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In many intervention analysis applications time series data may be

expensive or otherwise difficult to collect. In this case the power function is

helpful since it can be used to determine the probability that a proposed

intervention analysis application will detect a meaningful change. Assuming

that an underlying ARIMA or fractional ARIMA model is known or can be

estimated from the pre-intervention time series, the methodology for

computing the required power function is developed for pulse, step and

ramp interventions with ARIMA and fractional ARIMA errors. Convenient

formulae for computing the power function for important special cases are

given. Illustrative applications in traffic safety and environmental impact

assessment are discussed.

KEY WORDS: Autocorrelation and lack of statistical independence;

ARIMA time series models; Environmental impact assessment; Forecast

and actuality significance test; Long-memory time series; Sample size;

Two-sample problem.
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Intervention analysis developed by Box and Tiao (1976a) has been

widely used in a variety of applications in engineering, biological,

environmental and social sciences to quantify the effect of a known

intervention at time t = T on data collected as a time series,

zt, t = 1, . . . , n. In its simplest form, intervention analysis itself may be

regarded as a generalization of the two-sample problem to the case where

the error or noise term is autocorrelated. It is well-known that the usual

two-sample procedures are not robust against alternatives involving

autocorrelation (Box, Hunter and Hunter, 1978, §3.1). The purpose of this

article is to describe methods for computing the necessary sample size to

detect an intervention with a prescribed power and level. It is shown by

simulation experiments that these methods can be accurate even in

moderately small samples. Statistical power computations have also been

studied by Tiao et al. (1990) and Weatherhead et al. (1998) for particular

types of intervention analysis models used for trend detection with

environmental time series. This article extends and refines these results.

It is assumed that for t < T + b, where b is the delay parameter, the

time series is generated by a fractional ARIMA (p, d, q) with fractional

differencing parameter |f | < 0.5. Stationary short-memory time series

models, d = f = 0, are used in environmental impact assessment (Box and

Tiao, 1976a; Tiao et al., 1990; Noakes and Campbell, 1992; Weatherhead et

al. 1998; Hipel and McLeod, 1994, §19.4.5) and in quality control (Jiang,

Tsui and Woodall, 2000) as well as in many other areas of science and

technology. Nonstationary models with d = 1 and/or long-memory models

with 0 < f < 0.5 have numerous applications in the physical and
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engineering sciences such as: quality control and industrial time series

(Luceño, 1995; Box and Luceño, 1997), internet traffic (Cao et al., 2001),

daily solar irradiance (Kärner, 2002), levels of Lake Huron (Roberts, 1991,

p.319-320), daily wind-speed (Haslett and Raftery, 1989), and various types

of hydrological time series (Beran, 1994; Hipel and McLeod, 1994).

In general, we may write the fractional ARIMA model for the

pre-intervention series as

∇d+fzt = ξ + θ(B)/φ(B)at, t = 1, . . . , T + b− 1, (1)

where ξ is the constant term, d is the differencing parameter, ∇ = 1−B,

θ(B) = 1− θ1B − . . .− θqB
q, φ(B) = 1− φ1B − . . .− φpB

p and B is the

backshift operator on t. The innovations, denoted by at, t = 1, . . . , n, are

assumed to be independent and normally distributed with mean zero and

variance σ2
a. It is also assumed that φ(B) = 0 and θ(B) = 0 have no

common roots and that all roots are outside the unit circle.

1. SIMPLE INTERVENTION ANALYSIS (SIA) MODEL

1.1 Introduction

The SIA model may be written,

∇dzt = ξ + ω∇dBbI
(T )
t +∇−f θ(B)

φ(B)
at, t = 1, . . . , n, (2)

where I
(T )
t is the intervention series, ω is the parameter indicating the

magnitude of the intervention and ∇−fθ(B)/φ(B)at is the stationary error

component. In this article three types of intervention series are used, the

step, pulse and ramp series, defined respectively by,

I
(T )
t = S

(T )
t =

{
0, if t < T ,
1 if t ≥ T ,

(3)
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I
(T )
t = P

(T )
t =

{
0, if t 6= T ,
1 if t = T ,

(4)

or

I
(T )
t = R

(T )
t =

{
0, if t < T ,
t− T + 1 if t ≥ T .

(5)

In practice two of the most common models for the error are the AR (1)

and IMA (1) which correspond respectively to p = 1, d = 0, q = 0 and

p = 0, d = 1, q = 1. In the case of a step intervention, the SIA model

implies that for t ≥ T + b an increase of ω occurred. So the SIA model with

a step intervention can be regarded as the time-series generalization of the

standard two-sample test for a change in location and in practice this is one

of the most frequently applicable models. Pulse interventions are useful for

dealing with outliers (Chang, Tiao and Chen, 1988). A ramp intervention

has been used to model the recovery trend in stratospheric ozone (Reinsel

et al. 2002).

