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SUMMARY

A method is proposed to detect jumps and sharp cusps in a function which is observed
with noise, by checking if the wavelet transformation of the data has significantly large
absolute values across fine scale levels. Asymptotic theory is established and practical
implementation is discussed. The method is tested on simulated examples, and applied to
stock market return data.
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1. INTRODUCTION

The analysis of change-points, which describe sudden localised changes, has recently
found increasing interest. Change-points can be used to model practical problems arising
in fields such as quality control, economics, medicine, signal and image processing, and
physical sciences. For example, in electroencephalogram signals, sharp cusps exhibit the
accelerations and decelerations in the beating of the hearts. Many practical problems like
this involve functions which have jumps and sharp cusps.

The recently developed theory of wavelets has drawn much attention from both math-
ematicians, statisticians and engineers. In the seminal work of Donoho (1993), Donoho
& Johnstone (1994, 1995a,b) and Donoho, Johnstone et al. (1995), orthonormal bases of
compactly supported wavelets have been used to estimate functions. The theory of wavelets
permits decomposition of functions into localised oscillating components. This is an ideal
tool to study localised changes such as jumps and sharp cusps in one dimension as well
as several dimensions. Unlike traditional smoothing methods based on a fixed spatial
scale, the wavelet method is a multiresolution approach and has local adaptivity. In this
paper we consider only jump and sharp cusp detection in one dimension.

There is a great amount of statistical literature on change-points (Basseville, 1988;
Basseville & Nikiforov, 1993). Wahba (1984) and Engle et al. (1986) were the first to
estimate curves with discontinuities in derivatives, assuming the locations of the jumps
are known. McDonald & Owen (1986) proposed an algorithm to compute estimates of
regression functions when discontinuities are present. Yin (1988) used one-sided moving
averages to find the locations of jumps in a function. Lombard (1988) described jump
detection by Fourier analysis. Cline & Hart (1991) considered detecting jumps in deriva-
tives. Miiller (1992) estimated the location of a jump and its jump size by boundary
kernels. Eubank & Speckman (1995) used a semiparametric approach to detect the dis-
continuities in derivatives of regression functions. Hall & Titterington (1992) studied edge-
preserving and peak-preserving by smoothing. Grossmann (1986) and Mallat & Hwang
(1992) used wavelet transformation to detect singularities and edges in computer images.
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The paper is organised as follows. Sections 2 and 3 introduce the white noise model
and wavelet transformation, respectively. Testing hypotheses and estimation are considered
in §§ 4 and 5. Section 6 discusses implementation of the detection in practice. Simulation
results and an application to a real example are reported in this section. Concluding
remarks are given in § 7. Proofs are collected in the Appendix.

2. THE WHITE NOISE MODEL

We say a function f has an a-cusp at x, if there exists a positive constant K such that,
as h tends to zero from left or right,

|f (%o + ) — f(x0)| = K|R[". (1)

For the case « =0, f has a jump at x,. This paper considers sharp cusp detection, so from
now on we restrict to the case 0 <a < 1.
Suppose f is observed from the white noise model

Y(dx)=f(x)dx +tW(dx), xe[0,1], (2)

where W is a standard Wiener process, 7 is a formal noise level parameter which we think
of as small, and f is an unknown function which may have jumps and sharp cusps. The
problem is to detect these jumps and cusps.

The white noise model (2) is a generalisation of the diffusion model used to study
change-points by Pollak & Siegmund (1985). It is also closely related to the following
nonparametric regression model:

vi=f(x)+oz; (i=1,...,n), (3)

with x; = i/n, the (z;) independent standard normal errors, o > 0, and f an unknown func-
tion. Define the regression process {Y,(x):x e [0, 1]} via x,=0, Y,(0)=0 and Y,(x;) =
yi1+...+yfori=1,...,n, with interpolation by a Wiener process W for x; < x < x;4 .
Then Y, is a white noise process with the function f,(x) = f(x;) for x; <x < x;,, and 1=
on~* (Donoho & Johnstone, 1995a). We will use this relationship to compare rates of
convergence for the models (2) and (3).

