Subset Autoregression: A New Approach

M

A.Ian McLeod, University of Western Ontario

Ying Zhang, Acadia University

M

A new family of subset autoregressive models are introduced and a comprehensive approach to model identification, estimation and diagnostic checking is developed for these models. Also a A new version of the partial autocorrelation plot is introduced. These new models are better suited to efficient model building of high-order autoregressions with long time series. Several illustrative examples are given. An R package implementation is available. In many cases subset AR models provide a useful alternative to ARMA models.

1 of 41

AR(p) Model Admissible Region

 $x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + a_t, \ a_t \sim \text{NID}(0, \ \sigma_a^2) \text{ or } \phi(B) x_t = a_t, B \text{ is the backshift operator on } t \text{ and } \phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p, \ \Phi_p = \{\{\phi_1, \dots, \phi_p\} \in \mathbb{R}^p \mid \phi(z) \neq 0, \ z \in \mathbb{C}, \ |z| \le 1\}.$ AR(2) region:

■ AR(3) Admissible Region

	H A H	3 of 41
--	-------	---------

(1)

Best Linear Predictor

Given an autocovariance function γ_k , k = 0, 1, 2, ... it may easily be shown using calculus that the linear predictor $\phi_{k,1} Z_{t-1} + ... + \phi_{k,k} Z_{t-k}$ which minimizes the variance of the error in predicting Z_t is given by the solution to the Yule-Walker equations,

$$\Gamma_p\begin{pmatrix}\phi_{k,1}\\ \cdot\\ \cdot\\ \cdot\\ \phi_{k,k}\end{pmatrix} = \begin{pmatrix}\gamma_1\\ \cdot\\ \cdot\\ \cdot\\ \cdot\\ \gamma_k\end{pmatrix}$$

where $\Gamma_p = (\gamma_{i-j})_{p \times p}$ is the covariance matrix of *p* successive time series values. The Durbin-Levinson is a computationally efficient and stable method of solving these special linear equations for $\phi_{k,1}, \dots, \phi_{k,k}$.

	Μ	•	•	M	4 of 41
--	---	---	---	---	---------

Durbin-Levinsion Algorithm

Set $\phi_{1,1} = \gamma_1 / \gamma_0$ and $v_1 = (1 - \phi_{1,1}^2) \gamma_0$, where v_k denotes the variance of the *k* step linear predictor. Then for k = 2, 3, ... we can iteratively obtain,

$$\phi_{k,k} = (\gamma_k - \phi_{k-1,1} \gamma_{k-1} - \dots - \phi_{k-1,k-1} \gamma_1) / v_{k-1} \qquad \text{DL-1}$$

$$\begin{pmatrix} \phi_{k,1} \\ \cdot \\ \cdot \\ \cdot \\ \phi_{k,k-1} \end{pmatrix} = \begin{pmatrix} \phi_{k-1,1} \\ \cdot \\ \cdot \\ \cdot \\ \phi_{k-1,k-1} \end{pmatrix} - \phi_{k,k} \begin{pmatrix} \phi_{k-1,k-1} \\ \cdot \\ \cdot \\ \cdot \\ \phi_{k-1,1} \end{pmatrix} \qquad \text{DL-2}$$

$$(3)$$

and

$$v_k = v_{k-1} (1 - \phi_{k,k}^2).$$
 DL-3 (4)

Reparameterization

Consider an AR(*p*) with parameters $\phi = (\phi_1, \dots, \phi_p)$ and let $\zeta = (\zeta_1, \dots, \zeta_p), \zeta_k = \phi_{k,k}$ where $\phi_{k,k}, k = 1, \dots, p$ are the partial autocorrelations. Barndorff-Nielsen and Schou (1973) showed that $\zeta \leftrightarrow \phi$ is a bijection which is continuous and differentiable. Hence ζ can be regarded as a reparameterization of the AR in terms of ζ . Efficient algorithms to compute the bijection $\zeta \leftrightarrow \phi$ are based on the DL recursion.

