Multivariate Portmanteau Statistic

These notes provide an overview of the derivation of the portmanteautest, its theoretical optimality property and other possible
aternative tests. Simulationexperimentsare suggestedto determineempirically what works best.

For areview of multivariate vector notationsee Neudecker (1969) and MathwWorld articles. Also Hosking (1981B).

Monte-Carlo implementationsof these tests seem to be theway to go! Asymptotictests may in some circumstanceshave incorrect
Type 1 errors whereas with MC tests this is more controlled. While some asymptotic tests use only the y? distribution, some
asymptotictests require a muchmore complicated distribution which may be very tedious to program. With the advent of multi-
core PC's and the parallel computingcapabilities with R and Mathematica, computational overhead is not usually an important
issue.

On the other hand, some cautionis necessary because not all test statistics will be equally good. MC tests free us up fromworrying
about asymptotic distributions but they makethe question of what is a good (powerful) test more crucial. Simultationexperiments
may help to clarify thissituation.

m Summary of Notation

e nseries length

e kmultivariate dimension

e | number of lagsin portmanteau test

e C,l=-L -L+1,..0,1, .., Lthekxk sample autocovariance matrix
o R/, the kx k sample autocorrelation matrix. There are 3 nonequivaent forms.

e Q, Box-Pierce portmanteau test. Inthe multivariate case, there are 4 different equivalent forms. Thefirst three of these correspond to the 3
different (nonequivalent) defintions of R,. Essentialy the normalization used makes all 3 of these equivalent as shown by Hosking. The
fourth one is givenby Reinsel (1997, egn. 5.44) and wasobtained by using the Chitturi (1974) definition of R,. 1n81.4 below, it is shown that
egn. 5.44 of Reinsel (1997) may be obtained from the Li-McLeod definition of R,.

. QL modified portmanteau test (by context either the Li-McLeod or Hosking version)

e D, generalized variance whiteness test statistic. Inthe previous work we used I_:JL for the test using residuals. But | think we should drop this
distinction in order to simply notation. Thisdistinction is important when the asymptotic distributions are being derived but | don’t think it is

needed for the MC test. Themultivariate extension of D, is givenbelow in §2.2.2. D, is anaiveextension of D, defined n §2.2.2. I don't
recommend we bother with D, .
e Dy the generalized variance whiteness test statistic derived in the Ph.D. thesis of Lin (2006).

1. Multivariate Portmanteau Statistic, Q.

Various defintionsfor the multivariate portmanteau statistic have been suggested (Chitturi, 1974, 1976; Hosking, 1981A; Li &
McLeod, 1981). Interestingly Hosking (1981B) showed that all these definitions are completely equivalent. With al these
definitionsthe portmanteaustatistic can be written,

L
Qu=n ) (vecR)Y (Ry'®Ro?) vec(R)) €
=1
where n is the series length, L is the maximumlag and R, is the sample autocorrelation matrix at lag ¢£. The apparent notational
differencein the definitionscomesfromhow R, is defined. Li and McLeod (1981) use theusual definitionfor the sample autocorela
tion matrix which we now define.
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Let A, t=1, ..., nbek-variate white noise, thatis, A~ NID(O, A), where A = (o j), . Denotetheobserved values of A by &,
a=@wg oy A, =1, ..

Inthe VAR diagnostic situtation, the a; could be theinnovationsfor a VAR process or residuals fromafitted VAR model in which
case we would normally use the notation;. Thenthe sample autocovariance matrix may be written,
n
Cr=(a0)=n" > aa, @
t=r+1

where/ =0, 1, 2, .... Wecanwritefor /=0, Cy=(c; ;(0)) = A= (Ti,1)yq FOr £ <0, we define, C, = C/,.

Li and McLeod (1981), take

R =(Gi,j(0)/ci,j(0)), (3
while Chitturi (1974, 1976) takes

R=C Gyt 4
and Hosking (1980) takes

R=L"C/L, 5)

whereL L’ = C3t.

Itis surprising that numerically al these different definitions of R yield the same value for Q_ (Hosking 1981B). The definitions
of R, are not equivalent!! Esam please study Hosking (1981B).

