
Late-Night TIRF Time Series with 
All Drinking Classes

Introduction
TIRF,  Traffic  Injury  Research  Foundation,  provided  this  data  on  fatal  car  accidents  in  Ontario  from  January
1,1992 to December 31,  1998.  This data are for  automobile driver  deaths only.   The data for  drinking classes
"yes", "no" and "unknown" are combined in this analysis.

Ten  time series  were  created  from the  TIRF dataset  corresponding  the  two  weekgroup  variables  SunWed  and
ThuSat and the five hour one hour periods beginning at 11PM, 12AM, 1AM, 2AM and 3AM.  For brevity we
will refer to these time series using the codes S11, S12, S1, S2, S3, T11, T12, T1, T2 and T3.  The time series
were  aggregated  to  a  monthly  level  starting  January  1992  and  running  to  December  1998.   There  are  n =84
consecutive  observations  in  total  for  each  time  series.  In  our  analysis  of  these  latenight  time  series  we  are
primarily interested in testing to see if a change occurred starting effective with May 1996, the 53rd observation.

Bar Chart Summaries
The TIRF late-night time series are comprised of small numbers mostly zeros.  The Bar Charts look very similar
to data from a Poisson distribution.  However the data for T11, S12 and T12 are over-dispersed as is confirmed
by the Poisson dispersion test.
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Autocorrelation Analysis
The sample autocorrelation at lag k  is defined by,

rk =
⁄t=k+1

n Hzt - zê L Hzt-k - zê L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄t=k+1

n Hzt - zê L2 , k = 0, 1, 2, ...

provides  a  fairly  robust  test  for  possible  serial  dependence  even  for  data  which  is  highly  discrete  such  as  the
TIRF  late-night  time series.   If  there  is  possible  dependence  we  would  expect  it  to  be  strongest  at  lag  one  or
possibly at the seasonal lag of 12.

The  standard  deviation  of  the  lag  one  autocorrelation  coefficient  is  1 ëè!!!!!!84  and  the  benchmark  significance
limits are 1.96 ëè!!!!!!84 U 0.213.

The table below gives r1  and we see that  there is  no evidence  of  an autocorrelation in these time series at  lag
one.  
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S11 0.0430784
S12 0.127372
S1 0.181458
S2 −0.0325027

S3 0.0587406
T11 −0.0990359
T12 −0.0242566

T1 −0.0032918
T2 −0.00352113
T3 0.0210707

The table below shows r12 , only SunWed-2AM window shows significant seasonal correlation at the 5% level.  

S11 0.00960531
S12 −0.0303431
S1 −0.0431046

S2 0.255263
S3 −0.0127046
T11 0.0508326

T12 −0.0449036
T1 0.0368116
T2 −0.0985915
T3 0.0127013

In view of these results, we may assume that time series are approximately statistically independent.

Poisson Modelling

à Poisson Dispersion Test

We  test  if  the  pre-intervention  data  (ie.  the  first  52  observations)  are  approximately  Poission  distributed.   Let
zt, t = 1, ..., 52 denote the values in the series.  Then the Poisson dispersion test is based on the statistic,

d =
⁄i=1

n Hzt - zêL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

zê

where zê  is the sample mean and n = 52.   Under the null hypothesis that the data are independent Poisson random
variables,  º ,  is  distributed  approximately  as  c2  on  n - 1  df.   The  table  below  suggests  that  the  data  for  the
SunWed group are Poisson but there is a strong indications over over-dispersion in S12, T11 and T12.

d p−value
S11 38. 0.911302

S12 76.6667 0.0115418
S1 45.8 0.679696
S2 48.1034 0.589411
S3 54.8947 0.329282

T11 71.2222 0.0321581

T12 78.8182 0.00747674
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T1 56.12 0.288949

T2 42.5 0.795739
T3 47. 0.633224

à Poisson Model

We will use the notation zt ~IPoHltL, t = 1, ..., n  to mean that the random variables zt, t = 1, ..., n  are indepen-
dently  distributed  Poisson  random  variables  with  means  lt.   Then  our  intervention  analysis  model  may  be
written, zt ~IPoHltL, t = 1, ..., n,  where n = 84 and

lt = 9 l, t = 1, ..., 52
l + d, t = 53, ..., 84

The  null  hypothesis  of  no  effect  is  then  ‡0 : d = 0.   The  exact  log  likelihood  function  for  our  model  may  be
written as

