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Chapter 1

Improved Class Prediction

in Gene Expression

Microarray Data

1.1 INTRODUCTION

The advancement of cDNA microarrays and high-density oligoneucleotide chips

in biotechnology has drawn much interest of statistical analysis in cancer re-

search. One of the primary areas of focus is the classification of tumors using

the gene expression data. A better understanding of the molecular variation

among the tumors can be studied thanks to the possibility of simultaneously

analyzing thousands of gene expression profiles. However, the fruitful endeavor

for this understanding depends on the selection of proper statistical approach.

Dudoit et al. (2002) provided an extensive comparison of different classifi-

cation methods. For the implementation of most of the methods, there needs

to be an initial gene selection to make the number of genes to be less than

the number of samples. Although their analyses show that the diagonal linear

discriminant analysis (DLDA) maintains one of the top-ranking classifiers, the
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implementation of this method to other data sets does not seem to be appeal-

ing (Fort and Lambert-Lacroix, 2005). The big challenge of dealing with the

microarray data is that the number of covariates is in thousands whereas the

number of samples is usually not more than one hundred. Similar to regression

method, the traditional discriminant analysis methods are not efficient in such

situation. The method with principal components, partial least squares, ridge

regression with their penalized forms are discussed in several articles as ways

to solve the problem of classification (Ghosh, 2003; Fort and Lambert-Lacroix,

2005).

Nearest neighbour algorithm is one of the most frequently used techniques in

classification problem. This algorithm is also known as instance-based learning.

Holmes and Adams (2003) proposed a method which takes into account mul-

tiple nearest neighbors as a set of covariates in contrast to traditional method

where only single nearest neighbor is selected on the basis of cross-validation

error rate. The authors also proposed that the optimization of k can be done by

maximum pseudolikelihood instead of using cross-validation for misclassification

rate. In a logistic regression setting, the theory is flexible as it can take the orig-

inal covariates as well as multiple nearest neighbor covariates (NNC ). Original

covariates capture the linear effects and multiple NNC capture nonlinear effects

present at different scales within the data. The presence of thousands of genes

as covariates will lead to a problem in variable selection in their method. This is

because the traditional step-wise regression will no longer be feasible in such cir-

cumstances. Although the procedure can be reformed in terms of tens of genes

selected by some procedure, the performance of classification method depends

on initial gene selection process (Lee et al., 2005). Also, may researchers feel

it is best to include as many genes as possible and are reluctant to use subset

approaches (Guo et al., 2007).

Fort and Lambert-Lacroix (2005) put their suggestion against using k-nearest

neighbor method for some of the data sets due to many occurrences of indeci-

sion. Still the analysis shows that the performance of this method is much better

than many other methods (Dudoit et al., 2002). The presence of high positive
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correlation of the gene expression observations within the same group and high

negative correlation between different groups brings about the nearest neighbor

classifier to perform as a good classifier in several data sets.

The estimation of regularized parameters involved in any model can be per-

formed in several ways. Bayesian Information Criterion (BIC) is one of the

popular criteria in selecting best model. Subset selection is highly variable as

it is a discrete process, which either takes a variable or discard it (Hastie et al.,

2001). Tibshirani (1996) proposed Least Absolute Shrinkage and Selection Op-

erator (LASSO), that shrinks some regression coefficients and sets other to zero,

and thus works as a variable selection method. The L1 lasso penalty can be

used in logistic regression framework when we have quite a large number of

covariates. However, we found that the misclassification rate gets higher when

all the nearest neighbor covariates are included in variable selection stage.

Nguyen and Rocke (2002) used partial least squares method for the purpose

of classification in gene expression data. Recent methods include Support Vec-

tor Machine (SVM) and Shrunken Centroid Regularized Discriminant Analysis

(SCRDA) (Hastie et al., 2001; Guo et al., 2007). SVM works in classification

by producing linear boundary in the feature space and thus refers to non-linear

boundary in input space. SCRDA is an extension of Fisher Linear Discriminant

Analysis. This solves the non-singularity problem and provides a gene selection

during the process.

