
Multivariate Portmanteau Statistic
These notes provide an overview  of the derivation of the portmanteau test, its theoretical optimality property and other possible
alternative tests. Simulation experiments are suggested to determine empirically what works best.

For a review of multivariate vector notation see Neudecker (1969) and MathWorld articles. Also Hosking (1981B).

Monte-Carlo implementations of these tests seem to be the way to go!  Asymptotic tests may in some circumstances have incorrect

Type 1 errors  whereas with MC tests this is  more controlled.  While some asymptotic tests use only the Χ2  distribution, some
asymptotic tests require a much more complicated distribution which may be very tedious to program.  With the advent of multi-
core PC's and the parallel  computing capabilities  with R and Mathematica, computational overhead is  not usually an important
issue.

On the other hand, some caution is necessary because not all test statistics will  be equally good. MC tests free us up from worrying
about asymptotic distributions but they make the question of what is a good (powerful) test more crucial.  Simultation experiments
may help to clarify this situation.

� Summary of Notation

è n series  length

è k multivariate dimension

è L number of lags in portmanteau test

è C{, l = -L, -L + 1, …, 0, 1, …, L the k ´ k sample autocovariance matrix

è R{, the k ´ k sample autocorrelation  matrix. There are 3 nonequivalent forms.

è QL  Box-Pierce  portmanteau test.   In the multivariate case, there are 4 different  equivalent forms.  The first  three of these correspond  to the 3 
different  (nonequivalent) defintions  of R{.  Essentially  the normalization used makes all 3 of these equivalent as shown by Hosking.  The 
fourth one is given by Reinsel  (1997,  eqn. 5.44)  and was obtained by using the Chitturi (1974)  definition  of R{.  In §1.4 below, it is shown that 
eqn. 5.44 of Reinsel  (1997)  may be obtained from the Li-McLeod  definition  of R{.

è Q
�

L  modified portmanteau test  (by context  either  the Li-McLeod  or Hosking version)

è DL  generalized variance whiteness test  statistic.   In the previous work we used D
`

L  for the test  using residuals.  But I think we should drop this 
distinction  in order  to simply notation.  This distinction  is important when the asymptotic  distributions  are being derived but I don`t think it is 

needed for the MC test.   The multivariate extension  of DL  is given below in §2.2.2.  D
Ð

L  is a naive extension  of DL  defined n §2.2.2.  I don't 

recommend  we bother with D
Ð

L .

è DL
*  the generalized variance whiteness test  statistic  derived in the Ph.D. thesis  of Lin (2006).

1. Multivariate Portmanteau Statistic, QL

Various defintions for the multivariate portmanteau statistic have been suggested (Chitturi, 1974, 1976; Hosking, 1981A; Li &
McLeod, 1981).   Interestingly Hosking (1981B)  showed that all  these definitions are  completely equivalent.  With all  these
definitions the portmanteau statistic can be written,

(1)QL = n â
{=1

L HvecHR{LL¢ IR0
-1 ÄR0

-1M vecHR{L
where n is the series  length, L is the maximum lag and R{ is the sample autocorrelation matrix at lag {.  The apparent notational
difference in the definitions comes from how R{ is defined. Li and McLeod (1981) use the usual definition for the sample autocorela-
tion matrix which we now define. 

Let At, t = 1, …, n be k-variate white noise, that is, At ~ NIDH0, DL, where D = IΣi, jMk´k
.  Denote the observed values of At by at,

at = Ha1,t, …, ak,tL, t = 1, …, n.



Let At, t = 1, …, n be k-variate white noise, that is, At ~ NIDH0, DL, where D = IΣi, jMk´k
.  Denote the observed values of At by at,

at = Ha1,t, …, ak,tL, t = 1, …, n.

In the VAR diagnostic situtation, the at could be the innovations for a VAR process or residuals from a fitted VAR model in which

case we would normally use the notation a
`

t.  Then the sample autocovariance matrix may be written,

(2)C{ = Ici, jH{LM = n-1 â
t={+1

n

at at-{
¢

where { = 0, 1, 2, ….  We can write for { = 0, C0 = Ici, jH0LM = D
`

= HΣ
`

i, jLk´k
.  For { < 0, we define, C{ = C-{

¢ .

Li and McLeod (1981), take

(3)R{ = Ici, jH{L �ci, jH0LM
k´k

while Chitturi (1974, 1976) takes

(4)R{ = C{ C0
-1

and Hosking (1980) takes 

(5)R{ = L¢ C{ L,

where L L¢ = C0
-1.  

It is surprising that numerically all these different definitions of R
`

{ yield the same value for QL  (Hosking 1981B).  The definitions
of R{ are not equivalent!!  Esam please study Hosking (1981B).

