Pivotal Inference
and the Conditional View of Robustness
(Why have we for so long managed
with normality assumptions?)
G. A. Barnard

0. SUMMARY.

A major reason for normality assumptions has been that
standard, unconditional theories of inference require such
assumptions to avoid excessive computational problems. The
pivotal approach, like the Bayesian approach, is
conditional, and as such does not need such assumptions,
given facilities now available on hand-held computers. When
there is doubt about distributional assumptions, therefore,
a range of such assumptions can be tested for their effect
on the inferences of interest. Some samples will be robust
with respect to possible changes in distribution, while
other samples will not be. When the latter is the case, the
statistician should draw attention to the fact, in
accordance with the principle that it is at least as
important for the statistician to tell his clients what they
do not know as it is to tell them what they do know from
their data. 1In sampling from ‘normal-loocking'
distributions, such as the Cauchy, treating 'normal-looking’
samples as if they were normal produces errors unlikely to
be of practical importance. The non-robust samples are
those presenting non-normal features, such as skewness. 1In
the past such samples have been treated by ad hoc methods.
Statisticians should make it their business to acquire
empirical knowledge of the types of distribution to be met

Scientific Inference, Copyright © 1983 by Academic Press, Inc.
Data Analysis, and Robustness 1 All rights of reproduction in any form reserved.
ISBN 0-12-121160-6



G. A. Barnard

with the areas of application with which they are
concerned. Skewness of distribution is particularly to be
watched for.

1. Problems of uncertainty of distributional form
arise almost exclusively in connection with continuous
observables. For any such set X = (X;,X;,..-,%X ) a
probabilistic model will amount to asserting that there is a
parameter 6 = (81,32,...,3k} such that, given 8, x has
probability density ¢(x,8), where ¢ 1is approximately
known. If, from the marginal density ¢1(xl:§) we derive
the probability integral transformation

i
pp = Pyx,8) =/ " ¢)(esd)ae

as is well known, pl(xl,g) will be uniformly distributed
between O and 1. Then we can form the (marginal) density

of x5, given xy, ¢12(x2:8,x1), and thence obtain

X
= i [ R .
p2 = pz(xz.xl.g) __o{ *lz(tlggxl)dt

again uniformly distributed between O and 1. Continuing
in this way we can find a set p = (pl.pz,...,pn) of
functions of the x and of & such that, to say that X,
given 8, has the density ¢ is equivalent to saying that
the specified functions p of x and 8 are uniformly
distributed in the unit cube. Following Fisher we call a
function of observations and parameters whose distribution

is known, a pivotal quantity, and the vector function

p(x,8) will be (a form of) the basic pivotal of the model

we are discussing. This mode of expressing a probability
model by means of pivotal functions uniformly distributed in
the unit cube was first put forward in 1938 by Irving

Segal. Insofar as we think of ¢ as only approximately

known, so the pivotal p will be only approximately

uniformly distributed. More generally, it may be convenient
to take the basic pivotal p(x,8) to have an approximately
known distribution other than uniform -- for example, in the

cases to which, for simplicity, we restrict ourselves, where
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k=2 and 8 = (A,0), with X a location parameter and
o

a scale parameter, we can set

]

Pj

(x; - A)/o (a3

and express our information about the distributional form by
saying that p has the density f(p), where f might be
standard normal, or standard Cauchy, or some other standard
distribution. We shall consider the problem of estimating

A, regarding o as a nuisance parameter. Our arguments
can be extended without essential change to general
regression models; models of still greater generality will
typically require approximations into the details of which
we do not enter here.