K	•	•	H	7 of 41

ARToPacf
$$\phi \longrightarrow \zeta$$

 $\phi_{k-1,i} = (\phi_{k,i} + \phi_{k,k} \phi_{k,k-i}) / (1 - \phi_{k,k}^2), \ k = p - 1, \ ..., \ 1; \ i = 1, \ ..., \ k - 1$ (5)

Derivation

From DL recursion we can write,

$$\phi_{k-1,i} = \phi_{k,i} + \phi_{k,k} \,\phi_{k-1,k-i} \tag{6}$$

by symmetry,

$$\phi_{k,i} = \phi_{k-1,i} - \zeta_k \phi_{k-1,k-i}; \quad k = 2, \dots, p; \ i = 1, \dots, k-1.$$
(8)

This follows directly from eqn. (4).

Subset AR Models:

Principle of Parameter Parsimony suggests considering models such as,

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \phi_9 x_{t-9} + a_t$$

These models may be fit using least-squares. Least squares subset regression algorithms may be used. In general the $AR_{\phi}(i_1, i_2, \dots, i_m)$ is defined by

M

$$x_{t} = \phi_{i_{1}} x_{t-i_{1}} + \phi_{i_{2}} x_{t-i_{2}} + \dots + \phi_{i_{m}} x_{t-i_{m}} + a_{t}$$
(9)

Annual Sunspot Series, 1700-1988

Consider a power transformation z^{λ} for $\lambda = 1$, 0.5, 0.33; $g_3 = 1.02$, 0.18, -0.25 so a square-root transformation is selected.

	Parameter	SE	Z
b ₁	1.38858	0.0425451	32.6378
^b 2	-0.690569	0.0425451	-16.2314
l	48.6135	3.22231	15.0866
Ja	16.5429		

N A N 12 of 41

$\mathsf{AR}_\phi(\mathsf{1},\,\mathsf{2},\,\mathsf{9})-\mathsf{LS}$

We fit $AR_{\phi}(1, 2, i)$ for i = 8, 9, 10, 11, 12. Only with i = 9 was an acceptable fit obtained.

	Parameter	SE	Z
ϕ_1	1.24378	0.0588235	21.1442
ϕ_2	-0.523923	0.0938781	-5.58089
ϕ_9	0.201266	0.0588235	3.42153
μ	6.34343	0.794134	7.98786
σ_{a}	1.06488		

{PortmanteauStatistic \rightarrow 28.4572, MaxLag \rightarrow 25, Pvalue \rightarrow 0.16102}

AR(1, 2, 4)

Is the transformation $\phi \longleftrightarrow \zeta$ useful for exact MLE of subset models?

We were able to extend the Theorem of Barndorff-Nielsen and Schou (1973) to show that the transformation $(\phi_{i_1}, \dots, \phi_{i_m}) \rightarrow (\zeta_{i_1}, \dots, \zeta_{i_m})$ is a one-to-one and is continuous and differentiable. But it is very complicated and not possible to compute easily. Also the transformation is not onto.

Admissible Region of AR $_{\phi}(1, 4)$ in ζ space

Admissible Region of AR $_{\phi}(1, 2, 4)$ in ζ space

м	•	•	H	14 of 41

New Subset Models

 $(\zeta_{i_1}, \dots, \zeta_{i_m}) \longrightarrow (\phi_1, \dots, \phi_p), i_m = p$, defined using PacfToAR given in eqn. (9) and letting $\zeta_i \in (-1, 1)$. The admissible region is simply a cube in *m*-dimensions.

And we can use the PacfToAR and ARToPacf transformations.

