars.df)
[1] 0.3789181
alcohol is present in 70% of the deaths

```
Call:
crosstabs(deaths ~ bacfactor, data = fars.df, na.action = na.exclude)
3205 cases in table
+-------+
|N
|N/Total|
+-------+
bacfactor
-------+-------+
absent | 969 |
-------+--------
present|2236
        |.7
```


Bacfactor and hour are not independent

The most marked effect is occurs with bacfactor interaction with 11PM. There are 40% more deaths with bacfactor absent at 11PM than would be expected under independence of the classifications.

```
Call:
crosstabs(deaths ~ bacfactor + hour, data = fars.df, na.action = na.exclude)
3205 cases in table
+-----------+
|N | N/RowTotal |
|N/ColTotal|
|N/Total
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & | 11 PM & | 12AM & | 1 AM & | 2AM & | 3AM & | RowTotl| \\
\hline \multirow[t]{4}{*}{absent} & 1266 & 1175 & 1179 & 1213 & 1136 & 1969 \\
\hline & 10.275 & 10.181 & 10.185 & 10.220 & 10.140 & 10.3 \\
\hline & 10.423 & 10.282 & 10.275 & 10.268 & 10.266 & 1 \\
\hline & 10.083 & 10.055 & 10.056 & 10.066 & 10.042 & | \\
\hline \multirow[t]{4}{*}{present} & 1363 & 1445 & 1471 & 1582 & 1375 & 12236 \\
\hline & 10.162 & 10.199 & 10.211 & 10.260 & 10.168 & 10.7 \\
\hline & 10.577 & 10.718 & 10.725 & 10.732 & 10.734 & | \\
\hline & 10.113 & 10.139 & 10.147 & 10.182 & 10.117 & | \\
\hline \multirow[t]{2}{*}{ColTotl} & 1629 & 1620 & 1650 & 1795 & | 511 & | 3205 \\
\hline & 10.20 & 10.19 & 10.20 & 10.25 & 10.16 & 1 | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 54.40057 d.f.= 4 (p=4.338307e-011)
    Yates' correction not used
Contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] 5.50 -0.91 -1.25 -1.76 -1.49
[2,] -3.62 0.60 0.82 1.16 0.98
```

(Observed-Expected)/Expected Times 100 rounded to nearest integer:
> get.crosstabs.percenterror(deaths~bacfactor+hour)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	40	-7	-9	-11	-12
$[2]$,	-17	3	4	5	5

Bacfactor and wkgrp are nearly independent.

Although, bacfactor and wkgrp are statistically not independent (at 5\% just), the degree of dependence is very small. There are 14% fewer deaths in the SunWed group with bacfactor absent than would be expected.

```
Call:
crosstabs(deaths ~ bacfactor + wkgrp, data = fars.df, na.action = na.exclude)
3 2 0 5 ~ c a s e s ~ i n ~ t a b l e ~
+----------+
|N | N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
bacfactor|wkgrp
|SunWed |ThuSat |RowTotl|
absent | 111 | 858 |969
    |0.115 10.885 |0.3
    |0.261 |0.309
    |0.035 |0.268 | |
present| 314 |1922 |2236
    l0.140 10.860 10.7
    0.739 | 0.691 |
    |0.098 |0.600 |
\begin{tabular}{ccc|}
-------+----------------+-------- \\
ColTotl| \(\mid 425\) & \(\mid 2780\) & \(\mid 3205\) \\
\(\mid 0.13\) & \(\mid 0.87\) & \(\mid\)
\end{tabular}
Test for independence of all factors
    Chi^2 = 3.936043 d.f.= 1 (p=0.04726182)
    Yates' correction not used
```

```
> contrib(deaths~bacfactor+wkgrp)
```

> contrib(deaths~bacfactor+wkgrp)
Contribution to chi-sq:
Contribution to chi-sq:
[,1] [,2]
[,1] [,2]
[1,] -1.54 0.6
[1,] -1.54 0.6
[2,] 1.02 -0.4

```
[2,] 1.02 -0.4
```

(Observed-Expected)/Expected Times 100 rounded to nearest integer:
> get.crosstabs.percenterror (deaths~bacfactor+wkgrp)
[,1] [,2]
$[1]-,14 \quad 2$
$[2] \quad 6 \quad-$,

Month and bacfactor are independent. The last table on this page shows that there are 18% more deaths in BAC absent in Jun than expected. But the overall test is not close to being significant.

(Observed-Expected)/Expected Times 100 rounded to nearest integer:

	, 1]	[,2]	$[, 3]$	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	-5	-13	-6	8	0	18	4	9	3	-9	-13	-9
[2,]	2	6	3	-4	0	-8	-2	-4	-1	4	6	

Month and hour are not independent. In the 11PM slot there are more deaths in Jan, Mar \& Dec and fewer in October. The largest difference is the excess deaths in Jun in the 3AM to 4AM slot (38% difference between observed and expected). See table at bottom for more comparisons.

$\begin{aligned} & \text { Call: } \\ & \text { cross } \\ & 5794 \end{aligned}$	abs (deat ases in	hs ~ hour table	$r+\text { montr }$	data =	$=\text { fars.df }$	na.act	Eion = na	.exclud						
\| N														
\|N/RowTotal														
\|N/ColTotal														
\|N/Total														
hour														
	\| Jan	\| Feb	\| Mar	\| Apr	\| May	\| Jun	\| Jul	\| Aug	\| Sep	\| Oct	\| Nov	\| Dec	\|RowTotl	
11 PM	186	\| 52	98	\| 81	1117	\| 98	1135	1124	1106	189	\| 97	1111	11194	
	10.0720	10.0436	10.0821	10.0678	10.0980	10.0821	10.1131	10.1039	10.0888	10.0745	10.0812	10.0930	10.21	
	10.2552	10.1775	10.2841	10.2177	10.2143	10.1728	10.2119	10.1959	10.1910	10.1471	10.2055	10.2569	\|	
	10.0148	10.0090	10.0169	10.0140	10.0202	10.0169	10.0233	10.0214	10.0183	10.0154	10.0167	10.0192	।	
12AM	172	71	80	\| 75	1131	1125	1100	1127	1108	1120	178	\| 67	11154	
	10.0624	10.0615	10.0693	10.0650	10.1135	10.1083	10.0867	10.1101	10.0936	10.1040	10.0676	10.0581	10.20	
	10.2136	10.2423	10.2319	10.2016	10.2399	10.2205	10.1570	10.2006	10.1946	10.1983	10.1653	10.1551	\|	
	10.0124	10.0123	10.0138	10.0129	10.0226	10.0216	10.0173	10.0219	10.0186	10.0207	10.0135	10.0116	\|	
1 AM	\| 47	\| 64	1 47	\| 91	1106	1 85	1146	1103	1147	1131	186	\| 79	11132	
	10.0415	10.0565	10.0415	10.0804	10.0936	10.0751	10.1290	10.0910	10.1299	10.1157	10.0760	10.0698	10.20	
	10.1395	10.2184	10.1362	10.2446	10.1941	10.1499	10.2292	10.1627	10.2649	10.2165	10.1822	10.1829	\|	
	10.0081	10.0110	10.0081	10.0157	10.0183	10.0147	10.0252	10.0178	10.0254	10.0226	10.0148	10.0136	।	
2 AM	185	\| 63	172	160	1123	1134	1163	1184	1120	1186	1133	1 92	11415	
	10.0601	10.0445	10.0509	10.0424	10.0869	10.0947	10.1152	10.1300	10.0848	10.1314	10.0940	10.0650	10.24	
	10.2522	10.2150	10.2087	10.1613	10.2253	10.2363	10.2559	10.2907	10.2162	10.3074	10.2818	10.2130	।	
	10.0147	10.0109	10.0124	10.0104	10.0212	10.0231	10.0281	10.0318	10.0207	10.0321	10.0230	10.0159	\|	
3AM	\| 47	\| 43	148	1 65	\| 69	1125	193	95	\| 74	\| 79				
	10.0523	10.0478	10.0534	10.0723	10.0768	10.1390	10.1034	10.1057	10.0823	10.0879	10.0868	10.0923	10.16	
	10.1395	10.1468	10.1391	10.1747	10.1264	10.2205	10.1460	10.1501	10.1333	10.1306	10.1653	10.1921	\|	
	10.0081	10.0074	10.0083	10.0112	10.0119	10.0216	10.0161	10.0164	10.0128	10.0136	10.0135	10.0143	\|	
$\begin{aligned} & \text { ColTotl } \mid 337 \\ & \mid 0.058\end{aligned}$		1293	1345	1372	1546	1567	1637	1633	1555	1605	1472	1432	15794	
		10.051	10.060	10.064	10.094	10.098	10.110	10.109	10.096	10.104	10.081	10.075		

Test for independence of all factors
Chi^2 $=170.65$ d.f. $=44 \quad(p=1.110223 \mathrm{e}-016)$
Yates' correction not used

Contribution to chi-sq:
$[, 1][, 2][, 3][, 4] \quad[, 5] \quad[, 6] \quad[, 7] \quad[, 8] \quad[, 9] \quad[, 10][, 11][, 12]$
$\left[\begin{array}{llllllllllllllllllll} & 1.99 & -1.08 & 3.19 & 0.50 & 0.42 & -1.74 & 0.33 & -0.56 & -0.78 & -3.20 & -0.03 & 2.33\end{array}\right.$
$\left[\begin{array}{lllllllllllll}{[2, ~} & 0.60 & 1.65 & 1.36 & 0.11 & 2.13 & 1.14 & -2.39 & 0.08 & -0.24 & -0.05 & -1.65 & -2.05\end{array}\right.$
$[3]-,2.32 \quad 0.89-2.49 \quad 2.15-0.07-2.45 \quad 1.93-1.86 \quad 3.70 \quad 1.18-0.65-0.59$
$[4] \quad 0.30-1.01-1.34-3.24-0.90-,0.38 \quad 0.60 \quad 2.37-1.33 \quad 3.15 \quad 1.65-1.31$
$[5]-0.73-0.37-,0.76 \quad 0.96-1.71 \quad 3.95-0.59-0.32-1.31-1.53 \quad 0.56 \quad 1.95$
(Observed-Expected)/Expected Times 100 rounded to nearest integer:

	Jan	Feb	Mar	Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
11PM	22	-16	34	4	2	-18	1	-7	-9	-30	-2	22
12 AM	7	20	15	1	20	10	-22	1	-3	0	-17	-23
1AM	-30	8	-32	23	-3	-25	15	-18	32	9	-8	-9
2AM	5	-11	-14	-33	-6	-2	7	21	-10	29	18	-12
3AM	-13	-9	-14	10	-21	38	-9	-6	-17	-18	4	19

Wkgrp and month are not independent. The last table shows the percentage differences between observed and expected. There are larger fluctuations in the SunWed group, for example there are 34% more deaths in March than would be expected if the classifications SunWed and Month were independent.

(Observed-Expected)/Expected times 100 rounded to nearest integer:

	[,1]	[,2]	$[, 3]$	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	-26	5	34	3	29	-20	-8	-8	3	27	-14	-27
[2,]	4	-1	-6	-1	-5	3	1	1	0	-4	2	

Bacfactor and year.
There are no statistically significant changes over time.

```
Call:
crosstabs(deaths ~ bacfactor + year, data = fars.df, na.action = na.exclude)
3205 cases in table
+----------+
|N
|N/RowTotal |
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 11992 & 11993 & 11994 & 11995 & 11996 & 11997 & 11998 & 11999 & |RowTotl| \\
\hline absent |102 & | 154 & | 149 & |148 & | 126 & 98 & |100 & | 92 & 1969 \\
\hline 10.105 & 10.159 & 10.154 & 10.153 & 10.130 & 10.101 & 10.103 & 10.095 & 10.3 \\
\hline 10.266 & 10.301 & 10.333 & 10.304 & 10.316 & 10.288 & 10.316 & 10.287 & | \\
\hline 10.032 & 10.048 & 10.046 & 10.046 & 10.039 & 10.031 & 10.031 & 10.029 & | \\
\hline present|281 & 1357 & 1299 & 1339 & 1273 & 1242 & 1216 & 1229 & 12236 \\
\hline 10.126 & 10.160 & 10.134 & 10.152 & 10.122 & 10.108 & 10.097 & 10.102 & 10.7 \\
\hline 10.734 & 10.699 & 10.667 & 10.696 & 10.684 & 10.712 & 10.684 & 10.713 & | \\
\hline 10.088 & 10.111 & 10.093 & 10.106 & 10.085 & 10.076 & 10.067 & 10.071 & | \\
\hline ColTotl|383 & 1511 & 1448 & 1487 & 1399 & 1340 & 1316 & 1321 & 13205 \\
\hline 10.120 & 10.159 & 10.140 & 10.152 & 10.124 & 10.106 & 10.099 & 10.100 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 5.645549 d.f. = 7 (p=0.5816909)
    Yates' correction not used
> contrib(deaths~bacfactor+year)
Contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5] [, 6] [,7] [,8]
[1,] -1.28 -0.04 1.16 0.06 0.49 -0.47 0.46 -0.51
[2,] 0.84 0.03 -0.77 -0.04 -0.32 0.31 -0.30 0.34
```

(Observed-Expected)/Expected times 100 rounded to nearest integer:

```
> get.crosstabs.percenterror(deaths~bacfactor+year)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] -12 0
[2,] 5
```


Wkgrp and Year.

