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Consistent detection of a monotonic trend superposed
on a stationary time series

By DAVID R. BRILLINGER
Statistics Department, University of California, Berkeley, California 94720, U.S.A.

SUMMARY

Consider a time series made up of a signal and a stationary autocorrelated error series.
A statistic is proposed for examining the hypothesis that the signal term is constant versus
the hypothesis that it is monotonic in time. The statistic is the ratio of a linear combination
of the time series values, with coefficients introduced by Abelson & Tukey (1963), to an
estimate of the standard error of the linear combination. The statistic has asymptotic
power 1 for a broad class of monotonic alternatives. The procedure is illustrated for the
series of river heights at a location on the Rio Negro in Brazil where there is concern
that the height is rising due to deforestation of the Amazon Basin. The significance level
obtained is 0-025.

Some key words: Amazon Basin, Asymptotic methods; Central limit theorem; Change; Consistent test;
Monotonic trend; Power; Rio Negro; Stationary time series.

1. INTRODUCTION
1-1. Preamble

In the study of a scientific phenomenon via time series data, a fundamental question
that sometimes arises is: is there a trend in the series? In particular one may mention
the case of the thickness of the atmosphere’s ozone layer possibly decreasing with
increasing use of chlorofluorocarbons (Stolarski, 1988), and the case of the long-term
height of the Amazon river increasing with deforestation (Sternberg, 1987). If there are
changes in these two cases, it seems reasonable to view the changes as monotonic. These
are particular examples of circumstances where a stimulus applied is increasing with
time, and so there could well be a monotonic response effect.

To begin, consider the time series model

Y(t)=S(t)+ E(2), (1-1)

for t=0,+1,%2,...., where S(.) is a deterministic signal and E(.) is a zero mean
stationary noise series. Of interest is the hypothesis: S(¢) equal constant, versus the
alternative: S(¢)< S(t+1) for all ¢, with strict inequality for some ¢.

Given data Y(t) (¢t=0,..., T—1), the procedure studied in this paper is based on a
linear combination, X ¢(¢) Y(¢), involving particular coefficients c¢(.). The advantage of
employing such a linear combination is that an estimate of its variance is directly available.

1:2. Earlier work in the autocorrelated time series case

Time series researchers have long approached the problem of trend analysis via the
technique of fitting a parametric form for S(.) and then examining the parameter estimates
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obtained. For example, one might fit S(¢) = a + B¢ and consider the hypothesis 8 =0.
Grenander (1954) has worked out the asymptotics in this case. Specifically, given the
data Y(0),..., Y(T —1), his methods lead to the result that the statistic

é=§(r—i)¥(t) f‘;(t—az (1-2)

has mean B and asymptotic variance 27z (0)/2 (¢t — f)?, where fz£ (1) denotes the power
spectrum of the series E(.) at frequency A and 7 =3T —3. Further, under regularity
conditions, $ is asymptotically normal, for example, Brillinger (1975, Th. 5.11.1), and
so for large T one may compute approximate p-values, confidence intervals and the like.

1-3. Earlier work in the independent case

When the error series, E(.), is white noise, that is a sequence of independent identically
distributed random variables, quite a number of techniques, both parametric and nonpara-
metric, have been proposed. Lombard (1987) is one recent reference and Shaban (1980)
provides a bibliography.

The work for independent errors pertinent to the present problem is that of Abelson
& Tukey (1963) who determine a statistic linear in the data and sensitive to monotonic
mean function departure, as follows.

