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Abstract

The FitAR R (R Development Core Team 2008) package that is available on CRAN
is described. This package provides a comprehensive approach to fitting autoregressive
and subset autoregressive time series. For long time series with complicated autocorre-
lation behavior, such as the monthly sunspot numbers, subset autoregression may prove
more feasible and/or parsimonious than using AR or ARMA models. The two principal
functions in this package are SelectModel and FitAR for automatic model selection and
model fitting respectively. In addition to the regular autoregressive model and the usual
subset autoregressive models (Tong 1977), these functions implement a new family of
models. This new family of subset autoregressive models is obtained by using the partial
autocorrelations as parameters and then selecting a subset of these parameters. Further
properties and results for these models are discussed in McLeod and Zhang (2006). The
advantages of this approach are that not only is an efficient algorithm for exact maximum
likelihood implemented but that efficient methods are derived for selecting high-order
subset models that may occur in massive datasets containing long time series. A new im-
proved extended BIC criterion, UBIC , developed by Chen and Chen (2008, In Press) is
implemented for subset model selection. A complete suite of model building functions for
each of the three types of autoregressive models described above are included in the pack-
age. The package includes functions for time series plots, diagnostic testing and plotting,
bootstrapping, simulation, forecasting, Box-Cox analysis, spectral density estimation and
other useful time series procedures. As well as methods for standard generic functions
including print, plot, predict and others, some new generic functions and methods
are supplied that make it easier to work with the output from FitAR for bootstrapping,
simulation, spectral density estimation and Box-Cox analysis.

Keywords: Box-Cox analysis, diagnostic checks and residual autocorrelation, extended BIC
and UBIC criterion for subset selection, high-order autoregression, massive datasets and long
time series, monthly sunspot numbers, partial autocorrelations, spectral density estimation.
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1. Introduction

The family of AR(p) models for a time series zt, t = 1, 2, . . . , may be written in operator
notation, φ(B)(zt − µ) = at, where φ(B) = 1− φ1B − . . .− φpBp, µ is the mean of the series
and at ∼ NID (0, σ2

a). It is assumed that the parameters are in the admissible region so that
all roots of the equation φ(B) = 0 lie outside the unit circle. The usual family of subset AR(p)
models is obtained by taking a subset of the parameters φ1, . . . , φp, and may be written as
φ(B)(zt − µ) = at, where φ(B) = 1− φi1B − . . .− φimBim . This family of subset AR models
may be denoted by ARp(i1, . . . , im), where 0 ≤ i1 ≤ i2 . . . ≤ im ≤ p1.

To define the new family, consider the Durbin-Levinson recursion for the AR(p)

φj,k+1 = φj,k − φk+1,k+1φk+1−j,k, j = 1, . . . , k, (1)

where k = 1, . . . , p − 1 and ζk+1 = φk+1,k+1 is the partial autocorrelation at lag k + 1. This
recursion can be used to define a one-to-one, onto, continuous and differentiable transforma-
tion (Barndorff-Nielsen and Schou 1973; Monahan 1984; Zhang and McLeod 2006b, Theorem
1),

(φ1, . . . , φp)←→ (ζ1, . . . , ζp), (2)

where ζi, i = 1, . . . , p, are the partial autocorrelations at lags 1, . . . , p. The new family of
subset models, denoted by ARz(i1, . . . , im), is obtained by selecting ζi1 , . . . , ζim as parameters
and constraining other partial autocorrelations as zero1. This model forms a subset of the
AR(p) model that may be written as φ(B)(zt − µ) = at, where the parameters φ1, . . . , φp
are reparameterized by eqn. (2). For example, in the ARz(1, 3), φ1 = ζ1, φ2 = −ζ1ζ3 and
φ3 = ζ3, since ζ2 = 0. The ARp(i1, . . . , im) and ARz(i1, . . . , im) are similar but distinct
models. For example, in the ARp(1, 3), ζ1 = φ1/(1 − φ1φ3 − φ2

3), ζ2 = φ1φ3/(1 − φ2
3) and

ζ3 = φ3. The most important advantage of the new parameterization is the efficiency with
which subset AR models with large p may be identified. This advantage is important with long
and complex time series which are becoming available in massive datasets being collected in
a variety of scientific fields. Asymptotic distributions of the parameter estimates and residual
autocorrelations are derived in McLeod and Zhang (2006). The notation and models are
summarized in Table 1 below.

Abbreviation Description Parameters Lags
AR(p) Non-subset AR model φ1, . . . , φp 1, . . . , p
ARp(i1, . . . , im) Usual subset AR model φi1 , . . . , φim i1, . . . , im
ARz(i1, . . . , im) New family of subset AR models ζi1 , . . . , ζim i1, . . . , im

Table 1: Summary of Families of AR Models.

2. Model Identification

Table 2 lists the three functions useful in initial model selection.
1To represent the subset models, the notation ARp and ARz is used in this paper rather than AR φ and

AR ζ used in our previous work (McLeod and Zhang 2006). This new notation is more convenient in the R
help documentation.
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Function Purpose
PacfPlot Plot Partial Autocorrelations and Limits
SelectModel Select Best AR, ARz or ARp Model
TimeSeriesPlot Multi-Panel or Single-Panel Time Series Plot with Aspect-Ratio Control

Table 2: Model Identification Functions.

