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Subset Autoregression: A New Approach

A.lan McLeod, University of Western Ontario

Ying Zhang, Acadia University

A new family of subset autoregressive models are introduced and a comprehensive approach to model identification,
estimation and diagnostic checking is developed for these models. Also a A new version of the partial autocorrelation
plot is introduced. These new models are better suited to efficient model building of high-order autoregressions with long
time series. Several illustrative examples are given. An R package implementation is available. In many cases subset AR
models provide a useful alternative to ARMA models.
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I AR(p) Model Admissible Region

Xt = @1 Xe_1 + -+ + dp Xe—p + A, a~NID(0, a2)or ¢(B) X = ay, B is the backshift operator on t and

$(B)=1—¢1B—.. —dpBP, &y = ({d1, ... bp} € RP|$(2)#0, z €C, |z] <1}. AR(2) region:
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B AR(3) Admissible Region
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I Best Linear Predictor

Given an autocovariance function yy, k=0, 1, 2, ... it may easily be shown using calculus that the linear predictor
k1 Zi-1 + ... + dxk Zi—x Which minimizes the variance of the error in predicting Z; is given by the solution to the Yule-
Walker equations,

k1 Y1
re| - |=| - 1)
Prk Yk
where 'y = (’)/i_j)pxp is the covariance matrix of p successive time series values. The Durbin-Levinson is a computation-
ally efficient and stable method of solving these special linear equations for ¢y 1, ..., dkk-
M ‘ 3 M 4 of 41

I Durbin-Levinsion Algorithm

Setg11=y1/yoandvy = (1 - ¢il) v0, Where vy denotes the variance of the k step linear predictor. Then fork =2, 3, ...
we can iteratively obtain,

Bk = Yk = Pk-1,1 Yk-1 — -+« — Pk-1k-1Y1)/Vk-1 DL-1 2
Pk1 Pr-11 Pk-1k-1
= : — ik : DL-2 3)
Prk-1 Pk-1k-1 Pk-11
and
Vic = Vi1 (1= - DL-3 4)
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I Other Applications of DL Algorithm

-parameter estimation, Yule-Walker estimates
-parameter estimation via the Burg algorithm

-test for invertibility

-reparameterization of ARMA models for exact MLE
-exact likelihood computation

-exact simulation

-Trench algorithm for efficient computation of I';*
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I Reparameterization

Consider an AR(p) with parameters ¢ = (¢1, ..., ¢p) and let £ = ({1, ..., {p), &k = dxx Where ¢y, k=1, ..., pare the
partial autocorrelations. Barndorff-Nielsen and Schou (1973) showed that £ «— ¢ is a bijection which is continuous and
differentiable. Hence ¢ can be regarded as a reparameterization of the AR in terms of £. Efficient algorithms to compute
the bijection £ «— ¢ are based on the DL recursion.
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I ARToPacf ¢—¢

2 -
Pr-1,i = (P + Dk ¢k,k-i)/(1—¢k,k), k=p-1, .., L;i=1, ., k-1 (5

Derivation

From DL recursion we can write,

Pr-1,i = Dr,i + Dok Ph—1k—i (6)
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by symmetry,
Pr-1, k=i = P ki + Prk Pr-1,i (M
Subing (8) in (7) and simplifying yields (6).
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I PacfToOAR {—¢
Pi = Pk-1,i — Sk Pk-1.k-is K=2, .., pyi=1 .., k-1 (8)

This follows directly from eqn. (4).
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I Subset AR Models:

Principle of Parameter Parsimony suggests considering models such as,
Xt = @1 Xt-1 + P2 X2 + Pg Xt-9 + &t

These models may be fit using least-squares. Least squares subset regression algorithms may be used. In general the
ARy (i, iz, -+, im) is defined by

Xt = @iy Xioig + Pip Xeoip + -+ + Pipy Xe—ipy + & %)

T q > M 10 of 41

I Annual Sunspot Series, 1700-1988

Consider a power transformation z* for A = 1, 0.5, 0.33; g3 = 1.02, 0.18, —0.25 so a square-root transformation is
selected.
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I AR(2) - Exact MLE
Parameter SE z
o1 1.38858 0.0425451 32.6378
b2 -0.690569 0.0425451 -16.2314
o 48.6135 3.22231 15.0866
Oa 16.5429
{PortmanteauStatistic-60.4823,MaxLag-25,Pvalue-0.0000325296%}
] » " 12 of 41

I AR4(,2,9)-LS

We fit ARy(1, 2, i) fori =8, 9, 10, 11, 12. Only with i = 9 was an acceptable fit obtained.

of]
b2
b9
U

Oa

Parameter
1.24378
-0.523923
0.201266
6.34343
1.06488

SE
0.0588235
0.0938781
0.0588235
0.794134

z
21.1442
-5.58089
3.42153
7.98786
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{PortmanteauStatistic-28.4572, MaxLag-25, Pvalue-0.16102}
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I AR(, 2, 4)
Is the transformation ¢«<—¢ useful for exact MLE of subset models?

