MTO Minimal, DRCOND

The time series consists of all minimal injury accidents per month from January 1992 to December 1998. So there are $n=84$ observations. May 1996 corresponds to observation \#53 in this series. There are 16 time series corresponding to the variables for hour window (11PM, 12AM, 1AM, 2AM), weekgroup (SunWed, ThuSat) and driver condition (sober, drunk). The codes used and their defintions are given in the table below.

Code
PM11SS
AM12SS 12AM SunWed Sober
AM1SS 1AM SunWed Sober
AM2SS 2AM SunWed Sober
pm11TS 11PM ThuSat Sober
AM12TS 12AM ThuSat Sober
AM1TS 1 AM ThuSat Sober
AM2TS 2AM ThuSat Sober
PM11SD 11PM SunWed Drunk
AM12SD 12AM SunWed Drunk
AM1SD 1AM SunWed Drunk
AM2SD 2AM SunWed Drunk
PM11TD 11PM ThuSat Drunk
AM12TD 12AM ThuSat Drunk
AM1TD 1AM ThuSat Drunk
AM2TD 2AM ThuSat Drunk

A step intervention model defined by,

$$
\begin{equation*}
z_{t}=\mu+\delta_{1} \xi_{t}+N_{t} \tag{1}
\end{equation*}
$$

where N_{t} is the error term. Based on the pre-intervention data we assume initially that N_{t} is normal and independent, so ordinary multiple linear regression can be used. The intervention series are defined by,

$$
\xi_{t}= \begin{cases}0 & t<53 \\ 1 & t \geq 53\end{cases}
$$

The pre-intervention series is fairly short so the following two-step approach to the ARIMA identification of the error term N_{t} will be used. In the first stage the model in eqn. (1) is fit using standard regression. Then the residuals, the estimated values, \hat{N}_{t}, are obtained and the residual autocorrelation of these residuals is examined. This approach should be expected to work well and is indeed theoretically superior to the alternative approach of basing the model identification on the pre-intervention residuals. The reason for this is that in the estimates of the autocorrelations of \hat{N}_{t} are first-order efficient as are the estimates in the pre-intervention approach. However since the sample size is larger, this approach provides better estimates. Residual diagnostic checking did not reveal any significant autocorrelation for these time series.

There is a statistical significant decrease everywhere except at the ThuSat-1AM and ThuSat-2AM windows for both sober and drunk drivers. The results are tabulated and visualized below.

		Estimate	SE	TStat	PValue
PM11SS	1	3.59615	0.241768	14.8744	0 .
	ξ	-1.6899	0.391709	-4.31419	0.0000444032
		Estimate	SE	TStat	PValue
AM12SS	1	4.53846	0.278886	16.2736	0 .
	ξ	-1.44471	0.451846	-3.19735	0.00197109
		Estimate	SE	TStat	PValue
AM1SS	1	3.98077	0.29014	13.7202	0 .
	ξ	-1.44952	0.470081	-3.08355	0.00278678
AM2 SS		Estimate	SE	TStat	PValue
	1	4.92308	0.286975	17.1551	0.
	ξ	-1.70433	0.464953	-3.66559	0.000436712
PM11TS		Estimate	SE	TStat	PValue
	1	5.30769	0.316432	16.7735	0 .
	ξ	-2.87019	0.512679	-5.59842	2.7958×10^{-7}
AM12TS		Estimate	SE	TStat	PValue
	1	7.65385	0.388219	19.7153	0.
	ξ	-2.96635	0.628987	-4.71607	9.73915×10^{-6}
AM1 TS		Estimate	SE	TStat	PValue
	1	3.23077	0.251977	12.8217	0 .
	ξ	0.394231	0.408249	0.965663	0.337052
AM2TS		Estimate	SE	TStat	PValue
	1	6.25	0.375654	16.6376	0.
	ξ	0.21875	0.608629	0.359414	0.720209

		Estimate	SE	TStat	PValue
PM11SD	1	3.59615	0.241768	14.8744	0 .
	ξ	-1.6899	0.391709	-4.31419	0.0000444032
AM1 2SD		Estimate	SE	TStat	PValue
	1	4.53846	0.278886	16.2736	0 .
	ξ	-1.44471	0.451846	-3.19735	0.00197109
AM1 SD		Estimate	SE	TStat	PValue
	1	3.98077	0.29014	13.7202	0.
	ξ	-1.44952	0.470081	-3.08355	0.00278678
AM2 SD		Estimate	SE	TStat	PValue
	1	4.92308	0.286975	17.1551	0 .
	ξ	-1.70433	0.464953	-3.66559	0.000436712
PM11TD		Estimate	SE	TStat	PValue
	1	5.30769	0.316432	16.7735	0.
	ξ	-2.87019	0.512679	-5.59842	2.7958×10^{-7}
AM12TD		Estimate	SE	TStat	PValue
	1	7.65385	0.388219	19.7153	0.
	ξ	-2.96635	0.628987	-4.71607	9.73915×10^{-6}
AM1 TD		Estimate	SE	TStat	PValue
	1	3.23077	0.251977	12.8217	0.
	ξ	0.394231	0.408249	0.965663	0.337052
AM2 TD		Estimate	SE	TStat	PValue
	1	6.25	0.375654	16.6376	0.
	ξ	0.21875	0.608629	0.359414	0.720209