2.1. Time Series Plots

Although time series plots can easily be produced with the built-in R function plot or
plot.ts, there are several advantages to using our function TimeSeriesPlot. As pointed
out in Cleveland (1993), many stationary time series are best visualized with a relatively
low aspect-ratio and it is awkward to do this with standard R graphics. The function
TimeSeriesPlot adjusts the aspect-ratio using par settings. In the lattice package, the
function xyplot also allows one to control the aspect-ratio. In general, Cleveland (1993)
recommends a procedure, banking to 45o. This algorithm determines the aspect-ratio so as
to make the average slope 45o. For time series this is only a rough guide since, for station-
ary time series, the resulting aspect-ratio will often be too close to zero, and for time series
containing strong trends, it makes more sense to bank to the underlying trend. When strong
trends are present, it is usually reasonable to use aspect = 1 but the user should be prepared
to experiment with what aspect-ratio is most effective.

Figure 1 and Figure 2 compare the plot.ts and TimeSeriesPlot using the built-in lynx time
series. Figure 2 with the lower aspect-ratio shows the asymmetry in the population cycles
more clearly.

When plotting long time series the resolution may be improved by using a multipanel display
which can be easily created using xyplot. Our function TimeSeriesPlot implements a lattice
display for long time series. Figure 3 below illustrates the multipanel time series display for
the Ninemile treering time series.
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Figure 1: The lynx series with default aspect-ratio with plot.ts function.
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Figure 2: The aspect-ratio in TimeSeriesPlot has been set to 0.25. We can see more clearly
the asymmetry for the lynx series.

Douglas Fir treering series, Nine Mile Canyon, 1194−1964
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Figure 3: Trellis or lattice style graphics are useful for displaying long time series as well as
for choosing a suitable aspect-ratio.

2.2. Partial Autocorrelation Plot

The R function, pacf, plots the usual partial autocorrelations and their 95% confidence limits.
Our function PacfPlot2 is more useful for identifying ARz subset models. Given a maximum
order P for the model, the estimated partial autocorrelations ζ̂1, . . . , ζ̂P are computed along

2PacfPlot uses the Burg algorithm as opposed to pacf which uses the Yule-Walker estimates. Many
researchers, for example, Zhang and McLeod (2006a) and Percival and Walden (1993) have found that the
Yule-Walker estimates are not always satisfactory when p ≥ 2 while the least squares method may yield
inadmissible estimates.
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with their estimated standard errors. The estimated standard errors are computed from the
large-sample covariance matrix of ζ̂1, . . . , ζ̂P given in McLeod and Zhang (2006). The plot
produced by PacfPlot shows the 95% confidence interval for each individual of ζ̂i, i = 1, . . . , P .
From this plot, the nonzero subset of partial autocorrelations ζ1, . . . , ζP for the ARz model
may be selected.
The use of PacfPlot is illustrated in Figure 4 for the natural logarithms of the built-in lynx
time series. This plot shows that 95% confidence intervals for ζ̂1, ζ̂2, ζ̂4, ζ̂7, ζ̂10, and ζ̂11 do
not include zero and hence the subset partial autocorrelations at lags 1, 2, 4, 7, 10 and 11
are significantly different from zero at the 5% level. Thus the ARz(1, 2, 4, 7, 10, 11) model is
suggested. Since lags 4 and 10 are barely significant at 5%, an ARzz(1, 2, 7, 11) model may
also be considered.
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Figure 4: Partial autocorrelation plot for identifying an ARz model to the lynx time series.

2.3. Automatic Model Selection

It is often preferable to use an automatic model selection method. We consider automatic
methods for the non-subset and the subset AR models. In all model selection algorithms, we
will assume that the mean parameter is included in the model and the mean is estimated by
the sample mean.

Non-Subset Models

The approximate concentrated log-likelihood for an AR(p) model may be written,

L = −n log

( p∏
k=1

(1− ζ̂2
k)

)
(3)

where n is the series length. When p = 0, L = 0. The AIC model selection criterion,

AIC = −2L+ 2p (4)
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is evaluated for p = 0, . . . , P , where P is the maximum order3. Similarly for the BIC,

BIC = −2L+ p log n. (5)

Initially κ0 candidate models are selected using the AIC/BIC evaluated using the approximate
likelihood in eqn. (3). These models are then refit using exact likelihood method described in
Section 3 and new AIC/BIC values are computed. From these models the best κ1 < κ0 are
output as the final selection. As noted by Duong (1984) and Choi (1992), it is often useful to
consider not just the best model but also close runner-ups. So in this case we would choose
κ1 > 1. In the function SelectModel, κ0 and κ1 correspond to the arguments Candidates
and Best which have default settings, Candidates = 5 and Best = 3.

The example below illustrates why this two-step procedure is needed. We consider the high-
order AR models fit by Percival and Walden (1993, Ch. 10) to the Willamette river data.
Using the Akaike FPE, which is asymptotically equivalent to the AIC (Nishii 1984), Percival
and Walden (1993, §10.15) find that the best model is an AR(38) which agrees with our
function SelectModel:

R> SelectModel(log(Willamette), lag.max = 150, Criterion = "AIC")

p AIC AICx
1 38 -2474.058 -485.9111
2 27 -2473.823 -484.9443
3 39 -2472.308 -485.0843

The AIC-column is based on the exact log-likelihood given in eqn. (8) and the AICx-column
is based on the approximate likelihood in eqn. (3). In this case both methods agreed that
the best model was with p = 38 but the exact method selected p = 27 as second best whereas
the approximate method would have selected p = 39.

The default order selection criterion in SelectModel is BIC since in forecasting applications
this often provides the most suitable model (Koehler and Murphree 1988; Davis, Lee, and
Rodriguez-Yam 2004; Hipel and McLeod 1994). For spectral density estimation using non-
subset models, many authors prefer the AIC (Choi 1992; Percival and Walden 1993; Hipel
and McLeod 1994).

