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Abstract:

After some suitable ordering of the residuals, et, t = 1, . . . , n, it is suggested

that scatter plots of et+1 vs. et along with a robust smooth loess trend be

routinely examined to check for lack of statistical independence. Such plots

may be termed Poincaré plots because of their similarity to plots used in

nonlinear dynamical systems. Poincaré plots are helpful in detecting

positive correlations in the fitted model which may invalidate statistical

inferences. Poincaré plots are common in time series analysis but do not

appear to be frequently used in other situations.

Key Words: Bootstrap and informal statistical inference; Diagnostic

check; Model inadequacy; Residual autocorrelation; Statistical inference.
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1. Introduction and Summary

There are many possible threats to the validity of a statistical model, but

one of the most potentially serious in many situations is the possibility of

lack of statistical independence in the observations. When positive

correlation exists and is not taken into account then the estimators will not

be fully efficient in many situations. An even more serious problem is that

statistical inferences from the model may be completely wrong. Specifically,

under positive autocorrelation, it is well known that in the usual regression

model the variances are inflated. This means that the usual confidence

limits will be too narrow and that p-values will overstate the statistical

significance of the results (Wold, 1952, §13.4, p. 211, Theorem 1). This

effect of positive correlation applies potentially to all statistical models and

not just to models involving time series data.

Indeed McCullagh and Nelder (1989 §2.2, p.26) voice this concern with

respect to generalized linear models when they state: “For the random part

we assume independence and constant variance of the errors. These

assumptions are strong and need checking”.

In the case of time series data or when the order of collection of the

observations is known, the residual autocorrelation function is often used as

well as related statistical tests such as the Durbin-Watson test. For time

series regression models, Draper and Smith (1981, §3.9, p.156) recommend

plotting the residual for the t-th observation denoted by et as a lagged one

scatter plot of et+1 vs. et. Plotting et vs. t may also be useful but since

dependency relationships are usually strongest at lag one, the lagged one

scatter plot often best reveals problems due to lack of independence in the
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data or residuals.

Scatter plots of et+1 vs. et, referred to as Poincaré return maps, are

used in non-linear time series analysis (Tong, p.1990) and in nonlinear

dynamics for identifying limit cycles (Kaplan and Glass, 1995, §6.6, p.304).

When applied for the purpose of diagnostic checking of a statistical model

we will refer to this type of plot as a Poincaré plot.

The purpose of this article is to show that Poincaré plots are useful in

almost all statistical model building even where the chronological order of

the data is either not known or not relevant. Specifically many statistical

models assume that given the model specification the residuals are

statistically independent. Violation of this assumption indicates that the

model is misspecified and this misspecification may result in incorrect

statistical inferences. Assuming that the observations are statistically

independent, the observations may be ordered in various ways. For

example, the observations could be ordered according to some covariate.

Poincaré plots may reveal non-linear forms of dependence or features

not well summarized by a correlation coefficient. An informal method of

statistical inference is to use a parametric bootstrap of the model to

examine a sequence of Poincaré plots simulated when the independence

assumption is known to hold. The significance of the residual plot can be

informally judged by comparing with these plots. More formally, the

Kendall rank correlation between et+1 and et provides a statistical test for

monotone dependency which may be helpful in some cases.

Cleveland (1979) introduced the residual dependency plot. This is

defined as a plot of the residuals vs. a covariate along with a loess smooth
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to help visualize whether there is a relationship. The Poincaré plot is

recommended as a complement not a replacement to this plot. In the

following two examples, residual dependency plots do not suggest any

model inadequacy. But the Poincaré plots indicate strong positive

dependence. Also the forms of dependency revealed by the Poincaré plots

in both examples is more complicated than that simple linear correlation.

2. Generalized Linear Modeling Example

Deviance residuals (McCullagh and Nelder, 1989, §2.4.3) are frequently

used for diagnostic checking with generalized linear models. Under the

usual assumptions the observations, in a specified model, are statistically

independent. This implies that the deviance residuals should also be

approximately statistically independent. Consider the logistic regression of

189 births fitted by Venables and Ripley (2002, p.194–197). In this model a

response variable, low birth weight, is fitted to 9 explanatory variables. One

of the explanatory variables is age, which represents the age of the mother

in years. Using this age variable to order the data, the resulting Poincaré

plot of the deviance residuals shown in the lower left panel in Figure 1

indicates very strong positive residual dependence. For comparison, the

Poincaré plots for 8 bootstrap simulations of deviance residuals are shown

in the other panels. To aid the visualization of the dependence relationship

or lack thereof a robust linear loess smooth with a span equal to 1 is shown

in each panel. Figure 1 clearly reveals that there is significant strong

positive dependence in the residuals and so statistical inferences from the

fitted model may not be correct. Figure 2 shows the residual dependency
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plot of residuals vs. age. In this plot there is no apparent correlation in the

residuals.