We were able to extend the Theorem of Barndorff-Nielsen and Schou (1973) to show that the transformation
(Bigs s Bi)— iy s i) is a one-to-one and is continuous and differentiable. But it is very complicated and not
possible to compute easily. Also the transformation is not onto.

B Admissible Region of AR4(1, 4) in { space

B Admissible Region of ARy4(1, 2, 4) in { space
M < > M 14 of 41

I New Subset Models

(Giyr =+ Lim)— (@1, -+, @p), im = p, defined using PacTTOAR given in eqn. (9) and letting &; € (-1, 1). The admissi-
ble region is simply a cube in m-dimensions.

And we can use the PacfToAR and ARToPacT transformations.
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I Exact Loglikelihood
1 1
L@, o3) = - Log(det(Ty)) - = X' T;y* X

where Ty is the covariance matrix of X = (X1, ..., Xn) and ¢ = (¢1, ..., dp).
Champernowne (1948) showed that
X Tix=p8D B /o2
where 8 = (-1, ¢1, ..., ¢p)and D isthe (p + 1)-by-(p + 1) matrix with (i, j)-entry
Dij=Dji= XiXj + .. + Xns1-i Xns1-j-

I < 4 ]

17 of 41

(10)

(11

(12)
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I Exact Loglikelihood (con't)

The standardized covariance determinant of order p, g, = det(I", / o2) where 'y = (yi-j) and y, = Cov(x;, Xi—x) may be
written (Barndorff-Nielsen and Schou, 1973, eqns. 5, 8) as

P i
gp=]]a-&" (13)
j=1
Hence the exact loglikelihood function (5.3.1) may now be written,
L, 02 = -2 Logiod) - = L L s
(¢, 03) = ey 0g(0g) — 5 09(9p) - 207 (9) (14)

where S(¢) = ' D B.
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I Concentrated Loglikelihood
Maximizing (5.3.1), L(¢, 02), over o2 , we obtain
G2 =S@)/n (15)
and the profile loglikelihood for ¢ can be written,
L(g) = - Log(S()/m) - % Log(gp). (16)

After the initial computation of the matrix D which only needs to be done once, each further evaluation of the likelihood
L(¢) only requires O(p?) flops. Provided that p << n, this is much faster than other exact likelihood algorithms for ARMA
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I Reparameterized Concentrated Loglikelihood

To maximize L(¢), it is convenient to re-parameterize using the { = ({1, ..., {p) parameters. We can then write,
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1
L) = —% Log(S@(@)/m - 5 Log(gp) (17)
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I The Burg Estimates

-first order efficient

-fast to compute using DL algorithm

-always in admissible region

Percival and Walden (1993, §9.5) give a new statistical derivation of the Burg algorithm.

Zhang & McLeod (2005) showed that the Burg estimates have that the first-order bias of the Burg estimates is the same as
least-squares for AR(p), p=1, 2, 3.

M < > M 21 of 41

I Derivation of the Burg Estimates

In this algorithm &,(k) and &(k) denote the forward and backward k-th order linear prediction errors for z; based on
Zt_1, -, Zt_gx and Zgy1, ..., Zk respectively. The Burg algorithm is characterized by the fact that (;Sk’k minimizes

SSk= . Ek-1+E (k-1). (18)

It may be shown that the ¢A5k,k which minimize SSy is given by,

Gk = A/ B (19)
A =2 (X1 Bk = D&y (k — 1)} (20)
Bo=  {Bk-1+8k-1) (21)
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I The Burg Algorithm

The Burg algorithm produces the partial autocorrelation estimates directly from the data. We assume z; has mean zero or
has been mean corrected. Then to fit an AR(p),

Step 1: Select p. Initialization. Setk =1and fort=2, ..., n,
ét(k - 1) =1y, (22)
Bk —1) =17, (23)

Step 2: Compute ¢, using eqn. (11).
Step 3: Update. For t=k+1, ..., n,
8i(k) = ik — 1) — i Bri(k — 1), (24)
Bk(K) = Bk — 1) — dyyc Bk — 1), (25)
Step 4: Ifk = p, terminate otherwise set k = k + 1. Repeat Steps 2-4.
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I Information Matrix for AR,

Let I, and I, denote the large-sample information matrix per observation for the parameters ¢ and ¢ respectively in an
AR(p). Then

|{ =0 |¢({) J y (26)
;00 - ; @7)
= — = —k
00 "

where J,_ is derived below. In the subset case, the corresponding rows and columns of |, are selected.
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I Derivation of J,_y