Including NNC prior to running any of the method gives an augmented

form. This provides some extra information to the classifier. First NNC can

lead to capture non-linear relationship which might be ignored otherwise. Thus

an improved version of many sophisticated methods can be achieved using this

kind of augmentation.

1.2 METHODS

Suppose that we have expression levels for p genes over a size of n samples. The

data matrix is given by X = (xij), a matrix of dimension n× p. The value xij
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refers to the expression level for j-th gene in i-th sample. The response variable

is a categorical variable taking values as yi = {A1, A2, . . . , Ag}, where g is the

number of classes. In the present work we discuss only two-class prediction

problem. Hence we can express yi as taking values {−1, 1}. Predictions are

built on the training set and the performances are evaluated using the test set.

In an one-leave-out validation process, successively all but one observations are

considered as training set and the error rate is measured.

1.2.1 K-Nearest Neighbor

The nearest neighbor method is based on the distance function; for example,

correlation or Euclidian distance for pairs of observations. In a k-nearest neigh-

bor method, predictions of new observations are made through the training set

{yi, xi} for i = 1, 2, . . . , n. For a new observation, we find the k closest obser-

vations in the training set and then predict the class to be the one where the

majority of the k-neighbours belong to. The process is run for each specified

values of k and then the selection of k is done using cross-validation. However,

Holmes and Adams (2003) proposed a new method for finding optimum value

of k. Instead of using cross-validation method, optimum value of k is derived

by maximizing pseudolikelihood from a logistic regression.

After the initial selection of a number of genes, say P , we have our set of

variables as {x1, x2, . . . , xp}. Corresponding to the i-th observation, k-nearest

neighbor autocovariate is defined as:

νi(k)(A1) =
1
k

∑

j∼i

[I(yj = A1)− I(yj = A0)] (1.1)

The indicator variable I(x = ω) takes the value 1 if x = ω and 0 otherwise;
∑

j∼i denotes that the summation is over the k-nearest neighbors of xi in the

set x1, x2, . . . , xi−1, xi+1, . . . , xp. The autocovariate νi(k) refers to the proportion

of class A1’s to class A0’s within the k nearest neighbors of xi. Therefore, if all

the k nearest neighbors of xi are in A1 then the autocovariate νi(k) is 1; if all

the k nearest neighbors of xi are in A0 then the autocovariate νi(k) is 0. Then
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a logistic regression model containing the covariates νi(k) can be written as

Pr(yi = A1) = ηi =
exp(αkνi(k))

1 + exp(αkνi(k))
(1.2)

The pseudolikelihood function is therefore,

L(αk; ν(k)) =
n∏

i=1

ηỹi

i (1− η)1−ỹi (1.3)

where

ỹi =





0, if yi = A0

1, if yi = A1

(1.4)

Optimal value of k is selected by maximizing the likelihood function. That is,

k̂ = argmax kL(αk; ν(k)) (1.5)

1.2.2 DLDA and DQDA

Let fk(x) be the conditional density of x in class y = Ak and assume that this

follows multivariate normal distribution of the form:

x|y = Ak ∼ MVN(µk,Σk)

Let πk be the prior probability of class k. Then the discriminant function is

expressed as

ÃLk(x) = −1
2

log |Σk| − 1
2
(x− µk)T Σ−1

k (x− µk) + log πk (1.6)

This is called quadratic discriminant function as it does not assume equal co-

variances throughout the classes. In a two class setting, the decision bound-

ary between two classes can be given by a quadratic equation {x : ÃL1(x) =

ÃL2(x)}. If the class density has diagonal covariance matrix of the form Σk =

diag (σ2
k1, σ

2
k2, . . . , σ

2
kP ), then the discrimination rule is called diagonal quadratic

discriminant analysis (DQDA).

