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Abstract. The theorem of Barndorff-Neilsen and Schou (1973, Theo-

rem 2) stating that the admissible region of autoregressive process may be

obtained as image of the admissible region defined by the partial autocor-

relations under the Durbin-Levinson recursion is extended to the case of

the boundary and to subset autoregressions. These results may be used to

obtain a visualization of the admissible region for AR(4) and higher order

autoregressions. Additionally these results suggest a new approach to subset

autoregressive modelling.
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1. INTRODUCTION

The AR (p) model with mean zero may be written, φ(B)zt = at, where

φ(B) = 1− φ1B − . . . φpB
p and at is Gaussian white noise with variance σ2

a.

The admissible region for stationary-causal processes is defined by the region

in <p for which all roots of φ(B) = 0 lie outside the unit circle (Brockwell

and Davis, 1991).

Let φj,k denote the coefficient of zt−j in the minimum-mean-square-error

predictor of zt given zt−1, . . . , zt−k. Then the partial autocorrelations, de-

noted by ζi for i = 1, . . . , p are given by ζi = φi,i, where the φi,i are deter-

mined by the Durbin-Levinson recursion,

φj,k+1 = φj,k − φk+1,k+1φk+1−j,k, j = 1, . . . , k (1)

where k = 1, . . . , p. Barndorff-Neilsen and Schou (1973) showed that eq. (1)

can be used to define a transformation, B : (ζ1, . . . , ζp) ⇒ (φ1, . . . , φp), and

that this transformation is one-to-one, continuous and differentiable inside

the admissible region. Monahan (1984) derived an algorithm for computing

B−1. It will be convenient in §3, to use the notation φi = Bi(ζ) to refer to

each parameter i = 1, . . . , p, where ζ = (ζ1, . . . , ζp). It should be noted that

since the determinant Jacobian of the transformation (Barndorff-Neilsen and

Schou, 1973, p.414) is zero on the boundary, the transformation is not 1:1

there. For example, in the AR (2) case B(ζ1, ζ2) = (ζ1(1 − ζ2), ζ2) so all the

points on the boundary of the form (ζ1, 1) are mapped into the point (0, 1).
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2. BOUNDARY OF AR (p) ADMISSIBLE REGION

Let Dφ denote the admissible region for an AR (p) in the parameter

space (φ1, . . . , φp). The admissible region for the transformed parameters

(ζ1, . . . , ζp) is the interior of the unit cube,

Dζ = {(ζ1, . . . , ζp) ∈ <p : |ζi| < 1, i = 1, . . . , p}. (2)

Denote the boundary sets of Dφ and Dζ by ∂φ and ∂ζ . Theorem 2 of

Barndorff-Nielsen and Schou (1973) may be stated, Dφ = B(Dζ). For vi-

sualization it is the boundary region that it is of interest and Theorem 1

below extends the result of Barndorff-Nielsen and Schou (1973, Theorem 2)

to the boundary.

Theorem 1. ∂φ = B(∂ζ)

Proof. First we show that B(∂ζ) ⊂ ∂φ. Let D̄φ and D̄ζ denote the

closures of Dφ and Dζ respectively. So D̄φ = Dφ ∪ ∂φ and Dφ ∩ ∂φ = ∅.

Similarly, D̄ζ = Dζ ∪ ∂ζ and Dζ ∩ ∂ζ = ∅. Since B is a polynomial and

hence continuous, B(D̄ζ) = Dφ ∪ B(∂ζ) ⊂ B(Dζ) = D̄φ = Dφ ∪ ∂φ. Since

Dφ ∩ B(∂ζ) = ∅, ∂φ ⊃ B(∂ζ).

Next, we show ∂φ ⊂ B(∂ζ). Let ϕ ∈ ∂φ. Then there exists a sequence of

distinct elements ϕn ∈ Dφ such that ϕn → ϕ. Let ϑn = B−1(ϕn). Then ϑn

are distinct elements and there exists a subsequence {ϑnk
} ⊂ {ϑn} such that

ϑnk
→ ϑ ∈ D̄ζ . Since B is continuous on D̄ζ , B(ϑnk

) → B(ϑ). Since ϑ ∈ ∂ζ ,

B(ϑ) ∈ B(∂ζ). Hence, ∂φ ⊂ B(∂ζ). 2

The application of Theorem 1 is illustrated for the AR (4) model,zt =

φ1zt−1 + φ2zt−2 + φ3zt−3 + φ4zt−4. In this case the admissible region is 4-

dimensional. However we can explore this surface by examining the 3D
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surfaces corresponding to a fixed value of the parameter φ4. It may be shown

that,

φ1 = ζ1 − ζ1 ζ2 − ζ2 ζ3 − ζ3 ζ4,

φ2 = ζ2 − ζ1 ζ3 + ζ1 ζ2 ζ3 − ζ2 ζ4 + ζ1 ζ3 ζ4 − ζ1 ζ2 ζ3 ζ4,

φ3 = ζ3 − ζ1 ζ4 + ζ1 ζ2 ζ4 + ζ2 ζ3 ζ4

φ4 = ζ4. (3)

It follows from Theorem 1 that the admissible surface can be plotted in 3D

space for a fixed value of φ4 by varying two of the ζ-parameters at a time

over their admissible range while holding the third parameter fixed at ±1.

An example 3D plot is shown in Figure 1 below for the AR (4) with φ4 = 0.5.