There are 24% more deaths in the SunWed group in 1996 than expected but overall the dependence between wkgrp and year is not statistically significant at 5%.

```
Call:
crosstabs(deaths ~ wkgrp + year, data = fars.df, na.action = na.exclude)
5 7 9 4 \text { cases in table}
+----------+
| N
N/RowTotal
|N/ColTotal|
|N/Total |
wkgrp |year
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & |1992 & | 1993 & | 1994 & | 1995 & | 1996 & | 1997 & | 1998 & |1999 & | RowTotl \\
\hline \multirow[t]{4}{*}{SunWed} & | 79 & 1113 & | 93 & 1100 & 1128 & 1101 & | 85 & 1114 & 1813 \\
\hline & 10.097 & 10.139 & 10.114 & 10.123 & 10.157 & 10.124 & 10.105 & 10.140 & 10.14 \\
\hline & 10.134 & 10.131 & 10.131 & 10.132 & 10.174 & 10.133 & 10.126 & 10.162 & | \\
\hline & 10.014 & 10.020 & 10.016 & 10.017 & 10.022 & 10.017 & 10.015 & 10.020 & | \\
\hline \multirow[t]{4}{*}{Thusat} & 1509 & 1752 & 1615 & 1656 & 1608 & 1660 & | 591 & 1590 & 14981 \\
\hline & 10.102 & 10.151 & 10.123 & 10.132 & 10.122 & 10.133 & 10.119 & 10.118 & 10.86 \\
\hline & 10.866 & 10.869 & 10.869 & 10.868 & 10.826 & 10.867 & 10.874 & 10.838 & | \\
\hline & 10.088 & 10.130 & 10.106 & 10.113 & 10.105 & 10.114 & 10.102 & 10.102 & | \\
\hline \multirow[t]{2}{*}{ColTotl} & 1588 & 1865 & 1708 & 1756 & 1736 & 1761 & 1676 & 1704 & | 5794 \\
\hline & 10.10 & 10.15 & 10.12 & 10.13 & 10.13 & 10.13 & 10.12 & 10.12 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 12.89018 d.f.= 7 (p=0.07482989)
    Yates' correction not used
> contrib(deaths~wkgrp+year)
Contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] -0.39 -0.76 -0.64 -0.59 2.43 -0.56 -1.01 1.53
[2,] 0.16 0.31 0.26 0.24 -0.98 0.23 0.41 -0.62
```

(Observed-Expected)/Expected Times 100 rounded to nearest integer:

```
> get.crosstabs.percenterror(deaths~wkgrp+year)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 
[2,] 1
```


Hour and year are not independent.

But I don't see any interesting trends. The changes seem to be strongest in the 11PM and 12AM slots. The largest effect occurred in 1999 when there was a 32% excess of deaths in the 12AM slot.

Test for independence of all factors
Chi^2 $=86.38715$ d.f. $=28$ ($p=7.19933 e-008$)
Yates' correction not used
> contrib(deaths~hour+year)
Contribution to chi-sq:
$[, 1] \quad[, 2] \quad[, 3] \quad[, 4] \quad[, 5] \quad[, 6] \quad[, 7] \quad[, 8]$
$[1] \quad 2.16-,0.84 \quad 1.25-1.67 \quad 2.63-1.66 \quad 0.91-2.41$
$[2]-1.86-0.78-,1.69 \quad 1.50-1.95 \quad 2.31-1.52 \quad 3.78$
$[3] \quad 0.48-,1.92 \quad 1.08 \quad 0.68-0.23-0.79 \quad 1.21-0.22$
$[4]-,0.47 \quad 2.05 \quad 0.46-0.49-1.32 \quad 0.96-1.33-0.15$
$[5]-,0.34 \quad 1.45-1.32 \quad 0.06 \quad 1.10-1.02 \quad 0.99-1.07$
(Observed-Expected)/Expected Times 100 rounded to nearest integer:
> get.crosstabs.percenterror (deaths~hour+year)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
$[1]$,	20	-6	10	-13	21	-13	8	-20
$[2]$,	-17	-6	-14	12	-16	19	-13	32
$[3]$,	4	-15	9	6	-2	-7	11	-2
$[4]$,	-4	14	4	-4	-10	7	-10	-1
$[5]$,	-4	13	-13	1	10	-9	10	-10

I. FARS Dataset - Time Series

Summary

There are downward trends in FARS deaths, death with BAC positive and deaths with BAC negative.

Table 1. FARS deaths per month for (a) totals, (b) BAC positive and (c) BAC negative. Note that $(b)+(c) \neq(a)$ since BAC is n / a for about 38% of the records.

Figure 1. Deaths per Month Time Series Plot. The lowess trend line decreases from 73.4 deaths per month to 57.7 deaths per month which corresponds to an average annual rate of decrease of 3.1\%.

Figure 2. Fars Deaths with BAC Present. The lowess trend line decreases from 32.9 deaths per month to 17.7 deaths per month which corresponds to an average annual rate of about 7.8%.

Figure 3. Fars Deaths with BAC Absent. The lowess trend line decreases from 13.0 deaths per month to 6.0 deaths per month which corresponds to about 9.6% per year.

Figure 3Bi and 3Bii. The rate of decrease is higher in both cases with BAC present and BAC absent. There must be some sort of selection effect.

Table 2. Mean monthly death rates, percentage change and Mann-Kendall trend tests. Remark: the mean monthly Total is not the sum of the mean monthly values for BAC present and absent since BAC is missing in about 38% of the cases. The magnitude of the downward trend is the same in both BAC present and absent but is somewhat less than in Total.

	1993	1998	$\%$ change	tau	sl
Total	72.1	58.7	18.6	-0.14	5%
BAC Present	29.8	19.1	35.8	-0.38	$<10^{-6}$
BAC Absent	12.8	7.7	40.2	-0.27	$<10^{-4}$

Table 4a Annual deaths and Mann-Kendall Trend Tests, 2AM and ThuSat have significant downward trends at 7% and 3% significance levels on a two-sided Mann-Kendall trend test.

Figure $4 \mathrm{a}, \underline{4 \mathrm{~b}}$ show trellis time series displays of the annual deaths.
Figure 5 shows a drop in the deaths starting in 1996 in both cases (BAC present and BAC absent). The decline in BAC present deaths is very large but is actually less than the decline in BAC absent. But these declines are in reality perhaps not so important because the percentage decline in FARS deaths totals is much less (recall that BAC is missing in 45% of the deaths). This summarized:

Year	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 9}$	\% change
Total	865	704	19%
Bac present	357	229	35%
Bac absent	154	92	40%

Multipanel trellised time series plots showing the monthly time series of deaths totals, deaths with BAC present and deaths BAC absent were constructed for each combination of the factors wkgrp and hour. Robust loess locally-linear 60% smooth trend lines are drawn on the plots. Each trellis plot decomposes the aggregated time series according to the factor levels. Two types of trellis plots are used:
(i) the scales are kept the same on each trellis plot to make comparisons between the different panels easy
(ii) the deaths are log transformed and separate scaling is used on the vertical axis to allow better visualization of the trend

Figure 6a-ii, FARS deaths exhibit a downward trend for 11 PM both SunWed and ThuSat, an upward trend for SunWed 3AM and an upward trend for ThuSat-2AM. There are many more deaths in the Thusat weekgroup.

Comparison of panels for 3AM-ThuSat and 2AM-ThuSat in Figure 6a-i suggest that some spikes occur at common times. Such an temporal association could be caused by poor driving conditions on particular nights. However closer investigation shows that there is really no apparent association, see Figure 6a-iiia and Figure 6a-iii β which shows comparsions when the aspect-ratio is reduced to improve visualization on the horizontal scale and a log transformation is made to reduce the effect of outliers on the resolution.

Figure 6b-ii, FARS deaths with BAC present, exhibits a downward trend for ThuSat at 2AM and 12 AM and possibly also sunWed at 2AM.

Figure 6c-ii, FARS deaths with BAC absent shows a downward trend for all levels of hour for Thusat but little change for SunWed.

Seasonal-Trend-Loess Decompositions were examined. For all series, the downward trend is evident as well as a change in the seasonal pattern occurring in 1996 (Figures $\underline{7}, \underline{9}, \underline{11}$).

Figures 7a,b. STL FARS deaths. Peak in July and reach minimum in February. These deaths are relatively high from May through to October. $\mathrm{R}^{2}=53.4 \%$.

Figure 7c. The deseasonalized series showns an apparent change in variability around 1997. The trend is highly significant with Mann-Kendall test, tau $=-0.214$, sl $=1.261 \%$. The loess trend declines from about 70.5 deaths/month at the beginning of 1992 to 56.7 deaths/month by the end of 1999. This corresponds to a percentage annual rate of decline of about 2.8%.

Figures 8a, b STL FARS deaths with BAC present. Peak in October and are a minimum in Jan. These deaths are also relatively high in July and August. There are strong increasing trends in February and September and a decreasing trend in October and to a lesser extend in March and April too. $\mathrm{R}^{2}=90.5 \%$.

Figure 8c. Trend in the deseasonalized component is obviously significant. Mann-Kendall trend test: $\operatorname{tau}=-0.461, \quad \mathrm{sl}=8.001 \mathrm{e}-6 \%$. The loess trend declines from about 70.5 deaths/month at the beginning of 1992 to 56.7 deaths/month by the end of 1999 which corresponds to a percentage annual rate of decline of about 2.8%.

Figures 9a,b. STL FARS deaths with BAC absent. Peak in August but are relatively high from April through to October and are relatively low in December, January, February and March. There has been a sharp downward trend in deaths in Nov. $R^{2}=93.2 \%$.

Figure 9c. There is a significant downward trend. The Mann-Kendall test yields, tau $=-$ 0.338 , $\mathrm{sl}=0.008465 \%$. The deseasonalized FARS BAC absent deaths decline from about 12.7 at the beginning of 1992 to about 7.2% by the end of 1999 . The average annual percentage decrease is about 7.2%.

Figure 9d. There are some outliers evident. Observations 31 and 85 corresond to Nov. 1994 and May 1999 respectively. See Table 1c.

Time Series: Tables and Plots

Monthly time series are plotted and a 60% locally linear robust smoothed trend line is shown.
Table 1a. FARS, deaths, total number of deaths per month
> deaths.fars.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: $\quad 89 \quad 94 \quad 73 \quad 77 \quad 72$ 73 48
1993: $66 \quad 52 \quad 67 \quad 46 \quad 82 \quad 60 \quad 99 \quad 95 \quad 72$ 107 $62 \quad 57$
1994: 41
1995: $42 \quad 36 \quad 85 \quad 77 \quad 66 \quad 48 \quad 86$
1996: $48 \quad 46 \quad 33 \quad 38 \quad 74102 \quad 59 \quad 74 \quad 67 \quad 74$
1997: $60 \quad 47 \quad 50 \quad 53 \quad 71 \quad 66 \quad 85 \quad 71 \quad 70$
1998: $3946 \quad 46 \quad 39 \quad 47 \quad 65 \quad 83 \quad 73 \quad 77 \quad 48$
1999: $41 \quad 50 \quad 33 \quad 46 \quad 63 \quad 71 \quad 60 \quad 101 \quad 62 \quad 72 \quad 50$

Table 1b. FARS, deaths BAC present, deaths per month

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					47	39	42	41	29	38	24	21
1993:	23	25	34	22	27	22	31	36	26	53	34	24
1994:	18	10	20	25	32	31	30	25	20	45	23	20
1995:	27	16	32	46	30	14	37	33	28	27	23	26
1996:	19	26	16	9	21	26	23	29	31	20	29	24
1997:	10	18	20	17	20	19	31	22	37	22	19	7
1998:	14	17	19	23	15	19	25	14	18	19	21	12
1999:	14	26	6	18	18	20	17	34	19	22	14	21

Table 1c. FARS, deaths BAC absent, deaths per month
> deaths.farsbaca.ts

| | Jan | Feb | Mar Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| 1992: | | | | 12 | 22 | 9 | 11 | 20 | 7 | 10 | 11 | |
| 1993: | 9 | 11 | 17 | 15 | 15 | 12 | 11 | 19 | 12 | 17 | 8 | 8 |
| 1994: | 8 | 2 | 8 | 16 | 6 | 13 | 22 | 9 | 7 | 19 | 32 | 7 |
| 1995: | 7 | 11 | 11 | 18 | 7 | 10 | 12 | 26 | 23 | 7 | 5 | 11 |
| 1996: | 9 | 5 | 4 | 14 | 18 | 25 | 12 | 10 | 8 | 12 | 2 | 7 |
| 1997: | 8 | 11 | 6 | 8 | 16 | 8 | 7 | 12 | 3 | 9 | 4 | 6 |
| 1998: | 5 | 3 | 5 | 6 | 14 | 12 | 23 | 8 | 9 | 4 | 4 | 7 |
| 1999: | 4 | 6 | 7 | 1 | 3 | 4 | 12 | 20 | 12 | 19 | 2 | 2 |

Nov. 1994 (observation 31) and May 1999 (observation 85) seem to be outliers in Table 1c - see STL Analysis.

Table 2. Mean monthly death rates, percentage change and Seasonal Mann-Kendall trend tests. Remark: the mean monthly Total is not the sum of the mean monthly values for BAC present and absent since BAC is missing in about 38% of the cases. The magnitude of the downward trend is the same in both BAC present and absent but is somewhat less than in Total.

	1993	1998	\%change	tau	sl
Total	72.1	58.7	18.6	-0.18	4%
BAC Present	29.8	19.1	35.8	-0.42	$<10^{-6}$
BAC Absent	12.8	7.7	40.2	-0.30	$<10^{-4}$

```
Seasonal Mann-Kendall Tests
> SeasonalMannKendall(deaths.fars.ts)
tau = -0.181, sl =3.668%
> SeasonalMannKendall(deaths.farsbacp.ts)
tau = -0.425, sl =9.23e-5%
> SeasonalMannKendall(deaths.farsbaca.ts)
tau = -0.295, sl =0.07391%
Annual Series
> aggregate(deaths.fars.ts,1,mean)
1993: 72.08333 59.00000 63.00000 61.33333 63.41667 56.33333 58.66667
    start deltat frequency
    1993 1
> pc.diff(aggregate(deaths.fars.ts,1,mean))
[1] 0.1861272
> aggregate(deaths.farsbacp.ts,1,mean)
1993: 29.75000 24.91667 28.25000 22.75000 20.16667 18.00000 19.08333
    start deltat frequency
    1993 1 1
> pc.diff(aggregate(deaths.farsbacp.ts,1,mean))
[1] 0.3585434
> aggregate(deaths.farsbaca.ts,1,mean)
1993: 12.833333 12.416667 12.333333 10.500000 8.166667 8.333333 7.666667
    start deltat frequency
    1993 1 1
> pc.diff(aggregate(deaths.farsbaca.ts,1,mean))
[1] 0.4025974
```

Figure 1: Deaths per Month Time Series Plot
The lowess trend line decreases from 73.4 deaths per month to 57.7 deaths per month which corresponds to an average annual rate of decrease of 3.1%.
$>1-(57.7 / 73.4)^{\wedge}(1 /(92 / 12))$
[1] 0.03090372

FARS, Monthly deaths

Figure 2: Fars Deaths with BAC Present
The lowess trend line decreases from 32.9 deaths per month to 17.7 deaths per month which corresponds to an average annual rate of about 7.8%.
> 1-(17.7/32.9)^(1/(92/12))
[1] 0.07767495

FARS BAC Present, Monthly deaths

Figure 3: Fars Deaths with BAC Absent
The lowess trend line decreases from 13.0 deaths per month to 6.0 deaths per month which corresponds to about 9.6\% per year.
$>1-(6.0 / 13.0)^{\wedge}(1 /(92 / 12))$
[1] 0.09593214

FARS BAC Absent, Monthly deaths

Figure 3Bi. Comparison of FARS deaths for total, BAC Present and BAC Absent. Same scale.