If we assume that class density has same covariance matrix for all the classes;

that is if Σ̂k = Σ̂, this leads to linear discriminant analysis (LDA). When
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covariance matrix in LDA is diagonal of the form Σ = diag (σ2
1 , σ2

2 , . . . , σ2
P ),

then this is called diagonal linear discriminant analysis (DLDA).

We predict an observed value x0 to a class which maximizes the discriminant

function in Equation 1.6; that is, y(x) = argmax k ÃLk(x).

1.2.3 Shrunken Centroid RDA

Shrunken Centroid Regularized Discriminant Analysis (SCRDA) was intro-

duced by Guo et al. (2007). This is a modified version of LDA. After estimating

the parameters, we can write the discriminant function from equation 1.6 as:

ÃLk(x) = xT Σ̂−1x̄k − 1
2
x̄T

k Σ̂−1x̄k + log πk (1.7)

where x̄k represents the mean vector in k-th class. In high-dimensional setting,

the estimates in LDA will be unstable and therefore cannot provide optimal

results (Guo et al., 2007). In order to overcome the singularity problem in

such situation, the authors proposed using regularized form of the covariance

estimate:

Σ̃ = αΣ̂ + (1− α)IP (1.8)

where α is a non-negative value in the range 0 ≤ α ≤ 1. Using the equation 1.8,

we can redefine the discriminant function as:

Ã̃Lk(x) = xT Σ̃−1x̄k − 1
2
x̄T

k Σ̃−1x̄k + log πk (1.9)

Then the SCRDA can be constructed as classifying an observation x in a group

that minimizes:

(x− x̄′k′)
T Σ̃−1(x− x̄′k′)− log πk′ (1.10)

where x̄′k′ is the vector of shrunken centroid for group k. A shrunken centroid

x̄′ is defined as

x̄′ = sgn (x̄)(|x̄−∆)+ (1.11)

Instead of shrinking centroid x̄, one can shrink Σ̃−1x̄.

Two methods were proposed to estimate the tuning parameter pair (α, ∆);

however, we use the ”Min-Min” rule in the analysis. The first step is to find
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all the pairs that yield minimum cross-validation error in training set. Finally,

optimum pair of (α, ∆) refers to that values which correspond to minimum

number of selected genes.

1.2.4 Support Vector Machine

The space that x = {x1, x2, . . . , xp} takes is called input space. A space obtained

after transforming x to τ(x) is called feature space. An SVM is a technique that

separates classes through non-linear boundary by creating linear boundary in

transformed feature space.

Let u′x+a = 0 is the separating hyperplane between the groups. There exists

two other bounds - the distance between which is sought to be maximum for

separating the classes. This distance is called margin and denoted as m = 1
||u|| .

We can define the decision boundary through the optimization problem

minimize 1
2 ||u||2

subject to yi(u′x + a) ≥ 1 or 1− yi(u′x + a) ≤ 0

The Lagrangian is

L =
1
2
u′u +

n∑

i=1

αi(1− yi(u′xi + a)) (1.12)

where αi is Lagrange multiplier. Setting gradient of L w.r.t u and a to zero and

then substituting u =
∑n

i=1 αiyixi and
∑n

i=1 αiyi = 0, we get

L = −1
2

∑∑
αiαjyiyjx

′
ixj +

∑
αi (1.13)

Therefore, the optimization problem becomes

u(α) = − 1
2

∑∑
αiαjyiyjx

′
ixj +

∑
αi

subject to αi ≥ 0 and
∑

αiyi = 0

However, if the classes overlap in feature space, there will arise some non-

negative slack variables ξ = {ξ1, ξ2, . . . , ξn}. Thus, we get modified optimization

problem as
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minimize 1
2 ||u||2 + c

