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ABSTRACT

Three topics in the analysis of microarray genomic data are discussed and im-

proved statistical methods are developed in each case.

A statistical test with higher power is developed for detecting periodicity in mi-

croarray time series data. Periodicity in short series, with non-Fourier frequencies,

is detected through a Pearson curve calibrated to the null distribution obtained by

computer simulation. Unlike other traditional methods, this approach is applicable

even in the presence of missing values or unequal time intervals. The usefulness of the

new method is demonstrated on simulated series as well as actual microarray time

series.

The second topic develops a new method for detection of changes in DNA or gene

copy number. Regions for DNA copy number aberrations in chromosomal material

are detected using maximum overlapping discrete wavelet transform (MODWT). It

is shown how repeated application of MODWT to a series can be used to confirm the

presence of change points. Application to simulated as well as array CGH (Compara-

tive Genomic Hybridization) data confirms the excellent performance of this method.

In the third topic, it is shown that an improved class predictor for tissue samples

in microarray experiments is developed by incorporating nearest neighbour covariates

(NNC). It is demonstrated that this method reduces the mis-classification errors in

both simulated and actual microarray data.

KEY WORDS: Beowulf cluster computing with R, change points in array CGH DNA

copy number, class prediction in microarray datasets, detection of periodicity in mi-

croarray time series experiments, nearest neighbour covariates, wavelet change-point

detection.
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INTRODUCTION

Chapter 0

INTRODUCTION

Microarray experiment is a promising technology to monitor the expression levels for

thousands of genes simultaneously. This technology is relevant to almost all fields of

life sciences. Microarrays provide a more complete understanding of the molecular

variations among tumors, and hence direct to better diagnosis and treatment strate-

gies for many diseases. DNA microarray experiments, followed in defined time period,

are highly suitable to gene expression levels during a biological process. Apart from

monitoring transcript or messenger ribonuceic acid (mRNA) levels, DNA microarrays

are used to detect single nucleotide changes, unbalanced chromosome aberrations by

Comparative Genomic Hybridization (CGH) experiment (Nuber, 2005).

The analysis of microarrays demands solving a number of statistical problems

ranging from normalization to different supervised and unsupervised studies. Growth

and development of any organism requires appropriate regulation of cell division cycle

(Whitefield et al., 2002). In cancer cell, the molecular processes for duplication of cell

are erratic. So, advent of treatment for cancer or some other diseases might get pos-

sible through proper understanding of cell division cycle. There are well established

theory and application to test for periodicity in short time series but with Fourier

frequencies. However, most of the microarray time series are short and there is no

guarantee that the series will only have Fourier frequencies. Wichert et al. (2004)

discussed the issue of investigating periodicity in the microarray cell cycle data us-

ing Fisher’s g statistic. Our proposed method can lead to substantial improvement

1



in power of the test when non-Fourier frequencies are present in the series. More-

over, other traditional methods fail to operate in presence of missing values in the

series. But the proposed method is not affected by the missing values or unequal time

interval.

Due to the presence of large number of genes for each single array, the issue of

multiple testing in a genome-wide data analysis plays a great rule in reaching the

final conclusion. A significant p-value obtained from a given setting for a specific

gene would very unlikely refer to randomness rather than true features of this gene.

But the presence of large number of genes makes it possible to get false positive and

false negatives for a defined hypothesis. Wichert et al. (2004) used a method of False

Discovery Rate (FDR), first proposed by Benjamini and Hochberg (1995), as multiple

testing procedure. False positive rate, which leads to p-value, differ conceptually from

FDR. Storey and Tibshirani (2003) suggested working with positive FDR (pFDR) for

multiple testing. Pounds et al. (2004) proposed a method, called the spacing LOESS

histogram (SPLOSH) for estimating the conditional FDR (cFDR) and claimed that

this approach is more stable than the qvalue. Simulation results and implementation

to real data show the variation of selecting the number of periodically expressed genes

through different multiple testing methods. SPLOSH revealed to be most conservative

while qvalue approach seems to be liberal in detecting correct number of periodic

genes.

Copy number changes, also called chromosome gains or losses in the DNA content,

often cause to tumorigenesis. Array CGH is a molecular-cytogenetic method that pro-

vides a way to do genomewide screening for such loss and gain regions referring to

genetic alterations. To study and solve the challenge of efficiently identifying the

regions with DNA copy number alterations, a number of methods have already been

proposed. Pollack et al. (2002) applied a moving average to the process of ratios, and

2



use normal versus normal hybridization to compute the threshold. Maximum likeli-

hood approach to fit mixture models corresponding to gain, loss and normal regions

was used by Hodgson et al. (2001 ). An algorithm, proposed by Wang et al. (2005),

builds hierarchical clustering-style trees along each chromosome, and then selects the

clusters by controlling the FDR at a specific level. Wang (1995) develops a method

for identifying the jumps in a time series by comparing wavelet coefficients of the data

with a proposed threshold. In chapter 2, we propose a method using maximum over-

lapping discrete wavelet transform (MODWT) to detect the amplification or deletion

points of DNA copy number. The region is defined to be gain or loss region using

parametric bootstrap procedure.

A successful diagnosis and treatment of cancer depend on the classification of tu-

mors through high-throughput microarray data analysis and this is one of the mostly

studied issues in microarray experiment. Golub et al. (1999) worked with qualitative

disease phenotypes. Comparison of different classification methods was provided by

Dudoit et al. (2002) and Simon et al. (2004). Traditional k-nearest neighbour method

selects single nearest neighbour for the purpose of predicting future observations. In

Chapter 3, we consider plausibility of taking first nearest neighbour covariates in the

set of original inputs. The performance of four methods in four miroarray and one

simulated data set was investigated. We found that this type of augmented covariate

set can result in better prediction.
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TESTING PERIODICITY AND APPLICATION TO GENE EXPRESSION DATA

Chapter 1

TESTING PERIODICITY AND APPLICATION TO GENE

EXPRESSION DATA

1.1 INTRODUCTION

Searching and studying the behavior of periodically expressed genes in time series

gene expression data have drawn recent interest in microarray technology. There are

well established theory and application to test for periodicity in time series with small

sequence size and Fourier frequencies. However, most of the microarray time series

are short and there is no guarantee that the series will only have Fourier frequencies.

Wichert et al. (2004) discussed the issue of investigating periodicity in the microarray

cell cycle data. They introduced a graphical approach, called average periodogram

(AP), for a quick view for searching periodicity in the data set. Our investigations

suggest that this method does not perform well if the data set contains unequal

frequencies for different series. For some of the cell cycle data sets, it was found that

the AP gives misleading results. Application of Fisher’s g statistic for detecting the

periodicity in gene expression data fails to perform correctly even in some explicit

periodic series. This is, in fact, mostly due to the non-Fourier frequencies in the

series. Specifically, Fisher’s g test has very low power for testing periodicity in short

series with non-Fourier frequencies. In Section 1.4 we show that n ≥ 50 is needed.

In our procedure we use log-likelihood ratio (LLR) for any kind of frequencies. We

simulate data from completely white noise process and find the LLR for the series.
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The simulation is done very large number of times and a Pearson VI curve is fitted to

the calculated −2LLR. Thereafter the p-value for the required test can be obtained

from the CDF of the curve.

In testing periodicity, missing time points are either imputed by interpolation or

the genes with missing values are removed from the analysis. Our proposed method

is completely simulation based and so there is no need to omit any gene with missing

observations. We just simulate the observations according to the time points of our

working data set.

Permutation test is an exact test, introduced by Fisher and Pitman in the 1930’s.

Initially it represented a theoretical standard rather than a practical approach. But

with the improvement of computer speed, the permutation test was applied to a

wider and wider variety of problems (Good, 2000). We can obtain as small as 0.02%

percentage of variance for a desired p-value of 0.001 when 5000 random permutations

are taken. The permutation test cannot generate very low p-values. In the multiple

testing situation we face in time series microarray experiments, this implies that it

will have lower power than the method we have developed.

Large number of statistical hypothesis tests conducted in the microarray data

analysis can potentially lead to a large number of false discoveries, which is signifi-

cant findings that arise solely by chance mechanisms. Therefore, reaching a correct

decision in such case requires the use of an efficient multiple test method. A short

simulation result shows the variation of selecting the number of periodically expressed

genes using different multiple testing methods. Pearson Curve fitting method was ap-

plied to various microarray data sets for periodicity detection; then Benjamini and

Hochberg’s FDR, Storey’s q-value approach and Pounds & Cheng’s SPLOSH were

used for detecting the number of genes of interest. The results depend highly on

the choice of multiple test method. Other issues might affect the analysis e.g. non-

7



randomness or autoregressive-behavior of the error process in the sinusoidal model.

After all, the result of the whole analysis should be verified by biological interpretation

for final conclusion.

The whole procedure was implemented in software R. Moreover, GeneTS and

qvalue packages from CRAN were used for Fisher’s g test and Storey’s q-value ap-

proach. The method for SPLOSH is available online (Pounds et al., 2004).

Figure 1.1: First 24 most significantly periodic ORFs in Caulobacter crescentus cell cycle
data. The periodicity was detected using Pearson curve fitting method. Here the periodic
pattern in all series is not same. The genes are indicated in the top level.
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1.2 METHODS

In its simplest form we assume that the time series, zt, t = 1, . . . , n consists simply

of a sinusoid plus random error.

zt = µ+ α cos(2 πλt+ β) + et (1.1)

where et is the error or disturbance and α, β and λ are the parameters. It is frequently

assumed that et is IID with mean zero and variance σ2. This lack of autocorrelation is

probably not suitable. It is worthwhile to explore a generalization of this assumption

so that et is assumed to be generated by a stationary time series model such as an

AR(1).

The model in equation 1.1 can also be written in the form,

zt = µ+ A cos(2 πλ t) +B sin(2 π λ t) + et (1.2)

where A and B jointly determine the amplitude and phase of the sinusoid and λ is the

frequency. The periodogram is usually computed at the Fourier frequencies, λj = j/n

where j = 1, ..., [n/2].

I(λj) =
1

n
|

n∑
t=1

zte
−2πiλjt|2 (1.3)

Fisher’s g statistic can be written as,

g =
maxj I(λj)∑m

j=1 I(λj)
(1.4)

where m is (n-1)/2 or (n-2)/2 according to n is odd or even.

Then under the assumption that et is NID (0, σ2) and the null hypothesis H0 :

λ = 0 the CDF of g is given by,
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F (x) = Pr(g ≤ x) = 1−
ρ∑

i=1

(
n

i

)
(−1)(i−1)(1− ix)(n−1) (1.5)

where ρ = b1/xc. An upper tail test is used so the observed p-value is given by

1− F (g).

Note that although the null hypothesis is H0 : λ = 0, Fisher’s g test will also

detect any departure from an uncorrelated sequence provided the sample is large

enough. The test will be optimal against an alternative hypothesis H1 : λ = λj

where λj ∈ 1/n, 2/n, ..., [n/2]/n.

It should be noted here that, when the data are independent random numbers

drawn from a Gaussian distribution, the periodogram ordinates at the Fourier fre-

quencies are independently exponentially distributed. Walker (1965) searched for

the maximum likelihood of the frequency over the range 0 to π; and thus it was

not restricted to only the Fourier frequency. Turkman and Walker (1984) gave the

asymptotic distribution of

G
′
T = max

f∈(0,π)
Ix(f)/µ (1.6)

where f = 2πλ and µ is the mean of the distribution of the periodogram ordinates.

It was shown that

P [G
′
T ≤ z + log n + log(log n)/2− log(3π)/2] = exp[− exp(−z)] + o(1) (1.7)

Chiu (1989) proposed a modified statistic which is proportional to the ratio of the

maximum periodogram to a trimmed mean of the periodogram. It was shown that the

method has same asymptotic power as that of Fisher’s test. Let µ̂ = n−1 ∑m
j=1 I(λj)

and Ĩ(λj) = I(λj)/µ̂ be the normalized periodogram. It was mentioned that Fisher’s

test statistic is proportional to the maximum of the periodogram ordinates normalized
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by the sample mean of the periodogram ordinates. When the series contains periodic

components, the periodogram ordinates at frequencies close to the frequencies of

these components have large magnitude and these periodogram ordinates can be

viewed as outliers in an exponential sample. The sample mean is affected by outliers,

but Fisher’s test uses the sample mean to normalize the periodogram. The sample

mean of the periodogram ordinates tends to be larger than µ when the series contains

periodic components; therefore, Ĩ(λj) tends to be smaller than I(λj)/µ. So the power

of Fisher’s test will be smaller than the power of the test based on the maximum

of I(λj)/µ. This issue leads to another test that uses the maximum of periodogram

ordinates normalized by a robust estimate of µ. Chiu (1989) proposed the test statistic

to be

RT (β) = In/

nβ∑
j=1

Ij (1.8)

where I1 < I2 < . . . < In are the order statistic of the periodogram ordinates

I(λj) and β is a constant between zero and unity which determines the proportion of

periodogram ordinates trimmed. Usually β = 0.9 or β = 0.95 will give good result.

The performance of the test is not very sensitive to the choice of β. A value of β = 1

refers to Fisher’s test as an extreme case.

In the case of non-Fourier frequency, Chiu (1989) extended the method in Equa-

tion (1.6) to give a new form of statistic. Instead of using all ordinates of the peri-

odogram, the statistic takes trimmed mean by considering only lower 100β% I(f ′)’s

in account. The statistic is defined as

GT = max
f∈(0,π)

cIx(f)/µβ (1.9)

where c = 1 + (1− β) log(1− β)/β.
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1.2.1 PEARSON SYSTEM OF EQUATION

In statistical literature some families of distributions have been constructed to pro-

vide approximations to a variety of observed distributions. Such families are often

called system of distributions and elaborate discussion was given by Johnson and

Kotz (1970). Karl Pearson proposed a family of systems where every member has a

probability density function p(x) which satisfies a differential equation of the form

1

p

dp

dx
= − a+ x

c0 + c1x+ c2x2 (1.10)

Type IV occurs when c0 +c1x+c2x
2 does not have real roots. Type VII is the special

symmetrical case of Type IV, and it occurs when c1 = a = 0. This nests Student’s

t distribution. Type III (Gamma distribution) occurs when c2 = 0. Type V arises

when the quadratic c0 + c1x+ c2x
2 = 0 has one real root. In this case c21− 4c0c2 = 0

. The Normal distribution is obtained when c1 = c2 = 0.