The pivotal formulation of a model has a double
advantage. First, the meaning of the parameters 8 is
defined by reference to the way they enter the basic pivotal

p, rather than by reference to a particular feature, such
as the mean, the mode or the center of symmetry, of the
distribution. Thus the difficulty faced by studies such as
that of Andrews et al., in which the location parameter had
to be taken as the center of symmetry —-— thus limiting
consideration to cases where the distribution could be taken
to be exactly symmetrical -- can be avoided. Second, as was
first stressed by Dempster, specifying the distribution by
means of pivotals enables us to reduce, if not eliminate,
the sharpness of the distinction between observables and
parameters; indeed, we may extend the pivotal model by
saying that 8 = (go,gl) and that the basic pivotal is

(E,gl), with density flg)n{gl}, corresponding to the
assertion that the part 8 of the parameter 8 has the

1

prior density u{ﬂl}. If the part EO were empty we would

then be formulating a fully Bayesian model, while if gl
were empty our model would be fully non-Bayesian. Since our
mode of reasoning is the same, we need not commit ourselves
in advance to being Bayesian or non-Bayesian.

2. The general inference procedure is to make 1-1
transformations on (E,gl} to bring it, so far as possible,
to the form (T,N,A). Here T is of the form T(x,8;).

where Bi denotes the parameter(s) of interest, and for
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each fixed value X, of the observations, E(EO'Ei}

defines a 1-1 mapping between the range of T and the range
of Ei' N is similarly a function of the nuisance
parameters, N(g.gn}, while A(x) does not involve the
parameters. Since (T,N,A) is a 1-1 function of (p,&ll,
its density is approximately known; then, given the
observations X = Xq, the value of A will be known, and
the relevant density of (T,N) will be the conditional
density, given A(x) = Alxq). Integrating N out from this
density will given a density for T which can be used to
derive a confidence distribution for Gi.

This inference procedure will often not be capable of
being carried through exactly, and then we must resort to
approximations. But in the case of location and scale, and
more generally regression problems, we can carry it through

exactly, as follows: Taking p as in (1), we require

aT/3c = 0, B8N/dA =0, and 0dA/3x = 3A/3¢ =0 . (2)
Now
anjfax = Z {aa/api)(apifaa} = (~-1/0) E aa/ap;
1 1
while

3a/da Z (3a/ap;)3p;/30) = (-1/0) 2 p;3A/3p; -
1

i
so that A must satisfy the PDE's

I aa/ap, = 0, Ll pjdA/dp; = 0 (3)
i i

the general solution to which is an arbitrary function of
the n - 2 functionally independent quantitites

cl,cz,....cn_z, where

c; = (py - §)/sp = (x; - i)fsx, {: = 2w (4)

and x and sy are used in the customary way to denote the
mean and S.D. of a finite set of quantities. Since we
clearly want the maximal possible conditioning, we take

A = c. We could then use standard methods of the theory of
PDE's to arrive at expressions for T and N, but it is

obvious that the 1-1 transformation
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p; = N(T + ci] (5)

will serve our purpose; for since ) cy = 0, summing over
i gives

P = NT, P; - p = Nc;, so N =s = s, /o (6)

and finally T = (x - l}/sx. The functions N and T are
clearly of the form required.
The transformation (5) can be shown to have Jacobian

/a(n - 1)(n - 20" Yle_ - e,

| (7)
so that the joint density of (T,N,A) is
n=1
/n(n - 1)(n - 2)N" " /le, = c |+ £(N(e-1 + ¢)) (8)

Given the observations, the value of ¢ = ¢, is known, so
that joint conditional density of (T,N) is

ke R E(N(To 1 + gf)

and the marginal density of T is

E(Tic) = K [ 2" lE(z(Te1 + gg))az . (9)

0
where K is determined by the condition that & integrates
to 1.