Subset Models

In the case of subset model selection of high-order AR, the model space can become very
large. When the model space is large like this, the usual AIC/BIC criteria may select over-
parameterized models (Chen and Chen 2008, In Press; Broman and Speed 2002). Chen
and Chen (2008, In Press) have developed the UBIC criterion for this large model space
problem. Therefore, for subset model selection, we have implemented UBIC as the default
in SelectModel 4. For comparison, the usual AIC/BIC criteria are also implemented. The
computation of these criteria is outlined next.

3 Akaike (1970, p.216) recommends P = n/10. This is just an empirical rule-of-thumb. In practice, while
P must be taken large enough to obtain an adequate fit, it is important not to take P too large in order to
avoid over-fitting. This is our recommendation for subset models as well.

4 In the non-subset case, our problem is model order selection. In this case, the model space is not large
and the UBIC criterion reduces to the usual BIC.
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The approximate concentrated log-likelihood function for an ARz(i1, . . . , im) evaluated at
ζ̂1, . . . , ζ̂m may be written (McLeod and Zhang 2006, eqn. 15),

L = −n log

 ∏
k∈{i1,...,im}

(1− ζ̂2
k)

 (6)

where n is the series length. The UBIC criterion (Chen and Chen 2008, In Press) may be
written,

UBIC = −2L+m log n+ 2 log

(
P

m

)
, (7)

where P is the maximum possible lag. Any value of P such that P ≥ im produces an
equivalent ordering of the UBIC.

The usual AIC/BIC criteria defined in eqns. (4) and (5) may also be used but these criteria
are not recommended for the subset problem. For the model order selection problem in the
non-subset case, the UBIC reduces to the BIC.

The UBIC or AIC/BIC subset can be found simply by ordering the parameters in ascending
order of magnitude, |ζ̂i1 | ≤ |ζ̂i2 | ≤ . . . ≤ |ζ̂iP |, and then evaluating successively L starting
with L = 0 for the null model containing only the mean parameter5. As in the non-subset
model selection algorithm, a second pass is made after an initial number of candidate models
are found, in which each model is refit using exact maximum likelihood. For the log(lynx)
data, we find using the UBIC,

R> SelectModel(log(lynx),lag.max = 15, ARModel = "ARz", Best = 1)

[1] 1 2 7 10 11

and this agrees well with the model suggested by the PacfPlot. To summarize the procedure
used in this example, the best 5 models were found using the approximate likelihood to
estimate the UBIC. Then for each of these 5 models, the exact likelihood was used to determine
the UBIC for each model. Then the best model, the ARz(1, 2, 7, 10, 11) was found. For this
data, the model space is not very large and consequently, it may be shown that the BIC
selects the ARz(1, 2, 7, 10, 11).

Model identification for subset ARp models is supported using the R subset regression package
leaps. Using this package the best ARp subset model is identified using a two-step procedure.
In the first step, the leaps function is used to find the ARp(i1, . . . , im) subsets which when
fit using least squares have minimum residual variance for each im, m = 0, 1, . . . , P parame-
ters. For the next step, all P models are refit using our least squares AR fitting algorithm,
GetFitARpLS, and the exact log-likelihood is determined using LoglikelihoodAR. Based on
these log-likelihoods, the UBIC/BIC/AIC is re-evaluated and the best model is selected.

As shown below, the model selected by Tong (1977) for the lynx series, ARp(1, 2, 4, 10, 11),
is selected using SelectModel,

R> SelectModel(log(lynx),lag.max=15,ARModel="ARp",Criterion="BIC",Best=1)

5 As in PacfPlot, the Burg estimates are used for the partial autocorrelations.
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[1] 1 2 4 10 11

however, the UBIC selects the more parsimonious ARp(1, 2, 9, 12). When Best > 1, the
output from SelectModel is a list and is defined as a "Selectmodel" S3 class object. This
output may be graphically viewed using the plot function. For the lynx dataset, Figure 5
compares the 3 best ARp and ARz subset models selected using the UBIC and BIC. In
Figure 5, the left vertical axis shows the scale in terms of BIC while the right one uses
relative plausibility, defined by exp{( BIC 1− BIC 0)/2}, where BIC 0 and BIC 1 denote the
BIC values for the best model and the alternative respectively. Likelihood and plausibility
for time series models were introduced by Akaike (1978) and Akaike (1979). As with the
relative likelihood (Fisher 1959; Royall 1997; Sprott 2000), alternative models with relative
plausibility less than 1% may be said to be implausible. As shown in Figure 5, the BIC and
UBIC select the same best three ARz models although for the ARp a more parsimonious
model is selected using the UBIC than with the BIC.
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Figure 5: Plot of the output from SelectModel with Best = 3 for ARp and ARz models
using BIC and UBIC for subset selection for the logged lynx series.