In the univariate case, k = 1, QL reduces to the usual portmanteau statistic,

(6)QL = n â
{=1

L

R{
2

� 1.1  Bias Adjustment

Particularly in the case of residual diagnostic checking for fitted ARMA and VARMA models, the usual portmanteau statistic is

biased.  In this case, the residuals, a
`
, t = 1, …, n are used to compute C

`
{ and R

`
{ respectively. The original univariate portmanteau

statistic was suggested by Box and Pierce (1970) and may be written,

(7)QL = n â
{=1

L

R
`

{

2

Unlike the white noise case,  Box and Pierce  (1970) showed that under H0 :  fitted ARMAH p, qL model is  correct,  QL ~ Χ2-dis-
tributed with L - p - q df.  Ljung and Box (1978) suggested the modified portmanteau statistic,

(8)Q
�

L = nHn + 2L â
{=1

L

R
`

{

2 � Hn - {L
Consider just the case of white noise testing,

(9)Q
�

L = nHn + 2L â
{=1

L

R{ � Hn - {L

and it is easily seen that E 8Q� L< = L
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and it is easily seen that E 8Q� L< = L

In fact, Davies, Triggs,  and Newbold (1977, eqn. 1.7) suggested Q
�

L  previously and used exactly the same argument, noting that
from previous results of Moran (1947, 1948),

(10)E 8R{< =
n - {

nHn + 2L
This formula is exact in the white noise case and an approximation in the case of residuals.  It is true that Box and Ljung (1978) a

fuller analysis and discussion of the modification but it is slightly surprising that statistic Q
�

L is universally referred to as the Ljung-
Box modified portmanteau statistic.  This seems to another case of  Stigler's law of eponymy (Wekipedia: http://en.wikipedia.org-
/wiki/Stigler%27 s_law _of _eponymy)

In the multivariate case, the portmanteau dignostic test may be written,

(11)QL = n â
{=1

L IvecHR` {LM¢ JR` 0

-1
ÄR

`
0

-1N vecHR` {L
Two modified portmanteau test statistics have been suggested.  Hosking (1978) suggested,

(12)Q
�

L = nHn + 2L â
{=1

L IvecHR` {LM¢ JR` 0

-1
ÄR

`
0

-1N vecHR` {L �Hn - {L
while Li and McLeod (1981) suggested,

(13)Q
�

L = n â
{=1

L IvecHR` {LM¢ JR` 0

-1
ÄR

`
0

-1N vecHR` {L + k2
LHL + 1L

2 n

Both Li and McLeod (1981) and Hosking (1981) provided simulation experiments to demonstrate the improvement of their sug-
gested modified portmanteau test.  Li (2004, p.25) notes that Ledholter (1983) compared these two modified tests with the original
QL  and found that both modifications worked equally well  and were better than QL.  Kheoh & McLeod (1992) suggested that the
variance of the Li-McLeod modified portmanteau test was less and provided simulation evidence that in the univariate case there
was a slight improvement in power.

In the univariate case  McLeod (1978)  showed that r
`

~ N H0, PL,  where P  is  given in the paper.   Using this fact Ljung (1986)
examined a  test based  on the exact value of the asymptotic distribution obtained by numerical inversion of the characteristic
function.  Minor improvements were noted.

� 1.2  Notes on the Derivation of Multivariate Portmanteau Statistic

It can be seen that the distributions of C{ and R{ both depend on D.  Under the null hypothesis of white noise, it may be shown that

vec R{ is approximately NID with mean 0 covariance matrix D Ä D.  From this it follows that QL ~ ΧΝ
2, where Ν = k2 L.

Without loss of generality, we can work with C{ and assume that innovation covariance matrix is in correlation form and treat the
case of known Σi,i = 1, that is,

R{ = C{ = Ici, jH{LM = n-1 â
t={+1

n

at at-{
¢ .

VarIci, jH{LM = n-2 ÚVarIai,t a j,t-{M = n-2 âE :Iai,t a j,t-{M2>
since E 9ai,t a j,t-{M = 0 for { ¹ 0 and using the following results.
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since E 9ai,t a j,t-{M = 0 for { ¹ 0 and using the following results.

Recall the fourth moment result, provided all moments exist, (Hannan, 1970, p.23; Brillinger, 1981, §2.3; Isserlis, 1918)

E 8X1 X2 X3 X4< = E 8X1 X2< E 8X3 X4< + E 8X1 X3< E 8X2 X4< + E 8X1 X4< E 8X2 X4< + cumHX1, X2, X3, X4L
where cumHX1, X2, X3, X4L denotes the cumulant which is zero if HX1, X2, X3, X4L is multivariate normal. 