The SIA model may be generalized by allowing for multiple

interventions and other types of interventions, as well as for seasonal

ARIMA errors and possible covariates (Tiao et al., 1990; Weatherhead et

al., 1998; Reinsel, 2002; Reinsel et al., 2002). All of these situations are

easily handled with the methods discussed in §1.2 and §1.3. Power

computations, although possible, are less useful when applied to dynamic

response interventions for the reasons explained in Appendix B.

1.2 Information Matrix

Letting λ1 = (ξ, ω) and λ2 = (φ1, . . . , φp, θ1, . . . , θq, f), it is shown in

Appendix A that the expected Fisher information matrix is block diagonal
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with blocks, Iλ1 and Iλ2 corresponding to λ1 and λ2. For the first block,

Iξ,ω = σ−2
a J ′Γ−1

n J, (6)

where σ−2
a Γ−1

n is the inverse of the covariance matrix of the stationary

component and J is an n× 2 matrix with 1 in the first column and

∇dI
(T )
t , t = 1, . . . , n in the second column. The Trench algorithm (Golub

and Van Loan, 1983) provides a computationally efficient method for

computing Γ−1
n . An expression essentially equivalent to eqn. (6) was

obtained by Tiao et al. (1990) and Weatherhead et al. (1998) using

generalized least squares. Assuming approximate normality of the

estimates, the asymptotic variance of the maximum likelihood estimate of ω

is found by taking the (2, 2) element of the inverse of (6),

σω̂ =
√ (

I1,1/
(
I1,1I2,2 − I2

1,2

))
, (7)

where Ii,j denotes the (i, j) entry in the matrix Iξ,ω. If the constant term,

ξ, is not present, σω̂ = 1/
√I2,2. When there is an extensive amount of data

prior to the intervention it is sometimes helpful to simply correct the series

by its sample mean and assume ξ = 0 (Tiao et al., 1990).

The results of Pierce (1972) provide a computationally efficient

approximation to (6) when f = 0. From Pierce (1972, eqn. 3.2) we can

write the Fisher information for (ξ, ω) based on n observations as

Iξ,ω = σ−2
a

(
nκ2 κ

∑
t vt

κ
∑

t vt
∑

t v
2
t

)
, (8)

where κ = −φ(1)/θ(1) and vt = −φ(B)/θ(B)wt, where wt = ∇dI
(T )
t .

Without loss of generality we take b = 0 since if b > 0, the formulae hold
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with T replaced by T + b. Provided that T is not too small and T is not

too close to n, eqn. (8) yields almost identical values to the more exact

formula given in (6). New explicit expressions, using Pierce’s approximation

for AR (1) and IMA (1) cases, are given in Tables 1 and 2 below for step,

pulse and ramp interventions.

[Tables 1 and 2 about here]

From eqn. (6), it follows that for consistency of the estimates ξ̂ and ω̂,

Iξ,ω/n or equivalently, J ′J/n, must converge to a nonsingular matrix. For

the intervention analysis models defined by eqns. (2), (3), (4) and (5), this

happens provided that

1

n

n∑

t=1

∇dI
(T )
t → c, c > 0, c 6= 1. (9)

If the constant term, ξ, is assumed to be known or zero then only c > 0 is

needed. This result is certainly not the whole story from the application

point of view. In §1.5 we show using simulation experiments that the

empirical variances may be accurately estimates from 7) even when eqn. (9)

is not satisfied.

1.3 Power and Sample Size

The null hypothesis H0 : ω = 0 can be tested using two asymptotically

equivalent methods. The first method, referred to as the Z-test, uses

Z = ω̂/σ̂ω̂, where ω̂ is the maximum likelihood estimate for ω and σ̂ω̂ is its

estimated standard error. Note that σω̂, the standard error of ω̂, depends

only on the underlying ARIMA model in the pre-intervention period and so

it can be estimated before the post-intervention data are obtained. A

second asymptotically equivalent method is to use a likelihood-ratio test.

7



The asymptotic theoretical power function for the Z-test of the null

hypothesis H0 : ω = 0 against the two-sided alternative at level α is

Pr {| ω̂ | > Z1−α/2 σω̂|ω}, where Z1−α/2 is the upper (1− α/2)-quantile in

the standard normal distribution. For brevity the asymptotic theoretical

power function will be referred to simply as the power function. In practice

this power function is approximated by replacing σω̂ by an estimate, σ̂ω̂,

based either on the pre-intervention data or on other prior knowledge.

Often it is more convenient to use the rescaled parameter, δ = ω/σ, where

σ2 is the variance of the stationary error component since in this case

knowledge of σ2 is not needed. The power function may be expressed in

terms of δ as

Π(δ) = Φ(−Z1−α/2 − δσ/σω̂) + 1− Φ(Z1−α/2 − δσ/σω̂), (10)

where Φ(•) denotes the cumulative distribution function of the standard

normal. If the variance of the pre-intervention series, σ2, is known or

estimated, the power function for ω is Π(ω/σ). Eqn. (10) should be

adjusted if only a one-sided alternative is under consideration.