The best subset for ARz models is easily found even when P is large since only sorting is
needed. On the other hand, for the ARp best subset selection, the leaps package, available
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on CRAN, is used and this package implements an exponential-time branch-and-bound al-
gorithm. The function used, leaps, is interfaced to Fortran for maximum efficiency. But
still it is limited to a maximum order of around P = 50 or so due to the rapidly increasing
computing time needed as P increases. Thus it is possible to fit much higher order subset
models using the ARz model. This is illustrated with the Zurich monthly sunspots 1749−1983
available in R as a built-in dataset, sunspots. Taking a maximum model order of P = 200
and using a square-root transformation, the best non-subset AR and subset ARz models were
determined. In the case of AR model selection the AR(27) and AR(21) models were selected
using the AIC and BIC criteria. For the subset selection, AIC, BIC and UBIC were used and
the number of parameters not including the mean in the selected models were 55, 18 and 8
respectively for AIC, BIC and UBIC. Figure 6 compares the spectral density functions for the
estimated models. The AIC subset model spectral density was very jagged and is not shown
in Figure 66.
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Figure 6: Logged spectral density functions of the non-subset AR and subset ARz models
fitted to the square-root of the sunspots series.

6 See Example 3 in the documentation for sdfplot for an R script to estimate the spectral density function
for the monthly sunspot series by using the AIC criterion to fit an ARz model.
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3. Estimation

The log-likelihood function given n time series observations z1, . . . , zn from a covariance sta-
tionary Gaussian time series with mean µ and autocovariance function γk, k = 0, 1, . . ., may
be determined from the multivariate normal distribution. Letting Mn = Γn/σ2

a where Γn is
the covariance matrix of n successive observations and maximizing the log-likelihood function
over σ2

a, the concentrated log-likelihood may be written, after dropping constants,

L(φ) = −n
2

log(S(φ)/n)− 1
2

log(gn), (8)

where S(φ) = z′M−1
n z, gn = det(Mn) and σ̂2

a = S(φ)/n where φ = (φ1, . . . , φp). Note that L
given in eqn. (6) is an affine large-sample approximation to the exact log-likelihood given in
eqn. (8).
Assuming that the mean is known, the exact log-likelihood function may be computed in O(1)
flops independent of n in repeated function evaluations after an initial setup computation is
performed (McLeod and Zhang 2006, §2.1). This is done by conditioning on the sufficient
statistics, Di,j = zizj + · · ·+ zn−jzn−i, where we have assumed a mean-zero time series. The
R function optim is then used to maximize the log-likelihood function. Initial starting values
are obtained using Burg estimates. This exact maximum likelihood estimation algorithm is
implemented in our functions FitAR and GetARFit. The function GetARFit may be preferred
for bootstrapping applications while FitAR is intended as the main function for model fitting
when diagnostic checking and forecasting are important.
FitAR also computes the covariance matrix of the estimates, residuals, fitted values and some
diagnostic checks. The function FitAR returns a S3 class object "FitAR". Generic functions
print, summary, coef, resid, and plot are supplied. In addition some new generic functions
Boot and sdfplot are defined and methods are given for class "FitAR", "ts" and other
objects of interest. More methods are supplied for these functions in McLeod, Yu, and Zinovi
(2008).
FitAR and getFitAR use several other functions which may be of interest in some applications
and are described briefly in Appendix A. In Appendix B, we discuss the perils of fitting the
ARp model using exact MLE. This provides another reason for preferring the ARz model.

3.1. Exact MLE for Mean

Assuming that (φ1, . . . , φp) are known, the exact MLE for mean µ is given by

µ̂ =
1′nΓ−1

n z

1′nΓ−1
n 1n

, (9)

where 1n denotes the n dimensional column vector with all entries equal to 1, z = (z1, . . . , zn)
and Γ−1

n denotes the inverse of the covariance matrix of n successive observations. Since
µ̂ does not depend on σ2

a, we may assume without loss of generality that σ2
a = 1. Direct

evaluation of eqn. (9) using the exact inverse matrix derived by Siddiqui (1958) would require
O(n2) flops. A more efficient algorithm is given in McLeod and Zhang (2008) for evaluating
eqn. (9) in O(n) flops and this is implemented in our R function GetARMeanMLE. As a check
for the correctness of GetARMeanMLE, in the example section of the help documentation for
GetARMeanMLE, we provide a R script which compares the results obtained by computing the
MLE of the mean µ directly and using GetARMeanMLE.
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When (φ1, . . . , φp) is unknown, the iterative algorithm given in McLeod and Zhang (2008, §2.2)
may be used to obtain the simultaneous joint MLEs of µ and the other model parameters.
This iterative algorithm is implemented in FitAR with the option MeanMLEQ = TRUE. In the
documentation for FitAR, an example is given to demonstrate the agreement with results
obtained by the built-in function arima.

Some simulations were carried out to compare the timings for GetFitAR, FitAR and the built-
in function ar for fitting nonsubset AR(p), p = 1, 2 and p = 20, 407. The main purpose of
these timings is just to indicate the relative computer times for the three different algorithms.
As far as accuracy is concerned, there is no meaningful difference in accuracy between FitAR
and ar when the latter function converges. As noted below, ar does not always work and
sometimes it fails completely. It seems reasonable to recommend that users avoid the exact
MLE option in ar. Between GetFitAR and FitAR there are some slight differences in the
estimates but overall there does not seem to be any notable difference in accuracy for the
models in this experiment.