[ Figures 1 and 2 ]

3. Loess Fitting Example

Cleveland (1993, §3.6, pp.122–127) fits a loess curve to some sunlight

polarization data. The response variable is the Babinet point and the

explanatory variable is the concentration of particulate matter in the

atmosphere. In Cleveland’s final fit the Babinet point is regressed on the

cube-root of concentration using a robust loess linear regression with a span

of 1/3. The data are ordered according to the concentration variable. The

resulting Poincaré plot for this fit indicates very strong positive dependency

in this data exists. It should be noted Cleveland (1993, p.126, Figure 3.37)

found the usual residual dependence plot satisfactory and there is no

indication of positive correlation and dependency in this plot. An improved

fit can not be obtained simply by changing the loess smoothing parameters

in this case. Choosing the span to be zero or close to zero can remove the

positive dependence in the Poincaré plot but at the expense of increasing

the variance and degrading the overall fit.

Close inspection of Figure 3 shows that many points follow the 45deg

line. This means they are exactly equal and hence that both the dependent

and independent variable are tied. Such ties are not consistent with the
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hypothesis of independent and continuously distributed data. Removing

data values corresponding to ties in both variables and refitting the loess

curve, as shown in Figure 4, does improve the Poincaré plot a little but

there still remains strong positive dependence due to many nearly tied

values.

[ Figures 3 and 4 ]

4. Concluding Remarks

Many other examples could be given which indicate the presence of strong

positive dependency in the residuals of published statistical models fitted to

data. The presence of such strong positive correlation or dependency

invalidates statistical inferences from these models. It may also suggest

possible sources of variation that can be included in the model to remove

this effect.

One should avoid using Poincaré residual plots for data which has been

ordered by the response variable. Since positive dependence is expected in

the Poincaré residual plot even when the assumption of independence holds

in this case.

Many published statistical results in medicine seem to overstate their

statistical significance (Matthews, 1998). One possible reason for this

apparent lack of robustness in medical statistics, at least in some cases,

could simply be model misspecification due to lack of statistical

independence.
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Further research is needed on ways to improve the statistical model

when statistical dependence is found.
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Figure 1: Poincaré plot of deviance residuals in the logistic regression of low
birth weight on 9 explanatory variables and 8 parametric bootstrap simula-
tions.
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Figure 2: Residual dependency plot of residuals vs. age.
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Figure 3: Poincaré plot of residuals in the robust loess fit of Cleveland (1993,
§3.6) to the polarization data.
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Figure 4: Poincaré plot of residuals in the robust loess fit of Cleveland (1993,
§3.6) to the polarization data with ties in both variables removed.
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Note For Referee

The purpose of this note is to describe exactly how the nonparametric

bootstrap computation reported in §2 was done. The linear component of

the logistic model may be written,

ζi = α0 +
9∑

j=1

αixi,j, i = 1, . . . , n, (1)

where n = 189 and the parameters, α0, . . . , α9 are the estimates obtained

from the S glm function. The probabilities are given by,

πi =
eζ

1 + eζ
, i = 1, . . . , n. (2)

The following S function simulates one bootstrap realization of the data,

> simulate.birthwt.data

function()

{

beta <- coef(b.glm)

zeta <- model.matrix(b.glm) %*% beta

p <- exp(zeta)/(1 + exp(zeta))

rbinom(length(p), 1, p)

}

The following S Script generates the plot in Figure 1,

graphics.off()

o.age<-order(bwt$age)

bwt.age<-bwt[o.age,]
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b.glm<-glm(formula = low ~ ., family = binomial, data = bwt.age)

PoincarePlot(resid(b.glm))

title(main="birthwt.glm, p.195, ordered by age, deviance residuals")

e<-resid(b.glm)

emat<-PoincarePairs(e)

n<-length(e)

nsim<-8

set.seed(181)

for (i in 1:nsim){

y<-simulate.birthwt.data()

bwty<-bwt

bwty$low<-y

by.glm<-glm(formula = low ~ ., family = binomial, data = bwty)

ans<-PoincarePlot(resid(by.glm))

e<-resid(by.glm)

emat<-rbind(emat, PoincarePairs(e))

invisible()

}

which <- rep(c("Residuals",paste("Simulation",1:8)),rep(n-1,9))

e.df<-data.frame(emat,which)

names(e.df)<-c("et","etp1","which")

trellis.device(color=F)

xyplot(et~etp1|which, data=e.df,xlab="e[t]",ylab="e[t+1]",strip= function(...) strip.default(..., style = 1),

panel=function(x,y){

panel.xyplot(x,y)
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panel.loess(x,y,span=1)

})

The S dataframe bwt above is obtained as indicated in Venables and Ripley

(2002, p.195).
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