The required Jacobian may be derived from the sequence of transformations, starting with ¢; = ¢,;, i=1, ... pand
continuing until we reach i = ¢, i=1, ..., p:
1Ip—l : {¢p,1y ¢p,2a ey ¢p,p—l, ¢p,p}‘_’{¢p—l,ly ¢p—l,2a ey ¢p—1,p—l, ¢p,p} (28)
Wp—z . {¢p—l,l, Op-121 s Pp-1,p-1, ¢p,p}<—>{¢p—2,l, Dp-221 s Pp-2,p-31 Pp-1,p-1, ¢p,p} (29)
Ty {d21, d22, ooy Pp-1,p-1, Op,p} = {d11, P22, ..., Pp_1,p-1, Pp,p} (30)

The general form of these transformations is given by the Durbin-Levinson recursion,

¢p,i = ¢p—1,j - ¢pfl,pfj ¢p,pa J =1 .,p-1
I« < > M 25 of 41

I Derivation of J,_ (con't)

In general, the Jacobian of the transformation, T,_,, may be written as a partitioned matrix,

) —(Jp‘k Ap‘k'k) (31)
Pk = Op-k Ik

Op—« = (O), p-k» Ik is the k x k identity matrix and Ap_y x is a (p — k) x k matrix whose first column is

{(=®p—kp-ki —Ppkpk-1s =» —Ppk1}
and whose remaining elements are all 0. The matrix Jp_, may be written explicitly as the (p — k) x (p — k) matrix with
(i, j)-entry a(p, k) where,
1 ifi=]j
—lpks1r Mfi=p-—Kk+1-jAi#]j

a(p, k) = { (32)

1-lpke1 ifi=p-k+1-jAi=]j
0 otherwise.

T q > M 26 of 41
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I Example
When p =4,
1 0 -4 —{3
; 0 1-&4 0 -&LHL-4a0+0)48
7 - o 1 -ad+L)-6é |
0 0 0 1
1 -4 -0 0
J, - -3 1 -0A+8H) 0
2710 o0 1 of
0 0 0 1
1-&L -4 00
5 - 0 1 00
Yo o0 10
0 0 01
T < » M 27 of 41

I Simulation Experiment

¢ =1{0.5, 0.5, 0.5, 0.5} and simulated 1,000 realizations of a time series with length n = 1000.
The observed sample covariance matrix of £ in the simulations was,

0.0133474 0.00452826 0.00180141 0.000421101
0.00452826 0.00250702 0.000142564 0.000209351
0.00180141 0.000142564 0.000794065 0.0000592178

0.000421101 0.000209351 0.0000592178 0.000758274

and the theoretical large-sample approximation given by | 2‘1 / 1000

0.01425 0.0045 0.0015 0

0.0045 0.00225 0. 0
0.0015 0. 0.00075 0
0 0 0 0.00075

28 of 41
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I Large-Sample Distribution of MLE

Theorem 1

¢S zand v (2-2) 5 N, 17Y

m Proof

t < > M 29 of 41

I Partial Autocorrelation Plot

Using the Burg or exact MLE we obtain Z, = ¢, and then using Theorem 1 obtain EstSd(Z,). Plot the 95% intervals
2, + 1.96 EstSd(Z,).
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I AIC/BIC Model Selection
For AR(iy, -+, im), L =(-n/2)log(63)
Since 62 ~ ¢g (1—2?1)--- (1—Zi2m)

BIC(iy, -+, im) = nlog ]_[ (1- Zi) +mlog(n) (33)
kelig, - im)

We don't need to search all subsets. Just arrange Zi in ascending order and proceed with the evaluation of the BIC.
Similarly for other IC.

M < > M 31 of 41

I Annual Sunspot Example

k AIC BIC Model

1 ~330.899 ~327.232 {1

2 —532.767 —525.435 {1, 2}

3 —548.387 —537.388 {1, 2, 8}

4 -561.591 —546.926 {1,2,8,7}

5 ~573.957 ~555.625 11,2,8,7, 9

6 ~582.986 ~560.987 11,2,8,7,9, 6}

7 —588.369 —562.704 {1,2,8,7,9,6, 17}

8 -590.1 —560.769 {1,2,8,7,9, 6,17, 3}

9 ~590.659 ~557.661 {1,2,8,7,9,6,17, 3, 15)

10 —590.281 —553.617 {1,2,8,7,9,6,17, 3, 15, 18}

11 —589.845 —549.515 {1,2,8,7,9,6, 17, 3, 15, 18, 14}
12 —589.358 —545.361 {1,2,8,7,9,6, 17, 3, 15, 18, 14, 16}