For each model, the admissible parameters were randomly selected by randomly selecting
partial autocorrelations uniformly from −1 to 1 and then reparameterizing through eqn. (2).
Various lengths of series were used from n = 50, 100, 200, 500, 1000. Since the timings do not
vary much once n and p are fixed, only ten simulations were done for each of these parameter
settings. At least ten are needed because for the low order AR models with small n the timing
for a single fitting is too short to get an accurate value. The average CPU times required for
simulations and fitting are given below in Table 3. During fitting, ar reported one error in
optim which is shown below:

Error in optim(init[mask], arma0f, method = "BFGS", hessian = TRUE,
control = optim.control): non-finite finite-difference value [3]

This error was trapped using the built-in R function try. Many warning messages about con-
vergence were also generated by ar. On the other hand GetFitAR or FitAR worked correctly
in all cases without generating any messages. The experiment was repeated, this time with
p = 20, 40 and n = 1000, 2000, 5000. Once again ar generated error and warning messages.
With GetFitAR, the sample mean was used but for FitAR the iterative algorithm was used to
compute the exact MLE for the mean as well as the other parameters. With ar the option
method="mle" was used. All timings reported in this paper are for a Pentium 4 processor
at 3 GHz PC running Windows XP with 2 GB RAM. The CPU times in Table 3 show that
FitAR is much faster than ar for p = 40. If the sample mean is used then GetFitAR is always
very fast and for most AR models that seem to occur in practice, there is not much difference
between using the sample mean and the exact MLE.

7 The R script for doing these computations is provided at http://www.stats.uwo.ca/faculty/aim/2007/
FitAR/

http://www.stats.uwo.ca/faculty/aim/2007/FitAR/
http://www.stats.uwo.ca/faculty/aim/2007/FitAR/
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n GetFitAR FitAR ar GetFitAR FitAR ar

AR(1) AR(2)

50 0.01 0.02 0.02 0.02 0.08 0.03
100 0.01 0.03 0.03 0.02 0.08 0.03
200 0.02 0.05 0.04 0.03 0.10 0.04
500 0.04 0.09 0.06 0.05 0.14 0.07

1000 0.07 0.15 0.09 0.09 0.21 0.11

AR(20) AR(40)

1000 0.14 5.52 2.04 0.24 34.66 47.60
2000 0.20 5.52 1.98 0.34 22.99 51.60
5000 0.37 5.89 2.60 0.60 24.09 44.85

Table 3: Timings for GetFitAR, FitAR and ar. For each n and each p, 100 series were
simulated and the models estimated using the functions GetFitAR, FitAR and ar. The average
time over all 100 simulations is reported for each parameter combination. These timings are
illustrative of the relative performance of the functions but are highly system dependent. A
3.6 GHz Pentium PC with R Version 2.70 running Windows XP was used.

3.2. Box-Cox Analysis

Box and Cox (1964) derived a maximum likelihood method for estimating the transformation
parameter λ in the family of transformations,

z
(λ)
t =

{
(zλt − 1)/λ λ 6= 0
log(zt) λ = 0

for data zt, t = 1, . . . , n, from a normal linear regression and ANOVA. This method was
adapted to ARIMA time series in Hipel and McLeod (1977, eqn. 10, p.571). For autoregressive
models, the concentrated loglikelihood function can be written,

L(φ, λ) = −n
2

log(S(φ)/n)− 1
2

log(gn) + (1− λ)
n∑
t=1

log(zt). (10)

For fixed λ we can maximize over φ to obtain L(λ). The function L(λ) may be maximized
numerically with the optimize function to obtain the MLE, λ̂. It is convenient to plot the
relative likelihood function R(λ) = L(λ)/L(λ̂). The relative likelihood, R(λ), itself provides
a quantification of the relative plausibility of various values of λ (Sprott 2000, §2.4 and §4.5).
It may be shown that a 95% confidence interval based on the likelihood-ratio test corresponds
to R(λ) ≥ 0.1465. A horizonal line is drawn to indicate a 95% confidence interval for λ.

The function BoxCox is implemented as a generic function with methods for classes "FitAR",
"Arima", "ts" and "numeric". BoxCox.FitAR parses its input to construct the likelihood
function in eqn. (10) and then the MLE is determined using optimize. A plot of the likelihood
function is determined to show all values of λ with plausibility greater than 1% as well as a
horizontal line indicating the 95% confidence interval. In Figure 7, we compare the Box-Cox
analysis for the lynx time series using our function and the boxcox function in the R library
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Figure 7: Top graph shows output from BoxCox.FitAR and bottom graph from boxcox for
fitting ARp(1, 2, 4, 10, 11) to lynx series.
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Figure 8: Box-Cox analysis produced by BoxCox(AirPassengers).

MASS. For the lynx time series we fit the ARp(1, 2, 4, 10, 11) model by least-squares using
FitARp. In this case, the output from FitARp contains the design matrix for the regression
as well as the column for the dependent variable. These results were then used with the
MASS boxcox function to obtain the bottom plot in Figure 7. The difference in the plots is
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Figure 9: Box-Cox analysis produced by BoxCox(rivers).

substantial. The top plot using BoxCox.FitAR shows that a log transformation is reasonable
choice whereas the bottom plot strongly suggests otherwise and favors a transformation such
as a cube-root. The reason for the difference is that in BoxCox.FitAR the log-likelihood in
eqn. (10) is used whereas in boxcox the approximate log-likelihood corresponding to linear
regression is used.

Annual tobacco production, U.S., 1871−1984
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Figure 10: Time series plot for annual Tobacco production series.

BoxCox.ts and BoxCox.numeric enable one to do a Box-Cox analysis for arbitrary time series
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as well as simple random samples. With BoxCox.ts, the untransformed data is fit by a high-
order AR(p) model which is then used for Box-Cox analysis. In practice, this procedure
often works well even for non-stationary time series as is shown in Figure 8 for the R dataset
AirlinePassengers. An example of using BoxCox.numeric for the R built-in rivers data
set is shown in Figure 9.