3. WAVELET TRANSFORMATION

Let iy be a Daubechies wavelet (Chui, 1992, Ch. 1, 7; Daubechies, 1992, Ch. 1, 6; Donoho
& Johnstone, 1995a), and define ,(x) = s~ *(x/s). The wavelet transformation of f is
defined as Tf (s, x) = [ Y,(x — u) f(u) du. The wavelet transformation Tf(s, x) is a function
of the scale, or frequency, s and the spatial position, or time, x. The plane defined by the
pair of variables (s, x) is called the scale-space, or time-frequency, plane (Chui, 1992,
Ch. 1, 3; Daubechies, 1992, Ch. 2, 3; Mallat & Hwang, 1992).

For a compactly supported wavelet, the value of Tf (s, x) depends upon the value of f
in a neighbourhood of x of size proportional to the scale s. At small scales, Tf(s, x)
provides localised information such as local regularity on f(x). The local regularity of a
function is often measured with Lipschitz exponents as follows.

A function f{(x) is said to be Lipschitz « at x, if there exists a positive constant K such
that, as h tends to zero,

|f (%o +h) — f(x0)| < K[R[".
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The function f(x) is said to be uniformly Lipschitz « over [0, 1] if it is Lipschitz « at all
points in (0, 1).

Mathematically the global and local Lipschitz regularity can be characterised by the
asymptotic decay of wavelet transformation at small scales (Daubechies, 1992, Theorems
29.1-2.9.4, pp. 45-9). For example, if f is differentiable at x, Tf(s, x) has the order s> as
s tends to zero, and if f has an a-cusp at x, the maximum of Tf(s, x) over a neighbourhood
of x of size proportional to the scale s converges to zero at a rate no faster than s**# as
s tends to zero.

The wavelet transformation of the white noise W(dx) is defined to be
TW(s, x) = jlps(x — u)W(du). The wavelet transformation of Y is

TY(s, x) = flﬁs(x —u)Y(du) = Tf (s, x) + T TW(s, x). (4)

At a given scale s, TW(s, x) is a stationary Gaussian process with zero mean and
covariance function

E{TW(s, )TW(s, )} = J Vs(x — )y s(y —u) du, (5)

var {TW(s, x)} = J {Yw)}?du=1.

Note that TW(s, x) follows a standard normal distribution and that the orders of Tf(s, x)
are, respectively, s**% and s> for the two cases that f(x) has an «-cusp at x and f(x) is
differentiable at x. By (4) we can see that, at a very fine scale s, TY(s, x) is dominated by
tTW(s, x), while, at a coarse scale s, Tf (s, x) dominates TY(s, x). The localised information
of f(x) is provided by Tf(s, x) at fine scales, so the wavelet transformation at finer scales
can detect local changes more precisely. Our idea is to select fine scales s, such that, at
those x where f(x) is differentiable, the orders of Tf(s,, x) and tTW(s,, x) are balanced. If
f has sharp cusps, for nearby x, TY(s,, x) will be dominated by Tf(s,, x) and hence signifi-
cantly larger than the others. Therefore, the sharp cusps will be detected by checking the
values of TY(s,, x).

Throughout this paper, take # to be any constant greater than 1, and let s, be of exact
order (7%|log t|")*/?** 1 as 1 —0. Denote by supp (i) the support of .

4. TESTING HYPOTHESES

Consider the testing problem H,: f is differentiable, against H: f has o;-cusps,
i=1,...,9(g=1), where ¢; <a< 1.

Under H,, f is a smooth function, and hence TY(s,, x) is dominated by the wavelet
transformation of Brownian motion, which is a stationary Gaussian process. However,
under Hy, f has jumps and/or sharp cusps, so for nearby x, TY(s,, x) is dominated by
Tf(s,, x), whose absolute value is large. Therefore, the maximum of |TY(s,, x)| over
0<x <1 is of much larger order under H, than under H,, and thus can serve as a test
statistic.

The following theorem gives an approximate critical value C, , for this test, for size y.
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THEOREM 1. If 0 <y < 1 then, under H,,

lim pr { max |TY(s,, x)| = C,,y} =7,

=0 0<x<1
where
C.,=1(2llogs.|)7* {2|10g s.| +log <[ J V' W3? du} /(2n)> —log{—log(1— V)/Z}}-
(6)
5. ESTIMATION
5-1. One jump or sharp cusp
Suppose f has an a-cusp at 6 and is differentiable elsewhere. An estimate of 0 is
0 =arg max {|TY(s,, x)|}. (7)

o<sx<1

THEOREM 2. We have
lim pr {s; (0 — ) e supp (¥)} = 1.