LHl, dL = ‚
t=1

n

zt logHltL - ‚
t=1

n

lt

This  function  may be  maximized numerically to  obtain  the  maximum likelihood  estimates for  l  and  d,  which
may be denoted by l

`
 and d

`
.   Then the null hypothesis ‡0 : d = 0  may be tested using a likelihood ratio test and a

confidence  interval  for  the  parameter  d  may be  given.   Under  the  null  hypothesis  ‡0 : d = 0  the  loglikelihood
function simplies to

LHl, 0L = ‚
t=1

n

zt logHlL - n l

which is maximized with l
`

0 = zê  where zê  denotes the sample mean.  The likelihood ratio statistic may be written,

R = 2 Hmaxl,d LHl, dL - maxl LHl, 0LL.
Under ‡0 : d = 0,  R  is c2 - distributed on 1 df.  From the table below we see that there is evidence that d ∫ 0  for
the S12, S1, T1 and T2 windows at the 10% level.  In all these cases d < 0.

à Fitted Parameters, Standard Errors, R and p-value
λ seλ δ seδ R p−value

S11 0.5 0.098 0.062 0.165 0.146 0.702

S12 0.692 0.115 −0.38 0.152 5.661 0.017

S1 0.769 0.122 −0.457 0.157 7.627 0.006
S2 0.558 0.104 −0.058 0.162 0.124 0.725

S3 0.365 0.084 0.197 0.157 1.701 0.192

T11 0.519 0.1 −0.238 0.137 2.78 0.095
T12 0.212 0.064 0.132 0.122 1.284 0.257

T1 0.481 0.096 −0.231 0.131 2.865 0.091

T2 0.308 0.077 −0.151 0.104 1.944 0.163

T3 0.096 0.043 0.154 0.098 2.914 0.088
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The p-value reported is for a two-sided test.  A one-sided test would seem to be more appropriate so in this case
the p-value in the above table should be halved.

à 90% Confidence Ellipses for l  and d
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à Fitted Values and Visualization

The expected values of zt  in our model is given „ 8zt< = lt = l + d xt.   The expected value is shown as a blue line
in the graphs below.
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Negative Binomial Modelling

à Negative Binomial Distribution

Actual count data are often over-dispersed, that is, they fail the Poission dispersion test.  In this case, the nega-
tive  binomial  distribution  provides  a  more  flexible  alternative  than  the  Poisson  distribution  for  modelling
discrete random variables.  Suppose there is an unobserved random variable E  having a gamma distribution with
mean 1 and variance 1 ê q  and that conditional on E , the random variable Y  has a Poisson distribution with mean
m E.   Then Y  has a negative binomial distribution and its density function may be written,

f Hy; q, mL =
GHq + yL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GHqL y!

my q q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHm + qL q+y

The mean and variance of Y  are given by „ 8Y < = m  and Var 8Y < = m + m2 ê q.   Notationally we may denote this
distribution by NBHm, qL.
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à Generalized Linear Models

The generalized linear model provides an alternative and more general statistical model for these data.  GLM's
are  frequently  used  for  regression  modelling  of  non-Gaussian  data  such  as  data  arising  from  the  binomial,
lognormal  or  negative  binomial  distributions.   Given  independently  distributed  zt, t = 1, ..., n  and  possibly  p
covariates of interest xt, j, t = 1, ..., n, j = 1, ..., p  the GLM may be defined.  There are three components to a
GLM:

(i)  the  statistical  density  or  probability  function,  f Hzt; mt; qL,  where  q  denotes  distributional  parameters,
mt = „ 8zt<  and it is assumed that mt  depends on the distribution parameter or parameters as well as the covariates.

(ii) the linear predictor which depends on the covariates linearly,

ht = ‚
j=1

p

at xt, j

(iii) the link function, ht = {HmtL.
The  standard  GLM  algorithm  is  based  on  Iteratively  Reweighted  Least  Squares  (IRLS)  and  this  algorithm
provides a good approximation to the more exact maximum likelihood method.  Using Mathematica  it is possi-
ble to obtain the exact maximum likelihood estimates which are preferable to the IRLS estimates.