E :Iai,t a j,t-{M2>
= E 9ai,t a j,t-{ ai,t a j,t-{=
= E 9ai,t a j,t-{= E 9ai,t a j,t-{= + E 8ai,t ai,t< E 9a j,t-{ a j,t-{= + E 9ai,t a j,t= E 9ai,t a j,t=
= Σi,i Σ j, j

Hence we have

n VarIci, jH{LM = Σi,i Σ j, j

Similarly we can show that, 

n CovIcg,hH{L, ci, jH{LM = Σg,i Σh, j

CovIcg,hH{L, ci, jH{LM = n-2 ÚCovIag,t ah,t-{, ai,t a j,t-{M
= n-2 ÚE 9ag,t ah,t-{ ai,t a j,t-{=
Hence we can write, CovHvecHR{LL = D Ä D

and more generally, 

CovHHvecHR1L, …, vecHRLLLL = 1L Ä D Ä D

In the case of testing for whiteness, the test statistic,

(14)QL = n â
{=1

L HvecHR{LL¢ ID-1 Ä D0
-1M vecHR{L

is asymptotically Χ2 with df k2 L.  In practice D is not known but the result still holds if the usual moments estimate of D is used.

� 1.3 Optimal Properties of QL

It is well-known that the likelihood ratio test enjoys many optimal properties.  Whittle (1952) suggests testing the goodness of fit of
an ARH pL  by using a likelihood-ratio  test for an ARH p + LL  for sufficiently large L.   More generally if L  is  large enough, the

likelihood-ratio statistic based on an ARMAH p, qL vs. ARHLL is still approximately Χ2 on df = L - p - q (Whittle, 1952).

Hosking (1978) shows that in the univariate case, the QL  is related to this test.  Specifically QL  is equivalent to a Lagrange multi-
plier test of 

H0 : ARH pL vs. H1 : constrained ARH p + LL
More precisely, the model under H1 is an ARHLL process which is fitted to the residuals in the ARH pL.  Thus the alternative process
can be written (Hosking, 1978, eqn. 6),

(15)ΦHBL ΑHBL zt = at

where ΦHBL and ΑHBL are polynomials of degrees p and L respectively.
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where ΦHBL and ΑHBL are polynomials of degrees p and L respectively.

To the extent that H1 provides a reasonable model, we must agree that QL seems like a good idea for a test statistic.

In the univariate case,  Newbold  (1980)  shows that the Lagrange multiplier test for testing ARMAH p, qL  vs ARMA(p+L, q)  is
equivalent to a test based on the first L residual autocorrelations,

r
`

= IR` 1, …, R
`

LM¢
.

The test statistic derived by Newbold (1980) can be written,

S = r
` ¢

P
-1 r

`
,

where P is  the covariance matrix given by McLeod (1978).   For finite L, P is  nonsingular but for large L it is  approximately
indempotent and hence the usual portmanteau test may be derived using this fact.

Hosking (1981A) derives the multivariate portmanteau test using QL  using a Lagrange multiplier test approach.  Since it is gener-
ally well  known that the Lagrange multiplier test is  asymptotically equivalent to the likelihood-ratio  test, this provides  further
support to using QL.

Cox and Hinkley (1974) provide an overview of likelihood-ratio tests and Lagrange multipier test and show that these two tests are
asymptotically equivalent.

In summary, the portmanteau test based on QL  has strong theoretical justification in that it approximates in a general way a likeli-
hood-ratio test.  Nevertheless, it has been established that tests based on the generalized variance of the standardized residuals
typically perform with higher power.

� 1.4 Computation of QL

The usual definition of the multivariate portmanteau statistic, 

(16)QL = n â
h=1

L

trICh
¢ C0

-1 Ch C0
-1M

Computationally, we can obtain U = Ch
¢ C0

-1 and V = Ch C0
-1 and then

(17)QL = n â
i, j

Ui, j V j,i

where we have used a well-known result for the trace of a matrix product (MathWorld).

