
Change Point Detection using Wavelets

Introduction
The object is to detect jumps in array CGH data such as that shown in the plots below.
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Given a sequence of values z0, z1, ..., zN-1 assumed to be generated by 

zt = f HtL + et

where  f HtL  is  function  and  et ~NIDH0, s2L.   Two examples are  shown  below.   In  the  first  example,  we  have  a
smooth curve with random variation about it.

ü Example 1:  Smooth Curve with Random Errors
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ü Example 2:  Random points about a curve with jumps

In the second example there are 7 points of discontinuity.
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Change points at 50, 59,92,105,145,169,180

Discrete Wavelet Transformation 
The partial DWT is a special orthonormal transformation:

Hz0, ∫, zN-1Lõ HW1, ∫, WJ , V jL,

where  W j  is  a  vector  of  length  N j = N ê 2 j  and  VJ  has  the  same  length  as  WJ ,  NJ .   For  simplicity  we  have
assumed that N  is  a multiple of  2J .  The vector  W j  is  called the vector  of  wavelet  coefficients  at level j  and is
associated  with  changes  or  differences  on  scale  2 j-1.   The  vector  VJ ,  the  scaling  coefficients  at  level  J ,  is
associated with averages on scale 2J -1.  

We can write

 W = X ,
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j is N j µ N , j = 1, ∫, J  and J  is NJ µ N .

In practice the DWT is computed using the pyramid algorithm which requires only OHNL flops.
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Daubechies D4 Wavelet Filter

Ha0, a1, a2, a3L = H -0.12941 -0.224144 0.836516 -0.482963 L
Taking N = 16,

W1 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

a1 a0 0 0 0 0 0 0 0 0 0 0 0 0 a3 a2

a3 a2 a1 a0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 a3 a2 a1 a0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a3 a2 a1 a0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 a3 a2 a1 a0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a3 a2 a1 a0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 a3 a2 a1 a0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a3 a2 a1 a0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

The rows of W1  behave like approximately like first  differences  as can be seen from the diagram below which
plots rows 1, 2, 7, 8.
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à Method of Wang (1995)

The  underlying  model  or  null  hypothesis  may  be  written  zt = f HtL + at, t = 1, ∫, n  where  at ~NIDH0, s2L  and
f HtL  is  a  smooth  function,  ie.  continuous  and  differentiable.   The  is  a  classic  model  in  time series.   Examples
include the polynomial  trend analysis  (Fisher,  1921)  and the lowess  polynomial seasonal  adjustment of  Cleve-
land  et  al.  (1990).   Modern  linear  time  series  models  such  as  the  ARMA  and  its  generalizations  provide  a
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comprehensive and more realistic approach to building models which may be used for forecasting and interven-
tion analysis.

Wang  (1995)  and  Ogden  and  Parzen  (1996)  consider  the  problem of  testing  an  abrupt  change  in  the  function
f HtL.  Ogden and Parzen (1996) approach the problem as one of estimating f HtL when step functions are present
and f HtL  is  otherwise  constant  and their  approach is again,  like in MatLab, exploratory.  Wang (1995)  model is
more general  and focuses  on detecting the change points  at which a jump or sharp cusp occurs.   A sharp cusp
occurs at point t0  if there exists a constant K > 0 such that

» f Ht0 + hL - f Ht0L » ¥ K » h »a 

for all h as h Ø 0 and 0 § a < 1.  When a = 0, the function has a jump.  Wang shows that, asymptotically with
probability  1,  all  wavelet  coefficients  will  have  absolute  value  less  than  the  universal  threshold  value
s

è!!!!!!!!!!!!!!!!2 logHnL  provided  there  are  no  jumps  or  cusps.   The  asymptotics  work  best  when  a = 0  which  means  in
practice  the  wavelet  coefficients  are  larger  in  absolute  value.   The  unknown  value  of  s  may  be  estimated
robustly by the median absolute value of the wavelet coefficients at level 1 divided by 0.6745.

ü Practical Implementation Details

We follow the notation in the book Percival and Walden (2000) which is also used in the S-Plus, R and MatLab
software.  The principal differences are that level 1 refers highest time domain resolution and filter width rather
than half-width is used in the naming of the Daubechies wavelets.  So for example, Wang's DH1L corresponds to
DH2L which is also equivalent to the Haar wavelet.  Another difference is that Wang pads the real data so that n is
a power of 2 because he uses Mallat's algorithm which is extremely efficient.  However other algorithms which
are only slight less efficient when n is not a power of 2 are available and will be used.

For detection of changepoints,  Wang (1996) recommends examining plots of the absolute empirical wavelets at
various  levels  j  and  finding  those  values  which  exceed  the  threshold  line  and  are  larger  than  others.
Daubechies  wavelets  DHkL, k = 2, 4, ..., 20   The  level  j  should  be  chosed  as  small  as  possible  in  order  to
obtain the highest for the changepoint time.

ü Cusum Test

In  changepoint  problems  it  has  often  been  found  that  the  cusum  provides  an  effective  method  of  detecting
changepoints (Page, 1955; Barnard, 1959; Lombard 1988)

The power of Wang's test can be improved by working with the cusum,

yt = ‚
s=1

t

zs

à Illustrative Examples 1 

In this example, no discontinuity is detected.
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Example 1
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à Illustrative Examples 2

In this example, 6 points are clearly detected and the 7th is very close to the boundary.

Example 2
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Application to NG754-S8 Data
Applying Wang's test, quite a few change points are detected as shown below.
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ng754−S8
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In  the  figure  below  we  plot  the  data  and  a  scaled  version  of  the  absolute  values  of  those  wavelet  coefficients
which exceed the threshold.
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Next we apply the Wang test to the cusum.
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ng754−S8 cusum test
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As shown in the plot below the cusum approach does a better job of detecting changepoints.
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ng754−S8 cusum test
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