K	•	•	M	15 of 41

Model Building

Exact Loglikelihood

$$L(\phi, \sigma_a^2) = -\frac{1}{2} \log(\det(\Gamma_n)) - \frac{1}{2} x' \Gamma_n^{-1} x$$
(10)

16 of 41

where Γ_n is the covariance matrix of $x = (x_1, \dots, x_n)$ and $\phi = (\phi_1, \dots, \phi_p)$.

Champernowne (1948) showed that

$$x' \Gamma_n^{-1} x = \beta' D \beta / \sigma_a^2, \tag{11}$$

where $\beta = (-1, \phi_1, \dots, \phi_p)$ and *D* is the (p + 1)-by-(p + 1) matrix with (i, j)-entry

$$D_{i,j} = D_{j,i} = x_i x_j + \dots + x_{n+1-i} x_{n+1-j}.$$
(12)

Exact Loglikelihood (con't)

The standardized covariance determinant of order p, $g_p = \det(\Gamma_p / \sigma_a^2)$ where $\Gamma_p = (\gamma_{i-j})$ and $\gamma_k = \operatorname{Cov}(x_t, x_{t-k})$ may be written (Barndorff-Nielsen and Schou, 1973, eqns. 5, 8) as

M

$$g_p = \prod_{j=1}^p (1 - \zeta_j^2)^{-j}.$$
(13)

Hence the exact loglikelihood function (5.3.1) may now be written,

$$L(\phi, \sigma_a^2) = -\frac{n}{2} \log(\sigma_a^2) - \frac{1}{2} \log(g_p) - \frac{1}{2\sigma_a^2} S(\phi)$$
(14)

where $S(\phi) = \beta' D \beta$.

Concentrated Loglikelihood

Maximizing (5.3.1), $L(\phi, \sigma_a^2)$, over σ_a^2 , we obtain

$$\hat{\sigma}_a^2 = S(\phi) / n \tag{15}$$

and the profile loglikelihood for ϕ can be written,

$$L(\phi) = -\frac{n}{2} \log(S(\phi)/n) - \frac{1}{2} \log(g_p).$$
 (16)

After the initial computation of the matrix *D* which only needs to be done once, each further evaluation of the likelihood $L(\phi)$ only requires $O(p^2)$ flops. Provided that $p \ll n$, this is much faster than other exact likelihood algorithms for ARMA

I4 4 ► ►	19 of 41
----------	----------

Reparameterized Concentrated Loglikelihood

To maximize $L(\phi)$, it is convenient to re-parameterize using the $\zeta = (\zeta_1, ..., \zeta_p)$ parameters. We can then write,

The Burg Estimates

-first order efficient

-fast to compute using DL algorithm

-always in admissible region

Percival and Walden (1993, §9.5) give a new statistical derivation of the Burg algorithm.

Zhang & McLeod (2005) showed that the Burg estimates have that the first-order bias of the Burg estimates is the same as least-squares for AR(p), p = 1, 2, 3.

к < > н 21 of 41

Derivation of the Burg Estimates

In this algorithm $\vec{e}_t(k)$ and $\vec{e}_t(k)$ denote the forward and backward k-th order linear prediction errors for z_t based on z_{t-1}, \ldots, z_{t-k} and z_{t+1}, \ldots, z_{t+k} respectively. The Burg algorithm is characterized by the fact that $\hat{\phi}_{k,k}$ minimizes

$$SS_k = \sum_{t=k+1}^{n} \vec{e}_t^2 (k-1) + \vec{e}_{t-k}^2 (k-1) .$$
(18)

It may be shown that the $\hat{\phi}_{k,k}$ which minimize SS_k is given by,

$$\hat{\phi}_{k,k} = A_k / B_k \tag{19}$$

$$A_k = 2\left\{\sum_{t=k+1}^{n} \vec{e}_t(k-1) \, \overleftarrow{e}_{t-k}(k-1)\right\}$$
(20)

$$B_k = \sum_{t=k+1}^n \left\{ \vec{e}_t^2(k-1) + \vec{e}_{t-k}^2(k-1) \right\}$$
(21)

The Burg Algorithm

The Burg algorithm produces the partial autocorrelation estimates directly from the data. We assume z_t has mean zero or has been mean corrected. Then to fit an AR(p),

Step 1: Select *p*. Initialization. Set k = 1 and for t = 2, ..., n,

$$\vec{e}_t(k-1) = z_t,\tag{22}$$

$$\overline{e}_{t-1}(k-1) = z_{t-1},$$
(23)

Step 2: Compute $\hat{\phi}_{k,k}$ using eqn. (11).