∑n
i=1 ξi

subject to yi(u′xi + a) ≥ 1− ξi, ξi ≥ 0

where c is tradeoff parameter between error and margin. This corresponds to

u(α) = − 1
2

∑∑
αiαjyiyjx

′
ixj +

∑
αi

subject to c ≥ αi ≥ 0,
∑

αiyi = 0

As mentioned before, linear operation in the feature space is equivalent to non-

linear operation in input space. Thus we reach to another SVM optimization

problem through substituting the inner product x′ixj by

K(xi, xj) = τ(xi)′τ(xj) (1.14)

There are different types of kernals for SVM optimization; however the popular

ones (Hastie et al., 2001) are:

• Radial basis function kernel with width σ:

K(xi, xj) = exp(−||xi − xj ||2/2σ2)

• Polynomial kernal with degree l: K(xi, xj) = (1 + 〈xi, xj〉)l

• Neural network: K(xi, xj) = tanh(κ1〈xi, xj〉+ κ2)

1.3 IMPLEMENTATION

For each nearest neighbour {K1,K2, . . . , Kl}, we can obtain the covariates as

ν(K1), ν(K2), . . . , ν(Kl). Then the augmented set of inputs would be {x1, x2,

. . ., xp, νK1 , νK2 , . . ., νKl
} . After inclusion of unit column vector, the design

matrix is of the form D = (1, X, V ). We found that implementation of all the

covariates in V lead to high misclassification rate. In such case, any method

picks some unnecessary covariates that deters the optimization of the classifica-

tion rate. Practical implementation reveals that 1-NN can provide good result

in bioinformatic applications. In present work, we investigate the performance

of four methods; namely DLDA, DQDA, SVM and SCRDA when first NNC is

added to the original set of inputs.
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1.3.1 Assessing Prediction Accuracy

Cross-validation is a simple but widely used method for assessing prediction

accuracy. In a K-fold cross-validation, we randomly divide the data into K

segments. We leave one part out, say j-th part, and fit the model for the

remaining parts. Then estimate the error rate for that j-th part. We repeat

the process for each of K segments, and finally find the overall misclassification

error. In our analysis, we use K = N which leads to leave-one-out (LOO)

cross validation. We also perform re-randomization analysis. In this case we

randomly divide the data into learning and validation part. The size of the

validation part is considered as one fifth of the total sample size. A model is

tuned from the learning part and prediction error is estimated from validation

part. We repeat the process for 300 times and find overall error rate.

1.3.2 Computation

We use Beowulf cluster computing environment with 58 nodes for doing all

the analyses. Yu (2002) developed the package Rmpi, which is an interface to

Message Passing Interface (MPI). This package allows to implement R codes

cooperatively in parallel across multiple machines. Some of the microarray data

sets are very large and so running the leave-one-out or re-sampling procedure

demands lots of computation time. We enjoy very good computational savings

using this Beowulf cluster computing facility.

1.4 SIMULATION RESULT

To discuss the motivation of proposed method, we use a simulated data set. The

concept of this simulation is similar to what was discussed by Guo et al. (2007)

as two-group dependent structure. We assume that the conditional densities

of x in two classes are MVN(µ1, Σ1) and MVN (µ1,Σ1). There are P = 2000

input variables. The mean, µ1, for first group is P ×1 vector of elements 0. The

mean vector in another group has first 100 elements as 0.5 and rest 1900 as 0.
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The covariance for both groups is block diagonal but with different block sizes.

Both the densities have covariance structure as:




Σρ 0 0 · · · · · · · · ·
0 Σ−ρ 0 0 · · · ...

0 0 Σρ 0 · · · ...
... 0 0 Σ−ρ 0

...
...

...
... 0

. . .
...

· · · · · · · · · · · · · · · · · ·




(1.15)

Each block in the covariance matrix has autoregressive form. If ρ is autocorre-

lation between successive genes, and the block size is B then Σρ can be written

as:

Σρ =




1 ρ ρ2 · · · ρB−1

ρ 1 ρ · · · ρB−2

ρ2 ρ 1 . . . ρB−3

...
...

