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Chapter 1

A Method for Analysis of

CGH Microarray Data

1.1 Introduction

Genomic DNA copy number at any locus in a genome represents the number

of copies of DNA. Copy number changes might trigger the occurrence of many

diseases; for example, genetic alternations frequently cause tumorigenesis. Thus,

studying these copy number changes draws huge interest in cancer research.

Deletions of copy numbers contribute to the alterations in the expression of

tumor-suppressor genes, whereas amplifications contribute to the alterations in

oncogenes. The changes in gene expression modify the normal growth control

and survival pathways. Thus, for understanding disease phenotype and for

localizing important genes, it is important to characterize the DNA copy number

changes. Comparative Genomic Hybridization (CGH) microarray is a technique

for measuring such changes (Pinkel and Albertson, 2005). As a high throughput

technique, it offers many advantages over other cytogenetic techniques such as

Fluorescence In Situ Hybridization (FISH). While early experimental techniques

were only able to detect chromosomal changes at the whole chromosomal or
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whole arm level, the CGH arrays using Bacterial Artificial Chromosome (BAC)

clones have been widely used. More recently, cDNA and oligonucleotide arrays

have become popular for CGH. The shorter probes on these arrays provide

design flexibility and greater coverage, and the resultant high-throughput CGH

data have prompted the development of various methods for data analysis. See

Lai et al. (2005 ) and Willenbrock and Fridlyand (2005) for comparative reviews

of the analysis methods.

In a CGH experiment, a test sample labelled red (Cy5) is hybridized to a

reference normal sample labelled green (Cy3), and the resulting data consists

of the ratio of the fluorescence intensities from test versus reference sample,

indexed by the physical location of the clones on the genome. The arrays in

CGH experiment are constructed with the assumption that the ratio of binding

of test and control DNA is proportional to the ratio of the copy numbers of

the corresponding DNA sequences. Alterations in DNA copy number typically

occur through the gain or loss of chromosomal segments. In a homogenous cell

population the actual DNA copy number profile of the genome consists of a

series of plateaus of constant copy number, bounded by sharp transitions. Thus

the alterations correspond to the regions of concentrated high or low log-ratios

on the genome.

Various methods have already been proposed to study and solve the chal-

lenge of efficiently identifying the regions with DNA copy number alterations.

For example, Pollack et al. (2002) applied a moving average to the ratios and

used normal versus normal hybridization to compute the threshold; Hodgson

et al. (2001 ) used a maximum likelihood to fix mixture models corresponding

to gain, loss and normal regions; Lingjaerde et al. (2001) employed a simple

smoothing to signs of neighbours and significance is described by comparing

both the height and weight of the observed segments with their joint null distri-

bution. Wang et al. (2005) proposed an algorithm Cluster Along Chromosomes

(CLAC), which builds hierarchical clustering-style trees along each chromosome

arm (or chromosome), and then selects the clusters by controlling the False

Discovery Rate (FDR) at a certain level.
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The log-ratio sequence is viewed as a time series sequence along the genome

by considering the possible correlation between clones at closer physical loca-

tions on the genome. The problem of change point detection in such series is

closely related to the problem of detecting discontinuities in signal processing

and edge-detection in image analysis. Wavelet methods are widely used for

these problems. For example, for detecting discontinuity, one method recom-

mends using the Haar Wavelet and looking at the lowest two levels of detail

(Matlab, 2007). The MatLab approach is purely exploratory. Wang (1995) pro-

posed a method for identifying the jumps in a time series by checking if wavelet

transformation of the data has large absolute values across fine scale levels.

We propose a new method for determining the change point of log-ratio.

Maximum overlapping discrete wavelet transform (MODWT) is employed for

this purpose. The method can automatically and efficiently detect the change

points and hence the gain and loss regions along the whole genome. This method

utilizes Wang’s threshold value to define significant jumps from the previous

region. Double application of MODWT at level one is used to confirm the

presence of true abnormal regions in the sequence.

The organization of the chapter is as follows. In Section 1.2 we introduce

the models and applications of wavelet methods to the CGH data. Some simu-

lated examples are demonstrated in Section 1.3 to show the performance of the

proposed method. Section 1.4 is devoted to the application of the method to

real CGH data. A brief discussion is presented in the Section 1.5.