The function BoxCox.Arima implements a Box-Cox analysis for time series fit with the R
arima function. An illustrative example is provided by the time series of annual production
of Tobacco in the U.S. for the period 1871-1984 (See Figure 10). Note the increase in vari-
ability. Since this variability is related to level, a model of the Box-Cox transformed series
provides a much simpler alternative to the more complex ARIMA-GARCH approach (Wei
2005, p.379). Wei (2005, p.120) also suggested an ARIMA(0, 1, 1) to the logarithms of this
series. However Box-Cox analysis indicates that a square-root transformation works much
better than logarithms (Figure 11).

4. Diagnostic Checks

A methods function plot.FitAR is supplied so that the generic function plot can be used
for a variety of diagnostic plots for FitAR class objects. The default is with option terse =
TRUE which produces a plot of the p-values of the Ljung-Box portmanteau test (Ljung and
Box 1978) and a plot of the residual autocorrelations with simultaneous 95% limits (Hosking
and Ravishanker 1993). Both these plots appear as a panel display. These are usually the
most important diagnostics. The default diagnostic plots shown in Figure 12 are produced
by:

R> ans <- FitARp(log(lynx), c(1,2,4,10,11))
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R> plot(ans)
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Figure 12: Basic diagnostic plots for ARp(1, 2, 4, 10, 11) model fit to the logarithm of the
lynx series.

When terse = FALSE, after the plots shown in Figure 12, seven more plots are produced in
the order as follows:

• Normal probability plot and the p-value for an ominbus normality test of the Jarque-
Bera test (Jarque and Bera 1987). This is useful in detecting outliers or thick tails.
Thick tails are a characteristic of ARCH/GARCH models (Tsay 2005, Ch. 3) so this
test may suggest that some form of conditional heteroscedasticity is present.

• Box-and-whisker plot of the residuals. This is useful in detecting skewness. Skew-
ness may indicate a power transformation. On the other hand, if the residuals are
symmetric but outliers are present, some form of conditional heteroscedasticity may be
present. Various types of ARCH/GARCH models may be used for modeling conditional
heteroscedasticity. A freely available and good quality Windows XP software package
JMulti can be used for this type of modeling (Herwartz 2004).
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• Plots of the time series and a bootstrap version of the time series. This gives some idea
of whether or not important features in the time series appear in the simulated model.

• Monotone spread plot (Cleveland 1979, 1993). This type of residual diagnostic plot is
useful for detecting situations where the variance depends on the level or mean. In
general Cleveland (1993) suggested plotting the square root of the absolute residual vs.
the fitted value and then visualizing the relationship using a suitable loess smooth. The
R function lowess with f = 1 is used. For time series models, the fitted value represents
a conditional mean. If the model is adequate, the loess curve should be approximately
horizontal. If it is monotonic up or down, a power transformation could be used to
remove this dependence.

• Residual-fit spread (RFS) plot (Cleveland 1993). This plot is useful for visualizing how
much of the variation in the data is explained by model and so whether the model may
be useful for forecasting. Alternatively, the coefficient of determination, R2, defined as
the ratio of the variance of the one-step forecast divided by the series variance may be
used. For the lynx and ARp(1, 2, 7, 10, 11), R2 = 85%, as shown below,

R> z<-log(lynx)

R> var(fitted(FitARp(z,c(1,2,7,10,11))))/var(z)

[1] 0.8536185

The RFS plot is shown in Figure 13.

• Plots of the observed autocorrelation function, the fitted theoretical autocorrelation
function and the sample autocorrelation of a parametric bootstrap. In many cases a
good model can be expected to match the main features of the sample autocorrelations,
particularly at the lower lags. However, caution is necessary since it is well known
that the sample autocorrelations may be highly autocorrelated with large variances
(Box, Jenkins, and Reinsel 1994, §2.1.6). In some cases, such as highly autocorrelated
fractional noise, the sample autocorrelations may have very large biases (Newbold and
Agiakloglou 1993). In this situation, even when the model has been correctly specified
and fit, the sample autocorrelations may not resemble very well the theoretical autocor-
relations. This is quite a surprising, but in hindsight, not an unreasonable result. To
the degree that fractional noise may be approximated by a high-order AR model, this
problem can be expected to occur with some AR models as well. In summary, we can
say that it may happen that even for a correctly fit model, the sample and theoretical
autocorrelations might not match very well and there may be more similarity in the
sample autocorrelations of the data and the bootstrap version.

• Plot of the fitted spectral density function. This plot provides a frequency domain
summary of the model.

Because of the large number of graphics windows, the default behavior of plot is to delete all
graphics windows before producing the plots. This default can be bypassed by using the op-
tional argument clearGraphics = FALSE. Some of the diagnostic checks are also available as
separate functions as shown in Table 4. For more details, please see the online documentation.
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Figure 13: RFS plot for ARp(1, 2, 4, 10, 11) model fit to the logarithm of the lynx series. For
this model, R2 = 85%.

Function Purpose
Boot Generic Bootstrap Function
Boot.FitAR Simulate a Fitted AR
Boot.ts Parametric Time Series Bootstrap
LjungBoxTest Ljung-Box Test for Randomness
LBQPlot Plot Ljung-Box Test P-value vs Lag
RacfPlot Residual Autocorrelation Plot
JarqueBeraTest Jarque-Bera Normality Test

Table 4: Model Diagnostic Checking Functions.

5. Other Useful Time Series Functions

We give a brief overview of the functions shown in Table 5. For more details and examples,
please see the online R documentation.

