FARS

FARS time series are comprised on the monthly number of deaths in the hourly windows 11PM, 12AM, 1AM, 2AM, 3AM and week groups SunWed, ThuSat. There are ten series in all and their code names are given in the table below.

#	Code	Definition
1	PM11S	11PM SunWed
2	AM12S	12AM SunWed
3	AM1S	1AM SunWed
4	AM2S	2AM SunWed
5	AM3S	3AM ThuSat
6	PM11T	11PM ThuSat
7	AM12T	12AM ThuSat
8	AM1T	1AM ThuSat
9	AM2T	2AM ThuSat
10	AM3T	3AM ThuSat

The fars database includes a blood alcohol variable but in 38% of the records this was missing or not available. These records comprised 45% of the deaths. Until more is known about why so large a portion of the data is incomplete, it was decided that for the purpose of modelling we will use the entire fars dataset, ie. we will ignore the BAC variable.

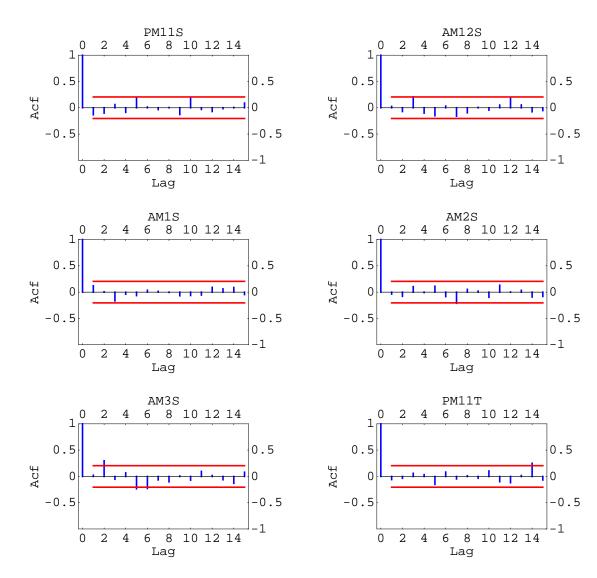
The purpose of the intervention analysis is to compare our findings with those of the TIRF and MTO datasets.

May 1996 corresponds to observation #49 in this series. A step intervention model defined by,

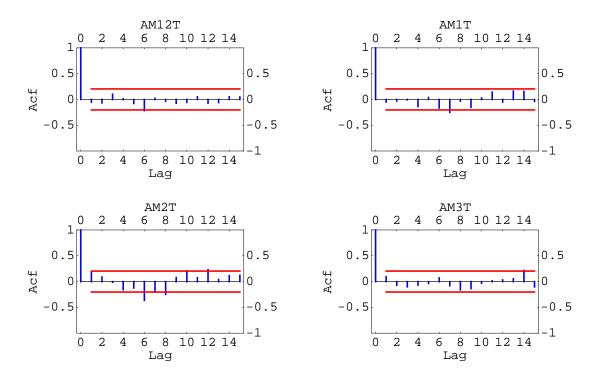
$$z_t = \mu + \delta_1 \,\xi_t + N_t \tag{1}$$

where N_t is the error term. Based on the pre-intervention data we assume initially that N_t is normal and independent, so ordinary multiple linear regression can be used. The intervention series are defined by,

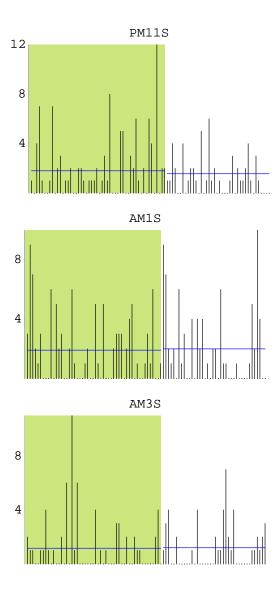
$$\xi_t = \begin{cases} 0 & t < 49\\ 1 & t \ge 49 \end{cases}$$

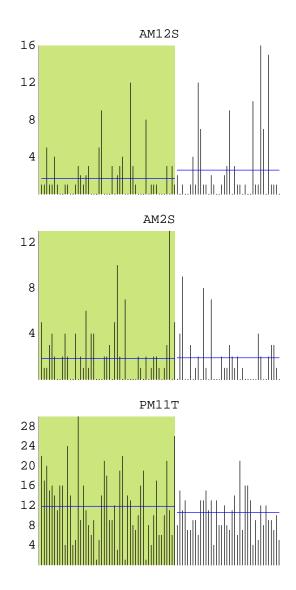

The pre-intervention series is fairly short so the following two-step approach to the ARIMA identification of the error term N_t will be used. In the first stage the model in eqn. (1) is fit using standard regression. Then the residuals, the estimated values, \hat{N}_t , are obtained and the residual autocorrelation of these residuals is examined. This approach should be expected to work well and is indeed theoretically superior to the alternative approach of basing the model identification on the pre-intervention residuals. The reason for this is that in the estimates of the autocorrelations of \hat{N}_t are first-order efficient as are the estimates in the pre-intervention approach. However since the sample size is larger, this approach provides better estimates.

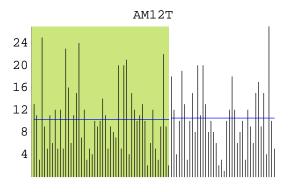
Regression Results

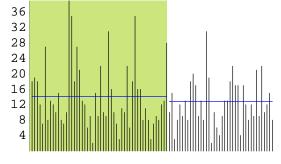

There are no statistical significant interventions. None of the lag one autocorrelations is significant at 5%.

February 23, 2002


PM11S	1 ξ	Estimate 1.8125 -0.244318	SE 0.316267 0.457322	TStat 5.73091 -0.534237	PValue 1.31234×10 ⁻⁷ 0.594495
AM12S	1 ξ	Estimate 1.6875 0.903409	SE 0.479426 0.693249	TStat 3.51983 1.30315	PValue 0.000679735 0.195847
AM1S	1 ξ	Estimate 1.91667 0.0833333	SE 0.349493 0.505365	TStat 5.48414 0.164897	PValue 3.77136×10 ⁻⁷ 0.869395
AM2S	1 ξ	Estimate 1.85417 0.0549242	SE 0.358629 0.518577	TStat 5.17015 0.105913	PValue 1.40167×10 ⁻⁶ 0.915887
AM3S	1 ξ	Estimate 1.16667 0.0378788	SE 0.272091 0.393444	TStat 4.28777 0.096275	PValue 0.0000452363 0.923516
PM11T	1 ξ	Estimate 11.875 -1.23864	SE 0.832699 1.20408	TStat 14.2609 -1.0287	PValue 0. 0.306378
AM12T	1 ξ	Estimate 10.3125 0.232955	SE 0.845908 1.22318	TStat 12.191 0.19045	PValue 0. 0.849386
AM1T	1 ξ	Estimate 10.5625 -0.448864	SE 0.964922 1.39528	TStat 10.9465 -0.321703	PValue 0. 0.748424
AM2T	1 ξ	Estimate 14.125 -1.30682	SE 1.09225 1.57939	TStat 12.932 -0.82742	PValue 0. 0.410188
AM3T	1 ξ	Estimate 8.89583 -0.645833	SE 0.791846 1.14501	TStat 11.2343 -0.564043	PValue 0. 0.574128




Residual Autocorrelation Analysis


Data Visualization