That leaves Type I, Type II and Type VI. These cases occur if c0 +c1x+c2x
2 = 0

has two real roots, r1 and r2. In particular, Type I occurs if r1 < 0 < r2; that is,

roots are of opposite sign with domain r1 < x < r2. This nests the Beta distribution.

Type II is identical to Type I, except that here we further assume that r1 = −r2.

This yields a symmetrical curve with β1 = 0. Type VI occurs if r1 and r2 are the

same sign; the domain is x > r2 if 0 < r1 < r2, or x < r2 if r2 < r1 < 0. In the case

of Type VI, with two real roots of the same sign, one can express c0 + c1x+ c2x
2 as

c2(x− r1)(x− r2). The family of solutions is then:

P (x) = K(x− r1)
a+r1

−c2r1+c2r2 (x− r2)
a+r2

c2r1+c2r2 (1.11)

where K is a constant of integration which can now be solved for the relevant domain.

The shape of the resulting distribution will clearly depend on the Pearson parameters
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(a, c0, c1, c2). These parameters can be expressed in terms of the first four moments

of the distribution. Thus, if we know the first four moments, we can construct a

density function that is consistent with those moments. This provides a nice way of

constructing density functions that approximate a given set of data. Karl Pearson

grouped the family into a number of types. These types can be classified in terms of

(β1,β2) space, where

β1 =
µ2
3

µ3
2

and β2 =
µ4
µ2
2

We can consider some higher order polynomial. For example, taking c0 + c1x +

c2x
2 + c3x

3 in the denominator of the differential equation will provide flexible fit

given that the population moments are known. However, if the sample size is large

enough then using sample moments will still provide reliable fit. In terms of moments,

the solutions of the coefficients will be

c0 =
µ́1µ́3(µ́2

2 + µ́4) + µ́2(3µ́3
2 − 4µ́2µ́4) + µ́1

2(−4µ́3
2 + 3µ́2µ́4)

2(9µ́2
3 + 4µ́1µ́3 − 16µ́1µ́2µ́3) + 6µ́3

2 − 5µ́2µ́4 + µ́1
2(−3µ́2

2 + 5µ́4)

a =
20µ́1

2µ́2µ́3 − 12µ́1
3µ́4 − µ́3(3µ́2

2 + µ́4) + µ́1(−9µ́2
3 − 8µ́3

2 + 13µ́2µ́4)

2(9µ́2
3 + 4µ́1µ́3 − 16µ́1µ́2µ́3) + 6µ́3

2 − 5µ́2µ́4 + µ́1
2(−3µ́2

2 + 5µ́4)

c1 =
8µ́1

2µ́2µ́3 − 6µ́1
3µ́4 − µ́3(3µ́2

2 + µ́4) + µ́1(−3µ́2
3 − 2µ́3

2 + 7µ́2µ́4)

2(9µ́2
3 + 4µ́1µ́3 − 16µ́1µ́2µ́3) + 6µ́3

2 − 5µ́2µ́4 + µ́1
2(−3µ́2

2 + 5µ́4)

c2 =
6µ́3 + 4µ́1µ́3 − 10µ́1µ́2µ́3 + 3µ́3

2 − 2µ́2µ́4 + µ́1
2(−3µ́2

2 + 2µ́4)

2(9µ́2
3 + 4µ́1µ́3 − 16µ́1µ́2µ́3) + 6µ́3

2 − 5µ́2µ́4 + µ́1
2(−3µ́2

2 + 5µ́4)

We can use the relative likelihood function to compare two statistical models, say M1

and M2. Let  L(M1) and  L(M2) denote the likelihood for models M1 and M2. Then

the relative plausibility of model M1 vs. M2 is defined as R =  L(M1)/ L(M2). Our

aim is to test

H0 : α = 0 against H0 : α > 0
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The likelihood ratio after dropping the constant is then given as R = (S2/S1)n/2,

where S1 and S2 are given as

S1 =
∑n

t=1(zt − z̄)2 and S2 =
∑n

t=1(zt − Â cos(2πλ̂t)− B̂ sin(2πλ̂t))2

We partition the whole range of frequency in discrete parts; that is, for every

series of length 101 or less we take 50 frequency values ranging from 1/101 to 50/101.

Thus we can find the sum squares of residuals (S) in the regression model for each

value of λ and thereafter pick the value which minimizes the value of S. In the set-

ting, log-likelihood ratio can depict the presence of sinusoid in a given series. However,

non-identifiability of the distribution in the case when λ = 0 makes the maximum like-

lihood estimates non-normal, and so −2LLR does not follow χ2 distribution. 100, 000

simulated series of required size are obtained from white noise process and for each

series −2LLR is calculated. The resultant values follow Pearson Type VI distribution.

Therefore, we can find CDF and hence the p-value from this fitted curve. As men-

tioned before we can fit cubic Pearson-style distribution to the values and henceforth

find the p-values. It was explored that the difference between these two curve fitting

is negligible. Another curve fitting approach, with Pearson type VI distribution up

to 99% quantile and Pareto distribution thereafter at the tail, can also be used.

None of the traditional method is able cope with testing periodicity if there exist

unequal time interval or missing observations in the series. In this simulation method,

we simulate the observations exactly according to the time points where the original

series appear. For example, if the original series takes the values at time points 1, 3,

4, 5, 7, 8, 9, 10, 11, 13, then we fit the Pearson type VI curve given as

f(x) =
1.06080∗10105(−4.68199+1x)1.24837

(111.31353+1x)51.30084 , 4.68199 ≤ x ≤ ∞

after finding LLR from such simulated series. This allows us not to omit any series

with missing observations from our analysis.
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1.3 MULTIPLE TESTING

In microarray experiments we have thousands of short time series and these are tested

against some null hypothesis. Multiple testing procedures attempt to adjust p-values

derived from multiple statistical tests to correct for occurrence of false positives. The

aim is to estimate a measure of significance that is easily interpreted in terms of the

simultaneous testing of thousands of genes. Therefore, the final conclusion in gene

selection is based on multiple testing.

Suppose we have expression levels for G genes measured in time sequence. Using

some specific method of test of periodicity, let the p-values be p1, p2, . . . , pG. Wichert

et al. (2004) used False Discovery Rate (FDR), first proposed by Benjamini and

Hochberg (1995), as multiple testing procedure. There is big conceptual difference

between false positive rate and FDR. When features are said to be significant, the

false positive rate is the rate that truly null features are called significant. However,

the FDR is the rate that significant features are truly null. There are different other

multiple testing procedures present in the literature. However, we discuss two most

recent but appealing methods.

1.3.1 False Discovery Rate and q-value

p-value is a measure of significance in terms of false positive rate. Although the

idea of q-value is similar to that of p-value, the former is an extension of a quantity

called false discovery rate (Storey, 2002). Storey and Tibshirani (2003) claimed that

the method offers a sensible balance between the number of true and false positives

that is automatically calibrated. If the features with q-value less than α are called

significant, this means that among the significant features, a value of FDR will be

α%. The features with p-value less than α provides false positive rate of α% among
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all null features. Suppose we have total number of M features in the genomewide

study and consider table 1.1 for the development of q-value approach.

Possible outcomes in tests of hypothesis
Significant Not significant Total

Null True F M0 -F M0
Alternative True T M1 -T M1
Total S M-S M

Table 1.1: Different possible outcomes in hypothesis testing when we consider total
of M features in the genome-wide study. S is the number of outcomes we call signif-
icant. Here M0 and M1 represent the number of features under null and alternative
hypotheses respectively.

Under notations of table 1.1, the expected value of false positive E(F ) ≤ 0.05M

is guaranteed by a p-value threshold of 0.05. In a genomewide study, the value of

M will be large and hence the value of E(F ); this leads the false positive rate to be

very liberal. Again, controlling the family wise error rate Pr(F ≥ 1) would be too

conservative as we generally have a number of significant genes in a microarray data

analysis. A balance between these two situation can be done by considering FDR

which is the expected value of the ratio between number of false positives and total

number of significant genes.

FDR = E(
F

S
) (1.12)

Now the FDR is to be estimated such that a feature is called significant when the

p-value is less than or equal to a threshold t (0 < t < 1). Let p1, p2, ..., pM be the

p-values and

F (t) = #{null pi ≤ t; i = 1, 2, ...,M}

S(t) = #{pi ≤ t; i = 1, 2, ...,M}
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Since the number of features is very large, we can write,

FDR(t) = E(
F (t)

S(t)
) ≈ E(F (t))

E(S(t))
(1.13)

A simple estimate of E(S(t)) is the observed S(t). The null p-values are uniformly

distributed over the range of 0 and 1 and so Pr(null p ≤ t) = t. We can write

E(F (t)) = M0t; but M0 is unknown and has to be estimated. This is equivalent to

estimating π0 = M0/M . As the null p-values are uniformly distributed, an estimate

of π0 with respect to tuning parameter λ, can be expressed in the following form:

π̂0(λ) =
#{pi > λ; i = 1, 2, ...,M}

M(1− λ)
(1.14)

There is a tradeoff between bias and variance in choosing the value of λ. If λ

increases, the bias of π̂0(λ) decreases and the bias is the minimum when λ→ 1. Thus

we need to estimate the quantity limλ→1 π̂0(λ) ≡ π̂0(λ = 1). In order to do so, the

value of ˆπ0(λ) is plotted for a sequence of values of λ ranging from 0.001 to 0.95. A

cubic spline is fitted to these data points, and then evaluated at λ = 1. This fitted

value is the final estimate for π0.

The estimated value of FDR can be quantified as

F̂DR(t) =
π̂0mt

S(t)
=

π̂0mt

#{pi ≤ t}
(1.15)

Now, the q value of feature i can be estimated by using the estimated FDR from

above equation

q̂(pi) = min
t≥pi

F̂DR(t) (1.16)

Storey and Tibshirani (2003) used positive FDR (pFDR) as an alternative quantity

to FDR. This is defined as, pFDR = E(F/S|S > 0). Most technically, a q value
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is defined as the minimum pFDR at which the feature is called significant. How-

ever, Pr(S > 0) approximates 1 due to large number of features in a study, and so

clearly pFDR ≈ E(F )/E(S). This quantity is approximately equal to FDR; thus the

distinction between these two was not considered to be crucial.

Providing an example, Storey and Tibshirani (2003) mentioned that Benjamini’s

approach of using FDR is too conservative and thus has smaller power as it assumes

π0 = 1. Another restrictive and impractical behavior of Benjamini’s approach is that

a single acceptable level of FDR has to be chosen beforehand.

Storey and Tibshirani (2003) suggested an automated algorithm to calculate q-

value:

1. Let p(1) ≤ P(2) ≤ ... ≤ p(m) be the ordered p-values.

2. For a large range of λ, say λ = 0.001, 0.002, ..., 0.95, calculate

ˆπ0(λ) =
#{pi>λ;i=1,2,...,m}

m(1−λ)

3. Let f̂ be the natural cubic spline with 3 df of π̂0(λ) on λ.

4. Set the estimate of π0 to be π̂0 = f̂(1)

5. Calculate

q̂(p(m)) = mint≥p(m)

π̂0mt
#{pj≤t} = π̂0p(m)

6. For i = m− 1,m− 2, . . . , 1 calculate

q̂(p(m)) = mint≥p(m)

π̂0mt
#{pj≤t} = π̂0p(m) = min(

π̂0mt
i , q̂(p(i+1))

7. The estimated q-value for the ith most significant feature is q̂(p(i))
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1.3.2 SPLOSH

This method, called spacings LOESS, was recently proposed by Pounds et al. (2004).

It works through estimating conditional FDR (cFDR), the expected proportion of

false positives given we have r significant genes. Pounds et al. (2004) claimed that

their method is more stable than Storey’s q-value approach. cFDR is defined as

cFDR = E(
V

R
|R = r) =

E(v|R = r)

r
(1.17)

Using the definition of FDR, we can write

cFDR = FDR =
π0t

Pr(p ≤ t)
=

π0t

F (t)
(1.18)

and so an estimate of this would be

̂cFDR =
π̂0t

F̂ (t)
(1.19)

We see in q-value approach that F̂ (t) is considered to be the observed proportion

of p-values less than t and π0 is estimated using cubic spline. SPLOSH works with

getting a smooth estimate for F (t) in estimating cFDR. Now, F̂ (t) can be considered

as an estimate of p-value CDF, F (t). A smooth estimate of F (t) could be obtained

by integrating an estimate of p-value PDF, f(t). Pounds et al. (2004) described

the whole procedure for getting smooth estimate of cFDR after giving the notations

for various calculations. Let p(1) ≤ p(2) ≤ ... ≤ p(g) be the ordered p-values and

a(i) = (i− 1/2)/g be their adjusted ranks. Assume that there are g̃ unique p-values

written as p̃(1) ≤ p̃(2) ≤ ... ≤ p̃(g). For j = 1, 2, ..., g̃, let ãj be the average of a(i)

for all i such that p(i) = p̃(j). Define p̃(0) = 0 and ã(0) = 0 if p̃(1) > 0. Also define

p̃(g̃+1) = 1 and ã(g̃+1) = 1 if p̃(g̃) < 1. l and u respectively represent the lower and

19



upper indices j of the set p̃(j):

l =

{
0, if p(1) > 0

1, otherwise

and

u =

{
g̃, if p(g̃) < 1

g̃ + 1, otherwise

For j = l, ..., u− 1, define

mj =
p̃(j+1) + p̃(j)

2
(1.20)

4j = p̃(j+1) − p̃(j) (1.21)

∂j =
ã(j+1) − ã(j)

p̃(j+1) − p̃(j)
(1.22)

x̃j = arcsin[2× (mj − 1/2)] (1.23)

ỹj = log(∂j) (1.24)

(1.25)

For i = 1, 2, ..., G, define

xi = arcsin[2× (pi − 1/2)] (1.26)

Then the procedure to get estimate of cFDR using SPLOSH algorithm is described

in the following steps:

1. Compute the quantities mj and xi described above

2. Apply LOESS to (x̃j , ỹj) for j = l, ..., u− 1 to obtain as estimated curve ŷ(·).

3. For j = l, ..., u, let f̂∗(p̃(j)) = exp[ŷ(x̃(j))] be an estimate of f(p̃(j)) up to a

unitizing constant c.
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4. Let f̂(pi) = 1/cf̂∗(p̃(j)) estimate the PDF at pi for i = 1, 2, ..., G, where

c =
1

2

u−1∑
j=l

[f̂∗(p̃(j)) + f̂∗(p̃(j+1))]4j (1.27)

is determined by trapezoid rule integration.