=0

The compact support of \ implies that the estimate 0 has the convergence rate s,.
Moreover, suppose that

fx)=f(0)+ Ai|x =0 +o(|]x —0])

as x—0 if >0, and f(0+)— fO—=)=A, if a=0, where A;%0 (i=1,2). Then, as 1—0,
(0 0)/s, converges in probability to the location of the maximum of

{ Jlﬁ(u— t) |ul*du|:t € supp (lﬁ)}

if a>0, or of {| [W(u—t)sign (u) du|:t e supp )} if «=0.

Since jump detection has been studied in the nonparametric regression setting, we
compare the above convergence rate with those in the literature. For the jump case, a =
0, by Theorem 2 the convergence rate of 0 is 72|log t|" for the white noise model. Usmg
the relation between the models (2) and (3) described in §2 and letting 1 =on" %, we
obtain that this rate corresponds to the rate n~*(log n)" for the nonparametric regression
model, which is known to be the best possible convergence rates in the literature (Miller,
1992). Hence, the estimate 0 achieves the optimal convergence rate.

Since, for 0<a <1, $<1/(2a+ 1)< 1, from Theorem 2 and the relation between the
models (2) and (3) we have that, without knowing the sharpness of the cusp, the conver-
gence rates are at least t23|log t|" for the white noise model and n~*?*(log n)"? for the
nonparametric regression model. Such rates are higher than that of the mode estimate
when the function is twice differentiable near the mode (Eddy, 1980, 1982). This confirms
that it is easier to detect a spiked bump than a smooth one.

5-2. Several jumps and/or sharp cusps
Suppose f has g cusps with an a;-cusp at 6; (i=1,...,q), where g is a finite integer,
oy <...<o, Suppose also that f is differentiable at all points except for 0,...,0,.
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Assume that o; < ... <o, <a<1and «is known. First suppose g is known. The estimate
(01, ooy 0) of (04, ...,0,) is constructed as follows:

1. Find the location, él, of the maximum of | TY(s,, x)| over [0, 1].
2. Find the location, 0,, of the maximum of | TY(s,, x)| over

[0, 11\{0; + s.x: x & supp (V)}.

3. Continue the procedure until the location, éq, of the maximum of | TY(s,, x)| over

[0,1] qu {9,~ +s.x:x € supp (V)}
i=1

is found.
The following theorem establishes convergence rates for the above method.

THEOREM 3. We have
q
%, (0= 00 = 0y(6?)

Now consider the case that g is unknown. Theorem 1 implies that, with probability
tending to 1 —7, |TY(s,, x)| < C,, at those x at which f has no jump or sharp cusp. So
we take C,, as a threshold and use the procedure described by steps 1-3 above to find
all the local maxima which exceed C, ,. Let § be the number of those maxima and 01 seens 04
their locations. Then we simultaneously estimate g and 04,. .., 0, by 4 and 01, oo 04

THEOREM 4. As 1—0 and then y—0,

pr(g=q)—1, Z (0:— 0% = 0,(s?).

Theorem 4 shows that, when the number of jumps and sharp cusps is unknown, the
above method will asymptotically pick up all the jumps and sharp cusps, and will estimate
their locations with the same convergence rate as in Theorem 3 for the case that the
number of jumps and sharp cusps is known.

6. IMPLEMENTATION IN PRACTICE
6:1. Discrete observations
In practice, we might observe Y(x) only at x discrete values x=i/n (i=1,...,n=27).
Or equivalently, we observe f from the model (3); thatis y; = f(i/n) + 6z;, ¢ > 0, z; ~ N(0, 1)
(i=1,...,n=2"). Consequently a discrete version of the wavelet transformation must be
performed.

6-2. Discrete wavelet transformation

The discrete wavelet transformation is a discretised version of the continuous wavelet
transformation and can be written as linear transformation involving a n x n orthogonal
matrix %~ which depends on the wavelet and the boundary adjustment (Cohen et al.,
1993; Daubechies, 1994). Let y =(y4, . .., y,). The discrete wavelet transformation of the
data y is given by w=#7y. Because #  is orthogonal, the inverse discrete wavelet
transformation is y=%"Tw. The n—1 elements of w are indexed dyadically: w;; for
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k=0,...,2/—1,j=0,...,J — 1, and the remaining element is labelled w_ ,. The quan-
tity w;, is called the empirical wavelet coefficient at level j and position k277 for k=
0,...,22—1,j=0,...,J—1.