Intheunivariate case, k = 1, Q_ reduces to the usual portmanteaustatistic,

L
Q=n)R (6)
=1

m 1.1 Bias Adjustment

Particularly in the case of residual diagnostic checkingfor fitted ARMA and VARMA models, the usual portmanteaustatistic is

biased. Inthiscase, theresiduals, &, t=1, ..., nare used to computeé/ and R, respectively. Theoriginal univariate portmanteau
statistic was suggested by Box and Pierce (1970) and may be written,

L
A=ndFK ™
=1

Unlikethe white noise case, Box and Pierce (1970) showed that under Hy : fitted ARMA(p, ) model is correct, Q_~ y?-dis-
tributed withL — p— qdf. Ljungand Box (1978) suggestedthe modified portmanteaustatistic,

L
Q = n(n+2)2|?zf/(n—/) ®

=1

Consider just the case of white noise testing,

L
Q =nn+2 Y R/N-0) ©)

(=1
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anditis easily seenthat€ (Q } = L
Infact, Davies, Triggs, and Newbold (1977, egn. 1.7) suggested Q,_ previously and used exactly the same argument, noting that
from previous results of Moran (1947, 1948),

n-+¢
€{R}=

10
nn+2) (10)

Thisformulais exact in the white noise case and an approximationin the case of residuals. Itis truethat Box and Ljung(1978) a

fuller analysis and discussion of themodificationbut it is slightly surprising that statistic QL is universaly referred to as the Ljung-
Box modified portmanteaustatistic. This seemsto another case of Stigler's law of eponymy(Wekipedia: http://en.wikipedia.org-
Iwiki/Stigler%27 s law _of _eponymy)

Inthemultivariate case, the portmanteaudignostic test may be written,

L
Q= (veeR)) (R, © Ry ) vea(R) (11)

(=1
Two modified portmanteautest statistics have been suggested. Hosking(1978) suggested,

Q. =nn+2) Z (vec(R)) (ﬁo ®R, )vec(ﬁ%{)/(n -0 (12)

[_
while Li and McLeod (1981) suggested,
. L \ el A . LL+1)
Q =n ) (vecR)) (R01® Rol) vec(R) + k?

=1

o (13)
Both Li and McLeod (1981) and Hosking (1981) provided simulation experimentsto demonstratethe improvement of their sug
gested modified portmanteautest. Li (2004, p.25) notesthat Ledholter (1983) compared these two modified tests with the original
Q. and found that both modificationsworked equally well and were better thanQ,_. Kheoh & McLeod (1992) suggestedthat the
variance of the Li-McLeod modified portmanteautest was less and provided simulation evidence that in the univariate case there
was a slight improvementin power.

In the univariate case McLeod (1978) showed that f ~ N(O, P), where P is givenin the paper. Using this fact Ljung (1986)
examined a test based on the exact value of the asymptotic distribution obtained by numerical inversion of the characteristic
function. Minor improvementswere noted.

m 1.2 Notes on the Derivation of Multivariate Portmanteau Statistic

It can be seen that the distributions of C, and R, both depend on A. Under the null hypothesisof white noise, it may be shown that
vec R, is approximately NID with mean 0 covariance matrix A® A. Fromthisit follows that Q_~ y2, where v = k% L.

Withoutloss of generality, we can work with C, and assumethat innovation covariance matrix is in correlation form and treat the
case of knownoj; = 1, thatis,

n

R=Cr=(a;0)=n" > aa,.

t=r+1

Var(ci (1)) =2 TVar(a; aj ) = Ze{ a1 1) }
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since € {a; aj—¢) = 0 for £ + 0 and usingthefollowing results.

Recall thefourthmomentresult, provided all momentsexist, (Hannan, 1970, p.23; Brillinger, 1981, 82.3; Isserlis, 1918)
€ {X1 Xo X3 Xg} = € {Xy X} € { X5 Xa} + € { X1 X3} € { Xz Xg} + € {Xy Xa} € { Xz X} + cUM(Xy, Xz, X3, Xg)

where cum(Xy, X,, X3, X4) denotesthe cumulantwhichis zeroif (X1, X, X3, X4) is multivariatenormal.