5. Let F̂ (p̃(i)) = 0 and for k = l + 1, ..., u let

F̂ (p̃(k)) =
1

2

k−1∑
j=l

[f̂(p̃(j)) + f̂(p̃(j+1))]4j (1.28)

be an estimate of F̂ (p̃(k)) obtained by trapezoid rule integration.

6. Let π̂0 = min1≤i≤g f̂(pi)

7. For i = 1, 2, ..., g, obtain r(i) ≡ r̂(p(i)) by substituting the value of p(i), π̂0 and

F̂ (p(i)) in the definition of ̂cFDR. Use π̂0/f̂(0) as an estimate of cFDR for

p-values equal to 0.

8. Define

h(i) = min
k≥i

(r(k)) (1.29)

as a monotone quantity based on the cFDR estimates r(i), for i = 1, 2, ..., g.

This algorithm is called SPLOSH because it applies LOESS to the p-value spacings

to obtain a PDF estimate.

In the procedure described above, the log-transformation of ∂(i) ensures that the

PDF estimate will be strictly positive after back-transformation. Moreover, this trans-

formation makes the distribution of y(j) more symmetric, which is important to get

reasonable estimate of ŷ(·) after applying LOESS algorithm. For p-values at extreme
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ends, overborrowing information from the center of the p-value distribution in esti-

mating ŷ(·) using LOESS is prevented by the arc-sine transformation of m(j). At

p-values close to 0 and 1, this overborrowing of information tends to give respectively

downward and upward bias estimate of f(p).

Simulation as well as a real example was presented to show that SPLOSH exhibits

greater stability than Storey’s q-value method for small p-values. To estimate F̂ (t),

SPLOSH uses the information on both sides of t and thus maintains the level of

stability. However, q-value approach uses the information only on the left side of t,

and thus makes the method unstable.

1.4 RESULTS

We investigate the performance of our proposed method for different series sizes. The

following tables show the power comparison, at a pre-specified significance level 0.05,

using two methods - (a) Fisher’s g test and (b) Pearson type VI curve fitting. The

results are based on simulation studies each from three types of series - (a) white noise

process, (b) series with Fourier frequency and (c) series with non-Fourier frequency.

The simulation results for first kind of series, that is, series with λ = 0 refer to type

I errors.

1.4.1 Sample Size-10

We simulate series of length 10 and calculate log-likelihood ratio. Figure 1.2 indicates

that the estimated moments refer to the space of Pearson type VI density. This claim

is confirmed by looking at figure 1.3, which indicates that the estimated and exact

density function merge. From the simulated values, we can obtain a fitted density of
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the form:

f(x) =
4.9961128(−4.55905 + x)0.77219

(147.49666 + 1x)59.30667 , 4.55905 ≤ x ≤ ∞ (1.30)

Figure 1.2: The distribution of simulated log-likelihood ratio for the test of periodicity
in white noise series of length 10. The simulation was done for 105 times. It reveals that
Pearson type VI is the most appropriate system of distribution in this case

We present the simulation result in Table 1.1. First and second elements in each

column represent the values obtained from Fisher’s g test and Pearson curve fitting

method respectively. Series with Fourier frequency and small error variance (σ2),

both Fisher’s g test and Pearson curve fitting give good power of the test. However,

with the increase of error variance the former outperforms the latter.

A series with λ = 0.15 corresponds to the series with non-Fourier frequency. In

such a case, Fisher’s g test fails miserably to test periodicity in the series. As can be

seen from Table 1.1, this test even fails 100% of times for the series with λ = 0.15

and very small value of σ. Pearson curve fitting still gives very large power of the

test. There is almost no difference in the performance of this method for Fourier
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Figure 1.3: Comparison of fitted and theoretical Pearson type VI curve. Solid black curve
represents the latter, while the dotted red curve represents the other. The fitted line was
obtained from 105 simulated log-likelihood ratios when testing periodicity in white noise
process of length n = 10.

Power comparison; n = 10
σ λ = 0.0 λ = 0.1 λ = 0.15

0.1 0.0505|0.0506 1.0000|1.0000 0.0000|1.0000
0.2 0.0541|0.0517 1.0000|0.9998 0.0010|0.9997
0.3 0.0483|0.0523 0.9748|0.9455 0.0093|0.9281
0.4 0.0486|0.0501 0.8136|0.7300 0.0230|0.7043
0.5 0.0499|0.0530 0.5816|0.4950 0.0386|0.4822
0.6 0.0480|0.0503 0.4107|0.3332 0.0359|0.3205
0.7 0.0457|0.0501 0.2890|0.2348 0.0412|0.2248
0.8 0.0508|0.0508 0.2104|0.1712 0.0447|0.1693
0.9 0.0492|0.0501 0.1677|0.1355 0.0450|0.1326
1.0 0.0500|0.0489 0.1272|0.1117 0.0480|0.1089

Table 1.2: Power comparison of Fisher’s test and Pearson curve fitting method for a series
of length 10. The simulation was carried out 104 times. λ = 0.1 and λ = 0.15 correspond to
Fourier and non-Fourier frequencies respectively. First element in each column represents
the power for Fisher’s g test and the second one represents that for our proposed method.

or non-Fourier frequencies. So the table reveals that the presence of even a perfect

periodicity might not be detected by Fisher’s g test when the sequence possesses

non-Fourier frequencies. For example, Figure 1.4 is a plot for the series defined as
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Figure 1.4: Representation of the series cos(2πλt), where λ = 0.15 and series length is 10.
Fisher’s test is unable to detect the periodicity due to non-Fourier frequency in the series.

cos(2π(0.15)t) where series size is 10 and λ = 0.15, a non-Fourier frequency. Although

this is a perfect sinusoidal series, Fisher’s g test fails to detect the periodicity.

1.4.2 Sample Size-20

Estimated moments plotted in Pearson system diagram indicate that the distribution

of simulated −2LLR follows Type VI density and an estimate can be given as:

f(x) =
3.9981956(−4.64171 + x)1.69362

(45.63029 + 1x)33.69305 , 4.64171 ≤ x ≤ ∞ (1.31)

Table 1.2 indicates that the power of the test is almost same as that of the Fisher’s

g test when the series possesses Fourier frequency. Although the power of Fisher’s g

test in the series with non-Fourier frequency is better than that for n = 10, it is still

not satisfactory.
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Power comparison; n = 20
σ λ = 0.0 λ = 0.1 λ = 0.125

0.1 0.0503|0.0509 1.0000|1.0000 0.3848|1.0000
0.2 0.0493|0.0497 1.0000|1.0000 0.3310|1.0000
0.3 0.0507|0.0510 1.0000|1.0000 0.2883|1.0000
0.4 0.0517|0.0521 0.9995|0.9987 0.2400|0.9992
0.5 0.0522|0.0525 0.9858|0.9697 0.2042|0.9702
0.6 0.0485|0.0532 0.9078|0.8585 0.1653|0.8532
0.7 0.0504|0.0494 0.7610|0.6910 0.1389|0.6839
0.8 0.0567|0.0561 0.6048|0.5214 0.1143|0.5158
0.9 0.0501|0.0493 0.4730|0.3995 0.1011|0.3990
1.0 0.0497|0.0486 0.3583|0.3036 0.0856|0.2912

Table 1.3: Power comparison of Fisher’s test and Pearson curve fitting method for a series
of length 20. The simulation was carried out 104 times. λ = 0.1 and λ = 0.125 correspond
to Fourier and non-Fourier frequencies respectively. First element in each column represents
the power for Fisher’s g test and the second one represents that for our proposed method.

1.4.3 Sample Size-50

Series size of 50 gives a simulated Pearson VI curve as:

f(x) =
2.0853(−5.1567 + x)2.49946

(32.93073 + 1x)34.22725 , 5.1567. ≤ x ≤ ∞ (1.32)

Table 1.3 reveals that the performance of Pearson curve fitting and Fisher’s g test is

almost same for Fourier frequency. With non-Fourier frequency and large value of σ,

the latter still does not have very good power of the test.

1.4.4 Multiple Tests

As shown in our previous simulation results, Pearson curve fitting has better power

than Fisher’s exact test. We make comparison of the multiple test methods to see how

each one can pick the number of significant genes. Similar to what was described by

Wichert et al. (2004), we simulate the data with 100 periodic and 1900 random genes

for series length of 10, 20 and 50. We consider λ = 1/2π and σ = 0.1 in our original
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Power comparison; n = 50
σ λ = 0.0 λ = 1

10 λ = 11
100

0.1 0.0492|0.0493 1.0000|1.0000 1.0000|1.0000
0.2 0.0519|0.0487 1.0000|1.0000 1.0000|1.0000
0.3 0.0494|0.0482 1.0000|1.0000 1.0000|1.0000
0.4 0.0469|0.0458 1.0000|1.0000 0.9995|1.0000
0.5 0.0535|0.0508 1.0000|1.0000 0.9814|1.0000
0.6 0.0503|0.0524 1.0000|0.9999 0.8962|0.9999
0.7 0.0495|0.0492 0.9996|0.9987 0.7568|0.9981
0.8 0.0543|0.0531 0.9914|0.9859 0.5930|0.9877
0.9 0.0471|0.0437 0.9583|0.9380 0.4777|0.9416
1.0 0.0504|0.0515 0.9020|0.8617 0.3571|0.8659

Table 1.4: Power comparison of Fisher’s test and Pearson curve fitting method for a series
of length 50. The simulation was carried out 104 times. Here λ = 1/10 and λ = 11/100
correspond to Fourier and non-Fourier frequencies respectively. The format of the elements
is same as that is in 1.1.

model. The multiple test levels are taken as q = 0.001, 0.01, 0.05, 0.1 and 0.15. The

simulation results are presented in Table 1.5. When the error variance is considered

to be very small, the detection of periodicity is obvious. In each case we see that

Benjamini and Hochberg’s FDR (BH) and q-value approaches give similar results.

SPLOSH gives closest number of significant genes to the actual one. However, as can

be expected the performance depends on the length of the series. For example, no

multiple test method is able to detect any periodicity at a level of q = 0.001 when the

series length is 10. But with increased level, e.g, q = 0.05, BH, q-value and SPLOSH

detect 80, 83 and 22 periodic genes respectively. This simulation results also confirm

that q-value approach is more liberal than BH approach.

1.5 APPLICATION TO GENE EXPRESSION DATA

Periodicity in different gene expression data was discussed by Wichert et al. (2004).

We use all the data sets they analyzed for implementing our proposed method. These
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Selecting periodic genes using different multiple test methods
q N = 10 N = 20 N = 50 N = 100

0.001 0|0|0 100|100|98 101|101|100 100|100|100
0.01 16|24|3 103|103|100 103|103|101 101|102|100
0.05 80|83|22 110|110|100 108|109|101 109|110|100
0.1 101|105|33 116|117|100 115|118|101 117|119|100
0.15 113|105|33 117|123|100 121|125|101 126|129|100

Table 1.5: Simulation results for the performance of different multiple test methods to
detect number of periodic genes. In each column first, second and third elements are the
numbers obtained by BH, q-value and SPLOSH respectively. The simulation was carried
out similar to that explained by Wichert et al. (2004). We simulate 100 periodic genes from
a model zt = cos(2πλt) + et, where λ = 1/2π and et ∼ NID (0, 0.3); other 1900 genes are
selected to have random Gaussian process.

cell cycle data sets contain various number of series lengths, and so the application

of the new method and different multiple test methods would verify the performance

that was discussed in simulation section. We shortly discuss the results obtained in

all the experiments, but present in detail that for Caulobacter crescentus cell cycle

data, which has one of the shortest series among all the experiments.

1.5.1 Yeast Cell Cycle

Spellman et al. (1998) analyzed the yeast Saccharomyces cerevisiae microarray exper-

iments. There are four gene expression experiment data set with three different cell

cycle synchronization techniques. The gene expression data sets are cdc15, cdc28,

alpha and elution. The periodicity analysis of cdc15 and elution indicates that

the proposed method detects less periodic genes than that by Fisher’s g test while dif-

ferent multiple test methods are taken into consideration. However, for the cdc28 and

alpha experiments, the number of periodic genes detected by Pearson curve fitting

method is much higher than that by other approach.

Table 1.9 for alpha experiment indicates that the proposed method results in 421,

283 and 236 periodic genes using q-value, SPLOSH and BH approaches respectively.
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Whereas, Fisher’s g results in 347, 150 and 193 periodic genes using the three multiple

tests respectively. However, it is difficult to distinguish cell-cycle specific variation

from an artifact of the method used to synchronize the cells.

Number of Significant genes in cdc15 data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 92|97 249|290 613|794 897|1121 1192|1406 1610|1807
q-value 11|0 50|57 293|493 540|893 879|1293 1422|1917

SPLOSH 29|26 64|80 171|256 251|738 721|1169 1318|1796
BH 9|0 33|7 171|216 324|473 490|767 797|1139

Table 1.6: Number of significant genes obtained in cdc15 experiment of Yeast cell cycle
data. The left hand side values are for Pearson curve fitting method and the other ones are
for Fisher’s g test.

Number of Significant genes in cdc28 data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 21|8 76|27 172|112 247|185 322|265 430|361
q-value 0|0 10|0 76|8 119|25 196|56 294|141

SPLOSH 6|0 12|2 36|12 60|21 127|26 256|112
BH 0|0 8|0 34|6 89|13 123|27 205|95

Table 1.7: Number of significant genes obtained in cdc28 experiment of Yeast cell cycle
data. The left hand side values are for Pearson curve fitting method and the other ones are
for Fisher’s g test.
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Number of Significant genes in alpha data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 45|94 145|259 403|599 578|840 788|1109 1092|1493
q-value 1|0 8|45 80|266 179|449 307|682 494|1048

SPLOSH 3|12 16|56 52|156 86|221 124|501 295|940
BH 0|0 6|10 46|169 127|306 241|469 376|711

Table 1.8: Number of significant genes obtained in alpha experiment of Yeast cell cycle
data. The left hand side values are for Pearson curve fitting method and the other ones are
for Fisher’s g test.

Number of Significant genes in elution data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 49|44 166|151 534|519 841|836 1217|1191 1674|1678
q-value 0|0 11|1 83|61 214|151 421|347 924|767

SPLOSH 9|4 29|18 75|65 124|99 283|150 854|680
BH 0|0 7|1 43|34 123|91 236|193 475|458

Table 1.9: Number of significant genes obtained in elution experiment of Yeast cell cycle
data. The left hand side values are for Pearson curve fitting method and the other ones are
for Fisher’s g test.