FARS, deaths, same scale

Figure 3Bii. Comparison of FARS deaths for total, BAC Present and BAC Absent. Sliced scale.
With the sliced scale the slopes are comparable since the number of data units per inch is the same on each graph. We clearly see that the slopes are greater in bacAbsent and bacPresent .

FARS, deaths, sliced scale

Annual Totals

Table 4a. Annual deaths and Mann-Kendall Trend Tests, 2AM and ThuSat have significant downward trends at 7% and 3% significance levels on a two-sided Mann-Kendall trend test.

Aggregate annual number of deaths										
> (fars.death.annual [,-1])										
Total PM11 AM12 AM1 AM2 AM3 SunWed Thusat										
1993	865	167	162	144	241	151	113	752		
1994	708	161	121	151	179	96	693	615		
1995	756	135	169	156	178	118	8100	656		
1996	736	184	123	141	162	126	6128	608		
1997	761	136	180	139	199	107	101	660		
1998	676	150	117	146	148	115	585	591		
1999	704	116	185	135		98	114	590	>	
MannKendallAnnual (fars.death.annual $[,-1]$)										
tau -0.4285714 -0.4285714 $0.2380952-0.4285714-0.52380949-0.333333330 .04761904-0.61904758$										

Figure 4a: Annual Deaths

Figure 4b: Annual Deaths (Panels Scaled Independently)

Figure 5: Annual FARS Deaths, Comparison BAC Absent and Present
Number of Deaths, FARS, BAC Absent, 1993 to 1999
> aggregate(deaths.farsbaca.ts, ndeltat=1)
1993: 1541491481269810092

Number of Deaths, FARS, BAC Present, 1993 to 1999
> aggregate(deaths.farsbacp.ts, ndeltat $=1$)
1993: 357299339273242216229

Figure 6 shows a drop in the deaths starting in 1996 in both cases (BAC present and BAC absent).

Trellis Time Series Plots by wkgrp and hour

There are many more deaths in the ThuSat weekgroup. There may be some temporal relationships between the series which could be due to weather and bad driving conditions. But on further investigation there was found to be no significant cross-correlation between the series and Figure 6a-iii α and Figure $6 \mathrm{a}-\mathrm{iii} \beta$ shows comparsions when the aspect-ratio is reduced to improve visualization on the horizontal scale and a log transformation is made to reduce the effect of outliers on the resolution.

Figure 6a-i. FARS deaths. Common Scale.
Comparison of panels for 3AM-ThuSat and 2AM-ThuSat in Figure 6a-i suggest that some spikes occur at common times. Such an temporal association could be caused by poor driving conditions on particular nights. However closer investigation shows that there is really no apparent association, see Figure 6a-iii and Figure 6a-iiiß.

FARS, Monthly deaths

Figure 6a-ii. FARS deaths. Logged and Scaled Independently
FARS deaths exhibit a downward trend for 11PM both SunWed and ThuSat, an upward trend for SunWed 3AM and an upward trend for ThuSat-2AM.

FARS log(deaths+1). Panels scaled independently.

Figure 6a-iiio FARS deaths, SunWed, small aspect-ratio and log transformation

FARS $\log ($ deaths +1)

Figure 6a-iiiß FARS deaths, ThuSat, small aspect-ratio and log transformation

FARS log(deaths+1)

Figure 6b-i. Deaths with BAC present. Common Scaling

FARS BAC Present, Monthly deaths

Year

Figure 6b-ii. Deaths with BAC present. Logged and Scaled Independently
Figure 6b-ii, FARS deaths with BAC present, exhibits a downward trend for ThuSat at 2AM and 12AM and possibly also SunWed at 2AM.

FARS $\log ($ deaths +1). Panels scaled independently.

Figure 6c-i. Deaths with BAC absent.

FARS BAC Absent, Monthly deaths

Figure 6c-ii. Deaths with BAC absent. Logged and Scaled Independently.
Figure 6c-ii, FARS deaths with BAC absent shows a downward trend for all levels of hour for Thusat but little change for SunWed.

FARS log(deaths+1). Panels scaled independently.

STL Analysis

The changes in seasonal patterns may be of interest. An additive robust decomposition of the time series into trend, seasonal and remainder was done for each of the monthly time series. A robust locally quadratic 60% smoother was used for trend estimation.

For all series, a change in the seasonal pattern occurs in 1996.
Notice for FARS Deaths BAC Present the seasonal component has shifted so there have been large increases in February and September while July and August have consistently remained high. This information may be useful for planning traffic safety campaigns.

Figure 7a: STL - All Deaths
$R^{2}=53.4 \%$
There was a slight hump in 1997 followed by decrease. The seasonality and variability of the data changed in about August 1996.

STL Decomposition: FARS deaths (total)

Figure 7b: Monthplot, FARS, totals
FARS deaths totals peak in Jul and reach minimum in Feb. These deaths are relatively high from May through to October (Figure 8).

FARS deaths (total), Monthplot of Seasonal

Figure 7c. The deseasonalized series showns an apparent change in variability around 1997. The trend is highly significant with Mann-Kendall test, tau $=-0.214$, sl $=1.261 \%$. The loess trend declines from about 70.5 deaths/month to 56.7 deaths/month which corresponds to a percentage annual rate of decline of about 2.8%.

```
> pc.change(deaths.fars.deseasonalized.ts)
    start end change% annual.rate%
70.46393 56.71454 19.51266 2.791644
```

FARS, Deseasonalilzed monthly deaths

Figure 7d.
Remainder term is normally distributed.

Skewness Coefficient: g_1 = 0.113532 , s.l. $=0.3177048$
Michael's Statistic: D_sp $=0.0422705$, s.I. $=0.609863$
Wilk-Shapiro Statistic: $\overline{\mathrm{W}}=0.9802573$, s.l. $=0.5645543$

Figure 8a: STL, FARS Deaths, BAC Present
R -sq $=60 \%$

STL Decomposition: FARS deaths, BAC Present

ss. window $=7$, fc. window $=55.2$, fc.degree $=2$

Figure 8b: Monthplot, FARS, BAC Present
FARS deaths with BAC Present (Fig 10) peak in October and are a minimum in Jan. These deaths are also relatively high in Jul and Aug. There are strong increasing trends in Feb and Sep and a decreasing trend in Oct and to a lesser extend in Mar and Apr too.

FARS deaths BAC Present, Monthplot of Seasonal

Figure 8c.
Trend in the deseasonalized component is obviously significant.
Mann-Kendall trend test: $\mathrm{tau}=-0.461, \quad \mathrm{sl}=8.001 \mathrm{e}-6 \%$
> pc.change(deaths.fars.deseasonalized.ts)
start end change\% annual.rate\%
$32.5279717 .3803846 .56791 \quad 7.849873$

FARS, Deseasonalilzed monthly deaths, BAC present

Figure 9a: STL FARS Deaths: BAC Absent
$\mathrm{R}^{2}=38.3 \%$
Mann-Kendall trend test: tau $=-0.338, \quad$ sl $=0.008465 \%$

STL Decomposition: FARS deaths, BAC Absent

Figure 9b: Monthplot, FARS, BAC absent
FARS deaths with BAC absent peak in Aug but are relatively high from Apr through to Oct and are relatively low in Dec, Jan, Feb and Mar. There has been a sharp downward trend in deaths in Nov (Figure 12).

FARS deaths BAC Absent, Monthplot of Seasonal

Figure 9c.

There is a significant downward trend. The Mann-Kendall test yields, tau $=-0.338$, sl $=0.008465 \%$. The deseasonalized FARS BAC absent deaths decline from about 12.7 at the beginning of 1992 to about 7.2% by the end of 1999. The average annual percentage decrease is about 7.2%.

```
> pc.change(deaths.fars.deseasonalized.ts)
    start end change% annual.rate%
12.74778 7.199321 43.5249 7.181718
```

FARS, Deseasonaliized monthly deaths, BAC absent

Figure 9d

There are some outliers evident. Observations 31 and 85 corresond to Nov. 1994 and May 1999 respectively. See Table 1c.

Skewness Coefficient: g_1 = 0.94341 , s.l. $=0.0002704813$ Michael's Statistic: D_sp = 0.111165 , s.l. $=0.0004617088$ Wilk-Shapiro Statistic: $\bar{W}=0.9450933$, s.I. $=0.001567573$

J. MISTPOL Dataset

Introduction

Data on 164,931 car accidents from three counties in Michigan for the period January 1992 to December 1999 are available, broken down by county below,

County	Frequency	Percent
Macomb	23725	14.4
Oakland	31936	19.4
Wayne	109270	66.3
Total	164931	100.0

The day, month and year were available for all but 45 of these accidents. In addition the following variables of possible interest were observed for many of these accidents.

Factor	Levels	\% missing
hour	11PM, 12AM, 1AM, 2AM	0
wkgrp	SunWed, ThuSat	0.02
sex	male, female	28.1
drink	yes, no	47.6
injury	fatal, incapacitating, non-incapacitating, none	29.6

The data after May 1999 appear to be incomplete so our analysis was based on the data from May 1992 to April 1999. After removing records from May 1999 onwards there remained 155,207 records.

Three separate datasets were analyzed:
(a) All Accidents (155207 records)
(b) Fatal Accidents (465 records)
(c) Incapacitating Accidents (4516 records)

J. MISTPOL Dataset All Accidents

Summary

Figure 1. Montly number of accidents, in thousands. Seasonal Mann-Kendall test not significant. The trend line suggests a 4% drop from 1.78 to 1.70 thousands of accidents per month from May 1992 to April 1999. It is clear that the total number accidents increased and has now begun to decrease. There are some outliers in 1992 in May, Jul, Nov and Dec.

There is a mild upward trend to about 1997 and then a steeper downward trend (Figure 2, 3). Seasonal maximums occur in Jun-Jul and also in Dec-Jan (Fig. 4).

Drink-Hour are associated: there are fewer deaths in 11PM-YES and more in 2AM-YES than expected under independence.

Drink-Weekgroup are associated: there are slightly more (5\%) in the ThuSat-YES group than expected under independence.

Drink and Injury are associated: there is great increase in the frequency of drinking with fatal and more serious accidents.

Drink-Gender are not independent since drinking males are more frequently in accidents than drinking females.

Hour-Injury are associated: more serious accidents (fatalities, incapacitating and noncapacitating) tend to happen later in the $2 A M$ window.

Weekgroup-Injury are independent.
Gender-Injury are associated since males tend to be more involved in fatal accidents.
Figure 4 shows that ThuSat group has more accidents. There is an evident downward trend starting around 1996 in SunWed and shortly after in ThuSat.

No significant trends are present in the trellis plots for hour (Figure 6).
Figure 7 shows there has been a downward trend in incapacitating and non-incapacitating accidents but little other trends in the trellis plots for injury.

Figure 8 shows accidents by males more frequent and there is a downward trend in both groups but more pronounced for males.

The trellis plot for drink shows that both the yes and no groups show a trend downward but the yes group has a more pronounced trend (Figure 9). This suggests that perhaps there has been a downward trend in the number of accidents where alcohol testing has been done as well as perhaps some decrease in drinking-and-driving.

An STL analysis of accidents with drinking indicates a downward trend which increases after 1996 (Figure 10). The seasonal variation in accidents with drinking involved is complicated (Figure 10, 11): there are two peaks one in Jul and the other in Dec. The July peak shows little variation in its amplitude over the years. The troughs are in Feb and Sep.

Time Series Plots

Montly number of accidents, in thousands. Seasonal Mann-Kendall test not significant. The trend line suggests a 4% drop from 1.78 to 1.70 thousands of accidents per month from May 1992 to April 1999. It is clear that the total number accidents increased and has now begun to decrease. There are some outliers in 1992 in May, Jul, Nov and Dec.

Figure 1.

All Accidents, MISTPOL

STL Analysis

There is a upward trend to 1996 followed by a downward trend.
R -sq $=65.9 \%$
Figure 2a.

STL Decomposition: MISTPOL, accidents, total (thousands)

Figure 2b. Seasonal maxima in Jun-Jul and also in Dec-Jan (Fig. 4).
Monthplot, MISTPOL, accidents, total

Figure 2c. Trend Analysis of the Deseasonalized Series
Mann-Kendall: tau $=0.0321$, sl $=66.9 \%$
However there is clearly a downward trend evident in the last 2 years. Outliers at the beginning are also evident.