Determine coefficients, c ={c(¢),¢t=0,1,..., T—1}, with mean ¢ =0 to achieve

max min L2 t6() = eHS(®) = S}’
e s YA{e()-er Y {S(r)- 8y’

(1-3)

where
S={S(0)s=sS(1)=<...<S(T-1)}.
The coefficients (Abelson & Tukey, 1963) are

c(t)=cT(t)={t<1—7t,)}%—{(t+1)(1—%)}%. (1-4)

The value at the extreme for expression (1:3) is 1/= c(t)*=2/log T for large T. This is
achieved for the step-function signals, S(¢) =0 for t < t, and S(¢) =1 for ¢ > t,; see Fig. 1

1-0
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Fig. 1. Coefficients of (1-4); T =100 (Abelson & Tukey,
1963).
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for T=100. The shape will be the same for other values of T. The linear combination,
3 ¢(t) Y(¢) strongly contrasts the beginning and end levels of the data, as seems intuitively
reasonable given that one is looking for a monotonic trend across the time series values.
When the E(t) are independent normals with known variance o, a test statistic is
provided by X ¢(1) Y(1)/{o?2 c(t)*}}. In practice if o> is unknown, but one has an
independent chi-squared estimate of o, then one can compute a ¢ statistic.

1-4. Notation and structure of the paper
Specific assumptions, theorems and proofs have been placed in Appendices. The results
are asymptotic, but are hoped to provide useful finite sample approximations. The term
‘monotonic’ will require inequality of some consecutive values in the sequence. The
symbol X, unsubscripted, refers to summation over t=0,..., T—1. It is assumed that

Jee(0) +0.

2. THE PROPOSED PROCEDURE
2-1. The statistic

The problem of specific concern in this paper is that of the model (1-1) with an
autocorrelated noise series, E(-).

Consider X ¢(¢) Y(t) with Y(¢) given by (1-1) and with coefficients, c(?), given by
(1-4). One has

E{Y c()Y(1)} =Y c(1)S(1), (2:1)
var{), c() Y(0)} =2, c(s)e(t)cee(s — 1), (2-2)

where cgg(u) =cov {E(t+u), E(t)}. Itis shown in Appendix 3 that for large T expression
(2-2) is approximately 27fz£ (0) = c(t)?, where fz£(.) is the noise power spectrum. Further
if the noise series is normal, then X ¢(¢) Y(#) is normal, while if the noise series is mixing,
then the linear combination is asymptotically normal; see Appendix 3.

If fEE (0) is a consistent estimate of frr(0), then when S(¢) is constant one may
approximate the distribution of the statistic

Y. () Y(1)/{2mfee (0) T c(1)}, (2:3)
by a standard normal, and thereby compute an approximate p-value or carry out formal

tests of significance. The problem of constructing such a consistent estimate of frg(0) is
now addressed.

2-2. Estimation of the variance
Suppose that the trend function S(.) has the form g(¢/T), where g(.) has a finite
Lipshitz integral modulus of continuity; see (A-4) below. The signal is taken to have this
form in order that it may be present uniformly the whole of a time interval tending to
infinity with T. Let the signal be estimated by the running mean

S(1)= _f Y(t+5)/(2V+1), (2-4)

for t=V+1,..., T—1-V and for moderate V. The noise series may be estimated by
the residuals E(t) = Y(t)— S(t). An estimate of fz£(0) may be based on these last.
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Specifically, denote the discrete Fourier transform of the residuals by

5= 3 E(t)exp (—2”i’j), (25)

=V T

for j=0,..., T—1. Define the transfer function values

_sin{2mj(2V+1)/2T}
77 (2V+1)sin 2mj/2T)"

For chosen L, compute fEE (0), the smoothed periodogram spectral estimate

S serlaf /% (- 27)
— a .
512w T J

Here y; denotes the discrete Fourier transform of the original series. Frequencies from
1/T to L/ T cycles/unit time are involved, where the latter is to be near 0. The terms
(1—a;)? are introduced to compensate for the effect of the filtering operation on the noise
series.

Specific assumptions are given in the appendices, under which the estimate (2:7) is
consistent as T - 0.