1.5.2 Bacterial Cell Cycle

This data set was analyzed by Laub et al. (2000). To identify cell cycle-dependent

transcripts, the discrete cosine transform (DCT) was calculated for each of the 2966

expression profiles with valid data (Laub et al., 2000). They identified 553 genes whose

messenger RNA levels varied as a function of the cell cycle. The data set consists of

very small sequence length (11) and so the test of periodicity using Fisher’s g test

would fail to detect the periodic genes if the true frequency is not Fourier frequency.

As our proposed method can handle the test of periodicity in a series with missing

observation, we do not omit data with a single missing observation. Rather, in this

data set we keep the series with three or less missing values. We do not analyze series

whose ORF names are missing. Caulobacter crescentus cell cycle data has most of

the missing observations at the end and so Fisher’s g test can be applied to such

series. We get 2460 ORFs having at most three missing values, out of which 1584,
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463, 284, and 129 are the number of series with none, one, two and three missing

values respectively. 2361 of the series have either no missing value or the missing

values are at the end.

Number of Significant genes in bacterial cell cycle data

< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1
p-value 2|6 26|33 127|112 201|160 272|205 380|275 1425|1440
q-value 0|0 0|0 1|0 1|27 50|45 150|95 1440|1440

SPLOSH 0|0 1|0 4|3 13|10 26|20 131|29 1440|1440
BH 0|0 0|0 0|0 1|23 1|43 93|95 1396|1228

Table 1.10: Selection of periodic genes using different multiple test methods (BH, q-
value and SPLOSH) after applying Fisher’s g test and Pearson curve fitting method to
the Caulobacter crescentus cell cycle data. The series with any missing value are excluded
from the analysis. The left hand side values are for Pearson curve fitting method and the
other ones are for Fisher’s g test.

Fisher’s g test taking missing at the end
< 0.0001 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 7 40 150 227 298 413
FDR 0 0 0 0 37 92
q-value 0 0 0 0 37 92

SPLOSH 0 0 0 4 21 34

Table 1.11: Fisher’s g test was applied to rows of Caulobacter crescentus cell cycle data
where we have missing observations at the end. The results show the number of periodic
genes selected using different multiple test methods (BH, q-value and SPLOSH).

Table 1.10 and 1.11 present the number of significant genes derived through differ-

ent multiple test procedures when test of periodicity is applied to sequences with no

missing values. Fisher’s g test provides 205 genes having p-value less than 0.05. But

multiple test level of q = 0.05 produces 43, 45 and 20 significant cell-cycle regulated

genes using BH, q-value and SPLOSH respectively. If we apply our Pearson curve

fitting approach, it gives 317 genes having p-values less than 0.05. By this method,

1, 50 and 26 significant genes are detected using BH, Storey’s q-value and SPLOSH
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Pearson Curve fitting taking up to three missing
< 0.0001 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 2 31 186 313 442 628
BH 1 1 1 1 1 76

q-value 0 1 1 1 1 152
SPLOSH 0 0 5 17 62 228

Table 1.12: Pearson curve fitting performance on finding periodic genes in Caulobacter
crescentus cell cycle data when we take into account up to three missing values in the
series. Results using three multiple test methods are included.

respectively when q = 0.05.

When the method is applied to the data set under the fact that ignoring series

with missing cells might not be a good way to analyze it, we get different number

of significant genes for different multiple testing methods and different periodicity

testing methods. Table 1.12 shows the result when our proposed method is applied

for the test of periodicity. At a significance level of q = 0.05, the number of significant

ORFs are 1, 1 and 62 using BH, q-value and SPLOSH respectively. Fisher’s g test

is applied to the series having missing values at the ends. This gives number of

significant genes to be 37, 37 and 21 respectively using BH, q-value and SPLOSH

approach.

We see that all the ORFs, revealed to have periodic movement using Fisher’s g

test, are also significantly periodic using our method. Fisher’s g test failed to detect

some periodic gene; for example, ORF05387 is a highly periodic series, as can be

seen from the Figure 1.5. It fails to remain in a list of 200 most significant genes

when Fisher’s g test is applied. However, Pearson curve fitting results a p-value of

0.0004108737 for this gene and thus indicating to be highly periodic.

One of the ORFs is repeated twice. SPLOSH produces 61 significant genes at a

threshold level q = 0.05 when Pearson curve fitting is applied to the data. We present

first 24 genes in Figure 1.1. If the error process in a periodic or random series has
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Figure 1.5: An ORF with highly periodic pattern. Fisher’s g test fails to detect the
periodicity, but our method provides a p-value of 0.0004108737 for the test.

autoregressive error process, this might yield more number of significant cell-cycle

regulated genes. This is due to the entanglement of periodicity with autoregressive

errors. We tested the non-whiteness of the error process in Caulobacter crescentus

cell cycle data. None of the series was found to have non-white error process after

applying multiple testing methods. 20 ORFs having the smallest p-values for the test

of autoregressive error process are listed as:

ORF07061 ORF04700 ORF02759 ORF04977 ORF03161 ORF03165

ORF04480 ORF03823 ORF03156 ORF01232 ORF00526 ORF00076

ORF00854 ORF08039 ORF07002 ORF02058 ORF00968 ORF05154

ORF05154 ORF00818

All but four of these ORFs (ORF03161 ORF04480 ORF03165 ORF03823) are in

the list of 61 most significantly periodic series. However, they are all periodic with

p-values 0.002031544, 0.002522119, 0.003564576 and 0.003730593 respectively.
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1.5.3 Human Fibroblasts

Cho et al. (2001) designed the microarray experiments for human fibroblasts cells.

The data sets are two short time series with 12 observations. The implementation

of Fisher’s g test and Pearson curve fitting method along with multiple test methods

detected almost no periodicity in the data sets and this is quite apparent in Tables

1.13 and 1.14. Contrary to what was described by Wichert et al. (2004), this non-

periodicity cannot be derived by average periodogram (AP), which will be described

in next section. Their work picked no periodicity through AP due to usage of un-

necessary large scale for periodogram ordinates; but using appropriate scaling would

refer periodicity through AP.

Number of Significant genes in Human Fibroblasts N2 data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 1|2 8|6 50|79 136|205 296|372 602|756
q-value 0|0 0|0 0|0 0|0 0|1 0|2

SPLOSH 0|0 0|0 0|1 0|2 1|2 1|2
BH 0|0 0|0 0|0 0|0 0|1 0|2

Table 1.13: Performance of Pearson curve fitting method and Fisher’s g test in selecting
periodic genes in Human Fibroblasts N2 data. In each column, the results from former are
at the left and those for other are at the right.

Number of Significant genes in Human Fibroblasts N3 data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 1|1 7|14 80|105 187|253 379|497 765|891
q-value 0|0 0|0 0|0 0|0 0|0 0|0

SPLOSH 0|0 0|0 0|0 1|0 1|1 1|2
BH 0|0 0|0 0|0 0|0 0|0 0|0

Table 1.14: Performance of Pearson curve fitting method and Fisher’s g test in selecting
periodic genes in Human Fibroblasts N3 data. In each column, the results from former are
at the left and those for other are at the right.
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1.5.4 Human Cancer Cell Line

The design of the microarrary experiment was described by Whitefield et al. (2002).

There are five experiments - score1, score2, score3, score4 and score5 with dif-

ferent series length. The measurements are taken for time points 12, 26, 48, 19 and 9

respectively. The expression levels were measured for varying number of genes. Three

different cell cycle synchronization methods were used; namely, a double thymidine

block (score1, score2, score3), thymidine followed by arrest in mitosis with nocoda-

zole (score4) and mitotic shake-off using an automated cell shake (score5). Tables

1.15–1.19 indicate that there have been a huge difference in the outcome of Fisher’s

g test and Pearson curve fitting approach.

Number of Significant genes in score1 of Human HeLa data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 4|11 49|64 289|367 658|787 1175|1380 2196|2411
q-value 0|0 0|0 0|1 0|1 0|2 0|25

SPLOSH 0|1 0|1 2|6 3|9 6|16 8|29
BH 0|0 0|0 0|1 0|1 0|1 0|5

Table 1.15: Number of significant periodic genes obtained in score1 of Human HeLa data.
In each column, the left hand side values are for Pearson curve fitting method and the other
ones are for Fisher’s g test.

Number of Significant genes in score2 of Human HeLa data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 56|59 219|251 829|922 1352|1552 2032|2295 3083|3508
q-value 0|0 5|3 22|40 59|96 171|307 439|781

SPLOSH 6|4 11|16 37|57 64|96 99|148 158|236
BH 0|0 5|2 12|17 40|57 122|148 340|403

Table 1.16: Result of Pearson curve fitting method and Fisher’s g test in selecting periodic
genes. Both methods were applied to score2 of Human HeLa data. The left hand side
values are for Pearson curve fitting method and the other ones are for Fisher’s g test.
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Number of Significant genes in score3 of Human HeLa data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 2563|2491 3762|3966 5864|6604 7362|8425 9014|10440 11511|13255
q-value 1571|1444 2452|2437 3891|4382 4774|5690 5748|7063 7145|9166

SPLOSH 1181|1132 1687|1728 2467|2677 2872|3203 3219|3677 3607|5987
BH 1503|1304 2342|2213 3676|3914 4500|5053 5371|6128 6530|7808

Table 1.17: In each column, the left and right entries represent the number of periodic
genes obtained using Pearson curve fitting method and Fisher’s g test respectively. Both
methods were applied to score3 of Human HeLa data.

Number of Significant genes in score4 of Human HeLa data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 159|65 525|240 1912|954 3214|1708 4790|2907 7440|5070
q-value 0|0 12|1 103|2 229|21 507|57 242|128

SPLOSH 12|2 40|5 130|23 201|43 279|60 405|94
BH 0|0 1|1 64|2 157|21 314|57 767|126

Table 1.18: In each column, the left and right entries represent the number of periodic
genes obtained using Pearson curve fitting method and Fisher’s g test respectively. Both
methods were applied to score4 of Human HeLa data.

Number of Significant genes in score5 of Human HeLa data
< 1e− 04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1

p-value 0|4 33|37 303|352 791|838 1566|1686 3212|3417
q-value 0|0 0|0 0|0 0|0 0|0 0|0

SPLOSH 0|0 0|0 0|0 0|0 0|1 0|4
BH 0|0 0|0 0|0 0|0 0|0 0|0

Table 1.19: Number of significant genes obtained in score5 of Human HeLa data. The left
hand side values are for Pearson curve fitting method and the other ones are for Fisher’s g
test.
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1.6 AVERAGE PERIODOGRAM (AP)

Under certain conditions, the plot of periodogram against the Fourier frequencies can

be a useful device to observe whether there is any sinusoidal pattern in the series.

When thousands of series are analyzed together, Wichert et al. (2004) proposed using

average periodogram (AP) for visual inspection for the presence of periodicity in the

series. They defined the AP as

AI(λ) =
1

G

G∑
i=1

Ii(λ) (1.33)

where G is the number of time series present in the analysis and Ii(λ) is the peri-

odogram for the i-th series. Wichert et al. (2004) justified the use of average peri-

odogram as follows: if the data follows a pure random process then the periodogram

of all time series is uniform and therefore the average estimate should reduce to a

straight line; if there are a few time series exhibiting strong periodicity, then their

corresponding periodogram ordinates dominate the AP. However, we believe that this

graphical device would not be applicable if the series with strong periodicity do not

have same frequency.

In practical use, all the series might not have equal frequencies, and so resorting

to this kind of graphical device in signal detection can give misleading results. We see

in figures 1.6, the frequencies are randomly selected from a set of Fourier frequencies

as can happen in real data set. For each series with sizes N = 10, 20 and 40, AP is

not capable of detecting periodicity.

In the summary, we can say that AP plots the distribution of estimated Fourier

frequencies obtained from the working series. Figures 1.7 and 1.8 show the distribu-

tion of the estimated frequencies from different cell cycle data sets. We add AP with

the corresponding distribution and this confirms the aforementioned statement.
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Figure 1.6: Average periodogram for N = 10, 20 and 40 when there are 100 periodic and
1900 random genes in the whole data set. The frequencies are not equal for all series but
selected randomly from the set 2π/10 , 4π/10 , 6π/10 , 8π/10 , π for N = 10. For N = 20
and 40 the frequencies are selected from the sets {2π/20 , 4π/20 , 6π/20 , . . . ,π} and
{2π/40 , 4π/40 , 6π/40 , . . ., π} respectively.

1.7 DISCUSSION

The analyses demonstrate that checking for cell cycle regulated genes in short mi-

croarray time series data requires consideration of both periodicity testing technique

as well as multiple testing method. In fact, there is no guarantee that the series will

possess only Fourier frequencies. There exists only asymptotic theory to test period-

icity in a series with non-Fourier frequency. Details can be found in Turkman and

Walker (1984). Simulation results show that Fisher’s g test fail 100% of time even in

an almost perfectly periodic series with non-Fourier frequency.

Average periodogram represents the distribution of estimated frequencies of the

series. If the dominating frequencies are not close to each other, then this graphical

device might not work. Various simulation procedures were done to evaluate the

performance of this method proposed by Wichert et al. (2004).

If the series has unequal time intervals, all the traditional methods fail to perform
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the test of periodicity. However, the proposed method is still useful in such situation.

Permutation test is a straightforward method, but this imposes some lower bound

to the p-values. Therefore, the result obtained from this method might not be very

satisfactory in multiple testing. We plan to carry out further simulation experiments

to compare the statistical power for our method with a permutation test. The permu-

tation test is being implemented in R, so we can carry out these computations using

the a Beowulf cluster computer. We believe this will demonstrate the superiority of

the Pearson curve fitting method.

Although selecting the cell cycle regulated genes in a series with autoregressive

error process was not a problem in the data we analyzed, this issue might need to

be considered in other microarray time series. The lack of applicability of Fisher’s g

test and other test procedure in the series of missing observations or the series having

unequal time sequence can be overcome by the proposed simulation method.

From the simulation result and the application of real data, it was seen that

multiple test methods play a big role in the selection of cell cycle regulated genes.

Our proposed method resulted far more significant genes in some of the data sets;

namely cdc28, elution in yeast cell cycle and score4 in Human cell cycle data

set. Some data sets tested to have more sinusoidal gene expressions using Fisher’s

g test. Human fibroblasts with N2 and N3 experiments as well as two experiments

score1 and score5 in human cell cycle data sets seem to have no noticeable genes of

sinusoidal pattern after implementing Fisher’s g or our proposed method. SPLOSH

seems to be more conservative in our study. However, the final decision in detecting

the genes should be made in accordance with biological interpretation.