€ {(ai,t aj,H)z}

=€ {ai,t Qjt—r At aj,t—(’}

=C {ai,t aj,H} € {ai,t aj,t—t’} +€{q a4 € {aj,H aj,H} +€ {ai,t aj,t} S {ai,t aj,t}
= 0ii 0,

Hencewe have

nvarc () = oi; o,
Similarly we can show that,
NCov(Cgn(0), Gi j(t)) = 0gi Oh,

Cov(cgn(®), Gi,j(1)) = "2 $.Cov(ag an -, @ aj )
= n23€ {ag,t Ant—r At aj,t—/}
Hencewe can write, Cov(vec(R)) = A® A
and moregenerally,
Cov((vec(Ry), ..., vec(R))) =1, ®A®A
Inthe case of testingfor whiteness, thetest statistic,
L
Qu=n ) (vecR)Y (A @AgY) vec(R) (14)
=1

is asymptotically y2 with df k? L. Inpractice A is not knownbut theresult still holdsif the usual momentsestimateof A is used.

m 1.3 Optimal Properties of Q.

Itis well-known that thelikelihood ratio test enjoys many optimal properties. Whittle (1952) suggeststestingthe goodness of fit of
an AR(p) by using a likelihood-ratio test for an AR(p + L) for sufficiently large L. More generally if L is large enough, the
likelihood-ratio statistic based on an ARMA(p, ) vs. AR(L) is still approximately y? ondf =L — p — g (Whittle, 1952).

Hosking (1978) shows that in the univariate case, the Q_ is related to thistest. Specifically Q. is equivaent to a Lagrangemulti-
plier test of

Hp: AR(p)vs. H;: constrained AR(p + L)

More precisely, themodel under H, is an AR(L) process which is fitted to theresiduals in the AR(p). Thusthe aternative process
can be written (Hosking, 1978, eqn. 6),

¢(B)a(B)z =2 (15)
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where ¢(B) and a(B) are polynomialsof degrees p and L respectively.
To theextentthat H, provides a reasonable model, we must agree that Q. seemslike a good idea for atest statistic.

In the univariate case, Newbold (1980) shows that the Lagrangemultiplier test for testing ARMA(p, ) vs ARMA(p+L, q) is
equivalent to atest based on thefirst L residual autocorrelations,

P=(Ry, . R
Thetest statistic derived by Newbold (1980) can be written,
S=1" Py,

where P is the covariance matrix given by McLeod (1978). For finiteL, P is nonsingular but for large L it is approximately
indempotentand hencethe usual portmanteautest may be derived usingthisfact.

Hosking (1981A) derives the multivariate portmanteautest using Q, using a Lagrangemultiplier test approach. Sinceit is gener-
aly well known that the Lagrangemultiplier test is asymptotically equivalent to the likelihood-ratio test, this provides further
supporttousingQ, .

Cox and Hinkley (1974) provide an overview of likelihood-ratio tests and Lagrangemultipier test and show that these two tests are
asymptotically equivalent.

In summary,the portmanteautest based on Q_ has strong theoretical justificationin that it approximatesin a general way a likeli-
hood-ratio test. Nevertheless, it has been established that tests based on the generalized variance of the standardized residuals
typically perform with higher power.

= 1.4 Computation of Q_
Theusual definition of the multivariate portmanteaustatistic,
L
Q =n ) t(C; G5t G G5 (16)
h=1

Computationally,we can obtain U = C/, Cy* and V = Cy, C5* and then
Q= nZUi,i Vii 17)
i

where we have used a well-known result for thetrace of a matrix product (MathWorld).

Reinsal (1993, egn. 5.36) and Reinsel (1997, eqgn. 5.44) defines Q(L) in an equivaent but notationally different way. His egn.
(5.44) in Reinsel (1997) isin our notation,

L k
Q=n) > > niOr-0 (18)

i 1

k
=1 i=1 j:

~

where, taking# > 0 in both of the following expressions, (ri ()., = Cr Co* = R and for (i j(-0)), , = C/ Cg* = R, where the

Chitturi (1974) definition of multivariateresidual autocorrelationsis used. The above equationfor Q_ provides a fourthequivalent
defintion.
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2. Other Multivariate Portmanteau Tests

m 2.1 A Simplified Alternativeto Q.

Lin (2006, egn. 2.21) suggested a simplifed version of the portmanteautest. In the whiteness testing problem, this test can be
written,

L
Q =n ) (vec(R) vec(R)

(=1

M~
M~

M, rij(=0) (19)
(=1i=1j=1
k
= >Q" + n) O
m=1 i#]

where Q(Lm) is theusual univariate portmanteautest statistic for them-th series, m=1, ..., k. Thesecond termin theabove equation

was suggestedby McLeod (1979) as atest for causality between series i and series | in the presence of instantaneouscausality and

its distribution was obtained. 1nthe more general case in eqn. (4), the asymptoticdistribution of the cross-product term has been
derived by Lin (2006, §2.3, Lemma2, page 26).