à Model Formulation

For j = 1, we take xt,1 = 1, t = 1, ..., n  which corresponds to the overall mean.  The intervention is represented
by,

xt,2 = xt = 9 0 t § 48
1 t > 49

It is assumed that zt ~NBHlt, qL  where

logHλtL = λ + δ ξt
that is, the link function is taken to be logarithmic.
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à Maximum Likelihood Estimates
λ δ θ R p−value

S11 −0.693 0.118 148533. 0.146 0.702

S12 −0.368 −0.795 1.407 4.038 0.044

S1 −0.262 −0.901 23233.4 7.529 0.006
S2 −0.584 −0.109 430.549 0.119 0.73
S3 −1.007 0.431 2.565 1.426 0.232
T11 −0.655 −0.613 1.953 2.269 0.132

T12 −1.553 0.485 0.399 0.757 0.384

T1 −0.732 −0.654 6.288 2.661 0.103

T2 −1.179 −0.678 313336. 1.944 0.163

T3 −2.338 0.951 1054.07 2.913 0.088

The p-value reported is for a two-sided test.  A one-sided test would seem to be more appropriate so in this case
the p-value in the above table should be halved.

à Visualization

The expected values of zt  in the negative binomial regression model is given by „ 8zt< = ‰l+d xt .   As expected the
impact of the interventions is almost the same as that given the by Poisson model.
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Comparison with Normal Regression Modelling
The late night time series are comprised of very small numbers and these number clearly violate the assumption
of  normality  as  the  bar  charts  made clear.   However  normal  regression  model  would  be  expected  to  be  fairly
robust against such departures as shown by Hjort (1994).  It is of interest to compare our previous analyses using
Poisson and Negative Binomial regression with standard normal regression.   In the standard normal regression
we may formulate our step intervention model,

(1)zt = m + d xt + Nt

where Nt  is the error term.  Based on the pre-intervention data we assume initially that Nt  is normal and indepen-
dent, so ordinary multiple linear regression can be used.  The intervention series are defined by,

xt = 9 0 t < 53
1 t ¥ 53
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The  term Nt  represents  the  disturbance  or  error  term and  it  has  been  tentatively  identified  as  Gaussian  white
noise, that is Nt = at , where at ~NIDH0, s2L.
The  following  table  is  in  quite  close  agreement  with  the  results  from  the  Poisson  analyses.   However  only  6
interventions are detected on a one-sided test at the 10% level whereas previously there were 7 and significance
levels  are  larger  suggesting  this  analysis  is  not  quite  as  sensitive  as  the  Poisson  analysis.   There  is  almost  no
difference though in many cases such as for T2 and T3.

S11

Estimate SE TStat PValue

1 0.5 0.0954831 5.23653 1.23913×10−6

ξ 0.0625 0.1547 0.404007 0.687259

S12

Estimate SE TStat PValue

1 0.692308 0.122467 5.65303 2.22552×10−7

ξ −0.379808 0.198419 −1.91417 0.0590865

S1

Estimate SE TStat PValue

1 0.769231 0.106216 7.24214 2.16742×10−10

ξ −0.456731 0.17209 −2.65403 0.00955079

S2

Estimate SE TStat PValue

1 0.557692 0.100219 5.56474 3.21682×10−7

ξ −0.0576923 0.162373 −0.355307 0.723272

S3

Estimate SE TStat PValue
1 0.365385 0.0991671 3.68453 0.000409787
ξ 0.197115 0.160669 1.22684 0.223393

T11

Estimate SE TStat PValue

1 0.519231 0.103242 5.02926 2.85058×10−6

ξ −0.237981 0.167271 −1.42273 0.158609

T12

Estimate SE TStat PValue
1 0.211538 0.0891536 2.37274 0.0199973
ξ 0.132212 0.144445 0.915305 0.362715

T1

Estimate SE TStat PValue

1 0.480769 0.0905745 5.308 9.26536×10−7

ξ −0.230769 0.146748 −1.57256 0.119672

T2

Estimate SE TStat PValue

1 0.307692 0.0636884 4.83122 6.22699×10−6

ξ −0.151442 0.103187 −1.46765 0.146025

T3

Estimate SE TStat PValue
1 0.0961538 0.0541851 1.77454 0.0796849

ξ 0.153846 0.08779 1.75243 0.0834372
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