As in Tiao et al. (1990) it is sometimes of interest to estimate the

amount of additional data needed to detect an intervention of a specified

magnitude with a prescribed power. The power function Π(δ) may be

expressed more fully as a function of the test level α and the other

underlying parameters n and T so we can write the power function more

fully as Π(δ, α, n, T ). For a fixed α = α(0), δ = δ(0) and a prescribed power

Π(0) we may estimate the number of additional data values, m, that are

required by numerically solving the equation Π(δ(0), α(0), T + m− 1, T )
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= Π(0). If as in the geophysical datasets considered in Tiao et al. (1990)

there is extensive pre-intervention data, we may assume the mean is known

and take T = 1 and solve Π(δ(0), α(0),m, 1) = Π(0). This technique is

illustrated in §1.4 where it is also explained that in some situations, due to

the limitations imposed by the model, there is no solution for m.

In general the power and sample size computations for interventions

with ARIMA and fractional ARIMA errors are easily done using an

advanced quantitative programming environment such as Mathematica,

MatLab, S or Stata. In the case of SIA with AR (1) or IMA (1) errors,

power computations can even be done on a hand calculator.

1.4 Numerical Illustrations

The power and sample size computations are illustrated in this section

for the SIA with a step intervention with AR (1), IMA (1) and

fractionally-differenced white noise. First an approximation to the

detection limit, δ′, is derived for the step intervention in an SIA model with

unknown mean, stationary short-memory errors, with f = d = 0, and a

fixed number, T − 1, of pre-intervention observations. The variance of the

estimate, δ̂, may be written, Var (δ̂)
.
= γδ/T, where γδ =

∑∞
k=−∞ γk/γ0, γk

is the autocovariance function for the stationary pre-intervention series and

γ0 = σ2. To achieve 90% power, Pr {(δ̂ − δ′)/ SE (δ̂) > 1.96 −δ′/ SE (δ̂)}
.
= 0.9. Hence 2− δ′/ SE (δ̂)

.
= −1.3. So δ′ .

= 3.3 SE (δ̂).

Using Table 1, the power curve for the AR (1) with unknown mean,

n = 50, T = 25 and φ1 = 0.5, σω = 0.526681. With σ = 1/
√

(1− φ2
1) =

1.1547, the power curve is Π(δ) = 1 + Φ(−1.960− 2.192× δ)

− Φ(1.960− 2.192× δ). This and the power curve obtained by letting
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n →∞ are shown in Figure 1 as well as the approximate detection level,

δ′ .
= γδ/

√
T = 1.14. For comparison, the exact value of δ′ found by

numerically solving Π(δ′, 0.5, 109, 25) = 0.9 is δ′ = 1.12. Assuming an

unknown mean and that T = 25, we can find m, the number of additional

observations needed to achieve a prescribed power level. For example, for

90% power with δ(0) = 1.5, solving Π(1.5, 0.05, 25 + m− 1, 25) = 0.9 we find

m = 23. In the known mean case taking T = 1 we find m = 10. In the

unknown mean case, if δ(0) ≤ γδ there is no solution but if the mean is

known then m can always be found.

[Figure 1 about here]

The middle panels of Figure 2 illustrate the power curves for an

IMA (1) with n = 50 and T = 25. With θ1 = 0.5, Π(δ) =

1 + Φ(−1.960− 1.252× δ) −Φ(1.960− 1.252× δ).

Since long-memory or fractional time series have also been suggested for

various types of geophysical data, it is of interest to examine the impact of

this type of process on our ability to detect interventions. Table 3 compares

the power of a two-sided 5% level test of the fractionally differenced white

noise model p = d = q = 0 with f = 0.2 and f = 0.4 to the corresponding

approximating ARMA(1, 1) when n = 50 and T = 25. The approximating

ARMA(1, 1) model was determined by equating the first two

autocorrelations in the fractional model with the first two autocorrelations

in the ARMA(1, 1) and solving to obtain the parameters φ1 and θ1. In the

first case with f = 0.2 the power is almost identical and in the second case

with f = 0.4 the power is slightly higher for the ARMA(1, 1)

approximation. This suggests that long term memory in the fractional noise
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model has little effect on the power when the length of the series is

moderate, as in this example with n = 50 and T = 25. For sufficiently long

time series, the effect on long memory is much more important and the

ARMA(1, 1) approximation does not hold.