Step 3: Update. For t = k + 1, ..., n,

$$\vec{e}_t(k) = \vec{e}_t(k-1) - \hat{\phi}_{k,k} \,\overleftarrow{e}_{t-k}(k-1),\tag{24}$$

$$\overleftarrow{e}_{t-k}(k) = \overleftarrow{e}_{t-k}(k-1) - \widehat{\phi}_{k,k} \,\overrightarrow{e}_t(k-1).$$
(25)

Step 4: If k = p, terminate otherwise set k = k + 1. Repeat Steps 2-4.

Information Matrix for AR_{ζ}

Let I_{ϕ} and I_{ζ} denote the large-sample information matrix per observation for the parameters ϕ and ζ respectively in an AR(*p*). Then

$$I_{\zeta} = \mathbf{J}' I_{\phi(\zeta)} \mathbf{J}, \qquad (26)$$

$$\mathbb{J} = \frac{\partial \phi}{\partial \zeta} = \prod_{k=1}^{p-1} \mathbb{J}_{p-k}$$
(27)

where \mathbb{J}_{p-k} is derived below. In the subset case, the corresponding rows and columns of I_{ζ} are selected.

K	•	•	H	24 of 41

Derivation of \mathbb{J}_{p-k}

The required Jacobian may be derived from the sequence of transformations, starting with $\phi_i = \phi_{p,i}$, i = 1, ..., p and continuing until we reach $\zeta_i = \phi_{i,i}$, i = 1, ..., p:

$$\mathbb{T}_{p-1}: \{\phi_{p,1}, \phi_{p,2}, ..., \phi_{p,p-1}, \phi_{p,p}\} \longleftrightarrow \{\phi_{p-1,1}, \phi_{p-1,2}, ..., \phi_{p-1,p-1}, \phi_{p,p}\}$$
(28)

$$\mathbb{I}_{p-2}: \{\phi_{p-1,1}, \phi_{p-1,2}, \dots, \phi_{p-1,p-1}, \phi_{p,p}\} \longleftrightarrow \{\phi_{p-2,1}, \phi_{p-2,2}, \dots, \phi_{p-2,p-3}, \phi_{p-1,p-1}, \phi_{p,p}\}$$
(29)

$$\mathbb{T}_{1}: \{\phi_{2,1}, \phi_{2,2}, ..., \phi_{p-1,p-1}, \phi_{p,p}\} \longleftrightarrow \{\phi_{1,1}, \phi_{2,2}, ..., \phi_{p-1,p-1}, \phi_{p,p}\}$$
(30)

The general form of these transformations is given by the Durbin-Levinson recursion,

.....

$$\phi_{p,j} = \phi_{p-1,j} - \phi_{p-1,p-j} \phi_{p,p}, \ j = 1, \ \dots, \ p-1$$

10 25 of 41

Derivation of \mathbb{J}_{p-k} (con't)

In general, the Jacobian of the transformation, \mathbb{T}_{p-k} , may be written as a partitioned matrix,

$$\mathbb{J}_{p-k} = \begin{pmatrix} J_{p-k} & A_{p-k,k} \\ 0_{p-k} & I_k \end{pmatrix}$$
(31)