The rows of #" correspond to a discretised version of the wavelets ,;, and w;, relates
to a discretised version of the continuous wavelet transformation TY(27/, k277) for k =
0,...,2/—1,j=0,...,J — 1. Indeed, if we dyadically index the first n — 1 rows of #~ by
(2 +k)for k=0,...,2—1,j=0,...,J — 1, and denote by W, (i) the ith element of the
(2/ + k)th row of ¥, then n* W, (i) is approximately equal to 2/%y(2/x) for x =i/n — k27,
and hence n*w;, approximates TY(27/, k277/) (Donoho & Johnstone, 1994).

Mallat’s pyramidal algorithm (Mallat, 1989; Chui, 1992, pp. 20—-1) requires only O(n)
operations for computing the discrete wavelet transformation and reconstruction of the
discrete wavelet transformation.

6:3. Threshold selection

Since discretely spaced data are observed, we take T = on~ * in (6) and obtain a threshold
C, which is used to select some number of jumps and sharp cusps. Simple algebra shows
that

C, = (2 log n/n)* {1 + O(1/log n)}.

The leading term in C, is equal to the universal threshold of Donoho & Johnstone (1994).
Following Donoho & Johnstone (1994), we estimate o by the median absolute deviation
of the wavelet coefficients at the finest level J — 1, divided by 0-6745.

64. Simulations

To test the method, two simulated examples are carried out and illustrated in Figs 1
and 2. For the two examples, n = 2!°. The underlying function in Example 1 has a jump
and an unbalanced cusp. Example 2 is a modified example of Donoho & Johnstone
(1994) and the true function has a jump, a sharp cusp and some smooth bumps.

Let Daubechies DN wavelet denote Daubechies’ compactly supported wavelet with maxi-
mum number of vanishing moments for the support width, and with the extremal phase
choice, for integer parameter N (Daubechies, 1992, Ch. 6). For example, the Daubechies
D1 wavelet is the Haar wavelet.

By Mallat’s pyramid algorithm, we use the Daubechies D1, D2 or D3 wavelets with
reflecting boundary condition to compute the empirical wavelet coefficients at level j and
position k2 /fork=0,...,2/—1,j=0,...,9. The boundary condition affects only wave-
let coefficients near the two boundary points and has little impact on detecting jumps and
sharp cusps away from the boundary points.

By checking the empirical wavelet coefficients at these 10 levels, we can find dyadic
intervals at some levels whose corresponding absolute empirical wavelet coefficients exceed
the threshold line and are significantly larger than the others. Thus cusps must be located
in the dyadic intervals, including the endpoints. Since at high resolution levels the dyadic
intervals are very narrow, with widths proportional to the scale s =2/, the cusps will be
located with sufficient accuracy. In Figs 1 and 2, (a), (b) and (c) are, respectively, the true
curves, noisy curves and absolute empirical wavelet coefficients at levels j=6 or 7. The
horizontal lines in Figs 1(c) and 2(c) are the threshold lines. From the Figs 1(c) and 2(c),
we can see that the empirical wavelet coefficients are significantly large and exceed the
threshold lines only at the locations where the functions have jumps and sharp cusps.
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Fig. 1. Data simulated from model y;=f(@/n)+¢;, [f(x)=2—-2|x—

026]31(x < 0-26) —2|x — 0-26/>31(x > 0-26) + 1(x > 0-78), ¢~ N(0, 62), 0 =

0-2, n=1024; (a) true curve, (b) noisy curve and (c) absolute empirical wavelet
coefficients, at level j=7.

At the suggestion of a referee, we decreased the signal-to-noise ratio in the simulated
examples to check the performance of the detection. With n=1024 in Example 1, we
increased ¢ from 0-2 to 1-0 in steps of 0-2. The detection works well for o up to 0-4. After
that, the jump and the cusp become harder and harder to detect. They tend to be detected
by wavelet coefficients at lower and lower resolution levels and thus the detection is less
and less precise. In particular, the cusp is often either located in low resolution levels or
goes undetected. Figure 3 is the plot of the case with g = 0-6. The jump is located at level 5
while the cusp is not detected at levels higher than 3. From Fig. 3(b) we can see that the
cusp is totally buried in the noise. For ¢ > 1 the method completely breaks down and the
jump and the cusp are invisible in the plot of noisy data.

