
 Variance of the Estimated Efficiency

Introduction
Hoaglin and Andrews (1975) have observed that it is important to give interval estimates or measures of uncer-
tainty to quantities estimated by simulation. Here we derive a general formula for estimating the standard error
of the statistical efficiency estimated in a simulation study. 

Derivation Using Taylor Series Expansion
Suppose N  simulations are to be performed and N  is quite large. Let Xi  and Yi, i = 1, ... , N  denote the squared
error in the i-th simulation for estimators  and  respectively. We will assume that before the simulations are
run,  that  the  bivariate  random  variables  HXi, Yi L  are  an  independent  sequence  of  random  variables  with  finite
variance. Note that  Xi and Yi may themselves be correlated and hence not independent of each other but that it is
the sequence which is assumed to be independent. 

Then   sample  average  squared  errors,  HXêêê, YêêêL,   are  approximately  bivariate  normal  since  by  the  usual  central
limit theorem, any linear combination of  X

_
 and  Yêêê is approximately normal.  The estimated relative efficiency

of method  vs.  method  is è = Xêêê ê Yêêê.   Let mxêê = E 8Xêêê< and myêê = E 8Yêêê<.  Employing a Taylor series lineariza-
tion of  è, 
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Hence, after some algebraic simpliciation it can be shown that,
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where mx = E 8Xi<, my = E 8Yi<,  sx = Var 8Xi<, sy = Var 8Yi< and  sx, y = Cov 8Xi, Yi<. These values can then be
estimated by the sample moments of the observed Xi's and Yi's.

Implementation in Mathematica 
The following Mathematica function evaluates the estimated relative efficiency and its standard error for method

 vs. method  given observed data Xi and Yi, i = 1, ... , N . 



Off@General::spellD; Off@General::spell1D;
SDRelativeEfficiencyYvsX@X_, Y_D :=

Module@8µx = Mean@XD, µy = Mean@YD, σx, σy, σxy<,
σx = Mean@HX − µxL^2D;
σy = Mean@HY − µyL^2D;
σxy = Mean@HX − µxL∗HY − µyLD;
e = µxêµy;
Sqrt@Hσxêµy^2 + Hσy∗µx^2Lê µy^4 − H2∗σxy∗µxLêµy^3Lê Length@XDD

D;

à Numerical Illustration

<< Statistics`

s1 = RandomArray@NormalDistribution@0, 0.01D, 500D;
d1 = s1 + RandomArray@NormalDistribution@0, 0.0025D, 500D;

SDRelativeEfficiencyYvsX@Hs1 − Mean@s1DL^2, Hd1 − Mean@d1DL^2D

0.0200958

Comparison with Bootstrap
More generally,  it  is  easily seen that  if  Xi  and Yi,  i = 1, ... , N ,  denote  any random variables  with  finite  vari-
ances and è = Xêêê ê Yêêê  then the standard deviation of e^  is given by the above formula.

The bootstrap (Efron  & Tibshirani,  1993)  provides  an alternative but less convenient  method of  evaluating the
standard  error.   Efron  &  Tibshirani  show  that  in  most  circumstances  200  bootstrap  iterations  gives  sufficient
precision for estimating the standard error. 

SDRelativeEfficiencyYvsXBootstrap@X_List, Y_ListD := Module@
8i<,
Sqrt@

Variance@
Table@

Mean@XPi = Table@Random@Integer, 81, Length@XD<D, 8Length@XD<DTDê
Mean@YPiTD, 8200<D

D
D
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SDRelativeEfficiencyYvsXBootstrap@Hs1 − Mean@s1DL^2, Hd1 − Mean@d1DL^2D

0.0192772
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