Provided (x - A)n/s, =t has a non-singular
distribution, as will very often be the case, we can change
the variable in (9) from T to +t, and put u = zt,

dz = du/t in the integral to obtain

=

£X¥(t;e) = (k*/t%) £ u"TE(u(l + (1/t)gg))au (10)
which is 0(1/t®) as t + =. Thus the tail behaviour of
the conditional density of t is in this broad class of
cases, the same as in the case of normality. This is one
reason why interpretations of Student's t as if the
original density was normal have often been adequate in
practice.
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3. It is instructive to study the case when the
observations are independent and from a Cauchy
distribution. The algebra becomes heavy for n greater
than 5 but, for example for n = 3 we have

2

3)

£(p) = 1/7°(1 + p})(1 + p2)(1 + p
and putting bi = t + c; in (10) we get

Ex(t;g) = -K**x | zzdz/ i (biz - i)n (—biz - i)
0 i i

-K** [ zzdz/h3(z)h3(—z)
0

and this can be evaluated by formulae given in Gradshtyn and
Ruzhik (p. 218). We find

EX(tic) = K**/(8,8, - S,)

2 3

where 5; stand for the sum of the products, k at a time,
of the gquantities b; =t + c;. Plots of Ex{t:g) for
various configurations ¢ are easily produced using an
HP41C with plotter. Comparison with the plot of the density
of the normal Student's t with 2 degrees of freedom shows
that for the symmetric configuration ¢ = (-/3,0, + vV3)
there will be little error in using the normal tables beyond
the values t = 2.2 -- and, of course it is this range
which will be the one most frequently used. Things are
otherwise with the skew configurations, especially with the
extremely skew ¢ = (-1.4908,-0.4092,+1.9000); but even
here, provided one is concerned with two-sided prob-
abilities, and with sufficiently large values of t,
the errors involved are not particularly serious.

4. Another density worthy of study is the Barndorff-

Nielsen density with
-_— - 2 -
ln f(p) = % (K - /(1 + pj) - Bpy)

where f 1is a skewness parameter. When B = 0 this

density approximates the standard normal in the center of
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-p.
its range, but in the tails it goes down as e 1 instead

of as e 1. It appears that use of normal tables here does
little harm provided whatever skewness there is in the
sample fairly reflects the skewness in the true
distribution; the worst case arises when there is skewness
in the sample in a sense opposite to that in the true
distribution.

Whenever the density is such that

In £(p) = K - H(p)
where H(p) is homogeneous of degree a, SO that
H(zp) = z®H(p) it is possible to evaluate the integral
(10) in closed form. Because then

K* [ znmlexp -H(z(T-1 + go}dz
]

E*(tse)

-«
K* [ 2" texp -z%Ledz
0

I

where

L = H(T*1 + ¢c4) -

The integral becomes a gamma integral by the substitution

v = z%L and we find
E*(t;c) = K**/(H(T+1 + go}}“/“

The independent or dependent normal distribution is a

special case of this. In particular, for the independent

n

normal, H(p) % p'pr @« =2, and

H(T*1 + g5) = (To1 + ¢4) ' (Tel + o)

{n“[‘2 + go'g )

(.2 + (n - 1))

giving the usual result for Student's t-density. In the
case of the double exponential, H(p) =] lp;l and o« =1.
i

It will be noted that for the normal distribution, the
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resultant t density does not involve ¢, so in this case
-- and essentially only in this case together with that of
the uniform density =-- the conditional approach and the
marginal approach give the same result.

5. There exists a wide area of extremely useful
research to be done in finding which non-normal densities
apply to which types of empirical data. Barndorff-Nielsen
has shown that his family of hyperbolic distributions fit
very well to distributions arising in connection with
turbulent flows of various sorts. Karl Pearson and Weldon
and their collaborators --including Student himself -- did
great work early in the century in connection with
biometrical distributions. But for the past fifty years
work of this kind has been neglected -- presumably because
little was known of how to use such information, and the
computing facilities needed, now available on quite small
computers, was simply not available.

For those whose limited access to sets of empirical
data prevent them from engaging in the useful research
indicated, there is the purely theoretical problem still, so
far as I know, without a solution -- how far we can
determine the form of a density, given an arbitrarily large
number of samples of a fixed finite size, with varying and

unknown location and scale parameters.
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