1.2 Notation and Models

Microarray based CGH provides the relative copy number of the spotted DNA

sequences by monitoring the differential hybridization of two samples to the

sequences on the array. Let zt, t = 1, 2, ..., n be the measure of the relative

DNA copy numbers of n clones along the genome. Usually zt is the logarithm

with base 2 of the intensity ratio of test sample versus the reference sample.

There are systematic variations in microarray experiments and so normalization
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procedures are applied to remove those noises. We assume here that all the data

are normalized. To identify or screen the genes that have DNA copy number

gain or loss is equivalent to describe the genes locations on the genome where

the DNA copy numbers increase or decrease. Assuming the DNA copy number

follows a distribution F0 in a region on the genome, and after the location k,

the distribution is changed to F1; so we can write,

z1, z2, . . . , zk ∼ F0

zk+1, zk+2, . . . , zn ∼ F1

That is equivalent to finding the change point k, where the distribution of

the relative copy numbers are different on both sides of k. Note that for the

CGH data, there may be many change points along the genome, which define

the regions of gains or losses of the copy numbers. If the clones on the genome

are close enough, they might affect each other on copy numbers. Thus we can

assume that the copy number of a clone on the genome is associated with that of

the previous clone. The copy numbers sequence along the genome can therefore

be envisaged as a time series. Determination of change points is equivalent to

the determination of abrupt change along the sequence. Wavelets are ideally

suited for this purpose.

1.2.1 Wavelet Methods

Wavelets are well established in the mathematical sciences (Daubechies, 1992)

and have been successfully applied in fields such as signal and image processing,

numerical analysis and statistics. Wavelets literally means small waves. A

function ψ(.) defined over the entire real axis is called a wavelet if ψ(.) → 0 as

t→ ±∞ and satisfying the following conditions:∫ ∞

−∞
ψ(u)du = 0 (1.1)∫ ∞

−∞
ψ2(u)du = 1 (1.2)

Wavelets are functions that can be used to describe a signal efficiently by
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breaking it down into its components at different scales and following their

evolution in the time domain. Wavelets tells us the changes in averages in a time

series. These changes in averages are computed in terms of weighted average

differences of the series over different time scales, denoted by λ. The variation

of λ can provide information about how averages of x(.) over many different

scales can change from one period of length λ to the next. The collection of

variables {W (λ, t) : λ > 0,−∞ < t < ∞}, defined in Equation 1.3, is called

continuous wavelet transform (CWT).

W (λ, t) =
∫ ∞

−∞
ψλ,t(u)x(u)du (1.3)

In Equation 1.3, W (λ, t) is proportional to the difference between two adjacent

averages of scale λ. Here the transformed series x(.) ia a function of translation

parameter t and scale parameter λ. The transforming function ψλ,t(u) is called

the mother wavelet.

Discrete wavelet transformations map data from the time domain to the

wavelet domain (Percival and Walden, 2000); however, the difference from CWT

is that the scale λ and translation parameter t are no longer continuous. These

transformations result in a vector of the same size. If we have a series of size N ,

wavelet transformations can be defined by the matrices of dimension N ×N .

The partial DWT is a special orthonormal transformation:

(z0, . . . , zN−1)←→ (W1, ...,WJ , Vj),

where Wj is a vector of length Nj = N/2j ; VJ has the same length as that of WJ

and NJ . For simplicity we have assumed that N is a multiple of 2J . The vector

Wj is called the vector of wavelet coefficients at level j and is associated with

changes or differences on scale 2j−1. Vector VJ , which is the scaling coefficients

at level J , is associated with averages on scale 2J−1.

We can write,
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W = ΓX, Γ =


Γ1

Γ2

...

VJ


In practice the DWT is computed using the pyramid algorithm which requires

only O(N) flops. There are two practical limitations of DWT; these are:

• Series should be of dyadic length and

• Selecting different starting point for the series changes the result of the

analysis.

First problem can be dealt through polynomial extensions of the scaling coeffi-

cients, then the DWT can be practically implemented for any size of the series.

However, it is not a trivial task to select an appropriate number of end points

to fit or the order of fit (Constantine and Percival, 2003). The second problem

refers that the DWT is not a shift-invariant transform and so shifting the time

series circularly can totally change the DWT. Maximum overlap discrete wavelet

transformation (MODWT) is used to overcome such limitations. Thus MODWT

provides us the advantage of making the series length and shift-invariant.