5.1. AcfPlot: Correlation Plots

The function AcfPlot is useful for plotting other types of correlation functions, for example,
the residual autocorrelations or the inverse autocorrelations. Cleveland (1971) used the inverse
autocorrelations to select an ARp(1, 2, 7) model for the Series A time series. The example
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Function Purpose
AcfPlot Basic ACF Plotting
AR1Est Exact MLE for AR(1)
ARSdf Autoregressive Spectral Density Function
ARToMA Coefficients in Infinite Moving Average Expansion
ARToPacf Reparametrize AR Coefficients in Terms of PACF
cts Concantenate Time Series
BackcastResidualsAR Innovation Residuals in AR
InformationMatrixAR Information Matrix for AR(p)
InformationMatrixARp Fisher Information Matrix Subset Case, ARp
InformationMatrixARz Fisher Information Matrix Subset Case, ARz
InvertibleQ Test if Invertible or Stationary-casual
PacfDL Partial Autocorrelations via Durbin-Levinson
PacfToAR Transform from PACF Parameters to AR Coefficients
PlotARSdf Plot AR or ARMA Spectral Density
sdfplot Autoregressive Spectral Density Estimation
sdfplot.FitAR Autoregressive Spectral Density Estimation for “FitAR”
sdfplot.Arima Spectral Density of Fitted ARIMA Model
sdfplot.ar Spectral Density of Fitted ARIMA Model
sdfplot.ts Autoregressive Spectral Density Estimation for “ts” Object
sdfplot.numeric Autoregressive Spectral Density Estimation for “numeric”
SimulateGaussianAR Autoregression Simulation
Readts Input a Time Series
TacvfAR Theoretical Autocovariance Function of AR
TacvfMA Theoretical Autocovariances for Moving Average Process
VarianceRacfAR Covariance Matrix Residual Autocorrelations for AR
VarianceRacfARp Covariance Matrix Residual Autocorrelations for ARp
VarianceRacfARz Covariance Matrix Residual Autocorrelations for ARz

Table 5: Other Useful Time Series Functions.

given in the online help documentation for AcfPlot shows how to compute and plot the
inverse autocorrelations.

5.2. AR1Est: Exact MLE for AR(1)

The function AR1Est evaluates the exact MLE for a mean-zero AR(1) model using a closed
form solution (Zhang 2002). This function is useful in bootstrapping and Monte-Carlo since
it is fast, accurate and reliable.

5.3. ARSdf and PlotARSdf: Autoregressive Spectral Density

The Fast Fourier Transform is used to evaluate the AR spectral density function,
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f(λ) =
1

2π
σ2
a

|φ(e−2πiλ)|2
(11)

at a large number of equally spaced frequencies in the range (0, π). By default 28 = 256
equally spaced frequencies, λj = 0.5πj/256, j = 1, . . . , 256. The function ARSdf produces the
vector output (f(λ1), . . . , f(λ256)) taking σ2

a = 1 in eqn. (11).

5.4. ARToMA: Moving-average Approximation

This function is used in computing the variances of the residual autocorrelations and in
constructing plots of the residual autocorrelations. This type of computation arises also in
other computations such as in the confidence limits for forecasts from AR models.

5.5. ARToPacf and PacfToAR: Reparameterization

These functions are central to working with ARz models. For many purposes it is necessary
to convert from one parameterization to the other.

5.6. BackcastResidualsAR: Compute Residuals

The innovation residuals for a fitted AR(p) may be computed recursively from

ât = (zt − µ̂)− φ1(zt−1 − µ̂)− . . .− φp(zt−p − µ̂), (12)

for t = p + 1, . . . , n. For t = 1, . . . , p, the conditional expected value of at may be computed
by backforecasting the zt for t = 0,−1,− . . . , Q for Q large enough so that the backforecast
value of zt is approximately µ for all t ≤ Q. Then the required residuals may be computed
directly using eqn. (12). This backcasting approach is described in detail in Box et al. (1994,
§6.4.3).

5.7. Concatenation of Time Series

The function cts allows values to be easily concatenated to an existing time series object.
See documentation for more details.

5.8. Information Matrix

The large-sample Fisher information per observation can be obtained for AR, ARp and ARz
models. This is used in FitAR to obtain the estimated standard errors of the estimated
parameters. Standard errors can also be obtained by using the observed Fisher information
that is obtained by numerically differentiating the log-likelihood function. Our preference is to
use the theoretical information matrix since it is well-known that numerical differentiation may
be unreliable (Fröberg 1969, Ch.9, p.192). We have found for simulations and bootstrapping
applications this unreliability does occasionally arise resulting in negative variances and other
difficulties. Standard errors may also be estimated by bootstrapping (Box and Luceño 1997).
Table 6 below compares the bootstrap estimates with the large-sample ones. The script to
generate these results is included in the online documentation for Boot.FitAR. It took about
18 seconds for the 100 bootstrap replications used in Table 6.
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Estimate Bootstrap Large-Sample
ζ̂1 0.024 0.018
ζ̂2 0.095 0.086
ζ̂4 0.069 0.063
ζ̂7 0.112 0.099
ζ̂10 0.113 0.089
ζ̂11 0.091 0.088

Table 6: Comparison of Bootstrap and Large-Sample Estimates of the Standard Deviations
of the Parameter Estimates in an ARz(1, 2, 4, 7, 10, 11) fitted to the logged lynx time series
using 100 bootstrap replications.

5.9. PacfDL: Partial Autocorrelations

PacfDL implements the Durbin-Levinsion algorithm to compute the partial autocorrelations
and the optimal linear predictor given a sequence of autocovariances. This function is not
used in our package but we include it since it can be useful in many applications. For example,
Hipel and McLeod (1977) and Hipel and McLeod (1994) pointed out that the inverse partial
autocorrelations may be useful in identifying MA(q) time series models. After computing
the inverse autocorrelations we can then directly compute the inverse partial autocorrelations
using PacfDL. An example of this is given in the online documentation.