6'5. A real example

Now we consider the stock market return data in the United States. Figure 4(a) is the
plot of the 468 monthly data from 1953 to 1991. It is well known in financial economics
that stock market return data can be modelled by the white noise model (Huang &
Litzenberger, 1988).
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Fig. 2. Data simulated from model y;=f(i/n)+¢;, f(x)=2sin (4nx)—

6|x — 0-4]3*° — 0-5 sign (07 — x), &; ~ N(0, 62), 0 = 0-2, n = 1024; (a) true curve,
(b) noisy curve and (c) absolute empirical wavelet coefficients, at level j=6.

In order to implement Mallat’s pyramid algorithm, 44 data points should be added to
make the total number a power of 2. Since the data at the beginning are almost equal to
zero, we add 44 zeros before the beginning of the data. These added data affect only the
wavelet coefficients near the boundary points, so they will have little impact on detecting
jumps and sharp cusps.

The Daubechies D8 wavelet with reflecting boundary condition is used to compute the
empirical wavelet coefficients. Figures 4(b) and (c) are the plots of the empirical wavelet
coefficients at levels 27¢ and 277, respectively. The horizontal lines are the threshold lines.

In Figs 4(b) and (c), the empirical wavelet coefficients exceed the threshold lines at the
two locations. The locations of these large empirical wavelet coefficients are near the
observations 262 (October 1974) and 418 (October 1987), so there are local structural
changes near the corresponding times. They are caused by the recession in 1974 and the
New York stock market crash in 1987.

7. CONCLUDING REMARK

Detection by wavelets is a multiresolution technique. We check empirical wavelet
coefficients across resolution levels and locate jumps and sharp cusps by empirical wavelet
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Fig. 3. Data simulated from model y;=f(i/n)+¢, f(x)=2—-2|x—

026]151(x < 0-26) —2|x — 0-26>51(x > 0-26) + 1(x = 0-78), &~ N(0, 62), o=

0-6, n = 1024; (a) true curve, (b) noisy curve and (c) absolute empirical wavelet
coefficients, at level j=5.

coeflicients at these levels. The multiresolution approach has local adaptivity and hence
has advantages over existing smoothing methods based on fixed spatial scale, such as
Fourier series methods and fixed bandwidth kernel methods. See also Donoho &
Johnstone (1994). For example, because of different local features, a jump should be
detected more easily and more accurately than a cusp. Detection by wavelets can locate
the jump more precisely by wavelet coefficients at higher resolution levels and at the same
time detect the cusp by wavelet coefficients at lower resolution levels. The method has
been employed in construction of the wavelet estimate of a function with jumps to reduce
Gibbs errors (Wang, 1995).

The paper leaves some open practical issues such as adaptive selection of wavelets as
well as scale parameters. However, practical problems can really be solved by the approach
employed in §§ 64 and 6'5: comparing wavelet coefficients at all levels with the threshold,
we select large wavelet coefficients and then use these to detect jumps and sharp cusps.
Theoretically, if we have continuous observations, the type of wavelet does not affect the
detection. In practice, however, only discretely spaced data are available, so the wavelet
used often has some effects on levels at which the jumps and sharp cusps are detected and
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Fig. 4. Monthly stock market return data in the United States from 1953 to
1991: (a) the plot of 468 data; (b) and (c) are the empirical wavelet coefficients
at levels j=6 and j =7, respectively.

hence the accuracy of the detection. We can try several wavelets, say Daubechies D1-D10
wavelets, and select that for which the jumps and sharp cusps can be detected at the
highest possible levels. This was done for the examples presented in § 6.
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APPENDIX

Proofs
We shall need the following result.

LeMMA 1. If ) is differentiable, then, with probability one, there exists a positive constant K < oo
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such that, for all x and small s,
| TW(s, x)| < K|log s|*.
Proof. Note that, for Brownian motion, with probability one,
lim {(hllog h)™* max max |W(s+t)— W(t)l} =1
h—0 0<s<1—h O<t<h

Then

r

ITW(S9 X)l =S—% 'P(U) dVVx+sv

»

o lp,(v)w/;c+sv dU

Il
1]

»

Il
©w
[N

l//(v)(VVx+sv - I/V;c) dv

o

<|log s[* f [/ @)] [o]* dv + f ¥/ ()] |v1log v|* dv. L
Proof of Theorem 1. Under H,, f is a smooth function, so by Theorem 2.9.1 of Daubechies (1992,
p- 45) we have
ITf(Sra X)l < nglzs
TY(s, x) = tTTW(s,, x) + O(s2*) = tTW(s,, x) {1 + 0,(1)}.