Our goal here is to identify the change point in DNA sequence. We focus on

change-point approaches to data dependent thresholding (Ogden and Parzen,

1976). The primary idea is to divide the wavelet coefficients into groups of small

coefficients containing primary noise and one of large coefficients containing

significant signal. Hypothesis testing techniques are employed to obtain an

appropriate threshold and a test to determine if the set of coefficients at that

scale contains significant signal if coefficients exceed the threshold.

1.2.2 Wang’s Threshold

The underlying model or null hypothesis may be written as zt = f(t) + at, t =

1, . . . , n where at ∼ NID(0, σ2) and f(t) is a smooth function, ie. continuous

and differentiable. This is a classic model in time series. Examples include the
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polynomial trend analysis (Fisher, 1921) and the lowess polynomial seasonal

adjustment of Clevelend et al. (1990). For forecasting purposes, the ARMA

family and its extensions are more useful models. Wang (1995) and Ogden and

Parzen (1976) consider the problem of testing an abrupt change in the function

f(t). Ogden and Parzen (1976) approach the problem as one of estimating

f(t) when step functions are present and f(t) is otherwise constant and their

approach is again, like in MatLab, exploratory. Wang (1995) model is more

general and focuses on detecting the change points at which a jump or sharp

cusp occurs. A sharp cusp occurs at point t0 if there exists a constant K > 0

such that

|f(t0 + h)− f(t0)| ≥ K|h|α (1.4)

for all h as h→ 0 and 0 ≤ α < 1. When α = 0, the function has a jump. Wang

(1995) shows that, asymptotically with probability 1, all wavelet coefficients will

have absolute value less than the universal threshold value σ
√

2 log(n) provided

there are no jumps or cusps. The unknown value of σ may be estimated robustly

by the median absolute value of the wavelet coefficients at level 1 divided by

0.6745.

1.2.3 Practical Implementation Details

We follow the notation in the book by Percival and Walden (2000) which is

also used in the S-Plus, R and MatLab software. The principal differences are

that level 1 refers highest time domain resolution and filter width rather than

half-width is used in the naming of the Daubechies wavelets. So for example,

Wang’s D(1) corresponds to D(2) which is also equivalent to the Haar wavelet.

Another difference is that Wang pads the real data so that n is a power of 2

because he uses Mallat’s algorithm. For detection of changepoints, Wang (1995)

recommends examining plots of the absolute empirical wavelets at various levels

j and finding those values which exceed the threshold line and are larger than

others. Daubechies wavelets are denoted as: D(k), k = 2, 4, . . . , 20. The level j

should be chosen as small as possible in order to obtain the highest time domain
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resolution.

In practice, it is not possible to examine the wavelet coefficient plots at

different levels and then select the jump points. Therefore, we need to use

some automated procedure for selecting appropriate levels for different series.

MODWT at level one serves as a good strategy for this purpose. By intuition,

we can think that the gain or loss region cannot contain a single observation.

We apply MODWT at level one and record the observation numbers where the

wavelet coefficients are greater than the Wang’s threshold value. In order to ver-

ify that the wavelet coefficients are directing to right jump detection, we delete

the observations where the jumps were detected and rerun the procedure. If the

new wavelet coefficient adjacent to the deleted observation is again greater than

the Wang’s threshold and has the same sign as that of the previous coefficients,

then the deleted observation in previous step is considered as true signal of jump

detection.

To reach a conclusion of the analysis, we have to define the loss or gain

region. We can define a threshold beyond which a region is called to be loss or

gain region according to the sign of the wavelet coefficients. The selection of

the threshold using some multiple test procedure is discussed in the following

subsection. The region with multiple testing value, say q-value, greater than

the threshold is colored as red and the region having multiple testing value less

than the threshold is colored as green. Thus red corresponds to the gain region

and green corresponds to the loss region. We put a line in each detected region

to represent the mean.

1.2.4 Testing Region Means Using Bootstrap

We have zt, t = 1, 2, . . . , n as the observations along a specific chromosome arm.

The observations in ith region and tth position can be expressed as

zti = µi + et, i = 1, 2, . . . k and t = 1, 2, . . . , n
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The error term et follows AR(p) process, the order of which can be estimated.

That is,

et = φ1et−1 + φ2et−2 + . . .+ φpet−p + at (1.5)

where φ1, φ2, . . ., φp are autoregressive parameters and et ∼ N(0, σ2
a).