[Table 3 about here]

1.5 Simulation Experiment

The power function derived in eqn. (10) relies on the asymptotic

normality of the maximum likelihood estimator and so it is helpful to check

its accuracy by simulation. We do this by comparing the power function

with the empirical power function, Π̂. For each simulated time series all

parameters in the model were estimated by exact maximum likelihood

estimation and the Z-test was computed. The empirical power, Π̂, of a

two-sided 5% test is then the proportion of times that the absolute value of

this Z-statistic exceeded 1.96 in absolute value and the 95% confidence

interval for Π is Π̂± 1.96
√

(Π̂(1− Π̂)/N), where N is the number of

simulations. For each model and each parameter setting, N = 1, 000.

The model in eqn. (2) was simulated with n = 50 and T = 25 and

AR (1) errors with φ1 = 0, 0.25, 0.5, 0.75, ω = δσ, where

δ = 0,±0.25, ...,±2.0. The empirical power confidence limits and

theoretical power given by eqn. (10) are compared in Figure 2. It is seen

that eqn. (10) provides an accurate approximation. The IMA (1), is a

commonly occurring nonstationary time series model. Figure 2 compares

the theoretical and empirical power for the case with n = 50 and T = 25

using a two-sided Z-test at the 5% level. Once again it is seen that eqn.

(10) holds very well despite the small sample size. The values selected for
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θ1 are positive since this is the most common situation in practice. The

power improves, as expected, as θ1 increases from 0 to 1. Notice that this

model does not satisfy eqn. (9). The last column of Figure 2 compares the

empirical and theoretical power in the case of fractionally differenced white

noise, p = q = d = 0 for f = 0.0, 0.2, 0.3, 0.4. The approximation to the

theoretical power improves with increasing f . The simulations shown in

Figure 2 were repeated using the likelihood-ratio test and essentially

equivalent results were obtained.

[Figure 2 about here]

In conclusion, the simulations in Figure 2 suggest that for practical

purposes if n, T and n− T are not too small the asymptotic theoretical

power curve provides a good small sample approximation. Alternatively,

the simulations show that ω̂ is well approximated using its large-sample

approximation even for moderately small samples. As already noted, σω̂,

must also be estimated by σ̂ω̂ using either the pre-intervention data or an

estimate of its likely autocorrelation function. In practice, as in the

example in §2.1, a range of likely parameter values are often used to

indicate a range of possible power curves.

1.6 Model Uncertainty

Box, Jenkins, and Reinsel (1994) found that both the ARMA(1, 1) and

IMA(1) fit Series A, Chemical Process Concentrations about equally well.

Both models give similar one step ahead forecasts but the long run

forecasts are very different. The situation is similar with the power

functions for these two models.
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Consider a hypothetical step intervention which occurs immediately

after the last observation. In this case T = 198 and the power curve as a

function of ω is tabulated for a few selected values in Table 7 for a

two-sided 5% test assuming that m post-intervention observations are

available for m = 5 and m = 50. When m = 5 the power curves are quite

similar but for m = 50 the power increases for the ARMA model but stays

essentially the same in the case of the IMA model. For example, Table 7

shows that there is a 75% chance of detecting a change of 0.6 with just 5

post-intervention observations.

[Table 4 about here]

1.7 Forecast-Actuality Significance Test

Box and Tiao (1976b) described an omnibus significance test for

detecting if an intervention has occurred. If at, t = T, ..., n denote the

one-step ahead prediction errors of an assumed model, then the test

statistic may be written, Q =
∑n

t=T a2
t /σ

2
a. If the intervention has no effect,

Q is approximately χ2-distributed on m = n− T + 1 df. This significance

test is easy to apply and does not require specification of an intervention

model and its estimation. However, as might be expected, the loss of power

can be considerable as will now be demonstrated.

As an example, consider the SIA model with a step intervention. Then

it can shown using eqn. (4) of Box and Tiao (1976b) that

Q = ||ω1′mπ/σa + a/σa||2, where 1m denotes the m-dimension vector with 1

in each position, a = (aT , ..., an), π = (πi−j) is the lower triangular matrix

with (i, j) entry πi−j, where πk is the coefficient of Bk in the expansion

∇dφ(B)/θ(B) = 1 + π1B + π2B
2 + .... So Q has a χ2 distribution with m df
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and noncentrality parameter ν = (ω2/σ2
a)||1′mπ||2 and hence the

large-sample power function can be computed. Figure 3 compares the

power of this significance test with the SIA model hypothesis test for an

example with n = 120, T = 101 and AR(1) errors. Figure 3 shows that the

power of the significance test can be substantially less than the intervention

analysis hypothesis test.