MISTPOL, all accidents, deseasonalilzed

Figure 2d. Normal Probability Plot of Remainder
There are some outliers in 1992 in May, Jul, Nov and Dec.
> counter.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: $\quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$
1993: $910 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16$

1995: $33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43$
1996: $45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53$
1997: $57 \quad 58 \quad 59 \quad 60 \quad 61 \quad 62 \quad 63 \quad 64$

1999: 81828384

Skewness Coefficient: g_1 = -0.6753867, s.l. $=0.005888383$
Michael's Statistic: D_sp $=0.07053506$, s.l. $=0.1255636$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9608669$, s.l. $=0.04785316$

Drink and Hour

There are fewer accidents in 11PM-YES and more in 2AM-YES than expected under independence.

```
Call:
crosstabs( ~ drink + hour, data = mistpol.df, na.action = na.exclude)
8 6 3 7 6 ~ c a s e s ~ i n ~ t a b l e
+-----------+
|N | N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|c|c|}
\hline & | 11PM & | 12AM & | 1 AM & | 2 AM & |RowTotl| \\
\hline \multirow[t]{4}{*}{yes} & | 4696 & 4546 & | 4786 & | 6536 & | 20564 \\
\hline & 10.228 & 10.221 & 10.233 & 10.318 & 10.24 \\
\hline & 10.154 & 10.217 & 10.282 & 10.365 & 1 | \\
\hline & 10.054 & 10.053 & 10.055 & 10.076 & 1 | \\
\hline \multirow[t]{4}{*}{no} & 125840 & 116386 & 112208 & 111378 & 165812 \\
\hline & 10.393 & 10.249 & 10.185 & 10.173 & 10.76 \\
\hline & 10.846 & 10.783 & 10.718 & 10.635 & | \\
\hline & 10.299 & 10.190 & 10.141 & 10.132 & 1 | \\
\hline \multirow[t]{2}{*}{ColTot} & | 30536 & 120932 & 116994 & 117914 & 186376 \\
\hline & 10.35 & 10.24 & 10.20 & 10.21 & 1 | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 3011.41 d.f.= 3 (p=0)
    Yates' correction not used
contribution to chi-sq:
    [,1] [,2] [,3] [,4]
[1,] -29.49 -6.08 11.55 33.73
[2,] 16.54 3.41 -6.48 -18.92
```


Drink and Weekgroup

There are more in the ThuSat-YES group than expected under independence. So we see there tends to be a higher proportion of drunk driving accidents in the ThuSat wkgrp.

```
Call:
crosstabs( ~ drink + wkgrp, data = mistpol.df, na.action = na.exclude)
8640 cases in table
+-----------+
| N
|N/RowTotal|
|N/ColTotal|
|N/Total
+----------+
drink |wkgrp
    SunWed |ThuSat |RowTotl|
lo-----+-------+--------+-------+
|0.341
    |0.218 | 0.250 |
        |0.081 |0.157 | |
no |25111 |40671 |65782 |
        |0.382 10.618 10.76
        10.782 10.750
        |0.291 |0.471 |
-------+-------+-------+--------+
ColTotl|32118
Test for independence of all factors
    Chi^2 = 112.1013 d.f.= 1 (p=0)
    Yates' correction not used
contribution to chi-sq:
    [,1] [, 2]
[1,] -7.20 5.51
[2,] 4.04 -3.09
```

Drink and Injury
An great increase in the frequency of drinking with fatal and more serious accidents.

```
Call:
crosstabs( ~ drink + injury, data = mistpol.df, na.action = na.exclude)
8421 cases in table
+-----------
|N I
|N/RowTotal|
|N/ColTotal|
|N/Total |
drink |injury
    |fatal |incpctt|noncap |possibl|none |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
        |llllll
        |0.0032 10.0198 10.0348 10.0281 10.1528 |
--------+-------+-------+--------+-------+-------+-------+
```



```
    |0.2521 |0.5037 |0.5133 |0.7886 |0.7966 |
    |0.0011 | 0.0201 | 0.0368 |0.1048 | 0.5984 |
l-------+-------+-------+--------+-------+--------+-------+
ColTot1|365 |3369 |6045 |11219 |63423 |84421
    |0.0043 |0.0399 |0.0716 |0.1329 |0.7513 |
Test for independence of all factors
            Chi^2 = 4275.379 d.f.= 4 (p=0)
            Yates' correction not used
contribution to chi-sq:
            [,1] [,2] [,3] [,4] [,5]
[1,] 19.24 29.98 38.58 -6.04 -17.74
[2,] -10.82 -16.85 -21.69 3.40 9.97
```


Drink and Gender

Drinking and gender are not independent. Drinking males are more frequently in accidents than drinking females.

```
Call:
crosstabs( ~ drink + sex, data = mistpol.df, na.action = na.exclude)
8 3 7 9 2 ~ c a s e s ~ i n ~ t a b l e
|-----------+
|N/RowTotal|
|N/ColTotal|
|N/Total |
drink |sex
|male |female |RowTotl|
\begin{tabular}{lll|}
10.795 & 10.205 & 10.24 \\
10.276 & 10.161 & \\
10.191 & 10.049 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline no & | 42157 & 121473 & 163630 \\
\hline
\end{tabular}
    0.663 10.337 10.76
    10.724 10.839 |
    |0.503 10.256 |
------+-------+-------+------+
Test for independence of all factors
    Chi^2 = 1270.155 d.f.= 1 (p=0)
    Yates' correction not used
contribution to chi-sq:
        [,1] [,2]
[1,] 16.66 -25.16
[2,] -9.41 14.21
```

Hour and Injury
The 2AM window has a higher than expected share of the three most serious injury classes and correspondingly the 11PM windows has fewer of the three most serious injury classes and more of the none-injury accidents.

```
Call:
crosstabs( ~ hour + injury, data = mistpol.df, na.action = na.exclude)
116099 cases in table
+-----------+
|N | |
|N/ColTotal|
|N/Total
hour |injury
```



```
    |0.2575 | 0. 2689 | 0.2782 | 0.3385 | 0.3569 |
    |0.0011 |0.0111 |0.0183 |0.0432 |0.2717 |
-------+-------+--------+---------+--------+--------+----------
    |0.0042 |0.0423 |0.0632 |0.1271 |0.7631 |0.24
    |0.2335 | 0.2449 |0.2290 |0.2373 |0.2386 |
    |0.0010 |0.0101 |0.0150 |0.0303 |0.1817 | |-----------------------------------------------------
IAM | 120 | 983 | 1702 | 3070 |17686 |23561 |
    |0.0051 10.0417 10.0722 10.1303 10.7506 |0.20
    |0.2395 | 0.2057 |0.2231 | 0.2074 |0.2001 |
    |0.0010 | 0.0085 |0.0147 |0.0264 | 0.1523 |
-------+--------+--------+--------+--------+--------+----------
2AM |l 135 | 1340 | 2057 | 3208 | | 18069 | 24809
    |0.2695 |0.2805 |0.2697 |0.2168 | 0.2044 |
    |0.0012 | 0.0115 |0.0177 |0.0276 | 0.1556 |
-------+-------+--------+-------+--------+-------------------
ColTotl|501 |4778 |7628 | |4800 |88392 |116099 |
    |0.0043 |0.0412 |0.0657 |0.1275 |0.7614 |
Test for independence of all factors
    Chi^2 = 510.2645 d.f.= 12 (p=0)
    Yates' correction not used
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] -3.36-8.47 -9.85 -1.25 5.64
[2,] -0.24 0.84 -1.33 -0.09 0.25
[3,] 1.82 0.40 3.86 1.26 -1.88
[4,]
```


Weekgroup and Injury

Injury and weekgroup are not associated.

```
Call:
crosstabs( ~ wkgrp + injury, data = mistpol.df, na.action = na.exclude)
116063 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
wkgrp |injury
    |fatal |incpctt|noncap |possibl|none |RowTotl|
-------+-------+-------+-------+-------+-------+-----------+
SunWed | 188 | 1764 | 2863 | 5642 | 33072 |43529 |
        10.0043 10.0405 10.0658 10.1296 10.7598 10.38 |
        0.3752 |0.3693 |0.3756 |0.3813 |0.3743
        |0.0016 |0.0152 |0.0247 |0.0486 | 0.2849 | |
-------+-------+------+-------+-------+------+-------+
    |0.0043 |0.0415 |0.0656 |0.1262 |0.7623 |0.62
    |0.6248 | 0.6307 10.6244 | 0.6187 | 0.6257 |
    |0.0027 10.0260 |0.0410 |0.0789 | 0.4764
--------+-------+-------+--------+-------+--------+-------+
ColTotl|501 |4776 |7623 |14798 |88365 |116063 |
    |0.0043 | 0.0412 |0.0657 | 0.1275 |0.7614 |
Test for independence of all factors
    Chi^2 = 3.344447 d.f.= 4 (p=0.501921)
    Yates' correction not used
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] -0.02 -0.94 -0.28 1.31 -0.24
[2,] 0.02 0.72 0.21 -1.01 0.18
```


Gender and Injury

Males tend to be more involved in fatal accidents. The biggest contribution to the gender difference though comes from the possibly-injury accidents where males account for only 60.2% whereas for all accidents they account for 69%. So there contribution to minor accidents is much less than females.

```
Call:
crosstabs( ~ sex + injury, data = mistpol.df, na.action = na.exclude)
109948 cases in table
+-----------+
| N
|N/RowTotal|
|N/ColTotal|
|N/Total
+----------+
sex |injury
    |fatal |incpctt|noncap |possibl|none |RowTotl|
-------+--------+-------+---------+--------+--------+----------
    |0.00507|0.04341|0.07021|0.11443|0.76687|0.69
    |0.79261|0.70865|0.71772|0.60182|0.70389|
    |0.00351|0.03004|0.04859|0.07918|0.53067|
-------+--------+--------+--------+--------+--------+---------
    |0.00298|0.04010|0.06204|0.17009|0.72479|0.31
    |0.20739|0.29135|0.28228|0.39818|0.29611|
    |0.00092|0.01235|0.01911|0.05239|0.22324|
-------+-------+-------+-------+-------+----------------------
ColTotl|487 |4661 | |443 | |4466 |82891 |109948 |
    |0.0044 |0.0424 |0.0677 |0.1316 |0.7539 |
Test for independence of all factors
    Chi^2 = 659.1499 d.f.= 4 (p=0)
    Yates' correction not used
contribution to chi-sq:
    [,1] [,2] [,3] [,4] [,5]
[1,] 2.47 1.10 2.66 -12.80 4.13
[2,] -3.72 -1.65 -3.99 19.23 -6.20
```

Time Series Trellis Plots of Weekgroup
Figure 4 shows that ThuSat group has more accidents. There is an evident downward trend starting around 1996 in SunWed and shortly after in ThuSat.

Figure 4. Sliced vertical scale.

Wkgrp time series and seasonal Mann-Kendall trends

```
> mistpol.total.SunWed.ts
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993: 555 488 633 618
1994: 843 720 584 598 663 754 826 899 597 532 715 855
1995: 567 561 819 600 797 922 927 898
1996: 749 800 678 609 793 952 1006 672 628 637 889 825
1997: 828 562 537 700 738 857 860 724 625 608 640
1998: 816 521 645 630 625 1061 805 762 730 550 647 794
1999: 781 607 642 573
> SeasonalMannKendall(mistpol.total.SunWed.ts)
tau = 0.143, sl =11.86%
> mistpol.total.ThuSat.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 1470 1085 839 1227 814 1196 735 930
1993: 1535 1079 1060 1209 1157 1213 1277 1104 984 1393 1325 1066
1994: 1360 981 1164 901 1053 1159 1241 1046 1114 1249 1007 1298
1995: 1489 980 903 1168 946 1173 1204 1076 1086 1043 1281 1546
1996: 1019 1027 1340 1033 1191 1367 1089 1214 1214 1161 1251 1326
1997: 1254 936 1325 1115 1351 1331 1087 1275 974 1095 1377 1088
1998: 1109 795 1149 937 1353 1055 1212 1199 940 1187 872 1033
1999: 1326 880 923 928
> SeasonalMannKendall(mistpol.total.ThuSat.ts)
tau = -0.111, sl =22.48%
```

Time Series Trellis Plots of Hour
Here is a breakdown by hour from the original SPSS dataset. The 1474 accidents recorded at Midnight were put in the "12AM" group.

	Frequency	Percent
12 mid.-1:00 a.m.	37279	22.6
1:00-2:00 a.m.	34966	21.2
2:00-3:00 a.m.	36834	22.3
11:00 p.m. -12 mid	54378	33.0
Midnight	1474	.9

No significant trends are present in the trellis plots for hour.
Figure 6.

Time Series Trellis Plots of Injury Class

From the crosstab analysis below, there were 109,948 records that contained information of injury. Since there were 164,931 records in total, this means that the injury was reported in only about $2 / 3$ of the accidents. Figure 7 shows there has been a downward trend in incapacitating and non-incapacitating accidents but little other trends. Note that each panel was scaled independently.

Figure 7. Independent vertical scale.

All Accidents, MISTPOL, injury

Time Series Trellis Plots of Gender

Figure 8 shows accidents by males more frequent and there is a downward trend in both groups but more pronounced for males.

Figure 8. Sliced vertical scale.

Time Series Trellis Plots of Drink

In 52.4% of the accidents, drinking information was obtained. Our analysis indicates a significant downward trend in the number of accidents with drinking and without drinking. The downward trend is more pronounced among the drinking group.

Figure 9. Sliced vertical scale.

Tables and Seasonal Mann-Kendall test for total accidents by drinking group.

```
> accidents.mistpol.sober.ts
\begin{tabular}{lllllrllllllr} 
& Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
1992: & & & & & 1029 & 854 & 745 & 929 & 789 & 835 & 639 & 861 \\
1993: & 934 & 682 & 727 & 775 & 741 & 888 & 801 & 778 & 676 & 779 & 822 & 670 \\
1994: & 964 & 712 & 737 & 577 & 611 & 783 & 831 & 740 & 678 & 707 & 683 & 925 \\
1995: & 884 & 612 & 684 & 673 & 643 & 800 & 798 & 722 & 591 & 691 & 900 & 1006 \\
1996: & 664 & 688 & 738 & 627 & 714 & 869 & 798 & 666 & 740 & 697 & 912 & 845 \\
1997: & 866 & 555 & 748 & 646 & 819 & 856 & 724 & 750 & 581 & 641 & 832 & 771 \\
1998: & 727 & 462 & 728 & 582 & 731 & 848 & 822 & 703 & 612 & 636 & 599 & 764 \\
1999: & 854 & 615 & 580 & 494 & 564 & & & & & & &
\end{tabular}
> SeasonalMannKendall(accidents.mistpol.sober.ts)
tau = -0.325, sl =0.03499%
> accidents.mistpol.drunk.ts
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 288 258 231 277 233 270 182 273
1993: 255 225 270 269 284 286 268 269 250 307 281 249
1994: 275 220 276 188 247 244 258 248 240 245 228 280
1995: 282 214 242 252 242 265 264 216 214 201 229 331
1996: 245 240 240 220 227 265 218 220 195 236 250 267
1997: 246 214 215 238 215 213 199 217 210 215 244 234
1998: 186 181 194 176 223 226 200 192 172 215 146 230
1999: 217 157 159 154 162
> SeasonalMannKendall(accidents.mistpol.drunk.ts)
tau = -0.606, sl =2.894e-9%
```


STL Analysis of Accidents with Drinking

There is a downward trend over 1992 to 1999 which is more pronounced after 1996. The seasonal cycle is complicated and shows a lot of variability. $\mathrm{R}-\mathrm{sq}=74.9 \%$ so pretty good fit.