Suppose we have only one region and we would like to test whether the re-

gion mean is significantly different from zero. A t-test procedure that considers

corrected variance of z̄ in an AR(p) error process would seem to work for such

case. A short simulation study with an AR(1) process was done to see the power

of this test procedure. Table 1.1-1.2 reveal that the method does not perform

very well even for small φ values. Hence with the increase of magnitude of φ,

the method becomes incapable of handling such situation regardless of the se-

ries length. Moreover, series length refers to the length in a particular gain/loss

region, which in real CGH data will not be very large.

Power comparison; n = 50, σa = 0.2

φ µ = 0 µ = 0.5

0.0 0.056 0.942

0.1 0.084 0.9074

0.3 0.118 0.7472

0.5 0.108 0.5186

0.7 0.137 0.3100

0.9 0.236 0.2862

Table 1.1: Power of the test µ = 0 in an AR(p) setting with series length 50. Here

we consider standard deviation for error term to be 0.2. The test is done at 0.05 level

of significance. The column of µ = 0 indicates that the type I error increases with the

increase of φ.
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Power comparison; n = 100, σa = 0.2

φ µ = 0 µ = 0.5

0.0 0.0548 0.9988

0.1 0.0718 0.9950

0.3 0.0780 0.9406

0.5 0.0788 0.7216

0.7 0.0970 0.3962

0.9 0.1656 0.2010

Table 1.2: Power of the test µ = 0 in an AR(p) setting. Here we consider sample size

to be 100 and the standard deviation for error term to be 0.2. The test is done at 0.05

level of significance. The column of µ = 0 indicates that the type I error increases

with the increase of φ.

To overcome lack of power of the test in such phenomenon, we can resort

to parametric bootstrapping procedure. This simple method can be outlined in

the following few steps:

Step 1 Find the region means using MODWT procedure and then find eti =

yti − ŷi.

Step 2 Consider the autoregressive order of the process to be 1 and so this is

our selected model.

Step 3 Estimate the parameters and innovation variance from the model se-

lected in step 2.

Step 4 Simulate a mean-zero stationary Gaussian AR(p) time series, say e∗,

with parameters φ̂ and innovation variance σ̂ found in step 3. For null

model µ = 0, and so y = e. Do the simulation procedure large number of

times, say B = 104 times.

Step 5 Find the means for each simulated series in all regions, ȳ∗γ1
, ȳ∗γ2

, . . . , ȳ∗γk
,

where the superscript ∗denotes the bootstrap sample. The p-value for

region i is defined as, pi = #{ȳ∗γi
≥ ȳγ1}/B

11



In step 2, we used AR(1) process instead of general AR(P ). As our main

goal is not the model selection but testing the region means, considering such

restricted model will not affect the final result. However, in the presence of

large series, we can find the order of the AR(p) process from the series using

BIC criterion.

Bootstrapping power comparison; n = 50, σa = 0.2

φ µ = 0 µ = 0.5

0.0 0.064 1.00

0.1 0.064 1.00

0.3 0.066 1.00

0.5 0.08 1.00

0.7 0.118 0.998

0.9 0.244 0.752

Table 1.3: The table shows the power of the bootstrapping method for testing µ = 0

in AR(1) process when n = 50 and σa = 0.2. For any value of σ, FPR is very high in

this case.

Bootstrapping power comparison; n = 100, σa = 0.2

φ µ = 0 µ = 0.5

0.0 0.054 1.00

0.1 0.056 1.00

0.3 0.064 1.00

0.5 0.062 1.00

0.7 0.072 1.00

0.9 0.134 0.83

Table 1.4: The table shows that power of the test µ = 0 using bootstrap method.

The AR(1) series has length 100 and σa = 0.2. There is a little improvement of FPR

than that for n = 50, but still this is higher than 0.05 for all value of σ.

The simulation study, presented in Tables 1.3-1.5, suggests that the boot-

strapping method works well for testing mean in large series. The False Positive
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Bootstrapping power comparison; n = 200, σa = 0.2

φ µ = 0 µ = 0.5

0.0 0.048 1.00

0.1 0.048 1.00

0.3 0.052 1.00

0.5 0.054 1.00

0.7 0.060 1.00

0.9 0.124 0.996

Table 1.5: The table shows that power of the bootstrapping method for testing µ = 0

when n = 200 and σa = 0.2. There is substantial improvement in power as well as in

FPR.

Rate (FPR ) of the test is still high for large φ and short series. Nonetheless,

this test procedure works better than the previously mentioned one.