[Figure 3 about here]

2. ILLUSTRATIVE APPLICATIONS

2.1 Traffic Safety and Public Policy

On May 1, 1996, liquor bar closing time in Ontario was changed from 1

AM to 2 AM. In a proposed intervention analysis we wished to examine the

possible effect of this change on late-night automobile fatalities. The data

for this study comprised the total number of fatalities every month in

Ontario during the hours of 11PM to 4AM for a period of years before and

after May 1, 1996. For comparison we also collected similar time series data

for Michigan and New York State. Data for this analysis were expensive to

obtain since raw records needed to be assembled, cleaned and aggregated

from sources in various jurisdictions. Initially we planned to obtain

monthly time series on the the total number of fatalities from January 1994

to December 1998. This would yield n = 60 observations and with the

intervention occurring at T = 36. At additional cost, we could obtain

complete monthly time series covering the period January 1992 to

December 1998 which corresponds to n = 84 and T = 48. We were

interested to know if (n = 60, T = 36) or (n = 84, T = 48) would be
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sufficient to detect change of σ or greater with a reasonably high

probability, where σ is the standard deviation of the pre-intervention series.

Based on previous experience with similar time series (Vingilis, et al.,

1988) we expected the time series will exhibit small autocorrelations which

may be modelled by an AR (1) with parameter φ1 ≤ 0.5. The intervention

was expected to cause an increase in late-night fatalities, so a one-sided

upper-tail test is appropriate. The power function in this case is Π(δ) =

1− Φ(1.645− 2.362× δ). Table 5 shows the power of a 5% upper-tail test

for these two plans for various φ1. When φ1 = 0.5, Table 5 shows that

(n = 84, T = 48) has a 86.7% chance of detecting a step intervention whose

magnitude is only one standard deviation of the error component whereas

the corresponding power for (n = 60, T = 36) is 76.3%. The results of Table

5 demonstrated to our satisfaction and that of the granting agency, that

(n = 84, T = 48) had a good chance of detecting a meaningful change and

was worth the extra expenditure.

[Table 5 about here]

2.2 Detecting Ozone Turnaround

Tiao et al. (1990) used the SIA model with a ramp intervention with

AR (1) errors to model the trend in monthly deseasonalized stratospheric

ozone and other environmental variables. For simplicity Tiao et al. (1990)

assumed that the mean of the pre-intervention series was known. It may be

shown that the expression obtained by Tiao et al. (1990, Appendix A) for

σω̂ is exactly equal to σω̂ = 1/
√I2,2 using Table 1 with n = T and T = 1.

Table 6 compares this result with the corresponding result obtained using

the exact expected Fisher information matrix given in eqn. (6) for the same
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parameters as used in Tiao et al. (1990, Table 1). When φ = 0.8, the

difference is as high as 17% but it decreases as the sample size increases.

The approximation is very good for parameter values 0.6 and less. For most

of the geophysical time series considered by Tiao et al. (1990) the degree of

autocorrelation is quite low, so this approximation works well.

[Table 6 about here]

Tiao et al. (1990, Table 2) also consider the number of years of monthly

data needed to detect a ramp intervention for several geophysical time

series of interest. In their computations it was assumed that T = 1 and

that the mean was known. Table 7 below computes the number of years of

data needed for these time series under the assumptions that the mean is

unknown but that there are 30 years of prior data. The other assumptions

about the data and the form of the intervention are the same as in Tiao et

al. (1990). The parameter δ shown in the table was based on the

information supplied by Tiao et al. (1990). Specifically, δ = ω/ (12× σ̂)

where φ̂1 and σ̂ are obtained from Tiao et al. (1990, Table 2) and ω is

obtained from Tiao et al. (1990, p.20,510). Note that ω was divided by 12

because the form of the intervention used in Tiao et al. (1990) was

R
(T+1)
t /12. In conclusion, the estimate of the sample size required shown in

Table 7 is in reasonable agreement with the results in Tiao et al. (1990).

[Table 7 about here]

3. CONCLUDING REMARKS

We have shown how the power function for an intervention analysis

may be computed provided that we have an estimate of the ARIMA
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parameters in the pre-intervention time series or in some closely related

time series. In the case of the SIA model with AR (1) or IMA (1) errors,

the power function can easily be computed using a hand calculator. Such

programs are freely available for the Texas Instruments TI-83 from the first

author’s webpage. Mathematica and S software for computing the power

functions and all tables and figures described in this paper are also

available there as well as various other supplements to this article.

The emphasis of this article has been on the use of the power function

as an aid in selecting the sample size. In the case of the SIA model, if

Π(ω′) = 1− β′ for a 5% two-sided test of H0 : ω = 0 then the usual 95%

confidence interval for ω will contain 0 with probability β′ when ω = ω′. So

the power function may be used as an aid in choosing the sample size so

that a useful confidence interval is obtained. Instead of the power function

we could have focussed on the width of a suitable interval estimate of ω.

Since this also depends on an estimate of σω̂ the methods presented are

applicable. It may be noted that overemphasis on hypothesis tests has long

been condemned as was already noted many years ago by Cox (1977).

Nevertheless, as indicated by Cox (1977), such tests remain important in

practice.

