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Online Textbook

Time Series Modelling of Water Resources and Environmental 
Systems by Keith W. Hipel & A. Ian McLeod.  This book 
previously published in 1994 by Elsevier is now freely available
online:

http://www.stats.uwo.ca/faculty/aim/1994Book/default.htm 
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High Level Quantitative 
Programming Environments

• Mathematica
• MatLab
• R and S-Plus

“tools for thought”

Much better computing environments than Fortran now exist.  These new
computing environments allow for much more rapid development and are ideal
for many sorts of mathematical and statistical research.
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Outline of Topics

• Trend Analysis
• New time series model for riverflow, GAR 

and GARP
• Daily time series simulation and 

forecasting
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Trend Analysis

• Testing for monotonic (nondecreasing or 
nonincreasting) trend

• Visualizing trend and seasonality using STL
• Visualizing trend and nonlinear features using 

Multiresolution Analysis
• Jump or changepoint detection using wavelets
• Intervention analysis for modelling

environmental impacts
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Testing for Monotonic Trend

• Mann-Kendall Test using block bootstrap
• R library: Kendall
Illustrative Example:
Monthly average river height of Rio Negro at Manaus, January 1903 until December 1992

Deseasonalize by subtracting monthly means.  Regular Mann-Kendall trend test
P-value = 10-5 but using block bootstrap to allow for autocorrelation we obtain a
revised P-value = 4.8%.

This is in agreement with the result obtained by Brillinger (1989, 
Biometrika) of 4.1% based on the daily averages.
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Seasonal Trend Loess

• Cleveland, W.S. (1994) Visualizing Data. 
Hobart Press.

• R. B. Cleveland, W. S. Cleveland, J.E. 
McRae, and I. Terpenning (1990) STL: A 
Seasonal-Trend Decomposition Procedure 
Based on Loess. Journal of Official 
Statistics, 6, 3–73.

• Availability: R and S-Plus 
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Multiresolution Analysis (MRA)

• decomposition of a time series into 
Details, Dj, j=1,…,J and Smooth SJ

• Dj indicates changes at scale 2j-1

• SJ indicates mean level at scale 2J-1

Percival, D.B. & Walden, A.T. (2000).  Wavelet Methods for Time Series Analysis.
Cambridge University Press.
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Changepoint Detection via 
Wavelets
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Partial DWT

The partial DWT is a special orthonormal transformation,

z0, ∫, zN-1 õ W1, ∫, WJ, VJ ,

Wj is a vector of length Nj = N ê 2 j

W = X

=

i

k

jjjjjjjjjj

1

∫

J

J

y

{

zzzzzzzzzz

j is Nj µ N , j = 1, ∫, J

J  is NJ µ N
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Daubechies D4 Wavelet Filter
Ha0, a1, a2, a3L = H -0.12941 -0.224144 0.836516 -0.482963 L

N=16

1 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjj

a1 a0 0 0 0 0 0 0 0 0 0 0 0 0 a3 a2
a3 a2 a1 a0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 a3 a2 a1 a0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a3 a2 a1 a0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 a3 a2 a1 a0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a3 a2 a1 a0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 a3 a2 a1 a0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a3 a2 a1 a0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzz
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The rows of 1 behave like first differences
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Wang, Yazhen (1995).  Jump and Sharp Cusp Detection by 
Wavelets. Biometrika,  82,  385-397.

threshold:   s 2 log n
Change points at 50, 59,92,105 ,145 ,169 ,180
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MRA (Derivation)
X = T  W

1, ... , J and J  also orthonormal

X =
j=1

J

j
T  Wj + J

T  VJ

Dj = j
T  Wj SJ = J0

T  VJ
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Intervention Analysis (IA)

zt = m + w Bb Pt T + ut , 

t = 1, 2, ... , n, 
B backshift operator

Pt T =
0 t § T
1 t > T
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New Developments in IA

a) Power Computation (reprint available)
b) S-Plus library tfm for IA (forthcoming)
c) A fundamental limitation to statistical 

inference (working paper available)
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Gamma Distribution for Riverflow 
Modelling

• Normal distribution can lead to negative 
flow values in simulations

• Using log transformation produces a 
model not in the original domain

• Gamma distribution always >0 and may fit 
better than normal or lognormal

• May be fit using glm software
• May be extended to multisite and seasonal
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The distribution is denoted by G m, .

zt ~G x+ f1 zt-1 +∫ + zt- p, n

GAR(p) Model
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Two New Methods for Daily 
Riverflow Forecasting & Simulation

• Feedforward neural nets provide a 
powerful method for forecasting nonlinear 
time series.  Reprint of paper on webpage.

• Wavelets.  Since the lower level detail 
coefficients behave like white noise we 
can simply simulate them and use the 
other coefficients to synthesize the time 
series.