If there is only one region present in the study, the decision about the test

can be done using this obtained p-value. However, in a GCH data analysis

there will be several gain and loss regions and so the overall decision depends

on multiple test method. Having obtained the p-values for all regions using

the aforementioned bootstrap procedure, we need to calculate the multiple test

values using some standard method. Benjamini and Hochberg (1995) proposed

a method for multiple testing using False Discovery Rate (FDR). Another more

recent approach, called q-value, was proposed by Storey (2002). To deal with

multiple testing, Pounds et al. (2004) introduced spacings LOESS histogram,

or SPLOSH. This aims at estimating conditional FDR which is the expected

proportion of false positives given we have r significant features. In the genome

wide study of testing periodicity, SPLOSH revealed to be most conservative

while q-value approach seems to be liberal in detecting the correct number of

periodic genes. However, unlike the number of genes, the number of jump points

or the number of regions will not be even hundreds. So it would be expected

that all these methods would produce similar results in this simulation.
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1.2.5 Determination of Gains and Losses

Assume that the relative copy number is a smooth function f(k), where k de-

notes the position of the clone on the gene. To find the change points of f(k), we

can determine abrupt change of the function f(k) through wavelet coefficients.

The test threshold is calculated using the universal threshold σ
√

2 log(n) . Any

wavelet coefficients that exceed the point are specified as the position of ab-

normal change in DNA copy numbers. Once we specify distinct regions using

the threshold, we need to define them as loss, gain or normal region through

another preselected threshold T2.

Ri =


Call gain, ifMi > T2

Call loss, ifMi < −T2

Call normal, if − T2 ≤Mi ≤ T2

whereMi is the multiple test value of the i-th region. If we would like to call a

region to be gain or loss region at a q-value of 0.05, then this is our selected T2.

1.3 Simulated Examples

Let zt, t = {1, 2, . . . , n} be the observations along a specific chromosome arm. In

this section we present few simulated examples to demonstrate the performance

of the proposed method. A comparison of the method with CLAC is provided.

A preselected threshold of q = 0.05 is used to call a gain or loss region in all the

simulated examples and real data.

1.3.1 Example-1: White noise series

Data of length 1040 are generated such that zt ∼ N(0, 0.152). This means that

no loss or gain region is present in the data shown in Figure 1.1. The proposed

method, applied to raw data, worked well in providing the true feature of the

series.
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Figure 1.1: White noise series, where there is no jump. The data are simulated from

N(0, 0.152). The mean value of the region is almost in the zero line.

1.3.2 Example-2: Null Case: Smooth signal plus white

noise

Some data, n = 200, was generated by adding random noise to a smooth curve

presented in Figure 1.2. That is, the observations follow the relationship zt =

g(xt) + εt, where g(xt) is the smooth part and εt ∼ (N(0, σ2).

Wavelet method is applied to this data for plausible jump detection. We see

from Figure 1.3 that the method is able to correctly detect the absence of any

break points.
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Figure 1.2: Scatter plot of simulated observations obtained by adding random noise

to a smooth curve, which is also shown. Apparently there is no sharp jump point in

the series.

Figure 1.3: Application of wavelet method to the series shown in Figure 1.2. There is

only one region, that is no jump was detected in this series. The mean value is given

by a line.
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1.3.3 Example-3: Two loss/gain regions

Data set with n = 270 observations are simulated in two blocks representing

two chromosomes. The model in both chromosomes is zt = µt + et , where µt

takes on values 0, 0.7, and −0.7. That is,

µt1 =


0, 1 ≤ t ≤ 80

−0.7, 81 ≤ t ≤ 110 for chromosome 1

0, 111 ≤ t ≤ 150

µt2 =


0, 1 ≤ t ≤ 40

−0.7, 41 ≤ t ≤ 70 for chromosome 2

0, 71 ≤ t ≤ 120

For each chromosome,

et = φet−1 + at, at ∼ NID (0, σ2
a) (1.6)

Since Var (et) = σ2
a/(1 − φ2), we can write the innovation variance, σ2

a = (1 −

φ2)Var (et). We consider three cases with φ values 0.4, 0.6 and 0.8. Here we

do not provide the graphs for case φ = 0.6 as it gives the similar result as that

for φ = 0.4. Figures 1.4 and 1.6 show that the proposed method detects the

jump points at right places in all three cases. CLAC method is applied in all

data sets. For the implementation of CLAC method, normal array is generated

from AR(1) process with corresponding value of φ used in the original data.