The asymptoticdistribution of QF has not been derived but using the methodsgivenin Lin (2006, §2.3) thiswould not be difficult.
Butthisdistributionis quite complex and so not likely to useful unless suitable approximationswere found.

The test statistic QF does not have as strong a justification as the usual portmanteautest which can be argued approximates a
likelihood-ratio test.

m 2.2 Generalized Variance Tests

m 2.2.1 UnivariateCase

For the univariate case, Pefia and Rodriguez (2002) suggestedthat the generalized variance of the standardized residuals residu-
a's mightbe more powerful in manysituations. Linand McL eod (2006) showed that the original formulationof thetest (Pefia and
Rodriguez, 2002) had many problems and these problems could be overcome by resorting to a Monte-Carlo version of thetest. Lin
and McLeod (2006) also provided convincingevidence that the Monte-Carlo test worked better thanthe asymptoticversion of the
portmanteautest as well as Monte-Carlo test using the univariate Q.. Lin and McLeod (2008) extended the diagnostic test to
ARMA with infinitevariance innovations. Intheunivariate white-noise case,

Dy =n(1 - det(toeRy, ..., R))V') (20)
where det(e) is the determinantand tog(e) turnsa vector into a Toeplitz matrix. For diagnostic checking, we useresiduals,

1/L) (21)

DL = n(1- def{tog(Ry, ..., R))

Note the normalizationis used so that D, and D, convergein distribution for large samples. For Monte-Carlo tests, the normaliza
tionis not needed.
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m 222 MultivariateCase
The simplest extensionto multivariate diagnostic checkingwould be,
N A WI/L
D, = n(1 ~ det(tog{vec Ry, ..., vecR ) ) (22)

Three different, non-equivalent versions, of D, may be defined corresponding to the three different definitionsof R,. Usingthe
Chitturi definition, the distribution of D, does not depend on A in the white noise case (please provide a more detailed proof of
this). If the Li-McLeod version R, is used, we denote the above statistic by D, and the distribution of this statistic obviously
dependsonA.

This statistic depends on the nuisance parameters, A. 1 thinkit is likely the case that for MC testing thisis not important. Another
previous consideration by Lin (2006) was thatit is not clear how the asymptoticdistribution could be obtained.

For these reasons a new generalized variance test for the multivariate case was developed by Lin (2006) and Lin (2006) presented
a heurestic argumentthat an approximationto the above statistic is given by

k
DE: Zf)f_m) + ani,j((’)ri'j(—(’) (23)
m=1

i#]

An important consideration in choosing to work with I5: is that the asymptotic distribution can be obtained (Lin, 2006). But

unfortunatelythis asymptotic distribution does not seem to be useful because of large size distortions in the test and it is also
difficult to compute. For thisreason, D; may not be of muchinterest, | think.

Some simulation studies reported in Lin (2006) and Linand McLeod (2009) lend support to theidea that perhaps If): will perform
better thanthe usual Li-McL eod portmanteautest. Even for the M C test version of this statistic.

In these simulation experiments VAR(1) was fit to severa types of VARMA(p, g) modelswhere0< p<land0=<qg=<1and
k = 1. Theinnovation covariance matrix was nondiagonal with unit variances and off-diagonal element 0.71.

3. Simulation of VAR and VARMA

Because the VARMA model is too complex and difficult to estimate and thereis no software for VARMA estimation available in
R, we will focuson VAR diagnostic checking. When considering power we may consider higher order VAR, seasonal VAR as
well asVARMA series. Ingeneral theVARMA(p, q) model may be written,

#B)Z = +0(B) A (24)

where A~ NID(0, A), where A isthekx k covariance matrix. Oftenit will may be the case that A is nondiagonal and so we say
that instantaneouscausality is present (McLeod, 1979 and references to Pierce, 1977 and Haughand Pierce, 1977). The AR and
MA componentsare respectively ¢(B) =1y —¢1 B— ... — ¢, B and 6(B) = Iy — 6, B— ... — 6, BY where I denotes the kxk
identity matrix and ¢4, ..., ¢p, 601, ..., 6 are al kxk matricies. Itis essential that eqn (24) represent a stationary time series.