 $0_{p-k} = (0)_{k,p-k}$, I_k is the $k \times k$ identity matrix and $A_{p-k,k}$ is a $(p-k) \times k$ matrix whose first column is

$$\{-\phi_{p-k,p-k}, -\phi_{p-k,p-k-1}, ..., -\phi_{p-k,1}\}$$

and whose remaining elements are all 0. The matrix J_{p-k} may be written explicitly as the $(p-k) \times (p-k)$ matrix with (i, j)-entry a(p, k) where,

$$a(p, k) = \begin{cases} 1 & \text{if } i = j \\ -\zeta_{p-k+1} & \text{if } i = p - k + 1 - j \land i \neq j \\ 1 - \zeta_{p-k+1} & \text{if } i = p - k + 1 - j \land i = j \\ 0 & \text{otherwise.} \end{cases}$$
(32)

Example

When p = 4,

$$J_{3} = \begin{pmatrix}
 1 & 0 & -\zeta_{4} & -\zeta_{3} \\
 0 & 1 - \zeta_{4} & 0 & -\zeta_{2} - \zeta_{1} (1 + \zeta_{2}) \zeta_{3} \\
 -\zeta_{4} & 0 & 1 & -\zeta_{1} (1 + \zeta_{2}) - \zeta_{2} \zeta_{3} \\
 0 & 0 & 0 & 1
 \end{pmatrix},$$

$$J_{2} = \begin{pmatrix}
 1 & -\zeta_{3} & -\zeta_{2} & 0 \\
 -\zeta_{3} & 1 & -\zeta_{1} (1 + \zeta_{2}) & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{pmatrix},$$

$$J_{1} = \begin{pmatrix}
 1 - \zeta_{2} & -\zeta_{1} & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{pmatrix}$$

27 of 41

Simulation Experiment

 $\zeta = \{0.5, 0.5, 0.5, 0.5\}$ and simulated 1,000 realizations of a time series with length n = 1000.

The observed sample covariance matrix of $\hat{\zeta}$ in the simulations was,

1	0.0133474	0.00452826	0.00180141	0.000421101
-	0.00452826	0.00250702	0.000142564	0.000209351
	0.00180141	0.000142564	0.000794065	0.0000592178
	0.000421101	0.000209351	0.0000592178	0.000758274

and the theoretical large-sample approximation given by $I_{\hat{\zeta}}^{-1} / 1000$

1	0.01425	0.0045	0.0015	0	١
	0.0045	0.00225	0.	0	
	0.0015	0.	0.00075	0	ŀ
	0	0	0	0.00075	J
					-

28 of 41

Partial Autocorrelation Plot

Using the Burg or exact MLE we obtain $\hat{\zeta}_k = \hat{\phi}_{k,k}$ and then using Theorem 1 obtain EstSd $(\hat{\zeta}_k)$. Plot the 95% intervals $\hat{\zeta}_k \pm 1.96 \text{ EstSd}(\hat{\zeta}_k)$.

30 of 41

AIC/BIC Model Selection

For AR_{ζ}(i_1, \dots, i_m), $\mathcal{L} = (-n/2) \log(\hat{\sigma}_a^2)$ Since $\hat{\sigma}_a^2 \approx c_0 \left(1 - \hat{\zeta}_{i_1}^2\right) \cdots \left(1 - \hat{\zeta}_{i_m}^2\right)$ BIC(i_1, \dots, i_m) = $n \log \prod_{k \in \{i_1, \dots, i_m\}} \left(1 - \hat{\zeta}_k^2\right) + m \log(n)$ (33)

We don't need to search all subsets. Just arrange $\hat{\zeta}_k^2$ in ascending order and proceed with the evaluation of the BIC.

Similarly for other IC.