The power function depends strongly on the degree of autocorrelation

in the pre-intervention time series. In the stratospheric ozone example, §2.2,

a long pre-intervention series was available which enabled the model to be

accurately estimated. In other cases, such as the traffic safety example,

§2.1, the pre-intervention series is either unavailable or quite short. In such

cases there may be prior information available which indicates a range of
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likely models. As discussed in §2.1, this may still be very useful for

planning purposes. A final note of caution, power computations should only

be used before the analysis of the data is done (Hoenig and Heisey, 2001;

Lenth, 2001) and should never be used to compute the observed power after

a test of hypothesis has already been carried out.
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Figure 1: Comparison of Power Curves For n = 50, T = 25 and n = ∞, T = 25.
The solid curve shows for n = 50, T = 25 and the dashed curve, n = ∞, T =
25. The approximate detection limit, δ′ .

= 1.143 is also shown.
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Figure 2: Comparison of Empirical and Theoretical Asymptotic Power in the
SIA Model with AR(1), IMA(1) and Fractionally-Differenced White Noise. The
parameter δ = ω/σ is the rescaled step size. The solid curve shows the the-
oretical power defined in eqn. (10). The vertical bars show the width of a
95% confidence interval for the empirical power in 1,000 simulations of the
model. The AR(1) and IMA(1) parameters φ1 and θ1 are denoted by phi(1)
and theta(1) in the diagram.
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Figure 3: Comparison of Power Functions for a SIA Model with a Step Inter-
vention with AR(1) Errors and the Forecast-Actuality Significance Test For a
Two-Sided Test at the 5% Level. The model parameters are n = 120, T = 101,
delta = δ = ω/σ and phi(1) = φ1. The solid thin curve shows the SIA Model
based hypothesis test and the solid thick curve shows the omnibus significance
test using Q. Since both power functions are symmetric about δ = 0 only the
upper half is shown.
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Table 1: Information Matrix for Simple Intervention Analysis with AR(1) Errors.
The table gives the (1, 2) and (2, 2) entries, I1,2/σ

2
a and I2,2/σ

2
a. For each

intervention type, I1,1/σ
2
a = n(1 − φ1)

2 and the (2, 1) entry is obtained by
symmetry.

Type Information Matrix Entries

Step I1,2/σ
2
a = (n− T )(1− φ1)

2 + 1− φ1

I2,2/σ
2
a = (n− T )(1− φ1)

2 + 1

Pulse I1,2/σ
2
a = 1− φ2

1

I2,2/σ
2
a = 1− φ2

1

Ramp I1,2/σ
2
a = (1 + n− T ) (1− φ1) (2 + n− T − (n− T ) φ1) /2

I2,2/σ
2
a = (1 + n− T ) (6 + 7 n + 2 n2 − 7 T − 4 nT + 2 T 2 − 8 nφ1

−4 n2 φ1 + 8 T φ1 + 8 nT φ1 − 4 T 2 φ1 + nφ1
2 + 2 n2 φ1

2 − T φ1
2

−4 nT φ1
2 + 2 T 2 φ1

2)/6

25



Table 2: Information Matrix for Simple Intervention Analysis with IMA (1)
Errors. For θ1 = 0 set θ0

1 = 1. The table gives the (1, 2) and (2, 2) entries,
I1,2/σ

2
a and I2,2/σ

2
a. For each intervention type, I1,1/σ

2
a = (n − 1)/(1 − θ1)

2

and the (2, 1) entry is obtained by symmetry.

Type Information Matrix Entries

Step I1,2/σ
2
a = (1− θ1)

−2(1− θn+1−T )

I2,2/σ
2
a = (1− θ2

1)
−1(1− θ2(n+1−T ))

Pulse I1,2/σ
2
a = (1− θ1)

−1θn−T
1

I2,2/σ
2
a = (1 + θ1)

−12(1 + θ2(n−T )+1)

Ramp I1,2/σ
2
a = (1− θ1)

−3(n + 1− T + θn+2−T
1 − (n + 2− T )θ)

I2,2/σ
2
a = (1 + θ)−1(1− θ1)

−3(2 θ2+n+T (1 + θ)− θ4+2 n

+θ2 T (n + 1− T − 2 θ − (2 + n− T ) θ2))
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Table 3: Power Function, Π(δ), for Fractionally Differenced White Noise With
Parameter f and The Approximating ARMA(1, 1) Model for a Two-sided 5%
Level Test in SIA Step Intervention Model with n = 50 and T = 25. The first
entry in each pair is for the fractional model and the second the ARMA(1, 1)
model. The parameters in the approximating ARMA model are respectively
φ1 = 0.667, φ2 = 0.451 and φ1 = 0.875, φ2 = 0.405 corresponding respectively
to f = 0.2 and f = 0.4.