This method seems to work well with low values of φ, as can be seen in Figure

1.5. However, Figure 1.7 indicates that the detection of loss and gain region is

not perfect in the presence of high autocorrelation. It should be noted that the

performance of the method relies on the selection of normal array.
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Figure 1.4: Application of wavelet method to the series with error term following

AR(1) with φ = 0.4. The method can detect the gain and loss region.

Figure 1.5: Application of CLAC method to the series with error term following

AR(1) with φ = 0.4. Gain and loss region is detected at the right places for this value

of φ.
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Figure 1.6: Application of wavelet method to the series with error term following

AR(1) with φ = 0.8. The method can detect correct gain and loss region.

Figure 1.7: Application of CLAC method to the series with error term following

AR(1) with φ = 0.8. We do not get exact detection of gain and loss region.
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1.3.4 Example-4: Seven jump points

The data set consists of 200 observations having 7 jump points at 50, 60, 92, 106,

144, 169 and 181. Error terms are i.i.d normal with mean 0 and standard devia-

tion 0.5. We split the series into two chromosomes where 141 genes are assigned

to first one and 59 genes assigned to second one. This is a typical example where

there are two successive gain regions within second chromosome. We see from

Figure 1.8 that the proposed method can detect the break points exactly and

define the loss and gain regions according to the preselected threshold value.

Figure 1.8: The series has seven jump points. Observations are split between two

chromosomes such that first 141 observations are in chromosome 1 and rest 59 ob-

servations are assigned to chromosome 2. The proposed method correctly detects the

jump points.

1.3.5 Smoothing the data

Wang (1995) suggested using simple moving average smoothing (MAS) with

specific window size before applying the approach. If ẑ be the running mean
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with neighbourhood size k, then the smoothed series would be:

ẑi =
1

2k + 1
(zi−k + zi−k+1 + . . .+ zi+k) (1.7)

for i = k + 1, k + 2, . . . , n− k. For the other observations, say for i = 1, 2, . . . k

and i = n−k+1, n−k+2, . . . , n, define u = max(1, i−k) and v = min(n, i+k)

ẑi =
1

ν − u+ 1
, (zu + zu+1 + . . .+ znu) (1.8)

Figure 1.9: Wavelet method is applied to the same data that was demonstrated in

Figure 1.8, but smoothing is done before the analysis. There are shifts in the jump

point detection.

Investigations revealed that this smoothing result some shift in the break

point detection when wavelet method is applied. For example, the series in

Example 4 was smoothed and the wavelet method was applied thereafter. Fig-

ure 1.9 shows that the number of regions detected is correct; nevertheless, the

detection points are not at the appropriate places.
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1.4 Application to real data

We apply the proposed method in two real CGH data sets. The method de-

tects several loss and gain regions. A comparison of the method with CLAC is

illustrated through the second example.

1.4.1 Application-1

In CGH array, 2400 BAC clones were measured each with three replicates (Sni-

jders et al., 2001). Measurements for log base 2 intensity ratio are provided.

Average relative DNA copy number sequences of the three replicates along the

genome is shown in Figure 1.10. The figure also demonstrates the gain or loss

regions that are detected using this method. As we can see, the measures are

mostly along the zero line, which indicates that the test sample has the same

DNA copy numbers as that of reference sample.

The log ratios along the genome are considered as a time series sequence.

The proposed method is then applied to calculate the wavelet coefficients and

to determine the abnormal positions. There are number of loss and gain regions

detected by this method. To have better view of the loss and gain regions we

use trellis plot in Figure 1.11 and 1.12 which provide plotting of the log-ratio

intensities for individual chromosomes.
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Figure 1.10: Application of wavelet method to CGH data set from Snijders et al.

(2001). There are many gain/losss regions in the whole genome.

Figure 1.11: For better view of the loss/gain regions, here we plot the first 12 chromo-

somes in trellis plot. There are presence of abnormal regions in chromosome number

1, 5, 7, 8, 9 and 11.
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Figure 1.12: For better view of the loss/gain regions, here we plot the last 11 chromo-

somes in trellis plot. There are presence of abnormal regions in chromosome number

14, 17, 20 and 23.

1.4.2 Application-2

We apply the proposed method to one of the examples found in R library clac.