MinAICModel - {1, 2, 8, 7, 9, 6, 17, 3, 15}
MinBICModel - {1, 2, 8, 7, 9, 6, 17}

I« < > M 32 of 41
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I Fitted AR, for Annual Sunspots

Parameter SE Z
< 0.839169 0.281783 2.97807
) -0.671837 0.0824506 -8.14835
Ce 0.252221 0.0620332 4.0659
7 0.231398 0.0608168 3.80484
Cs 0.196152 0.0629042 3.11826
Cq 0.300116 0.0703228 4.26769
17 -0.0730557 0.0604646 -1.20824
U 6.34343 0.657045 9.65448
Oa 1.04209

t < > M 33 of 41

I Distribution Residual Autocorrelations

After fitting the residuals &; are used to check the important assumption of independence. = (ry(1), ---, ra(L))

Theorem 2

VIS NO, V),V =l - X3 7L X

where X is the L x m matrix with (i, j)-entry ¢;_;, where i is the coefficient of BX in the expansion
1/¢(B)=1+y1B+y,B?+..and ¢(B)=1- ¢ B—...— ¢, BP.

Remark 1: Since J; X" X J; ~ J} Igl J;z, V is approximately idemptotent with rank L — m.
Remark 2: In the case of squared residuals, the autocorrelations are NID(0, 1/n).

T q > M 34 of 41

I Ljung-Box Test

Since <V is approximately idemptotent with rank L — m and hence we can use the Ljung-Box test
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L
Q=n+2) ) fk) /(K
k=1

(34)

Under the null hypothesis of model adquacy, Q. is approximately y2-distributed with L —m df.

0 < M 35 of 41
I Sunspot Series Example
m Ljung-Box Test
QL L p-value
21. 20 0.05
22.3 25 0.18
244 30 0.33
25.5 35 0.55
30.3 40 0.55
32. 45 0.7
33.3 50 0.83
M < M 36 of 41

I Residual Autocorrelation Plot

As noted by Hosking and Ravishanker (1993) the Bonferonni Inequality may be used to obtain 5% simultaneous signifi-

cance levels.
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m AR,(1,2,6,7,8,9, 17)

1 4 7 10 13 16 19 22 25 28
0.2 — : ‘ : : : : : : :
0.1 0.1
5 o 0
<
-0.1 -0.1
: : : : : : : : ‘ ‘ -0.2
1 4 7 10 13 16 19 22 25 28
Lag
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I Annual Sunspot Series
m Squared Residuals Ljung-Box Test
QL L p-value
35.2 20. 0.00043
40.5 25. 0.00111
47 .2 30. 0.00136
53.8 35. 0.00161
63.4 40. 0.00078
69.5 45. 0.00097
70.8 50. 0.00358
Conditional heteroscedastic variation is present. Nonlinear model needed.
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I Monthly Sunspot Series, 1749-1983, n = 2820

Taking L = 300 and M = 100 the best AIC, and BIC, models were determined. The AIC and BIC were also used with the

usual AR(p). The fits are summarized:
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Model IC m L AIC BIC
AR, AIC 70 -148.2 436.4 852.6
AR, BIC 20 -236.5 513.0 6319
AR AIC 27 -241.1 536.3 696.8
AR BIC 21 -2525 547.0 671.8

0 < > M 39 of 41
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I Appendix: Bonferonni Inequality

First consider white noise case, ry~NID(0, 1/n). Then

Pr{|rc| <c/vn, k=1, -+, L}=1-«a

Pr{|Z¢| <c, k=1, ---,L}=1-«a

where Z = rk/\/ﬁ ~NID(0, 1). From Basic Result in elementary probability,
Pr{|Z| <c, k=1, -+, L} =1—[T, Pr{|Z| >¢c}
1-21-0C)=1-«

Le=d L+ 1-a)Vh)/2)

L 1 2 10 20 40 60
c 196 224 280 3.02 3.22 3.33

M < > M 40 of 41

I Bonferonni Inequality

1= Prigi Ué&} =Prigi}+Pri&} —Prigi (&}
L+Pri&iNé) = Pri&}+Pri&l =1 -Pr{& )+ (L -Pr{&,h
Pri¢tNé) = 1-(Pr{&;} +Pr{&,))

-general case established by induction

-higher-order expansion

I« < > M 41 of 41
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I Bonferonni Approximation

Pri{&;}

M-

L
(Prigy~1-

i=1 i=1

taking & = { | fj| < c EstSd(fj)}

Niz Pri€} =1-«a

Pri&} =a/msoc=0"1(1-a/@2L))

L 1 2 10 20 40 60
c 196 224 280 3.02 322 3.34

Almost but not exactly the same!

(3%)