δ f = 0.2 f = 0.4

0 0.050, 0.050 0.050, 0.050
0.5 0.198, 0.202 0.086, 0.076
1. 0.602, 0.612 0.198, 0.156
1.5 0.914, 0.920 0.384, 0.291
2. 0.993, 0.994 0.602, 0.468
2.5 1.000, 1.000 0.792, 0.651
3. 1.000, 1.000 0.914, 0.805
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Table 4: Power Comparison for Step Interventions with ARMA(1,1) and
IMA(1) Errors for Series A with n = 197 + m and T = 198. The models’
other parameters are respectively, {φ1 = 0.9087, θ1 = 0.5758, σa = 0.3125}
and {θ1 = 0.7031, σa = 0.3172}.

ARMA(1, 1) IMA(1)

ω m = 5 m = 50 m = 5 m = 50

0.2 0.141 0.205 0.141 0.143
0.3 0.258 0.398 0.258 0.264
0.4 0.415 0.621 0.416 0.425
0.5 0.588 0.809 0.589 0.600
0.6 0.745 0.925 0.746 0.756
0.7 0.863 0.978 0.864 0.872
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Table 5: Power Comparison for AR(1) Errors for (n = 60, T = 36) and (n =
84, T = 48). The first entry in each column corresponds to (n = 60, T = 36)
and the second (n = 84, T = 48).

δ φ1 = 0 φ1 = 0.25 φ1 = 0.5 φ1 = 0.75

0.000 0.050, 0.050 0.050, 0.050 0.050, 0.050 0.050, 0.050
0.250 0.245, 0.306 0.186, 0.226 0.146, 0.170 0.124, 0.135
0.500 0.604, 0.736 0.444, 0.555 0.321, 0.395 0.253, 0.288
0.750 0.889, 0.961 0.729, 0.848 0.550, 0.664 0.431, 0.493
1.000 0.985, 0.998 0.914, 0.973 0.763, 0.867 0.624, 0.700
1.250 0.999, 1.000 0.983, 0.998 0.904, 0.964 0.790, 0.857
1.500 1.000, 1.000 0.998, 1.000 0.971, 0.994 0.903, 0.946
1.750 1.000, 1.000 1.000, 1.000 0.994, 0.999 0.963, 0.984
2.000 1.000, 1.000 1.000, 1.000 0.999, 1.000 0.989, 0.996
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Table 6: Comparison of Exact and Approximate Methods. The function g(T, φ)
defined in Tiao et al. (1990) was computed using exact form of the information
matrix eqn. (6) and the approximation eqn. (8) for selected parameter values
given in Table 1 of Tiao et al. (1990). The entries in the table show the
percentage difference, 100× (EXACT− APPROXIMATE)/EXACT.

Number
of φ = 0.6 φ = 0.8

Years

6 −6 −17
7 −5 −15
8 −5 −13
9 −4 −11

10 −4 −10
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Table 7: Number of Years, n∗, For 90% Probability of Detecting a Prescribed
Trend, δ Using a Two-Sided 5% Test Given 30 Years of Prior Data And As-
suming AR (1) Errors With Estimated Parameter φ̂1. The last line of the table
shows the comparable values given in Tiao et al. (1990, Table 2).

Tateno Hohen. Wakkan Bulawayo Abidajan

φ̂1 0.32 0.05 0.14 0.43 0.65

ω 0.003 0.003 0.2 0.2 0.2

δ 0.00758 0.00543 0.01042 0.01282 0.01111

n∗ 11.6 12.1 8.0 8.6 12.0

n∗Tiao 14 14 10 10 13
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Table 8: Power Comparisons of Dynamic Step Intervention Model with Simple
Step Intervention when n = 50 and T = 25. The first entry in each triplet
shows the theoretical power of a 5% two-sided test of H0 : g = 0 where
g = ω

(1)
0 /(1 − δ1) in the dynamic step intervention model zt = ξ + ω

(1)
0 /(1 −

δ1B)S
(T )
t + at/(1 − φ1B) with ξ = 0, φ1 = 0.5 and σ2

a = 1. The second

entry is the theoretical power of a 5% test of H0 : ω
(2)
0 = 0 in the SIA

model, zt = ξ + ω
(2)
0 S

(T )
t + at/(1 − φ1B), where ω

(2)
0 = ω

(1)
0 /(1 − δ1) and all

other parameters are the same as in the dynamic model. The third entry is
the empirical power, based on 1000 simulations, for a two-sided 5% test of
H0 : ω

(2)
0 = 0 when the SIA model is fitted to a time series generated by the

dynamic step intervention model.

δ0 ω0 = 0.5 ω0 = 0.75 ω0 = 1.0

0.25 0.226, 0.252, 0.241 0.416, 0.490, 0.466 0.879, 0.972, 0.880
0.50 0.439, 0.490, 0.445 0.745, 0.827, 0.758 0.997, 1.000, 0.974
0.75 0.673, 0.732, 0.692 0.937, 0.972, 0.932 1.000, 1.000, 0.955
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Appendix A: Derivation of the Information Matrix

The loglikelihood function, apart from a constant, may be written,

L(λ1, λ2, σ
2
a) = − log(σ)− log(det(Γn))− 1

2σ2
a

y′Γ−1
n y, (11)

where y is the column vector of length n− d with t-th entry

∇dzt − ξ − ω∇dS
(T )
t , t = d + 1, . . . , n. Then ∂y/∂ξ = (−1, . . . ,−1).