For efficiency of the computation, R is interfaced to C routines for generating the

null distributions. An R package, GenePeriodicity, has been developed for all the

implementations of the method in this chapter.
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Figure 1.7: Distribution of estimated Fourier frequencies for yeast Saccharomyces cerevisiae
microarray experiments. The line represents AP which is added to each of the histograms.
These indicate that distribution of periodogram and AP represent the same feature.
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Figure 1.8: Distribution of estimated Fourier frequencies for bacterial cell cycle. The line
represents AP which is added to each of the histograms. These indicate that distribution
of periodogram and AP represent the same feature.
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A METHOD FOR ANALYSIS OF CGH MICROARRAY DATA

Chapter 2

A METHOD FOR ANALYSIS OF CGH MICROARRAY

DATA

2.1 INTRODUCTION

Genetic DNA copy number alterations are important features for the development of

many diseases. A normal human cell contains two copies of each of the 22 non-sex

chromosomes. DNA copy numbers change from two in case of genetic alterations.

Deletions of copy numbers contribute to the alterations in the expression of tumor-

suppressor genes, whereas amplifications contribute to the alterations in oncogenes.

The changes in gene expression modify the normal growth control and survival path-

ways. Thus, for understanding disease phenotype and for localizing important genes,

it is important to characterize the DNA copy number changes. Comparative Genomic

Hybridization (CGH) microarray is a technique for measuring such changes (Pinkel

and Albertson, 2005). As a high throughput technique, it offers many advantages

over other cytogenetic techniques such as Fluorescence In Situ Hybridization (FISH).

More recently, cDNA and oligonucleotide arrays have become popular for CGH. The

shorter probes on these arrays provide design flexibility and greater coverage, and

the resultant high-throughput CGH data have prompted the development of various

methods for data analysis. See Lai et al. (2005 ) and Willenbrock and Fridlyand

(2005) for comparative reviews of the analysis methods.

In a CGH experiment, a test sample labelled red (Cy5) is hybridized to a reference

normal sample labelled green (Cy3), and the resulting data consists of the ratio of
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the fluorescence intensities from test versus reference sample, indexed by the physical

location of the clones on the genome. The arrays in CGH experiment are constructed

with the assumption that the ratio of binding of test and control DNA is proportional

to the ratio of the copy numbers of the corresponding DNA sequences. Alterations in

DNA copy number typically occur through the gain or loss of chromosomal segments.

In a homogenous cell population the actual DNA copy number profile of the genome

consists of a series of plateaus of constant copy number, bounded by sharp transitions.

Thus the alterations correspond to the regions of concentrated high or low log-ratios

on the genome.

Various methods have already been proposed to study and solve the challenge of

efficiently identifying the regions with DNA copy number alterations. For example,

Pollack et al. (2002) applied a moving average to the process of ratios and used normal

versus normal hybridization to compute the threshold; Hodgson et al. (2001 ) used

a maximum likelihood to fit mixture models corresponding to gain, loss and normal

regions; Lingjaerde et al. (2001) employed a simple smoothing to signs of neighbours

and significance is described by comparing both the height and weight of the observed

segments with their joint null distribution. Wang et al. (2005) proposed an algorithm

Cluster Along Chromosomes (CLAC), which builds hierarchical clustering-style trees

along each chromosome arm (or chromosome), and then selects the clusters by con-

trolling the False Discovery Rate (FDR) at a certain level. CLAC is available as an

R package, clac, from CRAN.

The log-ratio sequence is viewed as a time series sequence along the genome by

considering the possible correlation between clones at closer physical locations on the

genome. The problem of change point detection in such series is closely related to

the problem of detecting discontinuities in signal processing and edge-detection in

image analysis. Wavelet methods are widely used for these problems. For example,
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for detecting discontinuity, one method recommends using the Haar Wavelet and

looking at the lowest two levels of detail (Matlab, 2007). The MatLab approach is

purely exploratory. Wang (1995) proposed a method for identifying the jumps in a

time series by checking if wavelet transformation of the data has large absolute values

across fine scale levels.

We propose a new method for determining the change point of log-ratio. Maximum

overlapping discrete wavelet transform (MODWT) is employed for this purpose. This

technique provides higher resolution for the location on the chromosome where the

break occurs. The method can automatically and efficiently detect the change points

and hence the gain and loss regions along the whole genome. This method utilizes

Wang’s threshold value to define significant jumps from the previous region. Double

application of MODWT at level one is used to confirm the presence of true abnormal

regions in the sequence.

The organization of the chapter is as follows. In Section 2.2 we introduce the mod-

els and applications of wavelet methods to the CGH data. Some simulated examples

are demonstrated in Section 2.3 to show the performance of the proposed method.

Section 2.4 is devoted to the application of the method to real CGH data. A brief

discussion is presented in Section 2.5.
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Figure 2.1: Representation of regions of copy number changes detected by Wavelet method
to a CGH array. In this data set, 2400 BAC clones were measured each with three replicates
(Snijders et al., 2001). Measurements for log base 2 intensity ratio are provided. Average
relative DNA copy number sequences of the three replicates in first 12 chromosomes are
shown in this figure. Red color refers to detected copy number amplification region; whereas,
green color refers to deletion region.

2.2 NOTATION AND MODELS

Microarray based CGH provides the relative copy number of the spotted DNA se-

quences by monitoring the differential hybridization of two samples to the sequences

on the array. Let zt, t = 1, 2, ..., n be the measure of the relative DNA copy numbers

of n clones along the genome. Usually zt is the logarithm with base 2 of the intensity

ratio of test sample versus the reference sample. There are systematic variations in

microarray experiments and so normalization procedures are applied to remove those

noises. We assume here that all the data are normalized. Identifying or screening
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the genes that have DNA copy number gain or loss is equivalent to describing the

genes locations on the genome where the DNA copy numbers increase or decrease.

We assume that the DNA copy number follows a distribution F0 in a region on the

genome, and after the location k, the distribution is changed to F1; so we can write,

z1, z2, . . . , zk ∼ F0

zk+1, zk+2, . . . , zn ∼ F1

That is equivalent to finding the change point k, where the distribution of the

relative copy numbers are different on both sides of k. Note that for the CGH data,

there may be many change points along the genome and these points define the regions

of gains or losses of the copy numbers. If the clones on the genome are close enough,

they might affect each other on copy numbers. Thus we can assume that the copy

number of a clone on the genome is associated with that of the previous clone. The

copy numbers sequence along the genome can therefore be envisaged as a time series.

Determination of change points is equivalent to the determination of abrupt change

along the sequence. Wavelets are ideally suited for this purpose.

2.2.1 Wavelet Methods

Wavelets are well established in the mathematical sciences (Daubechies, 1992) and

have been successfully applied in fields such as signal and image processing, numerical

analysis and statistics. Wavelets literally means small waves. A function ψ(.), defined

over the entire real axis, is called a wavelet if ψ(.)→ 0 as t→ ±∞ and satisfying the
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following conditions:

∫ ∞
−∞

ψ(u)du = 0 (2.1)∫ ∞
−∞

ψ2(u)du = 1 (2.2)

Wavelets are functions that can be used to describe a signal efficiently by breaking

it down into its components at different scales and following their evolution in the

time domain. Wavelets tell us the changes in averages in a time series. These changes

in averages are computed in terms of weighted average differences of the series over

different time scales, denoted by λ. The variation of λ can provide information about

how averages of x(.) over many different scales can change from one period of length

λ to the next. The collection of variables {W (λ, t) : λ > 0,−∞ < t <∞}, defined in

Equation 2.3, is called continuous wavelet transform (CWT).

W (λ, t) =

∫ ∞
−∞

ψλ,t(u)x(u)du (2.3)

In Equation 2.3, W (λ, t) is proportional to the difference between two adjacent aver-

ages of scale λ. Here the transformed series x(.) ia a function of translation parame-

ter t and scale parameter λ. The transforming function ψλ,t(u) is called the mother

wavelet.

Discrete wavelet transformations map data from the time domain to the wavelet

domain (Percival and Walden, 2000); however, the difference from CWT is that the

scale λ and translation parameter t are no longer continuous. These transformations

result in a vector of the same size. If we have a series of size N , wavelet transforma-

tions can be defined by the matrices of dimension N ×N .

The partial DWT is a special orthonormal transformation:
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(z0, . . . , zN−1)←→ (W1, ...,WJ , VJ ),

where Wj is a vector of length Nj = N/2j ; VJ has the same length as that of WJ

and NJ . For simplicity we have assumed that N is a multiple of 2J . The vector Wj

is called the vector of wavelet coefficients at level j and is associated with changes

or differences on scale 2j−1. Vector VJ , which is the scaling coefficients at level J , is

associated with averages on scale 2J−1.

We can write,

W = ΓX, where

Γ =


Γ1

Γ2
...

VJ


In practice the DWT is computed using the pyramid algorithm which requires only

O(N) flops. There are two practical limitations of DWT; these are:

• Series should be of dyadic length.

• Selecting different starting point for the series changes the result of the analysis.

First problem can be dealt through polynomial extensions of the scaling coefficients,

then the DWT can be practically implemented for any size of the series. However, it

is not a trivial task to select an appropriate number of end points to fit or the order of

fit (Constantine and Percival, 2003). The second problem refers that the DWT is not

a shift-invariant transform and so shifting the time series circularly can totally change

the DWT. Maximum overlap discrete wavelet transformation (MODWT) is used to

overcome such limitations. Thus MODWT provides us the advantage of making the

series length and shift-invariant.
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Our goal here is to identify the change point in DNA sequence. We focus on

change-point approaches to data dependent thresholding. The primary idea is to

divide the wavelet coefficients into groups of small coefficients containing primary

noise and one of large coefficients containing significant signal. Hypothesis testing

techniques are employed to obtain an appropriate threshold and a test is performed

to determine if the set of coefficients at that scale contains significant signal when

coefficients exceed the threshold.

2.2.2 Wang’s Threshold

The underlying model or null hypothesis may be written as zt = f(t)+at, t = 1, . . . , n

where at ∼ NID (0, σ2) and f(t) is a smooth function, ie. continuous and differen-

tiable. This is a classic model in time series. Examples include the polynomial trend

analysis (Fisher, 1921) and the lowess polynomial seasonal adjustment of Clevelend

et al. (1990). For forecasting purposes, the ARMA family and its extensions are more

useful models. Wang (1995) considers the problem of testing an abrupt change in the

function f(t). This model is more general and focuses on detecting the change points

at which a jump or sharp cusp occurs. A sharp cusp occurs at point t0 if there exists

a constant K > 0 such that

|f(t0 + h)− f(t0)| ≥ K|h|α (2.4)

for all h as h → 0 and 0 ≤ α < 1. When α = 0, the function has a jump. Wang

(1995) shows that, asymptotically with probability 1, all wavelet coefficients will have

absolute value less than the universal threshold value σ
√

2 log(n) provided there are

no jumps or cusps. The unknown value of σ may be estimated robustly by the median

absolute value of the wavelet coefficients at level 1 divided by 0.6745.
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2.2.3 Practical Implementation Details

We follow the notation in the book by Percival and Walden (2000) which is also used

in the S-Plus, R and MatLab software. The principal differences are that level 1 refers

highest time domain resolution and filter width rather than half-width is used in the

naming of the Daubechies wavelets. So for example, Wang’s D(1) corresponds to

D(2) which is also equivalent to the Haar wavelet. Another difference is that Wang

pads the real data so that n is a power of 2 because he uses Mallat’s algorithm.

For detection of changepoints, Wang (1995) recommends examining plots of the ab-

solute empirical wavelets at various levels j and finding those values which exceed the

threshold line and are larger than others. Daubechies wavelets are denoted as: D(k),

k = 2, 4, . . . , 20. The level j should be chosen as small as possible in order to obtain

the highest time domain resolution.

In practice, it is not very satisfactory to examine the wavelet coefficient plots at

different levels and then select the jump points, since this is a subjective and te-

dious procedure. We need to use some automated procedure for selecting appropriate

levels for different series. MODWT at level one serves as a good strategy for this

purpose. By intuition, we can think that the gain or loss region cannot contain a

single observation. We apply MODWT at level one and record the observation num-

bers where the wavelet coefficients are greater than the Wang’s threshold value. In

order to verify that the wavelet coefficients correspond to right jump detection, we

delete the observations where the jumps were detected and rerun the procedure. If

the new wavelet coefficient adjacent to the deleted observation is again greater than

the Wang’s threshold and has the same sign as that of the previous coefficients, then

the deleted observation in previous step is considered as true signal of jump detection.

To reach a conclusion of the analysis, we have to define the loss or gain region.
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We can define a threshold beyond which a region is called to be loss or gain region

according to the sign of the wavelet coefficients. The selection of the threshold using

some multiple test procedure is discussed in the following subsection. The region with

multiple testing value, say q-value, greater than the threshold is colored as red and

the region having multiple testing value less than the threshold is colored as green.

Thus red corresponds to the gain region and green corresponds to the loss region. We

put a line in each detected region to represent the mean.

2.2.4 Testing Region Means Using Bootstrap

We have zt, t = 1, 2, . . . , n as the observations along a specific chromosome arm. The

observations in ith region and tth position can be expressed as

zti = µi + et, i = 1, 2, . . . k and t = 1, 2, . . . , n

The error term et follows AR(p) process, the order of which can be estimated. That

is,

et = φ1et−1 + φ2et−2 + . . .+ φpet−p + at (2.5)

where φ1, φ2, . . ., φp are autoregressive parameters and et ∼ N(0, σ2
a).

Suppose we have only one region and we would like to test whether the region

mean is significantly different from zero. A t-test procedure that considers corrected

variance of z̄ in an AR(p) error process would seem to work for such case. A short

simulation study with an AR(1) process was done to see the power of this test proce-

dure. Table 2.1-2.2 reveal that the method does not perform very well even for small

φ values. Hence with the increase of magnitude of φ, the method becomes incapable

of handling such situation regardless of the series length. Moreover, series length

refers to the length in a particular gain/loss region, which in real CGH data will not

be very large.
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Power comparison; n = 50, σa = 0.2

φ µ = 0 µ = 0.5
0.0 0.056 0.942
0.1 0.084 0.9074
0.3 0.118 0.7472
0.5 0.108 0.5186
0.7 0.137 0.3100
0.9 0.236 0.2862

Table 2.1: Power of the test µ = 0 in an AR(p) setting with series length 50. Here we
consider standard deviation for error term to be 0.2. The test is done at 0.05 level of
significance. The column for µ = 0 represents type-I error.