(2-6)

3. POWER

The variate = ¢(t) Y(¢) may be approximated by a normal with mean X ¢(¢)S(t) and
with variance 2755 (0) = c()> This leads, for example, to approximating a probability
such as

pr[Y () Y()/{2nfee(0) ¥ c(t)*}> d], (31)
for some given d, by
1-®[d =Y c(t)S(t)/{27fex(0) ¥, c(£)*}], (3:2)

where ®[.] is the normal cumulative distribution function. Now, from the results of
Abelson & Tukey (1963),

X c(SP_2Y.{S(1)- S}’
Y c(t)? log T
for all monotonic S(¢). It follows that a test based on rejecting the hypothesis of constant

mean, when the statistic (2:3) exceeds d, has asymptotic power 1 for S(.) such that
2 {S(t)— S}*/log T tends to infinity with T. This is the case under Assumption A-2 below.

+o0(1), (3-3)

4. THE EXAMPLE OF THE AMAZON RIVER

Daily stage, that is height, readings have been made since 1903 at Manaus, 18 km. up
the Rio Negro estuary from the Amazon River in Brazil. In all 30529 readings are
available for analysis. Many developments have taken place in the Amazon basin this
century, particularly a steady deforestation, so it seems of interest to examine this river
stage series for monotonic trend; for descriptive analysis, see Sternberg (1987) and
Brillinger (1988). Figure 2 shows the 8 year running mean level as defined by (2:4) with
V =4x365-25. This running mean can be quickly computed via a fast Fourier transform
algorithm.
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Fig. 2. Eight year running mean of daily data. Horizontal line at overall mean level.
Fig. 3. Low frequency portion of periodogram of data. Box in lower left-hand corner displays the
estimated error spectrum at frequency 0 and bandwidth of estimate.

To study the low frequency character of the time series, Fig. 3 gives the periodogram
atthe lower frequencies. The high peak occurs at the seasonal frequency. This periodogram
was computed via a fast Fourier transform of the N =30 720 observations obtained by
adding 191 zeros to the end of the given data.

Turning to a formal examination of the data for a monotonic trend, the statistic (2-3)
is evaluated. The spectrum at 0 is estimated by expression (2-7) with L =25. For insight
the value obtained and bandwidth employed have been indicated by a box added to
Fig. 3. The value obtained for the statistic (2-3) is 1-961. The corresponding p-value for
the question of monotonic increase is 0-025. By way of comparison, if a linear trend is
fit to the series and the power spectrum at 0 estimated from the residuals of that fit, then
the p-value obtained is 0-041. In summary there is some evidence for increasing trend
or positive change in this data.

5. DISCUSSION AND CONCLUDING REMARKS
The noncentrality parameter occurring in expression (3-2) is

Y c()S()/{27fee (0) X c(1)}=.
Under Assumption A-2 below, this is of order of magnitude T/(log T): and tends to
infinity with T. If one employed the statistic 8 of (1-2) instead, the corresponding
noncentrality parameter would be of order T? which tends to infinity more slowly. The
corresponding test is therefore consistent, but has asymptotic efficiency 0 relative to the
first.

It is clear that one could form other estimates of S(t¢), such as the robust linear smoother
of Cleveland (1979), or the monotonic smoother of Friedman & Tibshirani (1984).
However the running mean is quickly computed and its statistical properties are simply
derived.
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It is often of substantial advantage to formulate statistical questions as ones of
estimation rather than of testing. In the present circumstance one could estimate the
increase S(T —1)—S(0). The technique of Friedman & Tibshirani leads to an estimate
of this quantity. To examine the hypothesis of no increase however one needs a corre-
sponding uncertainty estimate. Such an estimate does not appear to be at present available
for autocorrelated noise.
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APPENDIX 1

Mixing assumption and conditions on the trend
The cumulant functions of the stationary series E(.) are defined by

CE,..E(uI’ ey uk—l) =cum {E(t+ ul)s ey E(t+uk—l)s E(t)}’ (A'l)
for k=2,3,..., and the power spectrum at frequency A by
1 & .