Figure 10a

STL Decomposition: MISTPOL, accidents, drunk

The seasonal variation is not very stable. There are two peaks one in Jul and the other in Dec. The July peak shows little variation in its amplitude over the years. The troughs are in Feb and Sep.

Figure 10b.
Monthplot, MISTPOL, drunk

Figure 10c. Loess trend analysis of deseasonalized series.

$$
\operatorname{tau}=-0.58, \quad \mathrm{sl}=2.22 \mathrm{e}-14 \%
$$

MISTPOL, all accidents, deseasonalilzed, drink=yes

Figure 10d. RF-spread,

$$
\mathrm{R}-\mathrm{sq}=74.9 \%
$$

J. MISTPOL Dataset Fatal Accidents Summary

No much sign of any trend in the number of fatal accidents per month (Fig 1).
STL analysis confirms no trend and unstable seasonal component is seen (Figure 2a and Figure 2b). There is a peak in Jul but Mar though May is also quite high and there is a minimum in Jan-Feb (Figure 2b). Some outliers were detected Figure 2d and Table 1. Low value, $\mathrm{R}-\mathrm{sq}=37.4 \%$, means a lot of unexplained variation.

Drink-Hour are not associated.
Drink-Weekgroup: there are slightly more (17\%) in the ThuSat-YES group than expected under independence but this excess is not statistically significant.

Drink-Gender: males are strongly associated with more fatal accidents involving drinking.

Figure 4 shows that ThuSat group has more accidents and there is a small downward trend starting around 1996 in ThuSat.

No monotonic trend but loess shows a slight increasing trend at 1 AM and 11 PM windows in recent years (Figure 5).

Males have more fatal accidents. No trend in fatalities with males or females (Figure 6).
There has been a striking increase in fatalities involving drinking since 1996 (Figure 7a and Figure 7b). Also confirmed by Seasonal Mann-Kendall test - see Table.

STL analysis confirms that fatal accidents with drinking have risen since 1994 (Figure 8a). Also see loess trend analysis and Mann-Kendall test for deseasonalized fatal accident with drinking - Figure 8e. The R-sq = 50.8% is better than in Figure 2a.

Time Series Plots

No much sign of any trend (Fig 1). There is no significant lag one autocorrelation but seasonality is evident in the lag 12 autocorrelation of 0.92 . The data are approximately Poisson distributed with mean of 5.5.

The discreteness of the data is evident from the normal probability plot but otherwise the normal distribution is not too bad.

Figure 1.

Skewness Coefficient: g_1 = -0.03869677, s.l. $=0.4381817$
Michael's Statistic: D_sp $=0.07047588$, s.l. $=0.126429$
Wilk-Shapiro Statistic: $\bar{W}=0.9644368$, s.I. $=0.08429486$

Table 1.
Time series tabulation \& outliers.

Outliers discovered in Figure 2 d and $\underline{2 f}$ are shown.
> accidents.mistpol.death.ts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1992: $\quad 10 \begin{array}{llllllll} & 6 & 5 & 6 & 8 & 0 & 3 & 9\end{array}$

1993:	8	7	3	4	5	2	6	3	7	8	7	7

1994: 2 | | 2 | 3 | 4 | 8 | 5 | 7 | 6 | 4 | 8 | 7 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1995: $\begin{array}{lllllllllllll}6 & 3 & 8 & 2 & 4 & 5 & 6 & 5 & 6 & 6 & 8 & 5\end{array}$ 1996: $4 \begin{array}{llllllllllll} & 4 & 6 & 8 & 5 & 3 & 9 & 6 & 3 & 5 & 4 & 6\end{array}$

1997:	5	5	5	8	9	8	6	9	6	3	7	7
$1998:$	4	4	10	6	6	6	8	5	4	3	7	3

1999: $6 \quad 3 \quad 5 \quad 6$
> SeasonalMannKendall(accidents.mistpol.death.ts)
tau $=0.0169$, sl $=85.76 \%$
> counter.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1993: $910 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16$
1994: $21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30$
1995: $\begin{array}{lllllllllllll}33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44\end{array}$
1996: $45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53 \quad 54$
1997: $57 \quad 58 \quad 59 \quad 60 \quad 61 \quad 62 \quad 63 \quad 64$
1998: $69 \quad 70 \quad 71 \quad 72 \quad 73 \quad 74 \quad 75 \quad 76$
1999: 81828384

Figure 1.
No monotonic trend.

Fatal Accidents, MISTPOL

STL Analysis

STL analysis indicates no monotonic trend. Unstable seasonal component.
R-sq = 37.4%

Figure 2a.

STL Decomposition: MISTPOL, fatal accidents

ss. window $=5$, fc. window $=59.5$, fc.degree $=1$

There is a lot of variability in the seasonal component. There is a peak in Jul but Mar though May is also quite high and there is a minimum in Jan-Feb (Figure 2b).

Figure 2b.

Monthplot, MISTPOL, fatalities

Figure 2c.
No unexpected autocorrelation in the remainder term.

STL Remainder, MISTPOL, fatalities

Figure 2d
Normal probability plot of remainder indicates some outliers.

Skewness Coefficient: g_1 = -0.1824367, s.l. $=0.2329958$ Michael's Statistic: D_sp $=0.05067573$, s.l. $=0.8947265$ Wilk-Shapiro Statistic: $W=0.9766002$, s.l. $=0.4186626$

```
> counter.ts
```

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

$$
\text { 1993: } 910 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16
$$

$$
\text { 1994: } 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31
$$

$$
\text { 1995: } 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43
$$

$$
\begin{array}{lllllllllllll}
1996: & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56
\end{array}
$$

$$
\begin{array}{lllllllllllll}
1997: & 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68
\end{array}
$$

$$
\text { 1998: } \begin{array}{lllllllllllll}
69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80
\end{array}
$$

$$
\text { 1999: } 81 \quad 82 \quad 8384
$$

Figure 2e.
The loess trend analysis of the deseasonalized series, MISTPOL, fatalities. There is no montonic trend.

$$
\operatorname{tau}=0.0212, \quad s l=77.86 \%
$$

MISTPOL, fatalities, deseasonaliized

Figure 2f.
RF-spread shows there are several outliers in the bottom left-corner.
This accounts for the R-sq, $R-s q=37.4 \%$

Crosstab Analysis

Drink and Hour

Drink-Hour are not associated.

```
> crosstabs( ~ drink + hour, data = mistpol.fatal.df, na.action = na.exclude)
Call:
crosstabs(formula = ~ drink + hour, data = mistpol.fatal.df, na.action =
        na.exclude)
333 cases in table
+-----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
drink |hour
```



```
\begin{tabular}{llllll} 
yes & 158 & 158 & 160 & 176 & 1252 \\
& 10.23 & 10.23 & 10.24 & 10.3 & 10.76 \\
& 10.69 & 10.77 & 10.75 & 10.81 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 10.17 & 10.17 & 10.18 & 10.23 & | \\
\hline 126 & 117 & 120 & 118 & 81 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 10.32 & 10.21 & 10.25 & 10.22 & 10.24 \\
\hline 10.31 & 10.23 & 10.25 & 10.19 & | \\
\hline 10.078 & 10.051 & 10.06 & 10.054 & | \\
\hline ColTotl|84 & 175 & 180 & 194 & 1333 \\
\hline 10.25 & 10.23 & 10.24 & 10.28 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 3.504304 d.f.= 3 (p=0.3202043)
    Yates' correction not used
> get.crosstabs.percenterror( ~ drink + hour)
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & -9 & 2 & -1 & 7 \\
{\([2]\),} & 27 & -7 & 3 & -21
\end{tabular}
> contrib( ~ drink + hour)
contribution to chi-sq:
    [,1] [,2] [,3] [,4]
[1,] -0.70 0.17 -0.07 0.58
[2,] 1.23 -0.29 0.12 -1.02
```

Drink and Weekgroup
There are slightly more (17\%) in the ThuSat-YES group than expected under independence but this excess is not statistically significant.

```
> crosstabs( ~ drink + wkgrp, data = mistpol.fatal.df, na.action = na.exclude)
Call:
crosstabs(formula = ~ drink + wkgrp, data = mistpol.fatal.df, na.action = na.exclude)
333 cases in table
+-----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total
drink |wkgrp
        |SunWed |ThuSat |RowTotl|
lu------+--------+--------+--------+
\begin{tabular}{|c|c|c|c|}
\hline & 10.35 & 10.65 & 10.76 \\
\hline & 10.71 & 10.79 & | \\
\hline & 10.27 & 10.49 & | \\
\hline no & | 37 & | 44 & 181 \\
\hline & 10.46 & 10.54 & 10.24 \\
\hline & 10.29 & 10.21 & | \\
\hline & 10.11 & 10.13 & । \\
\hline ColTotl| & 1126 & 1207 & 1333 \\
\hline & 10.38 & 10.62 & | \\
\hline
\end{tabular}
Test for independence of all factors
    Chi^2 = 2.797941 d.f.= 1 (p=0.09438545)
    Yates' correction not used
> get.crosstabs.percenterror( ~ drink + wkgrp)
[,1] [,2]
[1,] -7 4
[2,] 21 -13
> contrib( ~ drink + wkgrp)
contribution to chi-sq:
    [,1] [,2]
[1,] -0.65 0.51
[2,] 1.15 -0.90
```

Drink and Gender
Males are strongly associated with more fatal accidents involving drinking.

```
> crosstabs( ~ drink + sex, data = mistpol.fatal.df, na.action = na.exclude)
Call:
crosstabs(formula = ~ drink + sex, data = mistpol.fatal.df, na.action = na.exclude)
326 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
\begin{tabular}{|c|c|c|c|}
\hline drink & |male & | female & | RowT \\
\hline \multirow[t]{4}{*}{yes} & 1200 & | 46 & 1246 \\
\hline & 10.81 & 10.19 & 10.75 \\
\hline & 10.8 & 10.6 & I \\
\hline & 10.61 & 10.14 & \| \\
\hline \multirow[t]{4}{*}{no} & 149 & | 31 & 180 \\
\hline & 10.61 & 10.39 & 10.25 \\
\hline & 10.2 & 10.4 & I \\
\hline & 10.15 & 10.095 & I \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\text { ColTotl } & \mid 249 \\
& 10.76
\end{aligned}
\]}} & 177 & 1326 \\
\hline & & 10.24 & | \\
\hline
\end{tabular}
Test for independence of all factors
            Chi^2 = 13.45292 d.f. = 1 (p=0.000244625)
            Yates' correction not used
> get.crosstabs.percenterror( ~ drink + sex)
            [,1] [,2]
[1,] 6 -21
[2,] -20 64
> contrib( ~ drink + sex)
contribution to chi-sq:
    [,1] [,2]
[1,] 0.88 -1.59
[2,] -1.55 2.78
```

Time Series Trellis Plots of Weekgroup
Figure 4 shows that ThuSat group has more accidents. There is a very small downward trend starting around 1996 in ThuSat.

Figure 4.

Tables and Seasonal Mann-Kendall test for fatal accidents by wkgrp

```
> accidents.fatal.SunWed
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
```



```
1993:
1994:
1995:
1996:
1997:
1999: 1 1 3 3 5
> SeasonalMannKendall(accidents.fatal.SunWed)
tau = 0.0919, sl =33.8%
> accidents.fatal.ThuSat
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 8
1993:
1994:
1995:
```



```
1997:
1999: 5 2 2 3 1
> SeasonalMannKendall(accidents.fatal.ThuSat)
tau = -0.0206, sl = 82.61%
```

Time Series Trellis Plots of Hour
Increasing trend at 1 AM and 11 PM in recent years (Figure 5)
Figure 5.

Fatal Accidents, MISTPOL

Table and Mann-Kendall test, fatal accidents by hour

Time Series Trellis Plots of Gender
Males have more fatal accidents. No trend in fatalities with males or females (Figure 6a and Figure 6b).

Figure 6a. Common scale.

Figure 6b. Sliced vertical scale.
The plot is redone allowing sliced scaling on the vertical axis between the panels.

Tables and Seasonal Mann-Kendall tests

```
accidents.fatal.male
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 9 4 4 4 4 4
1993: 6 5 5 1 1 3 <llllllllllll
```



```
1995:}50503\mp@code{8
```



```
1997:
1998:}30303\mp@code{6
1999: 4 3 3 6 6
> SeasonalMannKendall(accidents.fatal.male)
tau = 0.0501, sl =59.44%
> accidents.fatal.female
        Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 1
1993: 2 2 2 1 1 2 0 0 2 1 1 0
1994:}0
1995: 1 0 0 0 0 1 1 0
```



```
1997:
```



```
1999: 1 0 2 0 0
> SeasonalMannKendall(accidents.fatal.female)
tau = 0, sl =100%
```


Time Series Trellis Plots of Drink

There has been a striking increase in fatalities involving drinking since 1996 (Figure 7a and 7 b).

Figure 7a. Fatal accidents by drinking. Common scale.

Figure 7b. Fatal accidents by drinking with sliced vertical scales.