Similarly ∂y/∂ω = (−S
(T )
1 , . . . ,−S(T )

n ). Hence,

Iλ1 = −E(∂2
λ1,λ1

L(λ1, λ2, σ
2
a))

=
1

σ2
a

J ′Γ−1
n J, (12)

where J is as in eqn. (6). Since E(∂2L(λ1, λ2, σ
2
a)/(∂λ1∂λ2)) = 0 and

E(∂2L(λ1, λ2, σ
2
a)/(∂λ1∂λ2)) = 0, the information matrix is block diagonal.
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Appendix B: Interventions With A Dynamic Response

For completeness we also discuss the intervention analysis model with a

dynamic response to the intervention which may be written,

∇dzt = ξ + ω(B)/δ(B)∇dBbI
(T )
t +∇−f θ(B)

φ(B)
at, t = 1, . . . , n, (13)

where ω(B) = ω0 + ω1B + . . . ωrB
r and δ(B) = δ0 − δ1B − . . . δsB

s. For

stability of the transfer function it is assumed that all roots of δ(B) = 0 lie

outside the unit circle. As in Appendix A, the exact information matrix for

the parameters λ1 = (ξ, ω0, . . . , ωr, δ1, . . . , δs) Iλ1 = σ−2
a J ′Γ−1

n J where J is

an n− d× (2 + r + s) matrix with rows (1, ut, . . . , ut−r, vt, . . . , vt−s) for

t = 1, . . . , n− d, where ut−j = ∇d (1/δ(B)) I
(T )
t−j and

vt−j = ∇d (ω(B)/δ(B)) I
(T )
t−j . Alternatively the large-sample approximation

given in Pierce (1972) may be used. The steady-state gain (Box, Jenkins

and Reinsel, 1994, §10.1.1), which measures the long-run change of the

intervention, is defined by g = (ω0 + . . . + ωr)/(1− δ1 − . . .− δs). The

maximum likelihood estimates for the model may be used to form the

estimate of g, ĝ. Using a Taylor series linearization, the standard deviation

of ĝ is given by σĝ =
√

(d′ζVζdζ), where Vζ is obtained by dropping the first

row and column from I−1
λ1

and dζ = (∂g/∂ω0, . . . , ∂g/∂ωr,

∂g/∂δ1, . . . , ∂g/∂δs). For dynamic intervention analysis models we may

consider testing H0 : g = 0 using the Z test. Notice that, when s > 0 we

need estimates of all parameters in the full intervention model to estimate

σĝ. This limits the applicability of this approach since even if the

pre-intervention series is known, it is not likely that such precise

information is available for the intervention parameters. Often the SIA
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model can be used to get an approximation to the power in this case.

As a numerical illustration, consider the dynamic step intervention model,

zt = ξ + ω0(1)/(1− δ1B)S
(T )
t + at/(1− φ1B), t = 1, . . . , n. Taking

n = 50, T = 25, ξ = 0, φ1 = 0.5 and σ2
a = 1, Table 8 below compares the

power of a 5% two-sided test H0 : g = 0, where g = ω0(1), with that of the

Z-test H0 : ω
(2)
0 = 0 in the corresponding SIA model defined by

zt = ξ + ω
(2)
0 S

(T )
t + at/(1− φ1B) where ω

(2)
0 = g and the other parameter

settings are the same. On an intuitive basis, the effect in the SIA model is

slightly larger so one might expect the power in the SIA model to be

slightly larger. Table 8 shows, comparing the first two entries in each

triplet, that this is exactly what happens. The third entry in each triplet in

Table 8 is the empirical power of a two-sided 5% test of H0 : ω
(2)
0 = 0 when

the SIA model is fitted to a time series generated by the dynamic step

intervention model. One thousand simulations were used for each model.

The empirical power is predicted well by the theoretical asymptotic power

for the SIA model. These simulations were repeated with various values of

the parameter φ and similar results where found when −1 < φ ≤ 0.5. For

φ1 > 0.5, there was a much bigger difference between the asymptotic

theoretical power of the dynamic and step models. For example with

φ1 = 0.9, ω1 = 0.75 and δ1 = 0.75, the asymptotic power for the two-sided

5% level gains test was only 0.199 whereas the predicted power using a SIA

step intervention was 0.972. The empirical power of the two-sided 5% level

test of H0 : ω1 = 0 in the step SIA model was 0.283. The general conclusion

reached was that the step SIA model provides a useful approximation to

the more complicated dynamic step intervention model provided the
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autocorrelation is not too large. Further simulation results are available in

the online supplements.

[Figure 8 about here]
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