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The theorem of Barndorff-Neilsen and Schou (1973, Theorem 2) stating

that the admissible region of autoregressive process may be obtained as image

of the admissible region defined by the partial autocorrelations under the

Durbin-Levinson recursion is derived from first principles in the case of the

boundary. A second extension is made to subset autoregressive models. The

transformation is useful for obtaining maximum likelihood estimates on the

moving-average boundary.

Keywords and phrases: Admissible region for the autoregressive and moving-

average time series; Maximum likelihood estimation on the moving-average

boundary; Subset autoregression.
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1. Introduction

The AR (p) model with mean zero may be written, φ(B)zt = at, where

φ(B) = 1− φ1B − . . . φpB
p and at is Gaussian white noise with variance σ2

a.

The admissible region for stationary-causal processes is defined by the region

in ℜp for which all roots of φ(B) = 0 lie outside the unit circle (Brockwell

and Davis, 1991).

Let φj,k denote the coefficient of zt−j in the minimum-mean-square-error

predictor of zt given zt−1, . . . , zt−k. Then the partial autocorrelations, de-

noted by ζi for i = 1, . . . , p are given by ζi = φi,i, where the φi,i are deter-

mined by the Durbin-Levinson recursion,

φj,k+1 = φj,k − φk+1,k+1φk+1−j,k, j = 1, . . . , k (1)

where k = 1, . . . , p. Barndorff-Neilsen and Schou (1973) showed that eq. (1)

can be used to define a transformation, B : (ζ1, . . . , ζp) ⇒ (φ1, . . . , φp), and

that this transformation is continuously differentiable and has a continuously

differentiable inverse inside the admissible region. Monahan (1984) derived

an algorithm for computing B−1. It will be convenient in §3, to use the

notation φi = Bi(ζ) to refer to each parameter i = 1, . . . , p, where ζ =

(ζ1, . . . , ζp). It should be noted that since the determinant Jacobian of the

transformation (Barndorff-Neilsen and Schou, 1973, p.414) is zero on the

boundary, the transformation is not 1:1 there. For example, in the AR (2)

case B(ζ1, ζ2) = (ζ1(1− ζ2), ζ2) so all the points on the boundary of the form

(ζ1, 1) are mapped into the point (0, 1).
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2. Boundary of AR (p) admissible region

Let Dφ denote the admissible region for an AR (p) in the parameter

space (φ1, . . . , φp). The admissible region for the transformed parameters

(ζ1, . . . , ζp) is the interior of the unit cube,

Dζ = {(ζ1, . . . , ζp) ∈ ℜ
p : |ζi| < 1, i = 1, . . . , p}. (2)

Denote the boundary sets of Dφ and Dζ by ∂φ and ∂ζ respectively. It follows

from Theorem 2 of Barndorff-Nielsen and Schou (1973) that B maps Dζ

onto Dφ, i.e., Dφ = B(Dζ). Recall that B is no longer one-to-one on ∂ζ .

Nevertheless, we have that B maps ∂ζ onto ∂φ. For completeness, we include

a proof.

Theorem 1. ∂φ = B(∂ζ)

Proof. First we show that ∂φ ⊂ B(∂ζ). Let D̄φ and D̄ζ denote the

closures of Dφ and Dζ respectively. Since B is a polynomial and hence con-

tinuous on D̄ζ , B(D̄ζ) ⊂ B(Dζ) = D̄φ. Meanwhile, B(D̄ζ) = Dφ ∪ B(∂ζ) is

closed since D̄ζ is compact and therefore B(D̄ζ) ⊃ D̄φ. Hence B(D̄ζ) = D̄φ,

i.e., Dφ ∪ B(∂ζ) = Dφ ∪ ∂φ. Since B−1 is continuous, it follows that Dφ is

open since Dζ is open. Dφ ∩ ∂φ = ∅. Hence ∂φ ⊂ B(∂ζ).

Next, we show ∂φ ⊃ B(∂ζ). Let ϑ ∈ ∂ζ . There exists a sequence {ϑn} ∈ Dζ

such that ϑn → ϑ. Hence B(ϑn) = ϕn ∈ Dφ → B(ϑ) = ϕ by the continuity of

B on D̄ζ . If ϕ ∈ Dφ, B
−1(ϕn) = ϑn → B

−1(ϕ) = ϑ ∈ Dζ by the continuity of

B−1 on Dφ, which causes a contradiction with ϑ ∈ ∂ζ . Therefore, B(ϑ) /∈ Dφ.