K (► H	31 of 41
-----	-----	----------

	Annual Sunspot Example						
k	AIC	BIC	Model				
1	-330.899	-327.232	{1}				
2	-532.767	-525.435	{1, 2}				
3	-548.387	-537.388	{1, 2, 8}				
4	-561.591	-546.926	{1, 2, 8, 7}				
5	-573.957	-555.625	$\{1, 2, 8, 7, 9\}$				
6	-582.986	-560.987	{1, 2, 8, 7, 9, 6}				
7	-588.369	-562.704	$\{1, 2, 8, 7, 9, 6, 17\}$				
8	-590.1	-560.769	$\{1, 2, 8, 7, 9, 6, 17, 3\}$				
9	-590.659	-557.661	$\{1, 2, 8, 7, 9, 6, 17, 3, 15\}$				
1	0 -590.281	-553.617	$\{1, 2, 8, 7, 9, 6, 17, 3, 15, 18\}$				
1	1 -589.845	-549.515	$\{1, 2, 8, 7, 9, 6, 17, 3, 15, 18, 14\}$				
1	2 -589.358	-545.361	$\{1, 2, 8, 7, 9, 6, 17, 3, 15, 18, 14, 16\}$				

 $MinAICModel \rightarrow \{1, 2, 8, 7, 9, 6, 17, 3, 15\}$

MinBICModel \rightarrow {1, 2, 8, 7, 9, 6, 17}

A → A 32 OT 41

Fit	tted AR_{ζ} for Ar	nnual Sunspo	ts	
	Parameter	SE	Z	
\mathcal{L}_1	0.839169	0.281783	2.97807	
S2	-0.671837	0.0824506	-8.14835	
S6	0.252221	0.0620332	4.0659	
S7	0.231398	0.0608168	3.80484	
S8	0.196152	0.0629042	3.11826	
S9	0.300116	0.0703228	4.26769	
ζ_{17}	-0.0730557	0.0604646	-1.20824	
μ	6.34343	0.657045	9.65448	
σ_{a}	1.04209			
	K	 	×	33 of 41

Distribution Residual Autocorrelations

After fitting the residuals \hat{a}_t are used to check the important assumption of independence. $\hat{r} = (r_{\hat{a}}(1), \dots, r_{\hat{a}}(L))$

Theorem 2

 $\sqrt{n} \ \hat{r} \ \stackrel{L}{\rightarrow} \ N(0, \mathcal{V}), \ \mathcal{V} = I_m - \mathcal{X} J_{\zeta} I_{\zeta}^{-1} J_{\zeta}' \mathcal{X}'$

where X is the $L \times m$ matrix with (i, j)-entry ψ_{i-j} , where ψ_k is the coefficient of B^k in the expansion $1/\phi(B) = 1 + \psi_1 B + \psi_2 B^2 + ...$ and $\phi(B) = 1 - \phi_1 B - ... - \phi_p B^p$.

Remark 1: Since $J'_{\zeta} X' X J_{\zeta} \simeq J'_{\zeta} I_{\zeta}^{-1} J_{\zeta}$, \mathcal{V} is approximately idemptotent with rank L - m.

Remark 2: In the case of squared residuals, the autocorrelations are NID(0, 1/n).

Ljung-Box Test

Since \mathcal{V} is approximately idemptotent with rank L - m and hence we can use the Ljung-Box test

$$Q_L = n(n+2) \sum_{k=1}^{L} \hat{r}(k)^2 / (n-k)$$
(34)

Under the null hypothesis of model adquacy, Q_L is approximately χ^2 -distributed with L - m df.

	14 4	b bi	35 of 41
--	------	-------------	----------

Sunspot Series Example

■ Ljung-Box Test

$Q_{\rm L}$	L	p-value	2				
21.	20	0.05					
22.3	25	0.18					
24.4	30	0.33					
25.5	35	0.55					
30.3	40	0.55					
32.	45	0.7					
33.3	50	0.83					
_							
		н (•	M		36 of 41	

Residual Autocorrelation Plot

As noted by Hosking and Ravishanker (1993) the Bonferonni Inequality may be used to obtain 5% simultaneous significance levels.