Fatal Accidents, MISTPOL, drink

Tables and Trend Tests: fatal accidents

There is an alarming upward trend in fatal accidents associated with drinking. No trend in other.

```
> accidents.fatal.yes
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 4
1993: 3 3 0 0 0 2 0 0 3 0
```



```
1996:
```



```
1999: 6 3 1 5 4
> SeasonalMannKendall(accidents.fatal.yes)
tau = 0.352, sl =0.02077%
> accidents.fatal.no
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 2 1 0 0 0 0
1993: 2 2 0 0 1 0
1994:}0
1995:}20~
1996: 2 1 0 0 3 3 0 0
1997:}1
1998:
1999: 0 0 3 0 2
> SeasonalMannKendall(accidents.fatal.no)
tau = 0.0527, sl = 59.31%
```


STL Analysis of Fatal Accidents with Drinking

Fatal accidents with drinking have risen since 1994 (Figure 8). This analysis is based on very small counts. There is no significant lag one autocorrelation but seasonality is evident in the lag 12 autocorrelation of 0.92 . The data are approximately Poisson distributed with mean of 3.5.
$R-s q=50.8 \%$ No monotone spread.

Figure 8a.

The seasonal variation is not very stable (Figure 8b).
Figure 8b.

Monthplot, MISTPOL, fatalities, drunk

Figure 8c. The remainder component is approximately normally distributed.

Skewness Coefficient: g_1 = -0.1005119 , s.l. $=0.3425395$
Michael's Statistic: D_sp $=0.04366982$, s.l. $=0.6218337$
Wilk-Shapiro Statistic: $W=0.9896425$, s.I. $=0.9538782$

Figure 8d. The remainder term has no unusual autocorrelation.

Figure 8e. Loess trend analysis of the deseasonalized series. Mann-Kendall test: tau $=0.329$, sl $=6.569 \mathrm{e}-4 \%$

MISTPOL, fatalities, drunk, deseasonaliized

Figure 8f. RF spread plot.
Agrees with $R-s q=50.8 \%$.

J. MISTPOL Dataset Incapacitating Accidents

Summary

Figure 1. There is a clear downward trend in the number of incapacitating accidents (Fig. 1). Since May 1992 the trend line has declined from 60.6 to 37.4 by April 1999. The average annual rate of decline is about 6.7%. The decline is much steeper during the second half of the series (ie. from 1996). Seasonal Mann-Kendall indicates strong trend. Possible outliers noted (Figure 3c and Figure 3e).

The data are approximately Gaussian distributed with mean of 53.7 (Figure 2).
STL analysis confirms the downward trend and shows a change in the seasonal pattern occurred after 1996 (Figure 3a). There is a lot of variability in the seasonal component. There is a peak in May-Jun, Jun-Aug are also high and there is a minimum in Jan-Feb and in Sep (Figure 3b).

Drink-Hour are dependent: there are fewer YES-11PM and more YES-2AM.
Drink-Weekgroup are associated - there are less YES-SunWed as might be supposed.
Drink-Gender are associated: males are strongly associated with more incapacitating accidents involving drinking.

Figure 4 shows that ThuSat group has more incapacitating accidents. There is an evident downward trend in both groups.

By hour. Downward trend in all panels but the slope seems to decrease as it gets later (Figure 5) and the downward trend for 2AM does not start until after 1996. Monotonic trend not significant for 2AM, Table 5.

Males have more incapacitating accidents. Much greater downward trend for males (Figure 6). Monotonic trend for males but not females - Table 6. Test for monotonic trend significant for males bu not significant for females. The loess trend line for incapacitating accidents by males has declined from about 43.0 per month in May 1992 to about 25.3 per month by April 1999. The average annual rate of decline is about 7.3%. It is clear that there is no change for females until after 1996 and then only a very small decline.

Both drinking and non-drinking have downward strong trends (Figure 7).
Strong downward trend in incapacitating accidents involving drinking. Seasonal component has changed since about 1995 and is very changeable (Figure 8a). R-sq = 65.4 \%Possible outliers May 1993 $(+)$, Nov 1993 (+) and Feb $1994(-)$ - see Figures 8c and 8e. Figure 8b, Apr-Aug and Oct are relatively high and Dec is also relatively low.

Time Series Tabulation and Loess Analysis

There is a clear downward trend in the number of incapacitating accidents (Fig. 1). Since May 1992 the trend line has declined from 60.6 to 37.4 by April 1999. The average annual rate of decline is about 6.7%. The decline is much steeper during the second half of the series (ie. from 1996). Seasonal Mann-Kendall indicates strong trend. Possible outliers noted (Figure 3c and Figure 3e).
> accidents.mistpol.incap.ts

	an	Feb		pr	May	Ju	Ju	Aug	Sep	Oc	No	Dec
1992:					79	73	62	68	53	47	50	53
1993:	45	42	64	60	92	70	59	62	61	62	83	54
1994:	47	31	60	56	63	60	71	77	55	61	36	71
1995:	52	53	50	51	61	71	64	65	54	65	50	55
1996:	42	44	43	49	67	68	65	61	47	49	52	42
1997:	47	43	54	62	61	63	36	50	42	51	59	44
1998:	38	26	26	44	53	61	61	44	51	55	5	38
1999:	32	31	28	34								
```> SeasonalMannKendall(accidents.mistpol.incap.ts) tau = -0.432, sl =2.6e-4%```												
$>\mathrm{pc}$.	chan	ge (	acci	den	cha	istp	\% an	incap	1.ra	s)		
60.6572737 .3654738 .399036 .68723												

Figure 1. Incapacitating Accidents, MISTPOL


## Normal Probability Plot

There is no significant lag one autocorrelation but seasonality is evident in the lag 12 autocorrelation of 0.92 . The data are approximately Gaussian distributed with mean of 53.7 (Figure 2).

Figure 2

## accidents.mistpol.incap.ts



Skewness Coefficient: g_1 = 0.1004565 , s.l. $=0.3426213$
Michael's Statistic: D sp $=0.04588675$, s.I. $=0.7811733$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9823758$, s.I. $=0.6912928$

## STL Analysis

STL analysis confirms the downward trend and shows a change in the seasonal pattern occurred after 1996 (Figure 3a). R-sq = $74.5 \%$

Figure 3a.


There is a lot of variability in the seasonal component. There is a peak in May-Jun, JunAug are also high and there is a minimum in Jan-Feb and in Sep (Figure 3b).

Figure 3b.

Monthplot, MISTPOL, Incapacitating accidents


## Figure 3c.

Remainder term is reasonably normal. Some possible outliers noted.


Skewness Coefficient: g_1 = 0.4815951 , s.l. $=0.03155919$
Michael's Statistic: D_sp $=0.04984248$, s.l. $=0.9513645$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9720545$, s.l. $=0.2469895$

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					1	2	3	4	5	6	7	8
1993:	9	10	11	12	13	14	15	16	17	18	19	20
1994:	21	22	23	24	25	26	27	28	29	30	31	32
1995:	33	34	35	36	37	38	39	40	41	42	43	44
1996:	45	46	47	48	49	50	51	52	53	54	55	56
1997:	57	58	59	60	61	62	63	64	65	66	67	68
1998:	69	70	71	72	73	74	75	76	77	78	79	80
1999:	81	82	83	84								

Figure 3d.
Strong downward trend in deseasonalized series.

$$
\text { tau }=-0.468, \quad \text { sl }=0 \%
$$

MISTPOL, Incapacitating accidents, deseasonalilzed


Figure 3e. RF-spread plot
Outliers are evident otherwise agrees more or less with $R-s q=74.5 \%$

Fitted Values


Residuals

f-value

## Crosstab Analysis

Drink and Hour
Drink-Hour are dependent: there are fewer YES-11PM and more YES-2AM.

```
> crosstabs(~ drink + hour, data = mistpol.incap.df, na.action = na.exclude)
Call:
crosstabs(formula = ~ drink + hour, data = mistpol.incap.df, na.action = na.exclude)
3210 cases in table
+-----------+
| N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
drink |hour
\begin{tabular}{|c|c|c|c|c|c|}
\hline & | 11 PM & | 12AM & | 1 AM & | 2AM & |RowTotl| \\
\hline \multirow[t]{4}{*}{yes} & 1322 & 1345 & 1373 & 1563 & | 1603 \\
\hline & 10.2 & 10.22 & 10.23 & 10.35 & 10.5 \\
\hline & 10.37 & 10.45 & 10.56 & 10.62 & | \\
\hline & 10.1 & 10.11 & 10.12 & 10.18 & 1 \\
\hline \multirow[t]{4}{*}{no} & 1540 & 1423 & 1294 & 1350 & | 1607 \\
\hline & 10.34 & 10.26 & 10.18 & 10.22 & 10.5 \\
\hline & 10.63 & 10.55 & 10.44 & 10.38 & 1 \\
\hline & 10.17 & 10.13 & 10.092 & 10.11 & 1 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & 1768 & 1667 & 1913 & | 3210 \\
\hline & & 10.24 & 10.21 & 10.28 & 1 \\
\hline
\end{tabular}
Test for independence of all factors
 Chi^2 = 122.0984 d.f.= 3 (p=0)
 Yates' correction not used
> get.crosstabs.percenterror(~ drink + hour)
 [,1] [,2] [,3] [,4]
[1,] -25 -10 12 23
[2,] 25 10 -12 -23
> contrib(~ drink + hour)
contribution to chi-sq:
[,1] [,2] [,3] [,4]
[1,] -5.23 -1.97 2.19 5.01
[2,] 5.22 1.96 -2.18 -5.01
```


## Drink and Weekgroup

Drink-Weekgroup are associated - there are less YES-SunWed as might be supposed.

```
> crosstabs(~ drink + wkgrp, data = mistpol.incap.df, na.action = na.exclude)
Call:
crosstabs(formula = ~ drink + wkgrp, data = mistpol.incap.df, na.action = na.exclude)
3208 cases in table
+-----------
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total
drink |wkgrp
 |SunWed |ThuSat |RowTotl|
-------+-------+-------+--------+
\begin{tabular}{l|lll}
yes & \(\mid 547\) & \(\mid 1055\) & \(\mid 1602\) \\
& \(\mid 0.34\) & 10.66 & 10.5
\end{tabular}
```



```
Test for independence of all factors
 Chi^2 = 10.96149 d.f.= 1 (p=0.0009302476)
 Yates' correction not used
> get.crosstabs.percenterror(~ drink + wkgrp)
[1,] [,1] [, [[]
[2,] 8 -4
> contrib(~ drink + wkgrp)
contribution to chi-sq:
 [,1] [,2]
[1,] -1.86 1.42
[2,] 1.86 -1.42
```

Drink and Gender
Drink-Gender are associated: males are strongly associated with more incapacitating accidents involving drinking.

```
> crosstabs(~ drink + sex, data = mistpol.incap.df, na.action = na.exclude)
Call:
crosstabs(formula = ~ drink + sex, data = mistpol.incap.df, na.action = na.exclude)
3 1 6 9 ~ c a s e s ~ i n ~ t a b l e
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total
+----------+
drink |sex
| |male |female |RowTotl|
```



```
Test for independence of all factors
 Chi^2 = 102.054 d.f.= 1 (p=0)
 Yates' correction not used
> get.crosstabs.percenterror(~ drink + sex)
 [,1] [,2]
[1,] 12 -28
[2,] -12 28
> contrib(~ drink + sex)
contribution to chi-sq:
 [,1] [,2]
[1,] 3.90 -5.99
[2,] -3.89 5.98
```

Time Series Trellis Plots of Weekgroup
Figure 4 shows that ThuSat group has more incapacitating accidents. There is an evident downward trend in both groups.

Figure 4.


## Table 4

Data and Seasonal Mann-Kendall Tests for Incapacitating Accidents by WKGRP

```
> accidents.incap.SunWed
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 14 24 22 28 29
1993: 21 8 26 16 36 23 21 28 25 18 18 31 28
1994: 13 17 19 16 20 22 22 % 32 16 16 19 16 16 37
1995: 20 18 19 15 22 32 26 25 25 17 23 22 13
1996: 17 18 15 27 17 32 32 19 19 18
1997: 19 12 16 19 11 22 15 15 13 %
1998: 13 10 10 16 10 27 29 20 23 21
1999: 7 12 10 10
> SeasonalMannKendall(accidents.incap.SunWed)
tau = -0.274, sl =0.3193%
> accidents.incap.ThuSat
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 65 49 39 40 23 31
```



```
1994: 34 14 41 40 43 38 49
1995: 32 35 31 36 39 39 38 40
1996: 25 26 28 22 50 36 33 42 4, 29 % 39 35 25
1997: 28 31 38 43 50 41
1998: 25 16 16 28 43 34 32 24 28 28
1999: 25 19 18 24
> SeasonalMannKendall(accidents.incap.ThuSat)
tau = -0.365, sl =0.00809%
```


## Time Series Trellis Plots of Hour

Downward trend in all panels but the slope seems to decrease as it gets later (Figure 5) and the downward trend for 2AM does not start until after 1996.

Figure 5.


Table 5. Incapacitating Accidents by Hour. Significant downward trend except for 2AM.