It follows that B(ϑ) ∈ ∂φ since Dφ ∪ B(∂ζ) = Dφ ∪ ∂φ. Hence ∂φ ⊃ B(∂ζ). 2
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For the AR (4) model, zt = φ1zt−1 + φ2zt−2 + φ3zt−3 + φ4zt−4. In this

case the admissible region is 4-dimensional and we have,

φ1 = ζ1 − ζ1 ζ2 − ζ2 ζ3 − ζ3 ζ4,

φ2 = ζ2 − ζ1 ζ3 + ζ1 ζ2 ζ3 − ζ2 ζ4 + ζ1 ζ3 ζ4 − ζ1 ζ2 ζ3 ζ4,

φ3 = ζ3 − ζ1 ζ4 + ζ1 ζ2 ζ4 + ζ2 ζ3 ζ4

φ4 = ζ4. (3)

Three dimensional projections of this admissible region may be visualized

using standard graphics software such as MatLab or Mathematica (Zhang,

2002).

As noted by Monahan (1984) the eq. (1) may be used to reparame-

terize ARMA models as well by applying the transformation separately to

the autoregressive and moving-average components. Similarly Theorem 1

shows that we may re-parameterize for the parameters on moving-average

boundary of the invertible region. It is well-known that there is a positive

probability that the moving-average parameter may lie on the non-invertible

boundary (Cryer and Ledholter, 1981) in the case of the MA(1) model. Davis

and Dunsmuir (1996) showed that the asymptotic distribution for maximum

likelihood estimate in the closed region which included the boundary differed

from that of the estimate restricted to be inside the admissible region.

We conducted a simulation experiment to see how frequently unit roots

occur in the MA(2) case with exact maximum likelihood estimator defined

over the closed admissible region obtained by taking the closure of the in-
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vertible region. Reparameterizing the MA(2) model, zt = at−θ1at−1−θ2at−2

using (θ1, θ2) ←→ (ζ1, ζ2) and with series of lengths n = 15, 30, 50, 100, 200

and with parameters (ζ1, ζ2) chosen at random and uniformly distributed in-

side the unit square, 103 simulations of each series were generated and fit by

an exact maximum likelihood algorithm modified for the closed admissible

region. The global maximum of the nine regions is determined:

1. |ζ1| < 1 and |ζ2| < 1

2. ζ1 = 1 and |ζ2| < 1

3. ζ1 = −1 and |ζ2| < 1

4. |ζ1| < 1 and ζ2 = 1 < 1

5. |ζ1| < 1 and ζ2 = −1

6. ζ1 = 1 and ζ2 = 1

7. ζ1 = 1 and ζ2 = −1

8. ζ1 = −1 and ζ2 = 1

9. ζ1 = −1 and ζ2 = −1.

As shown in Table 1, the probability of a unit root is quite high when n is

small but decreases as n increases.

[ Table 1 here ]
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2. EXTENSION TO SUBSET MODELS

Subset autoregressive provide a parsimonious alternative to the full AR (p)

model which is especially useful in modelling seasonal or periodic time se-

ries. Consider the subset AR (4) model, zt = φ1zt−1 + φ4zt−4. Then the

transformation,

B−1(φ1, 0, 0, φ4) = (ζ1, ζ2, ζ3, ζ4) (4)

is one-to-one, continuous and differentiable in the admissible region. However

the admissible region in the four-dimensional space Dζ is no longer simply the

interior unit 4D-cube. Instead it is a complicated two-dimensional subspace

of the 4D-cube. Setting the φ2 = 0 and φ3 = 0 in the second and third

equations in (3) these equations may be solved for ζ2 and ζ3 to determine B.

When ζ1 6= 0, ζ4 6= 0, |ζ1| < 1 and ζ4 > −1,

ζ2 =
1 + 2 ζ1

2 ζ4 −
√

1 + 4 ζ1
2 ζ4 (1 + ζ4)

2
(

−1 + ζ1
2
)

ζ4

ζ3 =
−1 +

√

1 + 4 ζ1
2 ζ4 (1 + ζ4)

2 ζ1 (1 + ζ4)
. (5)

Note that not all solutions of (5) are admissible. For example taking ζ1 = 0.9

and ζ4 = −0.9, (5) produces, ζ2
.
= −0.88 and ζ3

.
= −3.8. Since (4) is also

a one-to-one, continuous and differentiable transformation, these equations

establish that the transformation (φ1, φ4)→ (ζ1, ζ4) is one-to-one, continuous

and differentiable with the appropriate admissible regions. The admissible

region for ζ1 and ζ4 is given by,

Dζ = {(ζ1, ζ4) ∈ (−1, 1)× (−1, 1) : |ζ2| < 1 ∧ |ζ3| < 1} (6)
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The admissible region for ζ1 and ζ4 is shown in Figure 1 below. Applying

the transformation B : (ζ1, ζ2, ζ3, ζ4) → (φ1, 0, 0, φ4), the admissible region,

Figure 2, for φ1 and φ4 is obtained.