...
. . .

...

ρB−1 ρB−2 · · · · · · 1




(1.16)

We consider same autocorrelation, ρ = 0.9, for both groups; but take dif-

ferent block sizes B = 40 and B = 100. Training set contains 100 observations

from each class. To evaluate the performance, 500 test samples are generated

from each group using same procedure.

We see from Table 1.1 that all methods are hugely improved through the

use of NNC. SCRDA gained the most improvement as the error rate decreased

from 25.8% to only 11.1%. This augmentation turned SCRDA to be the best

performing method in this data set. The gain in SVM is minimum.
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Performance of different methods with and without augmented covariates

Method k=0 k=1

DLDA 27.8 21.5

DQDA 28.9 24.7

SVM 19.3 16.7

SCRDA 25.8 11.1

Table 1.1: Misclassification rate for different methods in simulated data. All the rates

are measured in percentage. Here k = 0 refers to original set of covariates, and k = 1

refers to one NNC augmented to the original set. A total of 200 training samples and

1000 test samples, measuring P = 1000 variables, are generated.

1.5 MICROARRAY DATA SETS

We assess the proposed method using four publicly available data sets. The

data sets are (i) colon cancer data (Alon et al., 1999), (ii) acute leukemia data

(Golub et al., 1999), (iii) prostate cancer data (Singh et al., 2002) and (iv)

breast cancer data (vant Veer it et al., 2002). An overview of the data sets is

given in Table 1.2. All of the data sets were either originally divided into groups

of training and test sets, or by the aforementioned authors. However, for an

extensive comparison we merge all the training and test samples and thereafter

find leave-one-out as well as re-sampling error rates.

Summary of the microarray data sets used in the analysis.

Name Description P n1 n2

Alon Colon cancer 2000 40 22

Golub Acute leukemia 7129 47 25

Singh Prostate cancer 12600 59 77

Veer Breast cancer 24188 51 46

Table 1.2: Summary table of four data sets that we analyze to evaluate the perfor-

mance of proposed method. P refers to the number of genes in corresponding data.

n1 and n2 are the number of samples available for class 1 and 2 respectively.
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1.5.1 Colon Cancer Data

This data set contains 62 tissue samples with 40 tumor and 22 normal samples

(Alon et al., 1999). An Affymetrix oligonucleotide array complementary to

more than 6, 500 human genes was used to analyze expression levels for these

samples. Finally 2000 genes are finally included in the data, which are not

readily preprocessed. We follow the pre-processing steps mentioned by Dudoit

et al. (2002):

• thresholding at floor of 100 and ceiling of 16000,

• filtering to exclude the genes with max / min ≤ 5 and (max−min) ≤ 500

• transformation using logarithm of base 10.

1.5.2 Acute Leukemia Data

Acute leukemia data set contains 72 bone marrow samples obtained from adults

with acute leukemia (Golub et al., 1999). Expression levels for 7129 genes are

measured using Affymetrix high-density oligonucleotide arrays. There are 47

samples of acute lymphoblastic leukemia (ALL ) and 25 samples of myeloid

leukemia (AML ). The data is not preprocessed and so same procedure as that

of Colon data is applied here.

1.5.3 Prostate Cancer Data

In this data set total of 12600 gene expression levels are measured for 136 tissue

samples (Singh et al., 2002). Expression profiles were derived from 77 prostate

tumors and 57 nontumor prostate samples from patients undergoing surgery.

The objective here is to separate tumor tissues from normal tissues. The pre-

processing steps mentioned by Singh et al. (2002) are applied to the data set

(Fort and Lambert-Lacroix, 2005):

• thresholding at floor of 10 and ceiling of 16000,

• filtering to exclude the genes with max / min ≤ 5 and (max−min) ≤ 50.
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• transformation using logarithm of base 10 is used.