```
> accidents.incap.11PM
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
```



```
1993: 15 14 13 21 27 19 16 20 21 12
1994: 7 5 5 17 16 15 19 22 23 14 14 12
1995: 8 10 14 8
1996: 15 13 11 8
```



```
1998: 7 4 4 4 11 13 17 20 11 13 10 11
1999: 10 7 7 13
> SeasonalMannKendall(accidents.incap.11PM)
tau = -0.323, sl =0.05035%
> accidents.incap.12AM
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 23 14 19 18 7
1993: 10 8 17 10 19 18 12 16 16 15 12 12 13
1994: 14 10 15 14 21 14 11 23 20 16 10
1995: 9 17 7 16 12 20 14 10 9
1996: 7 10 12 11 15 16 22 18
1997: 7 11 12 13 15 18 10
1998: 10 5 12 14 8
1999: 3 8 6 10
> SeasonalMannKendall(accidents.incap.12AM)
tau = -0.286, sl =0.2255%
> accidents.incap.1AM
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 20 12 9
1993: 7 11 15 13 13 18 16 12 12 13 15 19
1994: 12 10 13 10 9
1995: 14 12 13 15 15 7
1996: 10 5 5 5 14 21 8
1997: 6
1998: 6 6 7 2 12 13 17 19 13 11
1999: 8 11 6 3
> SeasonalMannKendall(accidents.incap.1AM)
tau = -0.216, sl =2.113%
> accidents.incap.2AM
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 17 21 16 19}111⿱1夕\mp@code{15
1993: 13 9 19 16 33 15 15
1994: 14 6 15 16 18 11 29 19 % 8 20 12
1995: 21 14 16 12 11 13 12 22 20 21
1996: 10 16 15 16 13 25 19
1997: 18 15 18 17 14 17 10
1998: 15 10 8
1999: 11 5 9 8
> SeasonalMannKendall(accidents.incap.2AM)
tau = -0.123, sl =18.58%
```


## Time Series Trellis Plots of Gender

Males have more incapacitating accidents. Much greater downward trend for males (Figure 6a and 6b). Downward trend for females starts after 1996.

Figure 6. Common Scale.


Figure 6b. Sliced Vertical Scale.
It is clear that there is no change for females until after 1996 and then only a very small decline.


## Table 6. Incapacitating Accidents by Gender.

Test for monotonic trend significant for males bu not significant for females. The loess trend line for incapacitating accidents by males has declined from about 43.0 per month in May 1992 to about 25.3 per month by April 1999. The average annual rate of decline is about $7.3 \%$.

```
> accidents.incap.male
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 48 55 47 51 38 28 36 40
1993: 34 31 41 44 73 48 43 39 45 46 61
1994: 35 22 41 36 50 44 51 58 42 44 23 42
1995: 40 38 35 31 42 52 44 49
1996: 27 28 34 33 41 49 44 41 28 30
1997: 25 34 35 45 42 47 17 36 32 35 39
1998: 23 17 18 35 35 40 44 32 37 36 18 23
1999: 20 22 18 25
> SeasonalMannKendall(accidents.incap.male)
tau = -0.497, sl =7.373e-6%
> pc.change(accidents.incap.male)
 start end change% annual.rate%
 42.98232 25.33472 41.05781 7.273524
> accidents.incap.female
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 29 17 15 15
1993: 10 10 23 15 19 20 13 21 13 15 21 17
1994: 11 8 19 18 12 15 14 16 12 16 16 13 26
```



```
1996: 15 16 9 16 24 18
1997: 20 6 19 16 18 15 17 13 10 15 18 17
1998: 15 8 6 9 18 20 16 12 13 16 16 14
1999: 12 7 9 9
> SeasonalMannKendall(accidents.incap.female)
tau = -0.12, sl =20.04%
```


## Time Series Trellis Plots of Drink

Both drinking and non-drinking have downward strong trends (Figure 7).
Figure 7.


Table 7.
Incapacitating accidents by drinking status.
Highly significant downward trends in both groups.

```
> accidents.incap.yes
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 27 30 25 24 22 22 17 25
1993: 16 22 30 24 44 22 31 21 24 21 39 21
1994: 18 11 20 22 25 22 25 22 18 26 14
1995: 25 25 22 21 24 28 18 21 18 21 14 14 24
1996: 23 17 8 22 14 18 21 20
1997: 16 16 19 24 18 18 13 14
1998: 7 9 7 7 11 18 17 16 12 16 20 14 15
1999: 11 10 9 5
> SeasonalMannKendall(accidents.incap.yes)
tau = -0.596, sl =1.372e-8%
> pc.change(accidents.incap.yes)
 start end change% annual.rate%
 24.33004 11.10531 54.35555 10.59926
> accidents.incap.no
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 40 31 30 24 24 21 17 22
1993: 21 13 22 26 36 38 14 30 22 19 191
1994: 20 14 26 20 22 22 24 24 32 19 101
1995: 16 15 15 15 18 20 20 16 18 18 26 18 15
1996: 7 17 20 10 23 24 16 16 23 19 13 17 17 16
1997: 21 14 21 23 21 30 10 16 15 15 20 17 17
1998: 17 5 8 16 14 20 27 14 12 13 % 8 15
1999: 11 12 9 12
> SeasonalMannKendall(accidents.incap.no)
tau = -0.456, sl =8.893e-5%
> pc.change(accidents.incap.no)
 start end change% annual.rate%
25.66869 11.66655 54.5495 10.65362
```


## STL Analysis of Incapacitating Accidents with Drinking

Strong downward trend in incapacitating accidents involving drinking. Seasonal component has changed since about 1995 and is very changeable (Figure 8). R-sq = $65.4 \%$
Possible outliers May 1993 (+), Nov 1993 (+) and Feb 1994 ( - ) - see Figures 8c and 8e.
> accidents.mistpol.incap.drunk.ts

	Jan	Feb	ar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992:					27	30	25	24	22	22	17	25
1993:	16	22	30	24	44	22	31	21	24	21	39	21
1994:	18	11	20	22	25	22	25	22	18	26	14	17
1995:	25	25	22	21	24	28	18	21	18	21	14	24
1996:	23	17	8	22	14	18	21	20	12	19	17	9
1997:	16	16	19	24	18	18	13	14	14	18	16	12
1998:	7	9	7	11	18	17	16	12	16	20	14	15
1999:	11	10	9	5	9							
> SeasonalMannKendall(accidents.mistpol.incap.drunk.ts tau $=-0.608, \quad$ sl $=4.274 \mathrm{e}-9 \%$												
> pc.change(accidents.mistpol.incap.drunk.ts)												
tart end change\%												
24.3	O04	11.1	0531	54.	3555			. 599	926			

## Figure 8a.



The seasonal variation is not very stable (Figure 9). Apr-Aug and Oct are relatively high and Dec is also relatively low.

Figure 8b
Monthplot, MISTPOL, incapacitating, drunk


Figure 8c.
Normal probability plot of remainder component.

## Some outliers evident.



Skewness Coefficient: g_1 $=0.8364291$, s.l. $=0.001263527$
Michael's Statistic: D_sp $=0.06378794$, s.l. $=0.2666077$
Wilk-Shapiro Statistic: $\mathrm{W}=0.9563681$, s.l. $=0.02245304$

```
> counter.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993: 9 10 11 12 13 14 15 16 16 17 18
1994: 21 22 23 24 25 26 27 28 28 29
1995: 33 34 35 36 37 38 39 40
1996: 45 46 47 48 49 50 51 52 53 54 55 56
1997: 57 58 59 60 61 62 63 64 65 66 67 68
1998: 69 70 71 72 73 74 75 76 7% 77 78 79 80
1999: 81 82 83 84
```

Figure 8d.
Loess trend analysis of deasonalized component.

```
 tau = -0.557, sl =0%
> pc.change(deseasonalized.ts)
 start end change% annual.rate%
23.99675 12.13592 49.42682 9.28003
```

MISTPOL, incapacitating, drunk, deseasonalilzed


Wkgrp time series and seasonal Mann-Kendall trends