[ Figure 1 ]

3. EXTENSION TO SUBSET AR

Subset autoregressive provide a parsimonious alternative to the full AR (p)

model which is especially useful in modelling seasonal or periodic time se-

ries. Consider the subset AR (4) model, zt = φ1zt−1 + φ4zt−4. Then the

transformation,

B−1(φ1, 0, 0, φ4) = (ζ1, ζ2, ζ3, ζ4) (4)

is one-to-one, continuous and differentiable in the admissible region. However

the admissible region in the four-dimensional space Dζ is no longer simply the

interior unit 4D-cube. Instead it is a complicated two-dimensional subspace
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of the 4D-cube. Setting the φ2 = 0 and φ3 = 0 in the second and third

equations in (3) these equations may be solved for ζ2 and ζ3 to determine B.

When ζ1 6= 0, ζ4 6= 0, |ζ1| < 1 and ζ4 > −1,

ζ2 =
1 + 2 ζ1

2 ζ4 −
√

1 + 4 ζ1
2 ζ4 (1 + ζ4)

2
(

−1 + ζ1
2
)

ζ4

ζ3 =
−1 +

√

1 + 4 ζ1
2 ζ4 (1 + ζ4)

2 ζ1 (1 + ζ4)
. (5)

Note that not all solutions of (5) are admissible. For example taking ζ1 = 0.9

and ζ4 = −0.9, (5) produces, ζ2
.
= −0.88 and ζ3

.
= −3.8. Since (4) is also

a one-to-one, continuous and differentiable transformation, these equations

establish that the transformation (φ1, φ4) → (ζ1, ζ4) is one-to-one, continuous

and differentiable with the appropriate admissible regions. The admissible

region for ζ1 and ζ4 is given by,

Dζ = {(ζ1, ζ4) ∈ (−1, 1) × (−1, 1) : |ζ2| < 1 ∧ |ζ3| < 1} (6)

The admissible region for ζ1 and ζ4 is shown in Figure 3 below. Applying

the transformation B : (ζ1, ζ2, ζ3, ζ4) → (φ1, 0, 0, φ4), the admissible region,

Figure 4, for φ1 and φ4 is obtained.

[ Figures 2 and 3 ]

In the general case of a subset AR (p) model, let

zt = at + φi1zt−i1 + . . . + φimzt−im (7)

where i1 < . . . < im. Let Ḃ−1
i1,...,im

denote the transformation,

Ḃ−1
i1,...,im

: (φi1 , . . . , φim) → (ζi1 , . . . , ζim) (8)
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obtained by selecting the i1, . . . , im elements from,

B−1 : (φ1, . . . , φp) → (ζ1, . . . , ζp). (9)

Theorem 2. The transformation defined in eqn. (8) is one-to-one, con-

tinuous and differentiable in the admissible region.

Proof. The transformation given in eqn. (1) may be written,

φi = ζi + bi(ζ1, . . . , ζp), (10)

where bi(ζ1, . . . , ζp) is a multilinear function of the variables ζ1, . . . , ζp with

the coefficient of each term being 1 or −1. This holds for p = 1. Suppose it is

true also for p = k. Then eqn. (1) ensures that the new values of φ1, . . . , φk+1

are suitable multilinear functions of the variables ζ1, . . . , ζk+1.

Consider a subset AR (p) with only one parameter φh = 0 constrained,

where h is a fixed value 0 < h ≤ p. Using (10), an explicit solution of the

equation φh = 0 may be found,

ζh = gh(ζ
(−h)), (11)

where ζ(−h) denotes the vector (ζ1, . . . , ζp) with the h-th element removed.

We can subsitute for ζh in each of the p − 1 equations φi = Bi(ζ1, . . . , ζp)

to obtain an explicit solution φi = Bi,h(ζ
(−h)) which defines the required

transformation.

In the more general case, there are p−m constraints. Denote the indices

of those parameters φ1, . . . φp which are constrained to zero by j1, . . . , jp−m.

The p−m constraint equations in p−m unknowns may be written 0 = ζjk
+

bjk
(ζ1, . . . , ζp), k = 1, . . . , (p − m). Starting with the equation corresponding
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to φj1 = 0, the solution for ζj1 can be found and substituted in the remaining

p − 1 equations. The next equation, φj2 = 0, is by the multilinear property,

a quadratic with two solutions for ζj2 . Continuing this process, there are

(p − m)! solutions to the constraint equations. The theorem of Barndorff-

Neilsen and Schou (1973) guarantees that at most only one of these solutions

is admissible. 2

Denote the admissible boundaries for the parameters (φi,1, . . . , φi,m) and

(ζi,1, . . . , ζi,m) by ∂φi,1,...,φi,m
and ∂ζi,1,...,ζi,m

respectively.

Theorem 3. ∂φi,1,...,φi,m
= Ḃi1,...,im(∂ζi,1,...,ζi,m

)

Proof. Since Ḃi1,...,im is a one-to-one, continuous and differentiable trans-

formation, Theorem 3 follows making the necessary changes to the argument

given by Theorem 1. 2

The application of Theorem 3 was illustrated by the derivation of Figure

4.

Theorem 2 indicates that the parameter space of the subset autoregres-

sion is spanned by the corresponding partial autocorrelations. This suggests

an alternative parameterization for the subset autoregessive model in which

some partial autocorrelations are set to zero and the others are estimated. A

subset modelling approach based on this idea is developed in our forthcoming

article (McLeod and Zhang, 2000a) where it is shown that this approach has

many advantages over the usual subset modelling approach.

Mathematica notebooks for generating all figures in this article and for

visualizing the AR(4) admissible region in more detail are available from

Mcleod and Zhang (2000b).
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Figure 1: Admissible region, zt = φ1zt−1 + φ2zt−2 + φ3zt−3 + φ4zt−4, with
φ4 = 0.5.
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Figure 2: Admissible region, zt = φ1zt−1 + φ4zt−4 for reparameterized model
with ζ1 and ζ4.
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Figure 3: Admissible region, zt = φ1zt−1 + φ4zt−4.
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