Note that TW(s,, x) is a stationary Gaussian process, and, by (5), its covariance function satisfies
1
E{TW(s, x)TW(s, y)} =1 — 3 J (W' W)} du (x — y)*/s* + o{(x — y)*/s*}.
Then Theorem 1 follows from Corollary Al of Bickel & Rosenblatt (1973). See also the proof
of Theorem 3.1 of Bickel & Rosenblatt (1973). O

Proofs of Theorems 2 and 3. Since the proofs are similar, we give only the argument to prove
Theorem 2.

Let K be a generic constant whose value may change from line to line. Since f is differentiable
at all points except 0, by Theorem 2.9.1 of Daubechies (1992, p. 45), we obtain that, for all (s,, x)

with (0 — x)/s, ¢ supp (),
| TS (s,, x)| < K372,

Note that f(x) has an a-cusp at 6. By Theorems 2.9.3 and 2.9.4 of Daubechies (1992, p. 49), we
have

max {| Tf (s., )| : (0 — x)/s. € supp ()} > Ks¢ "2,

since otherwise, f will be ‘at least’ Lipschitz « at 6. The above two inequalities together with
Lemma 1 imply that

max {| TY(s,, x)|: (0 — x)/s. € supp ()} = K(s:"* —7|log s,|*)
> Kt(|log |"? — |log t|?)
> Krt|log t|"?(1 — |log t|®~™/2), (A1)
and, for all (s,, x) with (6 — x)/s, ¢ supp (V),
| TY(s,, x)| < K(s2/* + t|log s.|*?) < Kt|log 7|2 (A2)
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Note that # > 1. Thinking of | TY(s,, x)| as a function of x, by (A1) and (A2) we can easily see that,
as T—0, with probability tending to one, the maximum of | TY(s,, x)| will be achieved at some
0 + s.t, where ¢t € supp (). The first part of Theorem 2 is proved.

Now we show the second part. We have shown that, with probability tending to one,
(9 0)/s. € supp (¥). Thus the limit of s‘1(9 0) is determined by the asymptotic behaviour of
{TY(s,, 0 +s.t), t e supp (Y)}. The following computations use the fact that [y(u)du=0. For
tesupp (), if >0,

St_é TY(S‘U 0 + Stt) = J lﬁ(u)f(@ + S U + Srt) du + 151:_1 J‘ W(“) dVVO+s,(u+t)
=A;5; flﬁ(u)lu +tl*du+ s * fl//(u) AW, 1.+ o(s?)

=Als${f¢(u—t)|u|°’du+op(1)}, (A3)

and if x =0,

sT¥TY(s,, 0+ s,t)= f¢(u)f(9+sru+stt) du + st fw(u)dW,,ﬂt(,,ﬂ)
= flp(u){f(ﬁ—)l(u+t<0)+f(0+)1(u+t>0)} du
+1s; % Jw(w AW, 1o+ o(1)
=2"1{f(0+) - fO0-)} JW(u) sign (u +t) du + 15, % Jl//(u)dW,+t+0(1)
=2-1A2{f¢(u—t) sign(u)du+o,,(1)}, (A4)

where W is a standard two-sided Brownian motion. Since | TY(s,, x)| achieves its maximum at 0
(A3) and (A4) imply that, as 1—0, s, 1(§ — 0) weakly converges to the location of the maximum

of the function
=

f WY(u—t)sign (u) du

u|* du|:t € supp (lﬁ)} (>0),

or of

{

Proof of Theorem 4. Theorem 1 implies that, with probability tending to 1 —y, | TY(s,, x)| < C,,,
for those x at which f has no jump or sharp cusp. Using the arguments in the proof of Theorem 2
we can show that, as 7—0, with probability tending to 1—7y, |TY(s,, x)| will exceed C.,
only those x such that (x — 0;)/s, € supp () for some i=1,...,g. From the definitions of ¢ and
91, cens Bq, we can easily see that, with probability tending to 1 —v, §=q and 0 0; = 0,(s) for
i=1,..., 4. Finally, the theorem is proved by letting y — 0. O

1t e supp (up)} (x=0). O
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