```
> mistpol.total.SunWed.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992:
1993: 555 488 633 618 765 850 704 822 690 526 657 680
1994: 843 720 584 598 663 754 826 899 597 532 715 855
1995: 567 561 819 600 797 922 927 898
1996: 749 800 678 609 793 952 1006 672 628 637 889 825
1997: 828 562 537 700 738 857 860 724 625 608 640
1998: 816 521 645 630 625 1061 805 762 730 550 647 794
1999: 781 607 642 573
> SeasonalMannKendall(mistpol.total.SunWed.ts)
tau = 0.143, sl =11.86%
> mistpol.total.ThuSat.ts
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1992: 1470 1085 839 1227 814 1196 735 930
1993: 1535 1079 1060 1209 1157 1213 1277 1104 984 1393 1325 1066
1994: 1360 981 1164 901 1053 1159 1241 1046 1114 1249 1007 1298
1995: 1489 980 903 1168 946 1173 1204 1076 1086 1043 1281 1546
1996: 1019 1027 1340 1033 1191 1367 1089 1214 1214 1161 1251 1326
1997: 1254 936 1325 1115 1351 1331 1087 1275 974 1095 1377 1088
1998: 1109 795 1149 937 1353 1055 1212 1199 940 1187 872 1033
1999: 1326 880 923 928
> SeasonalMannKendall(mistpol.total.ThuSat.ts)
tau = -0.111, sl =22.48%
```

Appendix 1: Aspect-Ratio, Trend and Time Series Visualization

## Aspect Ratio

The aspect-ratio is defined as
(physical length of vertical axis) $\div$ (physical length of horizontal axis)
The aspect-ratio for some displays is shown in the table below.

	Horizontal	Vertical	Aspect-ratio
My TV	19.5 inches	25.5 inches	0.46
Video formatted for movie   theatre on my TV	$115 / 8$ inches	25.5 inches	0.76
My Computer Display	1200 pixels	1600 pixels	0.75

As an illustrative example the aspect-ratio in Figure 1 is chosen to be 0.25 .
Figure 1. FARS deaths, Aspect-ratio is 0.25

FARS, deaths, aspect-ratio $=0.25$


Mathematica uses by default an aspect-ratio which is the reciprocal of the Golden Ratio, approximately 0.61803. The Golden Ratio may be defined as the proportion of the division of a line so that the larger is to the smaller as the the smaller is to the whole. Let the smaller line segment have length one and the larger line segment have length Y then the golden ratio is the positive solution of the equation,

$$
\begin{equation*}
1 / Y=Y /(Y+1) \tag{1}
\end{equation*}
$$

this may also be written

$$
\begin{equation*}
Y=1+1 / Y \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
1 / Y=Y-1 \tag{3}
\end{equation*}
$$

An equivalent definition is for rectangles. In this case the golden ratio is the ratio of the difference between the sides of the rectangle and the smaller side is equal to the ratio of the smaller side to the larger side. Let Y denote the larger side and letting the smaller side have unit length then we see that this is expressed by equation (3).

The golden ratio is denoted by $\varphi=(1+\sqrt{5}) / 2$, with numerical value approximately 1.61803 which has reciprocal value approximately equal to 61803 .

The aspect ratio is supposed in classical asthetic theory to be uniquely pleasing to the eye.
By default, Mathematica uses the reciprocal of the Golden Ratio as the default aspect ratio. Below is a plot of the FARS deaths with a locally-linear robust loess $60 \%$ smoother drawn in Mathematica.

Figure 2.


## The Banking to $45^{\circ}$ Principle

Cleveland (Elements of Graphing Data, 1994; Visualizing Data, 1993) developed a more scientific approach to the choice of aspect-ratio for data visualization. Cleveland's suggestion, which he calls banking to is to $45^{\circ}$, is to choose the aspect-ratio so the average absolute weighted of what is of interest is approximately $45^{\circ}$. Banking to $45^{\circ}$ improves the accuracy of our visualization of data and trends. This has been demonstrated experimentally and also using Cleveland's theory of graphical perception (Cleveland, 1994, Ch. 4).

If you have a stationary time series (with essentially zero slope) and you bank to $45^{\circ}$ all the successive line segments joining the individual values then the aspect-ratio will be a very small number, typically $\ll 0.25$. On the other hand if you bank to $45^{\circ}$ the estimated trend which itself has slope close to zero then the aspectratio will be a large number $\gg 4$. Sometimes this automatic principle gives aspect-ratios which are too small or too large for the resolution or size of the paper or display. In this case we just regard the optimal aspectratio, obtained by banking to $45^{\circ}$, as a general indication for what direction we should move in choose an aspect-ratio for our plot. Another problem is that banking to a loess curve may sometimes be at the expense of good data resolution.

Figure 3. Banking a stationary time series trace plot to $45^{\circ}$.

Time Series Trace Plot of 50 NID $(0,1)$ Random Numbers
Banked to 45 degrees


## Illustrative FARS Time Series Examples

Figure 4 below shows the FARS deaths time series in which the successive line segments joining the data values are banked to $45^{\circ}$. This is very different from the case of a stationary time series due to the presence of seasonality.

Figure 4. The data is banked to $45^{\circ}$ to choose the aspect-ratio.

FARS, deaths


Figure 5 below shows the FARS deaths with an aspect-ratio chosen to bank the loess trend line to $45^{\circ}$. This aspect ratio optimizes our visualization of the trend line but since it compresses the data area into a small rectangle, data visualization is impaired.

Figure 5. The aspect ratio is choose by banking to $45^{\circ}$ the locally-linear loess trend curve.

Fars, deaths


## Conclusion

A square aspect ratio (aspect-ratio of 1) provides good data visualization as well as a reasonable visualization of the trend. It is very important when when interpreting these graphs to note the tick mark labels on the vertical axes. So for example, in Figure 6, we see that initially the loess trend starts in 1992 at around 74 deaths per month and decreases to about 58 deaths per month. There is a lot of variability about the trend line. In general we will use an aspect-ratio of 1 as our default for this project.

Figure 6. Aspect-ratio is 1.0

FARS, deaths, aspect-ratio=1.0


Figure 7 below illustrates an exception to the $45^{\circ}$ banking rule. We have delibrated chosen a reduced aspect ratio of to improve visualization on the horizontal scale so that we can look for temporal associations between the panels. If a square aspect-ratio were used we would not be able to see so well that there does not appear to be any association between the panels. We have also used a log transformation to improve the data visualiation. Without a log transformation the bulk of the data would be squished into a relatively small area of the panel and the resolution of individual data points would not be satisfactory.

Figure 7. Common scales used in panels.

FARS log(deaths+1)


## Appendix 2: Loess

## Gaussian Case

Given bivariate observations $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$, the basic model that can be fit may be written,

$$
y_{i}=g\left(x_{i}\right)+\epsilon_{i}, i=1, \ldots, n
$$

where $e_{i} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$ and $g(x)$ is a local linear polynomial of degree $\lambda \geq 0$. The local linear polynomial may be written,

$$
g(x)=\beta_{0}^{(x)}+\beta_{1}^{(x)} x+\ldots+\beta_{\lambda}^{(x)} x^{\lambda}
$$

The parameters $\beta_{0}^{(x)}, \beta_{1}^{(x)}, \ldots, \beta_{\lambda}^{(x)}$ are estimated by weighted least squares for each value of $x$. The weight function weights the data, $\left(x_{i}, y_{i}\right)$, so that data values near to $x$ have greater weight than those farther away from $x$. Following Cleveland (1996) we use the tricube weight function,

$$
T(z)=\begin{array}{cc}
\left(1-|z|^{3}\right)^{3} & |z| \leq 1 \\
0 & |z|>1
\end{array}
$$

to define the local neighborhood weights for the data at the point $x$,

$$
w_{i}(x)=T\left(\Delta_{i}(x) / \Delta(x, \alpha)\right)
$$

where $\Delta_{i}(x)=\left|x-x_{i}\right|$ and $\Delta(x, \alpha)$ controls the amount smoothing. Larger values of $\Delta(x, \alpha)$ result in more smoothing. As $\Delta(x, \alpha) \rightarrow \infty, w_{i}(x) \rightarrow 1$ for each $i=1,2, \ldots, n$ and the local linear model reduces to the standard parametric polynomial regression. For $0<\alpha \leq 1, \Delta(x, \alpha)$ is the distance to the $q$-th nearest neighbor where $q=[\alpha n]$, where [ $\odot$ ] is the integer part. Hence, $\Delta(x, \alpha)=\Delta_{(q)}(x)$, where $\Delta_{(q)}(x)$ denotes the $q$-th largest value of $\Delta_{i}(x), i=1, \ldots, n$. For $\alpha>1$, $\Delta(x, \alpha)=\alpha \Delta_{(n)}(x)$. It follows that as $\alpha \rightarrow \infty$, the local linear model reduces to a parametric polynomial regression of degree $\lambda$.

Approximate statistical inference methods are available for Gaussian loess models (Cleveland and Devlin, 1988).
Here are two examples of loess fit first to a small dataset of 13 points and then second to a dataset with 200 points.


## Robust or Symmetric Errors Case

In the robust case it is only assumed that the errors are symmetric. Hence for data $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$, the basic model that can be fit may be written,

$$
y_{i}=g\left(x_{i}\right)+\epsilon_{i}, i=1, \ldots, n
$$

where $e_{i} \sim \operatorname{IID}\left(0, \sigma^{2}\right)$ with a symmetric distribution and $g(x)$ is again a local linear polynomial of degree $\lambda \geq 0$.
The model is fit to each of the $n$ observed data values using a Iteratively Reweighted Least Squares (IRWLS) algorithm. Each iteration fits the model using the current weights which are the product of the robustness weights times the local neighborhood weights. So for fitting at the point $x_{j}$ the weights are given by $w_{i}\left(x_{j}\right) r_{j}, j=1, \ldots, n$.

An additional set of weights are used to provide robustness. Given the residuals from the last fit, $\hat{\epsilon}_{i}, i=1, \ldots, n$, the robustness weights are then defined by

$$
r_{i}=B\left(\frac{\hat{\epsilon}_{i}}{6 s}\right)
$$

where $s=$ median $\left\{\left|\hat{\epsilon}_{1}\right|, \ldots,\left|\hat{\epsilon}_{n}\right|\right\}$ and $B(z)$ is the bisquare function,

$$
B(z)=\begin{array}{cl}
\left(1-z^{2}\right)^{2} & |z| \leq 1 \\
0 & |z|>1
\end{array}
$$

Robust loess fits are often used for preliminary investigations of a dataset to guard against outliers and for the purpose of detecting outliers. In various types of residual analysis plots with many types of other models such as in linear models it is useful to use a robust loess curve. For example in a residual dependency plot the residuals are plotted against some covariate. A trend in the loess curve in this plot would indicate that the model could be improved.

Here is an an example of a residual dependency plot. Since the trend line is curved a little in the middle of the plot there is a small amount of dependency on the variable hardness remaining in the residuals.


## References

Chambers, J.M. and Hastie, T. (1991). Statistical Models in S. Wadsworth \& Brooks/Cole.
Cleveland, W.S. (1995). Visualizing Data. New Jersey: Summit.
Cleveland, W.S. and Devlin, S.J. (1988). Locally-weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596-610.

Loader, C. (2000). Local Regression. New York: Springer-Verlag.

# Appendix 3: Mann-Kendall Trend Tests 

## Introduction

Hipel \& McLeod (1994) and McLeod et al. (1990) have used the Mann-Kendall trend test in the analysis of various types of environmental data.

## Kendall Rank Correlation

Let $\left(X_{1}, Y_{1}\right), \cdots,\left(X_{n}, Y_{n}\right)$ be a bivariate random sample of size $n$. The Pearson correlation coefficient provides an optimal measure of the degree of association between the $X$ 's and the $Y$ 's when the sample is drawn from a bivariate normal distribution. The Pearson correlation coefficient is reasonably robust for many other distributions as well.
The Kendall correlation coefficient, denoted by $\tau$, provides a more general non-parametric measure of monotonic association. It is said to be monotonic since making a monotonic transformation on either the $X$ 's or the $Y$ 's does not change the numerical value of $\tau$.
Kendall's rank correlation coefficient (Kendall, 1970, equation 1.5) may be written,

$$
\begin{equation*}
\tau=\frac{S}{D} \tag{2}
\end{equation*}
$$

where $S$, is the Kendall score given by

$$
\begin{equation*}
S=\sum_{i>j} \operatorname{sign}\left(X_{j}-X_{i}\right) \operatorname{sign}\left(Y_{j}-Y_{i}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{sign}(\bullet)$ denotes the sign function and $D$ is the maximum possible value of $S$. In the case where there are no ties among either the $X$ 's or the $Y$ 's,

$$
D=\binom{n}{2}
$$

More generally, if there are $n_{x}$ distinct ties of extent $t_{i}, i=1, \ldots, n_{x}$ among the $X$ 's and $n_{y}$ distinct ties of extent $u_{i}, i=1, \ldots, n_{y}$ among the $Y$ 's then

$$
D=\sqrt{\left(\binom{n}{2}-T\right)\left(\binom{n}{2}-U\right)}
$$

where

$$
T=\frac{1}{2} \sum_{i=1}^{n_{x}} t_{i}\left(t_{i}-1\right)
$$

and

$$
U=\frac{1}{2} \sum_{i=1}^{n_{y}} u_{i}\left(u_{i}-1\right)
$$

In the case where there are no ties in either ranking, it is known (Kendall, 1975, p.51) that under the null hypothesis, the distribution of $S$ may be well approximated by a normal distribution with mean zero and variance,

$$
\operatorname{Var}(S)=\frac{1}{18} n(n-1)(2 n+5)
$$

provided that $n \geq 10$. Valz and McLeod (1990) have given a simplified derivation of this formula for $\operatorname{Var}(S)$.
In the case of ties, the variance of $S$ is more complicated,

$$
\left.\begin{array}{r}
\operatorname{Var}(S)=\left\{\frac{1}{18} n(n-1)(2 n+5)-\sum\right. \\
\left.+\frac{1}{i}\left(t_{i}-1\right)\left(2 t_{i}+5\right)-\sum u_{i}\left(u_{i}-1\right)\left(2 u_{i}+5\right)\right\} \\
9 n(n-1)(n-2)
\end{array} \sum t_{i}\left(t_{i}-1\right)\left(t_{i}-2\right)\right\}\left\{\sum u_{i}\left(u_{i}-1\right)\left(u_{i}-2\right)\right\}, ~+\frac{1}{2 n(n-1)}\left\{\sum t_{i}\left(t_{i}-1\right)\right\}\left\{\sum u_{i}\left(u_{i}-1\right)\right\} .
$$

Valz, McLeod and Thompson (1994) have examined the adequacy of the normal approximation in this general case.
The test of the null hypothesis $\mathcal{H}_{0}: \tau=0$ is equivalent to testing $\mathcal{H}_{0}: S=0$. If there are no ties and if $n \geq 10$ the normal approximation based on $\operatorname{Var}(S)$ is adequate. When $n \leq 10$ and there are ties present in only of the variables then the efficient exact algorithm of Panneton \& Robillard (1972a, 1972b) may be used. Otherwise if ties are present in both variables then the exact enumeration algorithm given by Valz (1990) may be used or alternatively bootstrapping (Efron and Tibshirani, 1993). Our S-Plus function Kendall implements these algorithms for computing $\tau$ and its significance level under a two-sided test.

## Mann-Kendall Trend Test

Given $n$ consecutive observations of a time series $z_{t}, t=1, \cdots, n$, Mann (1945) suggested using the Kendall rank correlation of $z_{t}$ with $t, t=1, \cdots, n$ to test for monotonic trend. The null hypothesis of no trend assumes that the $z_{t}, t=1, \cdots, n$ are independently distributed. Our S-Plus function, MannKendall (z) implements the Mann-Kendall test using Kendall (x, y) to compute $\tau$ and its signficance level under the null hypothesis.
The Mann-Kendall trend test has some desirable features. In the simple linear trend model with independent Gaussian errors, $z_{t}=\alpha+\beta t+e_{t}$, where $e_{t}$ is Gaussian white noise, it is known that the Mann-Kendall trend test has $98 \%$ efficiency relative to the usual least squares method of testing $\beta=0$. Also, an empirical simulation study of Hipel, McLeod and Fosu (1986) showed that the Mann-Kendall test outperformed the lag one autocorrelation test for detecting a variety of deterministic trends such as a step-intervention or a linear trend.

In the case of no ties in the values of $z_{t}, t=1, \cdots, n$ the Mann-Kendall rank correlation coefficient $\tau$ has an interesting interpretation. In this case, the Mann-Kendall rank correlation for a trend test can be written

$$
\tau=\frac{S}{\binom{n}{2}}
$$

where

$$
S=2 P-\binom{n}{2},
$$

where $P$ is the number of times that $z_{t_{2}}>z_{t_{1}}$ for all $t_{1}, t_{2}=1, \ldots, n$ such that $t_{2}>t_{1}$. Thus $\tau=2 \pi_{c}-1$, where $\pi_{c}$ is the relative frequency of positive concordance, i.e., the proportion of time for which $z_{t_{2}}>z_{t_{1}}$ when $t_{2}>t_{1}$. Equivalently, the relative frequency of positive concordance is given by $\pi_{c}=0.5(\tau+1)$.
The Mann-Kendall test is essentially limited to testing the null hypothesis that the data are independent and identically distributed. Our time series data may diverge from this assumption in two ways. First there may be autocorrelation and second may be a seasonal component. To eliminate these factors we can use annual data but this has the effect of reducing the power. For strong positive autocorrelation in the series, the effect of using annual totals will reduce the effect of this autocorrelation substantially and the loss of power is, perhaps, not expected to be too much - this is something we will investigate further in a methodological study.
The method of Brillinger (1989) deals with both the problems of seasonality and autocorrelation but it also requires an estimate of the spectral density at zero. However the test of Brillinger (1989) is not suitable for testing for long-term trend with monthly data with a strong seasonal component since the running-average smoother used will not be useful in this case. Another model-building approach to trend analysis is intervention analysis (Box \& Tiao, 1975; Hipel \& McLeod, 1994) which can also handle both seasonality and autocorrelation. This assumes a known intervention time and the development of a suitable time series model.

## Seasonal Mann-Kendall Trend Test

The Seasonal-Mann-Kendall trend test is a test for monotonic trend in a time series with seasonal variation. Hirsch et al. (1982) developed such a test by computing the Kendall score separately for each month. The separate monthly scores are then summed to obtain the test statistic. The variance of the test statistic is obtained by summing the variances of the Kendall score statistic for each month. The normal approximation may then be used to evaluate significance level. In this test, the null hypothesis is that the time series is of the form $z_{t}=\mu_{m}+e_{t}$ where $e_{t}$ is white noise error and $\mu_{m}$ represents the mean for period $m$. The $\tau$ coefficient is defined by

$$
\tau=\frac{\sum_{i=1}^{s} S_{i}}{\sum_{i=1}^{s} D_{i}},
$$

where $S_{i}, D_{i}, i=1, \cdots, s$ denote the Kendall scores and denominators for the $i$-th season and $s$ is the seasonal period. We implemented this procedure in S-Plus in our function SeasonalMannKendall (z)

## References

Box, G.E.P. \& Tiao, G.C. (1975), Intervention Analysis, Journal of the American Statistical Association.

Brillinger, D.R. (1989), "Consistent detection of a monotonic trend superimposed on a stationary time series", Biometrika, Vol.76, pp.23-30.
Efron, B. and Tibshirani, R.J. (1993), An Introduction to the Bootstrap, New York: Chapman and Hall.

Hipel, K.W. \& McLeod, A.I. (1994), Time Series Modelling of Water Resources and Environmental Systems, Amsterdam: Elsevier. ISBN: 0-444-89270-2

Hipel, K.W., McLeod, A.I. \& Fosu, P. (1983), Empirical power comparisons of some tests for trend, in Statistical Aspects of Water Quality Monitoring, Developments in Water Science, Vol.27, pp.347-362, Edited by A.H. El-Shaarawi and R.E. Kwiatkowski.
Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982), Techniques for trend assessment for monthly water quality data, Water Resources Research, 18, 107-121.

Kendall, M.G. (1970), Rank Correlation Methods, 2nd Ed., New York: Hafner. Mann, H.B. (1945), Nonparametric tests against trend, Econometrica, 13, 245-259.

McLeod, A.I., Hipel, K.W. \& Bodo, B.A. (1990), Trend analysis methodology for water quality time series, Environmetrics, 2, 169-200.

Panneton, M. \& Robillard, P. (1972a), The Exact Disribution of Kendall's $S$ with Ties in One Ranking, Applied Statistics, 21, 321-323.

Panneton, M. \& Robillard, P. (1972b), Algorithm AS 54: Kendall's $S$ Frequency Distribution, Applied Statistics, 21, 345-348.

Valz, P.D. \& McLeod, A.I. (1990), A simplified derivation of the variance of Kendall's tau, The American Statistician, 44, 39-40.

Valz, P., McLeod, A. I. and Thompson, M. E., (1995) Cumulant generating function and tail probability approximations for Kendall's score with tied rankings, Annals of Statistics, 23, 144-160.
Valz, P. (1990), Developments in Rank Correlation Procedures with Applications to Trend Assessment in Water Resources Research", Ph.D. Thesis, Department of Statistical and Actuarial Sciences, The University of Western Ontario.