5.10. Prediction

FitAR produces a ‘FitAR’ class object and a predict method is implemented for this object
in the function predict.FitAR. This function uses TrenchForecast in lsta (McLeod et al.
2008). See documentation for illustrative examples of its usage.

5.11. Readts: Time Series Input

The Readts function is another function which is not used directly in our package but that
we have found very helpful. Many time series data are usefully stored in ASCII files with
titles and comments that serve as documentation. These ASCII datasets may then be input to
other software although sometimes some editing is necessary to remove the documentation, as
for example, if the R function scan is used. Our Readts function is especially convenient since
it can input ASCII data files containing documentation and title information. In interactive
mode, Readts can be helpful in setting up the necessary parameters for a ts object. When
Readts is used, a ts object is created with attribute title. This attribute, if present, is used
to put a title on plots created by TimeSeriesPlot.

5.12. SimulateGaussianAR: Autoregressive Simulation

The built-in R function arima.sim provides for simulation of AR and more generally ARIMA
models with non-Gaussian innovations. It simulates by using the model equation directly
with arbitrary starting values. Strictly speaking this process is not stationary but after a
burn-in period, it may closely approximate a stationary process. To avoid the problem of
choosing a burn-in period, which may not be adequate or which may be more than adequate
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and hence computationally inefficient, we can use an exact technique for Gaussian time series
suggested by McLeod (1975) for the ARMA case. In the AR(p) case, we simply generate
p initial time series values z1, . . . , zp using the appropriate multivariate normal distribution.
Then zt, t = p+ 1, . . . , n may be calculated directly from the model equation.

5.13. TacvfAR and TacvfMA: Theoretical Autocovariance Functions

The built-in function ARMAacf is quite complicated and uses an interface to C. Our function
TacvfAR is based on the exact algorithm given by McLeod (1975) and is much simpler. It
is very easy to translate our TacvfAR function into other programming environments such as
MatLab.

The TacvfMA is used by GetMeanMLEAR. TacfMA uses an efficient vectorized approach to com-
pute the theoretical autocorrelations for a moving-average process. The R code is very simple
and easy to understand. For an MA(q), zt = at−θ1at−1−. . .−θqat−q, the non-zero autocovari-
ances can be written as the product of a square matrix of order q + 1 times a column vector.
In R, this matrix multiplication is most efficiently computed using crossprod (Venables and
Ripley 2002, §3.9).

6. Conclusion

A complete suite of functions is described for selecting, identifying and fitting autoregressive
and subset autoregressive models. Two families of subset autoregressive models are fully
supported. The subset autoregressive models may provide a parsimonious alternative to the
more complex ARMA models. In particular, the ARz family of models is suitable for modeling
complex long time series with high-order lags. For such time series, it is difficult to select
and estimate the parameters when using standard ARMA models. The ARz with the UBIC
model selection criterion provides a practical and perhaps better alternative to the ARMA
model for such series. Our package FitAR is available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/.

R scripts to generate all figures and simulations reported in this paper are available in the
examples in the help for FitAR-package. Please see,

R> help("FitAR-package")
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A. FitAR Implementation Details

The function FitAR can be used for fitting any other three types of models: AR, ARp or ARz.
For some applications such as bootstrapping, it may be more convenient to work with the
function GetFitAR since it only does the basic fitting. For completeness all functions used by
FitAR are listed in Table 7.

Function Purpose
GetFitAR Invoked by FitAR
FitARz Invoked by FitAR for ARz models
FitARp Invoked by FitAR for ARp models
GetFitARz Invoked by GetFitAR for ARz models
GetFitARpMLE Optional function for exact MLE in ARp
GetFitARpLS Invoked by FitAR for ARp models
GetARMeanMLE Invoked by FitAR for exact MLE of mean
LoglikelihoodAR Exact log-likelihood for AR model

Table 7: Estimation Functions.

The function FitAR invokes FitARz or FitARp. By default, the function FitARp either
GetFitARpLS for least-squares estimation of the ARp. As discussed in the next section exact
MLE for ARp is not reliable although the option is available.

B. Exact MLE in ARp Models

Optionally, FitARp can invoke GetFitARpMLE to attempt exact MLE estimation of the ARp.
GetFitARpMLE is based on the built-in function arima which uses a penalty function approach
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in the subset case. But with this approach, the objective function is discontinuous outside
the stationary region and this may cause errors as is illustrated in the following example. In
this example, using R Version 2.6, we attempt to fit an ARp(1, 2, 9, 12) to the logged lynx
series but arima fails due to the penalty function approach.

R> z<-log(lynx)

R> p<-c(1,2,9,12)

R> P<-max(p)

R> ind<-rep(0, P+1)

R> ind[p]<-NA

R> ind[P+1]<-NA #estimate the mean too

R> arima(z, order = c(P, 0, 0), fixed = ind, transform.pars = FALSE)

Error in optim(init[mask], armafn, method = "BFGS", hessian = TRUE, :
non-finite finite-difference value [3]

In addition: Warning message:
In log(s2) : NaNs produced

Probably a workaround using a different optimization algorithm might be found to work in
this case but the general problem of using a discontinuous objective function remains and
could possibly cause problems in other cases.

In conclusion, the lack of a reliable exact MLE algorithm for the ARp subset models is another
reason for preferring the ARz subset models.
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