Sometimeshomogenousnonstationary processes may be allowed but explosive time series are unrealistic and may cause numeric
problems so they should be avoided. A process is said to be explosive if det(¢(z)) = 0 has a root inside the unit circle and it is
homogenousnonstationaryor stationary when det(¢(z)) = 0 hasall roots on or outsidetheunitcircle.

For our simulationfunctionwe will assumestationarity so that det(¢(z)) = 0 hasall roots outside the unitcircle.

The VARMA(p, ) process in (24) may be simulated recursively onceinitial values have been determined. Many previous authors
have simply used (24) to generate a series of lengthn + £ and then deleted thefirst £ values for warmup. A better approach is to
obtaintheinitial values usinga highorder MA approximation,
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L=+ A+ Y1 At Y A (29)
wheretheyy,, h=1, 2, ... are determinedrecursively by solving theidentity,
¢(B)y(B) = 6(B)
So
Uh=—=6h+d1¥na+ ... +Pp¥np
where we define 6y = — I, 6, = 0 for h < 0 and similarly o = I, and ¥, = 0 for h< 0.

Thissimulationis typically more accurate. If stationarity is assumedtheny, —» 0 hash — co. Inpractice we choose £ so that iy, is
negligible, ||¥ || < €, where thematrix normis indicated and e is a small positive number.

Using egn. (25) we can obtain starting values, when q> 0, Zy,, Z, 1, ..., Zy, Ay, ..., Apg+1 @d when g =0 we only need,
Zp Zp1s ooy Za.

Previously in the gvtest package, | used C code to computethe recursions involved in egns. (24) and (25) in the univariate case.
For maximumefficiency this needs to be extended to the multivariate case.

4, Further Work Needed

Wewill focusentirely on checkingthe adequacy of VAR models. Perhaps we should also ook at the white-noise testing problem
aswell sinceitis relatively simple. Inthe univariate case, the generalized variance test worked better than the usual portmanteau
test but less spectacularly so thanin theresidua diagnostic checkingproblem (Lin 2006).

Our simulationsshould focus on theempirical power. 1t would be nice if we parameterize the alternative model in the simulationso
that one particular parameter setting corresponds to the original model since the power in this case is thetype 1 error rate. Inthis
way we can easily compare thesize of thetest as well. We have already noted that M C tests usually have the correct size but thisis
sometimesnot the case for asymptotictests.

| am currently devel oping an R package to implementmultivariate portmanteautests. | am makinguse of previous R code from Jen-
Wen Linbut | have made some improvementson the efficiency. | like thesimulationfor AR that was developed. | am thinkingof
using C code for some of theloops to speed it up.

Monte-Carlo testing can very easily be implementedusing the software Rmpi and so it can be run effectively on multi-core CPU as
well as on departmental cluster. This meanswe can do alot more simulation.

It seemsunlikely that D, or even D, isreally goingto be optimal in al situationsrelative to Q, .
L

We need to be very careful with the design of our simulationstudy. We need to pay attentionof how we are goingto present the
results. We need to investigate how the correlation structure, A, affectsthetests. Most simulationscan be done with k = 2 but we
shouldtry somesimulationwith k = 3, 4, 5 just to check how thetest is effected by dimension.

We should also be sure to include models with seasonal lags corresponding to s= 12 for monthlydata.

Another concern is that the models should be stationary (and perhaps identifiable also). Identifiability in the case of VARMA
modelsis very complex -- see Hannan(1979) for example.
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Inthe case of thek-dimensional VAR(p) model, ¢(B) Z; = A, where ¢(B)=1-¢1 B— ... — ¢, B, A~NID(O, A), where each of
#1, ..., ¢p are kxk matricies, the stationarity conditionis that al zeros of the equation, det(¢(z)) = 0 are outside the unitcircle, that
is, |z| > 1. For theVAR() case, this meansthat all eigenvalues of ¢, are less than 1 in absolute value. Butwhen p> 1, the

stationarity conditionis not so easily determined computationally. This suggestsusing an approach such as Newton (1982) or
perhaps Tiao and Tsay (1989) for simulatingthe alternative higher order VAR process.
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