The package has data set BACArray and the column DiseaseArray has 9980 ob-

servations containing 4 arrays, one of which is analyzed for comparison. Wavelet

method detected two gain regions colored as red in Figure 1.13. Figures 1.14

and 1.14 of individual chromosome explicitly show that the chromosome 18 and

23 are the regions with copy number amplification. One normal array from the

clac package is picked and then CLAC method is applied to the array. The

outcome, presented in Figure 1.16, also indicates that chromosome 18 and 23

refer to the amplified regions for DNA copy number.
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Figure 1.13: This CGH Array is obtained from R package clac. The wavelet method

detects only two gain regions in this data set.

Figure 1.14: For better view of the loss/gain regions, here we plot the first 12 chro-

mosomes. No abnormal regions were detected in these chromosomes.
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Figure 1.15: Results of individual chromosomes 13 to 23 are presented. Chromosomes

18 and 23 refer to regions of abnormal gain in DNA copy numbers.

Figure 1.16: The CGH Array described in Application-2 was analyzed using CLAC

method. It shows there are two gain regions in chromosome number 18 and 23.
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1.5 Discussion

In this chapter we have proposed wavelet method to identify the abnormal

DNA copy number positions on genome. Discrete wavelet transform has two

limitations; namely dyadic length requirement and sensitivity of the starting

of the time series. To overcome such limitations, we use maximum overlap

discrete wavelet transformation (MODWT) in this analysis. The positions of

the break points were detected using Wang’s threshold. Calling a region to be

gain, loss or normal depends on the selection of another threshold T2. Through

the simulated examples we demonstrate that the method performs quite well

in selecting the break points and hence the abnormal regions in a time series

sequence. Moreover, the procedure reports several abnormal regions in two real

CGH arrays.

CLAC algorithm, proposed by Wang et al. (2005), uses some normal array

for detecting deletion and amplification regions. Independence and normality of

the clones are two strong assumptions; but the procedure of Jong et al. (2003)

depends on these assumptions. ACF plots of the estimated errors from the fitted

model are presented in Appendix. It is evident from the plots that consideration

of i.i.d. observations in the sequence would not be realistic. Our propose method

does not assume that the observations be i.i.d. In a short simulation example

we show how the detection of the change points shifts when a moving average

smoothing is used before applying the wavelet method.
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Appendix

Autocorrelation function (ACF) is useful in detecting the presence of correlation

among the successive observations. In this study, we observe the residuals by

subtracting the mean of any selected region from the observations in that region.

That is, et = zt − µt is the residual for t-th clone. ACF plots are presented for

the residuals obtained from the application in the real data described in Section

1.4.

ACF plot for individual chromosomes for Application-1

Figure 1.17 is constructed to show the autocorrelation behavior of the error

process for each chromosome. It seems that the residuals are not quite i.i.d.

within each of the chromosome. The residuals in chromosome numbers 1, 8, 10,

14 and 23 demonstrate the presence of strong autocorrelation. This can be a

justification to use a simulation study in Example-3 of Section 3.
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Figure 1.17: The figures show the ACF plot for the residuals obtained for chromosome

1 to 23 using the data set in subsection 1.4.1. The residuals in few of the chromosomes

indicate the presence of high autocorrelation.
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Figure 1.18: The figures show the ACF plot for the residuals obtained for chromosome

1 to 23 using data set in subsection 1.4.2. The residuals in few of the chromosomes

indicate the presence of high autocorrelation.

ACF plot for individual chromosomes for Application-2

Here the residuals are obtained from real data mentioned in subsection 4.2.

The ACF plots in Figure 1.18 indicate the presence of high autocorrelation

among the residuals in chromosome numbers 1, 4, 7, 8, 9, 10, 11, 13, 14 and

21. Therefore, considering the residuals to be i.i.d. would not be realistic in

detecting the abnormal regions in this CGH Array.
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Figure 1.19: The figures show the ACF plot for the residuals obtained from the

normal array described in subsection 1.4.2. There exists high autocorrelation among

the residuals within some of the chromosomes.

ACF Plot for Normal Array from Application-2

The normal array described in subsection 4.2, are analyzed for the presence of

autocorrelation in the error term. Figure 1.19 reveals that there is presence

of dependence characteristic in residuals within many of the chromosomes; for

example, we can note the presence of high autocorrelation in chromosome num-

bers 1, 4, 7, 8, 9 and 14.
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