Power comparison; n = 100, σa = 0.2

φ µ = 0 µ = 0.5
0.0 0.0548 0.9988
0.1 0.0718 0.9950
0.3 0.0780 0.9406
0.5 0.0788 0.7216
0.7 0.0970 0.3962
0.9 0.1656 0.2010

Table 2.2: Power of the test µ = 0 in an AR(p) setting. Here we consider sample size to
be 100 and the standard deviation for error term to be 0.2. The test is done at 0.05 level
of significance. First column represents type-I error and second column represents power of
the test.

To overcome lack of power of the test in such phenomenon, we can resort to

parametric bootstrapping procedure. This simple method can be outlined in the

following few steps:

Step 1 Find the region means using MODWT procedure and then find eti = yti− ŷi.

Step 2 Select the AR order p.

Step 3 Estimate the parameters and innovation variance from the model selected in

step 2.
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Step 4 Simulate a mean-zero stationary Gaussian AR(p) time series, say e∗, with

parameters φ̂ and innovation variance σ̂ found in step 3. For null model µ = 0,

and so y = e. Do the simulation procedure large number of times, say B = 104

times.

Step 5 Find the means for each simulated series in all regions, ȳ∗γ1
, ȳ∗γ2

, . . . , ȳ∗γk
,

where the superscript ∗denotes the bootstrap sample. The p-value for region i

is defined as, pi = #{ȳ∗γi
≥ ȳγ1}/B

In the presence of large series, we can find the order of the AR(p) process from the

series using BIC criterion.

The simulation study, presented in Tables 2.3-2.5, suggests that the bootstrapping

method works well for testing mean in large series. The False Positive Rate (FPR )

of the test is still high for large φ and short series. Nonetheless, this test procedure

works better than the previously mentioned one.

Bootstrapping power comparison; n = 50, σa = 0.2

φ µ = 0 µ = 0.5
0.0 0.064 1.00
0.1 0.064 1.00
0.3 0.066 1.00
0.5 0.08 1.00
0.7 0.118 0.998
0.9 0.244 0.752

Table 2.3: Power of the bootstrap method for testing µ = 0 in AR(1) process for different
values of φ. Here series length is 50 and σa = 0.2. For any value of σ, FPR is very high in
this case.
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Bootstrapping power comparison; n = 100, σa = 0.2

φ µ = 0 µ = 0.5
0.0 0.054 1.00
0.1 0.056 1.00
0.3 0.064 1.00
0.5 0.062 1.00
0.7 0.072 1.00
0.9 0.134 0.83

Table 2.4: Power of the test µ = 0 using bootstrap method for different values of φ. The
AR(1) series has length 100 and σa = 0.2.

Bootstrapping power comparison; n = 200, σa = 0.2

φ µ = 0 µ = 0.5
0.0 0.048 1.00
0.1 0.048 1.00
0.3 0.052 1.00
0.5 0.054 1.00
0.7 0.060 1.00
0.9 0.124 0.996

Table 2.5: Power of the bootstrap method for testing µ = 0 in an AR(1) process for
different value of φ. Here series length is 200 and the standard deviation for error term is
σa = 0.2.

If there is only one region present in the study, the decision about the test can be

done using this obtained p-value. However, in a GCH data analysis there will be sev-

eral gain and loss regions and so the overall decision depends on multiple test method.

Having obtained the p-values for all regions using the aforementioned bootstrap pro-

cedure, we need to calculate the multiple test values using some standard method.

Benjamini and Hochberg (1995) proposed a method for multiple testing using False

Discovery Rate (FDR). Another more recent approach, called q-value, was proposed

by Storey (2002). To deal with multiple testing, Pounds et al. (2004) introduced

spacings LOESS histogram, or SPLOSH. This aims at estimating conditional FDR
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which is the expected proportion of false positives given we have r significant features.

In the genome wide study of testing periodicity which was discussed in Chapter 1,

SPLOSH revealed to be most conservative while q-value approach seems to be liberal

in detecting the correct number of periodic genes. However, unlike the number of

genes, the number of jump points or the number of regions will not be even hundreds.

So it would be expected that all these methods would produce similar results in this

simulation.

2.2.5 Determination of Gains and Losses

Assume that the relative copy number is a smooth function f(k), where k denotes the

position of the clone on the gene. To find the change points of f(k), we can determine

abrupt change of the function f(k) through wavelet coefficients. The test threshold

is calculated using the universal threshold σ
√

2 log(n) . Any wavelet coefficient that

exceeds the point are specified as the position of abnormal change in DNA copy

numbers. Once we specify distinct regions using the threshold, we need to define

them as loss, gain or normal region through another preselected threshold T2.

Ri =


Call gain, if Mi > T2

Call loss, if Mi < −T2

Call normal, if − T2 ≤Mi ≤ T2

whereMi is the multiple test value of the i-th region. If we would like to call a region

to be gain or loss region at a q-value of 0.05, then this is our selected T2.
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2.3 SIMULATED EXAMPLES

Let zt, t = {1, 2, . . . , n} be the observations along a specific chromosome arm. In

this section we present few simulated examples to demonstrate the performance of

the proposed method. A comparison of the method with CLAC is provided. A

preselected threshold of q = 0.05 is used to call a gain or loss region in all the

simulated examples and real data.

2.3.1 Example-1: White Noise Series

Data of length 1040 are generated such that zt ∼ N(0, 0.152). This means that no

loss or gain region is present in the data shown in Figure 2.2. The proposed method,

applied to raw data, worked well in providing the true feature of the series.

Figure 2.2: White noise series, where there is no jump. The data are simulated from
N(0, 0.152). The mean value of the region is almost in the zero line.
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2.3.2 Example-2: Smooth Signal Plus White Noise

Some data, n = 200, was generated by adding random noise to a smooth curve

presented in Figure 2.3. That is, the observations follow the relationship zt = g(xt)+

εt, where g(xt) is the smooth part and εt ∼ (N(0, σ2).

Wavelet method is applied to this data for plausible jump detection. We see from

Figure 2.4 that the method is able to detect correctly the absence of any break points.

Figure 2.3: Scatter plot of simulated observations obtained by adding random noise to a
smooth curve, which is also shown. Apparently there is no sharp jump point in the series.
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Figure 2.4: Application of wavelet method to the series shown in Figure 2.3. There is only
one region, that is no jump was detected in this series. The mean value is given by a line.

2.3.3 Example-3: Two Loss/Gain Regions

Data set with n = 270 observations are simulated in two blocks representing two

chromosomes. The model in both chromosomes is zt = µt + et , where µt takes on

values 0, 0.7, and −0.7. That is,

µt1 =


0, 1 ≤ t ≤ 80

−0.7, 81 ≤ t ≤ 110 for chromosome 1

0, 111 ≤ t ≤ 150

µt2 =


0, 1 ≤ t ≤ 40

−0.7, 41 ≤ t ≤ 70 for chromosome 2

0, 71 ≤ t ≤ 120

For each chromosome,

et = φet−1 + at, at ∼ NID (0, σ2
a) (2.6)
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Since Var (et) = σ2
a/(1 − φ2), we can write the innovation variance, σ2

a = (1 −

φ2)Var (et). We consider three cases with φ values 0.4, 0.6 and 0.8. Here we do

not provide the graphs for case φ = 0.6 as it gives similar result as that for φ =

0.4. Figures 2.5 and 2.7 show that the proposed method detects the jump points

at right places in all three cases. CLAC method is applied in all data sets. For

the implementation of CLAC method, normal array is generated from AR(1) process

with corresponding value of φ used in the original data. This method seems to

work well with low values of φ, as can be seen in Figure 2.6. However, Figure 2.8

indicates that the detection of loss and gain region is not perfect in the presence of

high autocorrelation. It should be noted that the performance of the method relies

on the selection of normal array.
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Figure 2.5: Application of wavelet method to the series with error term following AR(1)
with φ = 0.4. The method can detect the gain and loss region.

Figure 2.6: Application of CLAC method to the series with error term following AR(1)
with φ = 0.4. Gain and loss region is detected at the right places for this value of φ.
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Figure 2.7: Application of wavelet method to the series with error term following AR(1)
with φ = 0.8. The method can detect correct gain and loss region.

Figure 2.8: Application of CLAC method to the series with error term following AR(1)
with φ = 0.8. We do not get exact detection of gain and loss region.

2.3.4 Example-4: Seven Jump Points

The data set consists of 200 observations having 7 jump points at 50, 60, 92, 106,

144, 169 and 181. Error terms are IID normal with mean 0 and standard deviation
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0.5. We split the series into two chromosomes where 141 genes are assigned to first

one and 59 genes assigned to second one. This is a typical example where there are

two successive gain regions within second chromosome. We see from Figure 2.9 that

the proposed method can detect the break points exactly and define the loss and gain

regions according to the preselected threshold value.

Figure 2.9: A series with seven jump points. Observations are divided into two chromo-
somes such that first 141 observations are in chromosome 1 and rest 59 observations are
assigned to chromosome 2. The proposed method correctly detects the jump points.

2.3.5 Smoothing the Data

Wang (1995) suggested using simple moving average smoothing (MAS) with specific

window size before applying the approach. If ẑ be the running mean with neighbour-

hood size k, then the smoothed series would be:

ẑi =
1

2k + 1
(zi−k + zi−k+1 + . . .+ zi+k) (2.7)
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for i = k + 1, k + 2, . . . , n − k. For the other observations, say for i = 1, 2, . . . k and

i = n− k + 1, n− k + 2, . . . , n, define u = max(1, i− k) and v = min(n, i+ k); then

ẑi =
1

ν − u+ 1
, (zu + zu+1 + . . .+ znu) (2.8)

Figure 2.10: Detection of jump points when wavelet method is applied to the data demon-
strated in Figure 2.9, but smoothing is done before the analysis. There are shifts in the
jump point detection.

Investigations revealed that this smoothing results some shift in the break point

detection when wavelet method is applied. For example, the series in Example 4 was

smoothed and the wavelet method was applied thereafter. Figure 2.10 shows that the

number of regions detected is correct; nevertheless, the detection points are not at

the appropriate places.
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2.4 APPLICATIONS TO CGH ARRAYS

We apply the proposed method in two real CGH arrays. The method detects several

loss and gain regions. A comparison of the method with CLAC is illustrated through

the second example.

2.4.1 Application-1

In CGH array, 2400 BAC clones were measured each with three replicates (Snijders

et al., 2001). Measurements for log base 2 intensity ratio are provided. Average

relative DNA copy number sequences of the three replicates along the genome is

shown in Figure 2.11. The figure also demonstrates the gain or loss regions that are

detected using this method. As we can see, the measures are mostly along the zero

line, which indicates that the test sample has the same DNA copy numbers as that

of reference sample.

The log ratios along the genome are considered as a time series sequence. The

proposed method is then applied to calculate the wavelet coefficients and to determine

the abnormal positions. There are number of loss and gain regions detected by this

method. Figure 2.1 in Section 2.1 demonstrates the gain and loss regions detected

in first 12 chromosome. Figure 2.12 presents the chromosome-wise abnormal regions

for other chromosomes. Red and green colors refer to the gain and loss regions

respectively. There are presence of abnormal regions in several chromosomes, namely

1, 5, 7, 8, 9, 11, 14, 17, 20 and 23.
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Figure 2.11: Application of wavelet method to CGH data set from Snijders et al. (2001).
There are many gain/losss regions in the whole genome.

Figure 2.12: Representation of gain/loss regions in last 11 chromosomes. There are pres-
ence of abnormal regions in chromosome number 14, 17, 20 and 23.
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2.4.2 Application-2

We apply the proposed method to one of the examples found in R library clac. The

package has data set BACArray and the column DiseaseArray has 9980 observa-

tions containing 4 arrays, one of which is analyzed for comparison. Wavelet method

detected two gain regions colored as red in Figure 2.13. Figures 2.14 and 2.14 of in-

dividual chromosome explicitly show that the chromosome 18 and 23 are the regions

with copy number amplification. One normal array from the clac package is picked

and then CLAC method is applied to the array. The outcome, presented in Figure

2.16, also indicates that chromosome 18 and 23 refer to the amplified regions for DNA

copy number.

Figure 2.13: Plot of CGH Array taken from R package clac. The wavelet method detects
only two gain regions in this data set.
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Figure 2.14: Gain or loss regions in first 12 individual chromosomes analyzed from CGH
data BACArray. There are no abnormal regions present in these chromosomes.

Figure 2.15: Gain or loss regions in 13 to 23 individual chromosomes analyzed from CGH
data BACArray. Chromosomes 18 and 23 refer to regions of abnormal gain in DNA copy
numbers.
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Figure 2.16: Representation of gain/loss regions using CLAC method in BACArray. It
shows that there are two gain regions in 18th and 23rd chromosomes.

2.5 DISCUSSION

In this chapter we have proposed wavelet method to identify the abnormal DNA

copy number positions on genome. Discrete wavelet transform has two limitations;

namely dyadic length requirement and sensitivity of the starting of the time series. To

overcome such limitations, we use maximum overlap discrete wavelet transformation

(MODWT). The positions of the break points were detected using Wang’s threshold.

Calling a region to be gain, loss or normal depends on the selection of another thresh-

old T2. Through the simulated examples we demonstrate that the method performs

quite well in selecting the break points and hence the abnormal regions in a time

series sequence. Moreover, the procedure reports several abnormal regions in two real

CGH arrays.

CLAC algorithm, proposed by Wang et al. (2005), uses some normal array for de-

tecting deletion and amplification regions. Independence and normality of the clones

are two strong assumptions; but the procedure of Jong et al. (2003) depends on these

assumptions. ACF plots of the estimated errors from the fitted model are presented
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in Appendix. It is evident from the plots that consideration of IID observations in

the sequence would not be realistic. Our propose method does not assume that the

observations be IID Through a short simulation example we show how the detection

of the change points shifts when a moving average smoothing is used before apply-

ing the wavelet method. An R package, WaveletCGH, will be made available which

implements the wavelet detection methods described in this chapter.
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2.6 APPENDIX

Autocorrelation function (ACF) is useful in detecting the presence of correlation

among the successive observations. In this study, we observe the residuals by sub-

tracting the mean of any selected region from the observations in that region. That

is, et = zt−µt is the residual for t-th clone. ACF plots are presented for the residuals

obtained from the application in CGH array described in Section 2.4.