Annual Sunspot Series

Squared Residuals Ljung-Box Test

QL	L	p-value
35.2	20.	0.00043
40.5	25.	0.00111
47.2	30.	0.00136
53.8	35.	0.00161
63.4	40.	0.00078
69.5	45.	0.00097
70.8	50.	0.00358

Conditional heteroscedastic variation is present. Nonlinear model needed.

	₩ 4	•	M	38 of 41
--	-----	---	---	----------

Monthly Sunspot Series, 1749-1983, n = 2820

Taking L = 300 and M = 100 the best AIC_{ζ} and BIC_{ζ} models were determined. The AIC and BIC were also used with the usual AR(*p*). The fits are summarized:

ModelICm \mathcal{L} AICBIC AR_{ζ} AIC70-148.2436.4852.6 AR_{ζ} BIC20-236.5513.0631.9ARAIC27-241.1536.3696.8ARBIC21-252.5547.0671.8

39 of 41

Appendix: Bonferonni Inequality

First consider white noise case, $r_k \sim \text{NID}(0, 1/n)$. Then

 $\Pr\{ \left| r_{k} \right| < c / \sqrt{n}, \ k = 1, \ \cdots, L \} = 1 - \alpha$ $\Pr\{ \left| Z_{k} \right| < c, \ k = 1, \ \cdots, L \} = 1 - \alpha$ where $Z_{k} = r_{k} / \sqrt{n} \sim \text{NID}(0, 1)$. From Basic Result in elementary probability, $\Pr\{ \left| Z_{k} \right| < c, \ k = 1, \ \cdots, L \} = 1 - \prod_{k=1}^{L} \Pr\{ \left| Z_{k} \right| > c \}$ $(1 - 2(1 - \Phi(c)))^{L} = 1 - \alpha$ $\therefore c = \Phi^{-1}((1 + (1 - \alpha)^{1/L})/2)$ $L \quad 1 \quad 2 \quad 10 \quad 20 \quad 40 \quad 60$ $c \quad 1.96 \quad 2.24 \quad 2.80 \quad 3.02 \quad 3.22 \quad 3.33$

M

40 of 41

Bonferonni Inequality

$$\begin{split} 1 &\geq \Pr \left\{ \xi_1 \bigcup \xi_2 \right\} = \Pr \left\{ \xi_1 \right\} + \Pr \left\{ \xi_2 \right\} - \Pr \left\{ \xi_1 \cap \xi_2 \right\} \\ 1 &+ \Pr \left\{ \xi_1 \cap \xi_2 \right\} \geq \Pr \left\{ \xi_1 \right\} + \Pr \left\{ \xi_2 \right\} = (1 - \Pr \left\{ \overline{\xi}_1 \right\}) + (1 - \Pr \left\{ \overline{\xi}_2 \right\}) \\ \Pr \left\{ \xi_1 \cap \xi_2 \right\} \geq 1 - (\Pr \left\{ \overline{\xi}_1 \right\} + \Pr \left\{ \overline{\xi}_2 \right\}) \end{split}$$

-general case established by induction

-higher-order expansion

•

ÞI

41 of 41

Bonferonni Approximation

$$\bigcap_{i=1}^{L} \Pr\left\{\xi_i\right\} \approx 1 - \sum_{i=1}^{L} \Pr\left\{\overline{\xi}_i\right\}$$

taking $\xi_i = \{ | \hat{r}_i | < c \operatorname{EstSd}(\hat{r}_i) \}$

$$\bigcap_{i=1}^{L} \Pr\left\{\overline{\xi}_{i}\right\} = 1 - \alpha$$

 $\Pr\left\{\overline{\xi}_i\right\} = \alpha \,/\, m \text{ so } c = \Phi^{-1}(1-\alpha \,/\, (2\,L))$

L 1 2 10 20 40 60

c 1.96 2.24 2.80 3.02 3.22 3.34

Almost but not exactly the same!

(35)