[ Figures 1 and 2 ]

In the general case of a subset AR (p) model, let

zt = at + φi1zt−i1 + . . . + φimzt−im (7)

where i1 < . . . < im. Let Ḃ−1
i1,...,im

denote the transformation,

Ḃ−1
i1,...,im

: (φi1 , . . . , φim)→ (ζi1 , . . . , ζim) (8)

obtained by selecting the i1, . . . , im elements from,

B−1 : (φ1, . . . , φp)→ (ζ1, . . . , ζp). (9)

Theorem 2. The transformation defined in eqn. (8) is one-to-one, con-

tinuous and differentiable in the admissible region.

Proof. The transformation given in eqn. (1) may be written,

φi = ζi + bi(ζ1, . . . , ζp), (10)

where bi(ζ1, . . . , ζp) is a multilinear function of the variables ζ1, . . . , ζp with

the coefficient of each term being 1 or −1. This holds for p = 1. Suppose it is

true also for p = k. Then eqn. (1) ensures that the new values of φ1, . . . , φk+1

are suitable multilinear functions of the variables ζ1, . . . , ζk+1.
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Consider a subset AR (p) with only one parameter φh = 0 constrained,

where h is a fixed value 0 < h ≤ p. Using (10), an explicit solution of the

equation φh = 0 may be found,

ζh = gh(ζ
(−h)), (11)

where ζ(−h) denotes the vector (ζ1, . . . , ζp) with the h-th element removed.

We can subsitute for ζh in each of the p − 1 equations φi = Bi(ζ1, . . . , ζp)

to obtain an explicit solution φi = Bi,h(ζ
(−h)) which defines the required

transformation.

In the more general case, there are p−m constraints. Denote the indices

of those parameters φ1, . . . φp which are constrained to zero by j1, . . . , jp−m.

The p−m constraint equations in p−m unknowns may be written 0 = ζjk
+

bjk
(ζ1, . . . , ζp), k = 1, . . . , (p−m). Starting with the equation corresponding

to φj1 = 0, the solution for ζj1 can be found and substituted in the remaining

p− 1 equations. The next equation, φj2 = 0, is by the multilinear property,

a quadratic with two solutions for ζj2 . Continuing this process, there are

(p − m)! solutions to the constraint equations. The theorem of Barndorff-

Neilsen and Schou (1973) guarantees that at most only one of these solutions

is admissible. 2

Denote the admissible boundaries for the parameters (φi,1, . . . , φi,m) and

(ζi,1, . . . , ζi,m) by ∂φi,1,...,φi,m
and ∂ζi,1,...,ζi,m

respectively.

Theorem 3. ∂φi,1,...,φi,m
= Ḃi1,...,im(∂ζi,1,...,ζi,m

)

Proof. Since Ḃi1,...,im is a one-to-one, continuous and differentiable trans-
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formation, Theorem 3 follows making the necessary changes to the argument

given by Theorem 1. 2

Theorem 2 indicates that the parameter space of the subset autoregres-

sion is spanned by the corresponding partial autocorrelations. This suggests

an alternative parameterization for the subset autoregessive model in which

some partial autocorrelations are set to zero and the others are estimated.

This new approach subset autoregression is developed in McLeod and Zhang

(2003, in press).
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Table 1. Estimated probability, π̂, of the maximum likelihood estimator of

the parameters in a series of length n being on the boundary for the MA(2)

model with true parameters randomly chosen within the invertible region.

n = 15 n = 30 n = 50 n = 100 n = 200

π 0.592 0.425 0.319 0.207 0.139

Est.Sd(π) 0.016 0.016 0.015 0.013 0.011
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Figure 1: Admissible region, zt = φ1zt−1 + φ4zt−4 for reparameterized model
with ζ1 and ζ4.
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Figure 2: Admissible region, zt = φ1zt−1 + φ4zt−4.
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