2.6.1 ACF Plot from Application-1

Figure 2.17 is constructed to show the autocorrelation behavior of the error process

for each chromosome. It seems that the residuals are not quite IID within each of the

chromosome. The residuals in chromosome numbers 1, 8, 10, 14 and 23 demonstrate

the presence of strong autocorrelation. This can be a justification to use a simulation

study in Example-3 of Section 2.3.

2.6.2 ACF Plot from Application-2

Here the residuals are obtained from CGH array mentioned in Section 2.4.2. The

ACF plots in Figure 2.18 indicate the presence of high autocorrelation in residuals

for chromosome numbers 1, 4, 7, 8, 9, 10, 11, 13, 14 and 21. Therefore, considering

the residuals to be IID would not be realistic in detecting the abnormal regions in

this CGH array.

2.6.3 ACF Plot from Normal Array

The normal array described in Section 2.4.2, is analyzed for the presence of autocor-

relation in the error term. Figure 2.19 reveals that there is presence of dependence

characteristic in residuals within many of the chromosomes; for example, we can note

the presence of high autocorrelation in chromosome numbers 1, 4, 7, 8, 9 and 14.
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Figure 2.17: ACF plots for the residuals obtained for chromosome 1 to 23 using the data
set in subsection 2.4.1. The residuals in few of the chromosomes indicate the presence of
high autocorrelation.
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Figure 2.18: ACF plots for the residuals obtained for chromosome 1 to 23 using data set
in subsection 2.4.2. The residuals in few of the chromosomes indicate the presence of high
autocorrelation.
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Figure 2.19: ACF plot for the residuals obtained from the normal array described in Section
2.4.2. There exist highly autocorrelated residuals within many chromosomes.
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IMPROVED CLASS PREDICTION IN GENE EXPRESSION MICROARRAY

DATA

Chapter 3

IMPROVED CLASS PREDICTION IN GENE

EXPRESSION MICROARRAY DATA

3.1 INTRODUCTION

The advancement of cDNA microarrays and high-density oligoneucleotide chips in

biotechnology has drawn much interest of statistical analysis in cancer research. One

of the primary areas of focus is the classification of tumors using the gene expression

data. A better understanding of the molecular variation among the tumors can

be studied thanks to the possibility of simultaneously analyzing thousands of gene

expression profiles. However, the fruitful endeavor for this understanding depends on

the selection of proper statistical approach.

Dudoit et al. (2002) and Simon et al. (2004) provided an extensive comparison

of different classification methods. For the implementation of most of the methods,

there needs to be an initial gene selection to make the number of genes to be less

than the number of samples. Although their analyses show that the diagonal linear

discriminant analysis (DLDA) maintains one of the top-ranking classifiers, the imple-

mentation of this method to other data sets does not seem to be appealing (Fort and

Lambert-Lacroix, 2005). The big challenge of dealing with the microarray data is that

the number of covariates is in thousands whereas the number of samples is usually

not more than one hundred. Similar to regression method, the traditional discrimi-

nant analysis methods are not efficient in such situation. The method with principal
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components, partial least squares, ridge regression with their penalized forms are dis-

cussed in several articles as ways to solve the problem of classification (Ghosh, 2003;

Fort and Lambert-Lacroix, 2005).

Nearest neighbour algorithm is one of the most frequently used techniques in clas-

sification problem. This algorithm is also known as instance-based learning. Holmes

and Adams (2003) proposed a method which takes into account multiple nearest

neighbors as a set of covariates in contrast to traditional method where only single

nearest neighbor is selected on the basis of cross-validation error rate. The authors

also proposed that the optimization of k can be done by maximum pseudolikelihood

instead of using cross-validation for misclassification rate. In a logistic regression

setting, the theory is flexible as it can take the original covariates as well as multiple

nearest neighbor covariates (NNC ). Original covariates capture the linear effects and

multiple NNC capture nonlinear effects present at different scales within the data.

The presence of thousands of genes as covariates will lead to a problem in variable

selection in their method. This is because the traditional step-wise regression will no

longer be feasible in such circumstances. Although the procedure can be reformed

in terms of tens of genes selected by some procedure, the performance of classifica-

tion method depends on initial gene selection process (Lee et al., 2005). Also, may

researchers feel it is best to include as many genes as possible and are reluctant to

use subset approaches (Guo et al., 2007).

Fort and Lambert-Lacroix (2005) put their suggestion against using k-nearest

neighbor method for some of the data sets due to many occurrences of indecision.

Still the analysis shows that the performance of this method is much better than

many other methods (Dudoit et al., 2002). It was noticed that the presence of high

positive correlation of the gene expression observations within the same group and

high negative correlation between different groups brings about the nearest neighbor
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classifier to perform as a good classifier in several data sets.

The estimation of regularized parameters involved in any model can be performed

in several ways. Bayesian Information Criterion (BIC) is one of the popular criteria

in selecting best model. Subset selection is highly variable as it is a discrete process,

which either takes a variable or discard it (Hastie et al., 2001). Tibshirani (1996) pro-

posed Least Absolute Shrinkage and Selection Operator (LASSO), that shrinks some

regression coefficients and sets other to zero, and thus works as a variable selection

method. The L1 lasso penalty can be used in logistic regression framework when we

have quite a large number of covariates. However, we found that the misclassifica-

tion rate gets higher when all the nearest neighbor covariates are included in variable

selection stage.

Nguyen and Rocke (2002) used partial least squares method for the purpose of

classification in gene expression data. Recent methods include Support Vector Ma-

chine (SVM ) and Shrunken Centroid Regularized Discriminant Analysis (SCRDA )

(Hastie et al., 2001; Guo et al., 2007). SVM works in classification by producing

linear boundary in the feature space and thus refers to non-linear boundary in input

space. SCRDA is an extension of Fisher Linear Discriminant Analysis. This solves

the non-singularity problem and provides a gene selection during the process.

Including NNC prior to running any of the method gives an augmented form. This

provides some extra information to the classifier. First NNC can lead to capture non-

linear relationship which might be ignored otherwise. Thus an improved version of

many sophisticated methods can be achieved using this kind of augmentation.
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3.2 METHODS

Suppose that we have expression levels for p genes over a size of n samples. The

data matrix is given by X = (xij), a matrix of dimension n × p. The value xij

refers to the expression level for j-th gene in i-th sample. The response variable is

a categorical variable taking values as yi = {A1, A2, . . . , Ag}, where g is the number

of classes. In the present work we discuss only two-class prediction problem. Hence

we can express yi as taking values {−1, 1}. Predictions are built on the training set

and the performances are evaluated using the test set. In an one-leave-out validation

process, successively all but one observations are considered as training set and the

error rate is measured.

3.2.1 K-Nearest Neighbor

The nearest neighbor method is based on the distance function; for example, cor-

relation or Euclidian distance for pairs of observations. In a k-nearest neighbor

method, predictions of new observations are made through the training set {yi, xi}

for i = 1, 2, . . . , n. For a new observation, we find the k closest observations in the

training set and then predict the class to be the one where the majority of the k-

neighbours belong to. The process is run for each specified values of k and then the

selection of k is done using cross-validation. However, Holmes and Adams (2003) pro-

posed a new method for finding optimum value of k. Instead of using cross-validation

method, optimum value of k is derived by maximizing pseudolikelihood from a logistic

regression.

After the initial selection of a number of genes, say P , we have our set of vari-

ables as {x1, x2, . . . , xp}. Corresponding to the i-th observation, k-nearest neighbor
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autocovariate (NNC) is defined as:

νi(k)(A1) =
1

k

∑
j∼i

[I(yj = A1)− I(yj = A0)] (3.1)

The indicator variable I(x = ω) takes the value 1 if x = ω and 0 otherwise;
∑

j∼i de-

notes that the summation is over the k-nearest neighbors of xi in the set x1, x2, . . . , xi−1, xi+1, . . . , xp.

The autocovariate νi(k) refers to the proportion of class A1’s to class A0’s within the

k nearest neighbors of xi. Therefore, if all the k nearest neighbors of xi are in A1

then the autocovariate νi(k) is 1; if all the k nearest neighbors of xi are in A0 then the

autocovariate νi(k) is 0. Then a logistic regression model containing the covariates

νi(k) can be written as

Pr(yi = A1) = ηi =
exp(αkνi(k))

1 + exp(αkνi(k))
(3.2)

The pseudolikelihood function is therefore,

L(αk; ν(k)) =
n∏

i=1
η
ỹi
i (1− η)1−ỹi (3.3)

where

ỹi =

{
0, if yi = A0

1, if yi = A1
(3.4)

Optimal value of k is selected by maximizing the likelihood function. That is,

k̂ = argmax kL(αk; ν(k)) (3.5)

3.2.2 Efficient NNC Computation in R

We can use R package class to compute the nearest neighbour covariates. For

calculating K-th NNC corresponding to test set, built-in function knn() can be used
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to obtain predicted class (ŷ) and proportion (p) of votes for that winning class. Then

p×K measures the number of votes for the winning class. We can define a proportion,

called consensus proportion (C), as (pK − (K − pK))/K. Then K-th NNC would be

ŷ × C. To find the NNC corresponding to training set, we can consider successively

each observation as test sample and do the above steps. The function knn.cv()

performs the procedure automatically.

3.2.3 DLDA and DQDA

Let fl(x) be the conditional density of x in class y = Al and assume that this follows

multivariate normal distribution of the form:

x|y = Al ∼ MVN (µl,Σl)

Let πl be the prior probability of class l. Then the discriminant function is expressed

as

 Ll(x) = −1

2
log |Σl| −

1

2
(x− µl)

T Σ−1
l (x− µl) + log πl (3.6)

This is called quadratic discriminant function as it does not assume equal covariances

throughout the classes. In a two class setting, the decision boundary between two

classes can be given by a quadratic equation {x :  L1(x) =  L2(x)}. If the class density

has diagonal covariance matrix of the form Σl = diag (σ2
l1, σ

2
l2, . . . , σ

2
lP ), then the

discrimination rule is called diagonal quadratic discriminant analysis (DQDA).

If we assume that class density has same covariance matrix for all the classes;

that is if Σ̂l = Σ̂, this leads to linear discriminant analysis (LDA). When covariance

matrix in LDA is diagonal of the form Σ = diag (σ2
1, σ

2
2, . . . , σ

2
P ), then this is called

diagonal linear discriminant analysis (DLDA).
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We predict an observed value x0 to a class which maximizes the discriminant

function in Equation 3.6; that is, y(x) = argmax l  Ll(x).

3.2.4 Shrunken Centroid RDA

Shrunken Centroid Regularized Discriminant Analysis (SCRDA ) was introduced by

Guo et al. (2007). This is a modified version of LDA. After estimating the parameters,

we can write the discriminant function from equation 3.6 as:

 Ll(x) = xT Σ̂−1x̄l −
1

2
x̄T

l Σ̂−1x̄l + log πl (3.7)

where x̄l represents the mean vector in l-th class. In high-dimensional setting, the

estimates in LDA will be unstable and therefore cannot provide optimal results (Guo

et al., 2007). In order to overcome the singularity problem in such situation, the

authors proposed using regularized form of the covariance estimate:

Σ̃ = αΣ̂ + (1− α)IP (3.8)

where α is a non-negative value in the range 0 ≤ α ≤ 1. Using the equation 3.8, we

can redefine the discriminant function as:

 ̃Ll(x) = xT Σ̃−1x̄l −
1

2
x̄T

l Σ̃−1x̄l + log πl (3.9)

Then the SCRDA can be constructed as classifying an observation x in a group that

minimizes:

(x− x̄′l′)
T Σ̃−1(x− x̄′l′)− log πl′ (3.10)
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where x̄′
l′ is the vector of shrunken centroid for group l. A shrunken centroid x̄′ is

defined as

x̄′ = sgn (x̄)(|x̄−∆)+ (3.11)

where ∆ > 0 is shrinkage parameter.

To estimate the tuning parameter pair (α,∆), we use the Min-Min rule in the

analysis. The first step is to find all the pairs that yield minimum cross-validation

error in training set. Finally, optimum pair of (α,∆) refers to that values which

correspond to minimum number of selected genes.

3.2.5 Support Vector Machine

The space that x = {x1, x2, . . . , xp} takes is called input space. A space obtained

after transforming x to τ(x) is called feature space. An SVM is a technique that sepa-

rates classes through non-linear boundary by creating linear boundary in transformed

feature space.

Let u′x+a = 0 is the separating hyperplane between the groups. There exists two

other bounds - the distance between which is sought to be maximum for separating

the classes. This distance is called margin and denoted as m = 1/||u||. We can define

the decision boundary through the optimization problem

minimize 1
2 ||u||

2

subject to yi(u
′x+ a) ≥ 1 or 1− yi(u′x+ a) ≤ 0

The Lagrangian is

L =
1

2
u′u+

n∑
i=1

αi(1− yi(u′xi + a)) (3.12)
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where αi is Lagrange multiplier. Setting gradient of L w.r.t u and a to zero and then

substituting u =
∑n

i=1 αiyixi and
∑n

i=1 αiyi = 0, we get

L = −1

2

∑ ∑
αiαjyiyjx

′
ixj +

∑
αi (3.13)

Therefore, the optimization problem becomes

u(α) = −1
2

∑∑
αiαjyiyjx

′
ixj +

∑
αi

subject to αi ≥ 0 and
∑
αiyi = 0

However, if the classes overlap in feature space, there will arise some non-negative

slack variables ξ = {ξ1, ξ2, . . . , ξn}. Thus, we get modified optimization problem as

minimize 1
2 ||u||

2 + c
∑n

i=1 ξi

subject to yi(u
′xi + a) ≥ 1− ξi, ξi ≥ 0

where c is tradeoff parameter between error and margin. This corresponds to

u(α) = −1
2

∑∑
αiαjyiyjx

′
ixj +

∑
αi

subject to c ≥ αi ≥ 0,
∑
αiyi = 0

As mentioned before, linear operation in the feature space is equivalent to non-linear

operation in input space. Thus we reach to another SVM optimization problem

through substituting the inner product x′ixj by

K(xi, xj) = τ(xi)
′τ(xj) (3.14)

There are different types of kernals for SVM optimization; however the popular ones

(Hastie et al., 2001) are:

• Radial basis function kernel with width σ:

K(xi, xj) = exp(−||xi − xj ||2/2σ2)
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• Polynomial kernal with degree l: K(xi, xj) = (1 + 〈xi, xj〉)l

• Neural network: K(xi, xj) = tanh(κ1〈xi, xj〉+ κ2)

3.3 IMPLEMENTATION

For each nearest neighbour {K1, K2, . . . , Kl}, we can obtain the covariates as ν(K1),

ν(K2), . . . , ν(Kl)
. Then the augmented set of inputs would be {x1, x2, . . ., xp, νK1

,

νK2
, . . ., νKl

} . After inclusion of unit column vector, the design matrix is of the

form D = (1, X, V ). We found that implementation of all the covariates in V lead to

high misclassification rate. In such case, any method picks some unnecessary covari-

ates that deters the optimization of the classification rate. Practical implementation

reveals that 1-NN can provide good result in bioinformatic applications. In present

work, we investigate the performance of four methods; namely DLDA, DQDA, SVM

and SCRDA when first NNC is added to the original set of inputs.