Sfee(A) =n _Z cee(u) exp (—idu), (A-2)

when this series converges.
Assumption A-1 (Mixing). For k=2,3,... -

Z“l L Zuk_, |CE...E(u1’ ) uk—])l < wa (A'3)

with u,, ..., #_,; running from —o0 to 0.

Assumption A-2. The signal has the form S(¢)= ST(t)=g(t/T), with g(.) square integrable,
vanishing outside the unit interval, and where there is an a such that the integral modulus of
continuity of g(.) satisfies

1
sup I |g(u+v)—g(u)* du= O(h®), (A-4)
lol=h Jo

as h->0.

Condition (A-4) allows steps in g(.). In particular if g(u)=0 for u<u, and =1 for u>u,,
then a =1. In the case that g(.) has bounded derivative on [0, 1], a =2.

APPENDIX 2

Elementary results needed for proofs of theorems
LEMMA A-1. For the coefficients c(.) of (1-4), for fixed u,u,, ..., u_, and for k=2,3,... one
has

Y{c(t)P=3logT, (A5)
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;13302 c(t+u)e()/Y c(1)’=1, (A-6)
;1_1)10102 c(t+uy)...c(t+ue)c(t)/{Y c(1)?}*=0. (A7)

The proof is by elementary analysis.
Next define

8= _f S(1+5)/QV+1), (A'8)

the running mean of the signal. One has the following.

LEMMA A-2. Let S(t)=g(t/T) with g(.) satisfying Assumption A-2. Let V=V be such that
V/T~-0 as T 0. Then

;|S(t)-§(t)|2=iTz I, 5P = O(VeT'™=). (A-9)

Proof. The first equality follows from Parseval’s Theorem. Next, neglecting end effects as one
may,

=Y Y S(1)=S(t+s)P< sup X |S() - S(t+s)?

NOEKNOIRES
ZI (0)=5(2)] 2V+1 Isi=v Isl<Vv

t+
<sup ). ( ) (——s) =T sup J |g(u+v)—g(u)* du
Isl=sV T lol<V/T
and one has the indicated result. O

APPENDIX 3

Proof of asymptotic normality and consistency
THEOREM A-1. Suppose that the series E(.) satisfies Assumption A-1. Suppose that c(.) is given
by (1-4). Then

lim var {}, c(1) Y(0)}/ X (1)’ =2mfes(0). (A-10)

Proof. From expression (2-2) the variance may be written
T-1 T—1—|u|
Y ocge(u) Y c(t+u)e(e).
u=—T+1 t=0
The result now follows from (A-3) and the Dominated Convergence Theorem. O
THEOREM A-2. Under the conditions of Theorem A-1, the variate = c(t) Y(t) is asymptotically
normal.

Proof. The standardized cumulant of order k may be written
Yoo Lo, CE(r, ) X c(ttwy) et uey)e(D)/{X c()}2.

This tends to 0 for k> 2 by (A-3), (A-7) and the Dominated Convergence Theorem. The asymptotic
normality then follows from Lemma P4.5 of Brillinger (1975, p. 403). O

THEOREM A-3. Let the series E(.) satisfy Assumption A-1 and let the signal S(.) satisfy
Assumption A-2. Suppose that L=L" and V= VT tend to © as T- in such a way that L/T,
V/T, VT'"%/L~0. Then fz£(0) is a consistent estimate of feg(0).
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Proof. Since Y(t)=S(t)+ E(t) one has y;=s;+¢; and
|67 =|s; — §;” +{conjg (s; — §)}(g; — §;) + (5, — 5 ){conjg (¢, — §)} +|&; — .

To begin, one notes, following (A-9), that the first term here has a negligible effect on (2-7). Next
one requires that

1

Zh—Tlej—%lz/Z(l—aj)z,

is a consistent estimate of fz£(0). This follows from classical arguments for evaluating the mean
and variance of quadratic spectral estimates; see Grenander & Rosenblatt (1957) and Parzen

(1957) for example.
Finally, from the previous two results, the cross-product terms may be neglected. O
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