1.5.4 Breast Cancer Data

The data contains 24188 expression profiles for 97 breast cancer patients. They

are divided into two groups - (i) who developed metastases within 5 years and

(ii) who remained disease-free within 5 years (vant Veer it et al., 2002). 46

patients developed distant metastases and 51 did not. The objective is to predict

the presence of subclinical metastases in order to provide a strategy to select

patients who would benefit from adjuvant therapy. The data set is preprocessed

and so no further preprocessing step is applied.

1.6 Gene Selection

Generally, selecting a subset of best differential genes provides better classifica-

tion result (Fort and Lambert-Lacroix, 2005) for different methods. Lee et al.

(2005) compared different classification methods for three different types of ini-

tial gene selection. It was showed that process of initial gene selection makes

difference in the performance. We use a criterion that is based on ratio of be-

tween to within group sum of squares of the genes (Dudoit et al., 2002). The

ratio for gene j is

BSS (j)
WSS (j)

=
∑

i

∑
l I(yi = l)(xlj − x̄.j)2∑

i

∑
l I(yi = l)(xij − x̄lj)2

where x̄.j is the average expression level of gene j across all samples and x̄1j

is the average expression level of gene j across samples in class l. A selection

of P genes are made by considering the genes having largest BSS /WSS ratios.

Although SCRDA can automatically select the genes during the process, we use

BSS /WSS criterion to select primarily 1000 genes for comparison with other

methods.
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Performance of different methods with and without augmented covariates

LOO OS

Data set k = 0 k = 1 k = 0 k = 1

DLDA Alon 12.90 12.90 13.72 13.66

Golub 4.17 1.39 2.81 2.28

Singh 29.41 28.68 28.43 27.83

Veer 32.99 32.99 32.14 32.07

DQDA Alon 12.90 12.90 14.25 14.13

Golub 1.39 1.39 1.95 1.90

Singh 36.76 36.76 36.17 36.03

Veer 31.96 30.92 29.04 28.56

SVM Alon 12.90 12.90 14.72 14.72

Golub 1.39 1.39 1.59 1.59

Singh 5.88 5.88 7.22 7.07

Veer 30.93 30.93 31.17 31.14

SCRDA Alon 12.90 9.68 13.87 13.67

Golub 6.94 2.78 6.03 5.53

Singh 8.38 5.15 6.01 5.87

Veer 33.84 33.60 30.88 30.41

Table 1.3: Leave-one-out (LOO) and out of sample (OS) misclassification rates (in

%) of different methods with and without the augmented nearest neighbour covariates

(NNC). Here k = 0 refers to no NNC and k = 1 refers to first NNC included in the

initial covariate set. A selection of best 1000 genes was made for the comparison.

1.7 CONCLUSION

We have discussed the plausibility of using a modified classification procedure to

improve prediction accuracy in existing methods. Performance of the approach

was evaluated through one simulated and four real data sets. The method is

flexible and provides better results in most situation.

The simulation was constructed such a way that the decision boundary be-
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tween two classes is non-linear. It was found that all methods got substantial

improvement through the use of NNC approach. Table 1.3 demonstrates the

misclassification error rate using different methods. We see from the result of

leave-one-out cross-validation that the classification accuracy improves in al-

most all methods. SCRDA experiences greatest gain in prediction for most of

the data sets. Moreover, the application of re-sampling technique shows that

some systemic decrease in misclassification rate can be gained through the use

of first NNC.

Investigation showed that some other dimension reduction techniques; for

example, Principal component regression (PCR) or partial least squares regres-

sion (PLSR) with augmented NNC can provide very good result. This approach

can be extended to any classification rule for plausible improvement.

1.8 FUTURE WORK

We will extend this approach to study the performance in multi-class problem.

The procedure can take multiple number of nearest neighbour covariates (NNC).

We will develop some adaptive selection procedure for the optimal number of

NNC to be finally added in the model.
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