3.3.1 Assessing Prediction Accuracy

Cross-validation is a simple but widely used method for assessing prediction accuracy.

In a K-fold cross-validation, we randomly divide the data into K segments. We leave

one part out, say j-th part, and fit the model for the remaining parts. Then estimate

the error rate for that j-th part. We repeat the process for each of K segments, and

finally find the overall misclassification error. In our analysis, we use K = N which

leads to leave-one-out (LOO) cross validation. We also perform re-randomization

analysis. In this case we randomly divide the data into learning and validation part.

The size of the validation part is considered as one fifth of the total sample size.

A model is tuned from the learning part and prediction error is estimated from the

validation part. We repeat the process for 300 times and find overall error rate.
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3.3.2 Computation

We use Beowulf cluster computing environment with 58 nodes for doing all the analy-

ses. Yu (2002) developed the package Rmpi, which is an interface to Message Passing

Interface (MPI). This package allows to implement R codes cooperatively in paral-

lel across multiple machines. Some of the microarray data sets are very large and

so running the leave-one-out or re-randomization procedure demands lots of compu-

tation time. We enjoy very good computational savings using this Beowulf cluster

computing facility.

3.4 SIMULATION RESULT

To discuss the motivation of proposed method, we use a simulated data set. The

concept of this simulation is similar to what was discussed by Guo et al. (2007) as

two-group dependent structure. We assume that the conditional densities of x in two

classes are MVN (µ1,Σ1) and MVN (µ1,Σ1). There are P = 2000 input variables.

The mean, µ1, for first group is a P × 1 vector of elements 0. The mean vector in

another group has first 100 elements as 0.5 and rest 1900 as 0. The covariance for

both groups is block diagonal but with different block sizes. Both the densities have

covariance structure as:



Σρ 0 0 · · · · · · · · ·

0 Σ−ρ 0 0 · · · ...

0 0 Σρ 0 · · · ...
... 0 0 Σ−ρ 0

...
...

...
... 0

. . .
...

· · · · · · · · · · · · · · · · · ·


(3.15)
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Each block in the covariance matrix has autoregressive form. If ρ is the autocor-

relation between successive genes and the block size is B, then Σρ can be written

as:

Σρ =



1 ρ ρ2 · · · ρB−1

ρ 1 ρ · · · ρB−2

ρ2 ρ 1 . . . ρB−3

...
...

...
. . .

...

ρB−1 ρB−2 · · · · · · 1


(3.16)

We consider same autocorrelation, ρ = 0.9, for both groups; but take different

block sizes B = 40 and B = 100. Training set contains 100 observations from each

class. To evaluate the performance, 500 test samples are generated from each group

using same procedure.

Performance of different methods with and without augmented covariates

Method k = 0 k = 1

DLDA 27.8 21.5

DQDA 28.9 24.7

SVM 19.3 16.7

SCRDA 25.8 11.1

Table 3.1: Misclassification rate for different methods in simulated data. All the rates are
measured in percentage. Here k = 0 refers to original set of covariates, and k = 1 refers
to one NNC augmented to the original set. A total of 200 training samples and 1000 test
samples, measuring P = 1000 variables, are generated.

We see from Table 3.1 that all methods are hugely improved through the use of

NNC. SCRDA gained the most improvement as the error rate decreased from 25.8%

to only 11.1%. This augmentation turned SCRDA to be the best performing method

in this data set. The gain in SVM is minimum.
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3.5 MICROARRAY DATA SETS

We assess the proposed method using four publicly available data sets. The data

sets are (i) colon cancer data (Alon et al., 1999), (ii) acute leukemia data (Golub

et al., 1999), (iii) prostate cancer data (Singh et al., 2002) and (iv) breast cancer data

(vant Veer it et al., 2002). An overview of the data sets is given in Table 3.2. All of

the data sets were either originally divided into groups of training and test sets, or

by the aforementioned authors. However, for an extensive comparison we merge all

the training and test samples and thereafter find leave-one-out as well as re-sampling

error rates.

Summary of the microarray data sets used in the analysis.

Name Description P n1 n2
Alon Colon cancer 2000 40 22

Golub Acute leukemia 7129 47 25
Singh Prostate cancer 12600 59 77
Veer Breast cancer 24188 51 46

Table 3.2: Summary table of four data sets that we analyze to evaluate the performance
of proposed method. P refers to the number of genes in corresponding data. n1 and n2 are
the number of samples available for class 1 and 2 respectively.

3.5.1 Colon Cancer Data

This data set contains 62 tissue samples with 40 tumor and 22 normal samples (Alon

et al., 1999). An Affymetrix oligonucleotide array complementary to more than 6, 500

human genes was used to analyze expression levels for these samples. Finally 2000

genes are finally included in the data, which are not readily preprocessed. We follow

the pre-processing steps mentioned by Dudoit et al. (2002):

• thresholding at floor of 100 and ceiling of 16000,
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• filtering to exclude the genes with max /min ≤ 5 and (max−min) ≤ 500

• transformation using logarithm of base 10.

3.5.2 Acute Leukemia Data

Acute leukemia data set contains 72 bone marrow samples obtained from adults with

acute leukemia (Golub et al., 1999). Expression levels for 7129 genes are measured

using Affymetrix high-density oligonucleotide arrays. There are 47 samples of acute

lymphoblastic leukemia (ALL ) and 25 samples of myeloid leukemia (AML ). The

data is not preprocessed and so same procedure as that of Colon data is applied here.

3.5.3 Prostate Cancer Data

In this data set total of 12600 gene expression levels are measured for 136 tissue sam-

ples (Singh et al., 2002). Expression profiles were derived from 77 prostate tumors

and 57 nontumor prostate samples from patients undergoing surgery. The objective

here is to separate tumor tissues from normal tissues. The pre-processing steps men-

tioned by Singh et al. (2002) are applied to the data set (Fort and Lambert-Lacroix,

2005):

• thresholding at floor of 10 and ceiling of 16000,

• filtering to exclude the genes with max /min ≤ 5 and (max−min) ≤ 50.

• transformation using logarithm of base 10 is used.

3.5.4 Breast Cancer Data

The data contains 24188 expression profiles for 97 breast cancer patients. They are

divided into two groups - (i) who developed metastases within 5 years and (ii) who

remained disease-free within 5 years (vant Veer it et al., 2002). 46 patients developed
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distant metastases and 51 did not. The objective is to predict the presence of sub-

clinical metastases in order to provide a strategy to select patients who would benefit

from adjuvant therapy. The data set is preprocessed and so no further preprocessing

step is applied.

3.6 GENE SELECTION

Selecting a subset of best differential genes provides better classification result for

different methods in some microarray data sets (Fort and Lambert-Lacroix, 2005).

Lee et al. (2005) compared different classification methods for three different types

of initial gene selection. It was showed that process of initial gene selection makes

difference in the performance. We use a criterion that is based on ratio of between

to within group sum of squares of the genes (Dudoit et al., 2002). The ratio for gene

j is

BSS (j)

WSS (j)
=

∑
i
∑

l I(yi = l)(xlj − x̄.j)2∑
i
∑

l I(yi = l)(xij − x̄lj)2

where x̄.j is the average expression level of gene j across all samples and x̄1j is the

average expression level of gene j across samples in class l. A selection of P genes are

made by considering the genes having largest BSS /WSS ratios. Although SCRDA

can automatically select the genes during the process, we use BSS /WSS criterion to

select primarily 500, 1000 and 2000 genes for comparison with other methods.
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Performance of different methods for P = 500

LOO OS

Data set k = 0 k = 1 k = 0 k = 1

DLDA Alon 12.90 12.90 13.83 13.83
Golub 2.78 1.39 2.80 2.40
Singh 24.26 22.79 24.74 23.81
Veer 35.05 35.05 32.82 32.82

DQDA Alon 12.90 12.90 13.63 13.57
Golub 1.39 1.39 1.80 1.77
Singh 34.56 35.29 33.75 33.35
Veer 30.93 30.93 29.94 29.84

SVM Alon 14.51 14.51 13.97 13.97
Golub 1.39 1.39 1.49 1.49
Singh 5.88 5.88 6.32 6.20
Veer 35.05 35.05 31.66 31.58

SCRDA Alon 12.90 11.29 14.63 14.23
Golub 5.56 5.56 6.37 6.01
Singh 5.88 5.88 5.88 5.55
Veer 35.57 29.47 32.89 31.84

Table 3.3: Leave-one-out (LOO) and out of sample (OS) misclassification rates (in %) of
different methods with and without the augmented nearest neighbour covariates (NNC).
Here k = 0 refers to no NNC and k = 1 refers to first NNC included in the initial covariate
set. A selection of best 500 genes was made for all data sets.
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Performance of different methods for P = 1000

LOO OS

Data set k = 0 k = 1 k = 0 k = 1

DLDA Alon 12.90 12.90 13.72 13.66
Golub 4.17 1.39 2.81 2.28
Singh 29.41 28.68 28.43 27.83
Veer 32.99 32.99 32.14 32.07

DQDA Alon 12.90 12.90 14.25 14.13
Golub 1.39 1.39 1.95 1.90
Singh 36.76 36.76 36.17 36.03
Veer 31.96 30.93 29.04 28.56

SVM Alon 12.90 12.90 14.72 14.72
Golub 1.39 1.39 1.59 1.59
Singh 5.88 5.88 7.22 7.07
Veer 30.93 30.93 31.17 31.14

SCRDA Alon 12.90 9.68 13.87 13.67
Golub 6.94 2.78 6.03 5.53
Singh 8.38 5.15 6.01 5.87
Veer 33.84 33.60 30.88 30.41

Table 3.4: Leave-one-out (LOO) and out of sample (OS) misclassification rates (in %) of
different methods with and without the augmented nearest neighbour covariates (NNC).
Here k = 0 refers to no NNC and k = 1 refers to first NNC included in the initial covariate
set. A selection of best 1000 genes was made for all data sets.
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Performance of different methods for P = 2000

LOO OS

Data set k = 0 k = 1 k = 0 k = 1

DLDA Alon 12.90 12.90 13.96 13.90
Golub 2.78 1.39 2.91 2.34
Singh 29.41 23.53 28.56 27.96
Veer 30.93 30.93 32.40 32.32

DQDA Alon 14.52 14.52 14.33 14.23
Golub 1.39 1.39 1.94 1.88
Singh 36.76 35.29 36.43 36.27
Veer 29.90 27.84 29.28 29.26

SVM Alon 11.29 11.29 14.70 14.70
Golub 1.39 1.39 1.57 1.57
Singh 6.62 5.89 7.08 6.95
Veer 28.87 29.90 31.30 31.26

SCRDA Alon 12.90 12.90 13.73 13.79
Golub 5.56 2.78 6.82 6.13
Singh 5.88 5.88 6.13 5.84
Veer 24.74 23.20 30.74 30.84

Table 3.5: Leave-one-out (LOO) and out of sample (OS) misclassification rates (in %) of
different methods with and without the augmented nearest neighbour covariates (NNC).
Here k = 0 refers to no NNC and k = 1 refers to first NNC included in the initial covariate
set. A selection of best 2000 genes was made for all but colon data for comparison. In colon
data P is taken to be maximum possible genes after filtering.
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3.7 CONCLUSION

We have discussed the plausibility of using a modified classification procedure to

improve prediction accuracy in existing methods. Performance of the approach is

evaluated through one simulated and four microarray data sets. The method is flexible

and provides better results in most situation.

The simulation is constructed such a way that the decision boundary between

two classes is non-linear. It is found that all methods got substantial improvement

through the use of NNC approach. Table 3.3-3.5 demonstrate the misclassification

error rates using different methods for a selection of 500, 1000 and 2000 genes. In

colon data the number of genes is much lower than 2000 after applying filtering and

thresholding steps; so maximum available genes are used in such case. We see from the

result of LOO cross-validation that introducing NNC improves classification accuracy

in almost all methods for each of the gene selection. In colon data, SCRDA attains

the best performance thanks to adding NNC when P = 500 or 1000. DLDA enters

the set of best classifier in leukemia data when NNC is used. In prostate cancer data,

DLDA experiences improvement for all gene selections. The gain in prediction power

due to NNC in other methods depends on the selection of P for this data. SCRDA is

the best prediction method in breast cancer data. This method still gains some more

accuracy due to NNC. Introducing NNC also improves the classification performance

of DQDA in breast cancer data for larger number of genes. We see from the tables

that SVM does not gain improvement for most of the instances. The application of

re-sampling technique shows that some systemic decrease in misclassification rate can

be gained through the use of first NNC.

Investigation showed that some other dimension reduction techniques; for exam-

ple, principal component regression (PCR) or partial least squares regression (PLSR)
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with augmented NNC can provide very good result. This approach can be extended

to any classification rule for plausible improvement.

3.8 FUTURE WORK

We will extend this approach to study the performance in multi-class problem. The

procedure can take multiple number of nearest neighbour covariates (NNC). We will

develop some adaptive selection procedure for the optimal number of NNC to be

finally added in the model. Another problem of interest would be to study if class

prediction can be improved by combining predictors as has been found for time series

forecasting.
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CONCLUSION

Chapter 4

CONCLUSION

Topics in microarray data analysis are investigated and improved methodology devel-

oped. A method using Pearson curve fitting to calibrate the null distribution is devel-

oped for finding periodic genes in short time time-regulated microarray experiment.

This method outperforms Fisher’s g test in case of short series. Moreover, this method

is robust to missing observations in the series. Change point detection in CGH arrays

is addressed using wavelet analysis. Maximum overlapping discrete wavelet trans-

form is employed to detect loss and gain regions in different chromosomes. Several

simulation experiments confirm the superior performance of the proposed method.

We have studied the usefulness using the nearest neighbour covariate in addition to

the original inputs in order to attain improved class prediction. In the presence of

nonlinearity, the proposed method produces substantial gains in prediction accuracy.
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