Reinsel (1993, eqn. 5.36) and Reinsel (1997,  eqn. 5.44) defines QHLL in an equivalent but notationally different way. His eqn.
(5.44) in Reinsel (1997) is in our notation,

(18)QL = n â
{=1

L â
i=1

k â
j=1

k

ri, jH{L ri, jH-{L

where, taking { > 0 in both of the following expressions, Iri, jH{LM
k´k

= C{ C0
-1 = R{ and for Iri, jH-{LM

k´k
= C{

¢ C0
-1 = R-{, where the

Chitturi (1974) definition of multivariate residual autocorrelations is used.  The above equation for QL provides a fourth equivalent
defintion.
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2. Other Multivariate Portmanteau Tests

� 2.1 A Simplified Alternative to QL

Lin (2006, eqn. 2.21) suggested a simplifed version of the portmanteau test.  In the whiteness testing problem, this test can be
written,

(19)

QL
÷ = n â

{=1

L IvecHR` {LM¢
vecHR` {L

= n â
{=1

L â
i=1

k â
j=1

k

ri, jH{L ri, jH-{L

= â
m=1

k

QL
HmL

+ n â
i¹ j

ri, jH{L ri, jH-{L

where QL
HmL is the usual univariate portmanteau test statistic for the m-th series, m = 1, …, k.  The second term in the above equation

was suggested by McLeod (1979) as a test for causality between series i and series j in the presence of instantaneous causality and
its distribution was obtained.  In the more general case in eqn. (4), the asymptotic distribution of the cross-product term has been
derived by Lin (2006, §2.3, Lemma 2, page 26).

The asymptotic distribution of QL
÷ has not been derived but using the methods given in Lin (2006,  §2.3) this would not be difficult.

But this distribution is quite complex and so not likely to useful unless suitable approximations were found.

The test statistic QL
÷  does not have as strong a justification as the usual portmanteau test which can be argued approximates a

likelihood-ratio test.

� 2.2 Generalized Variance Tests

� 2.2.1 Univariate Case

For the univariate case, Peña and Rodriguez  (2002) suggested that the generalized variance of the standardized residuals residu-

als might be more powerful in many situations.  Lin and McLeod (2006) showed that the original formulation of the test (Peña and
Rodriguez, 2002) had many problems and these problems could be overcome by resorting to a Monte-Carlo version of the test. Lin
and McLeod (2006) also provided convincing evidence that the Monte-Carlo test worked better than the asymptotic version of the
portmanteau test as well  as Monte-Carlo test using the univariate QL.   Lin and McLeod (2008)  extended the diagnostic test to
ARMA with infinite variance innovations.  In the univariate white-noise case,

(20)DL = nI1 - detHtoeHR1, …, RLLL1�LM
where detHèL is the determinant and toeHèL turns a vector into a Toeplitz matrix.  For diagnostic checking, we use residuals,

(21)D
`

L = nJ1 - detItoeIR` 1, …, R
`

LMM1�LN
Note the normalization is used so that DL and D

`
L converge in distribution for large samples.  For Monte-Carlo tests, the normaliza-

tion is not needed.
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� 2.2.2 Multivariate Case

The simplest extension to multivariate diagnostic checking would be,

(22)DL = nJ1 - detItoeIvec R
`

1, …, vec R
`

LMM1�LN
Three different, non-equivalent                        versions, of DL  may be defined corresponding to the three different definitions of R{.  Using the
Chitturi definition, the distribution of DL  does not depend on D in the white noise case (please  provide a more detailed proof of

this).  If the Li-McLeod version R{ is  used, we denote the above statistic by D
Ð

L  and the distribution of this statistic obviously
depends on D.

This statistic depends on the nuisance parameters, D.  I think it is likely the case that for MC testing this is not important.  Another
previous consideration by Lin (2006) was that it is not clear how the asymptotic distribution could be obtained.   

For these reasons a new generalized variance test for the multivariate case was developed by Lin (2006) and Lin (2006) presented
a heurestic argument that an approximation to the above statistic is given by

(23)DL
÷ = â

m=1

k

D
`

L

HmL
+ n â

i¹ j

ri, jH{L ri, jH-{L

An important consideration in choosing to work with D
`

L

÷
 is  that the asymptotic distribution can be obtained (Lin, 2006).   But

unfortunately this asymptotic distribution does not seem to be useful because of large size distortions in the test and it is  also
difficult to compute.  For this reason, DL

*  may not be of much interest, I think.

Some simulation studies reported in Lin (2006) and Lin and McLeod (2009) lend support to the idea that perhaps D
`

L

÷
 will  perform

better than the usual Li-McLeod portmanteau test.  Even for the MC test version of this statistic.

In these simulation experiments VAR(1) was  fit to several  types of VARMAH p, qL  models where 0 £ p £ 1 and 0 £ q £ 1 and
k = 1. The innovation covariance matrix was nondiagonal with unit variances and off-diagonal element 0.71. 

3. Simulation of VAR and VARMA

Because the VARMA model is too complex and difficult to estimate and there is no software for VARMA estimation available  in
R, we will  focus on VAR diagnostic checking.  When considering power we may consider higher order VAR, seasonal VAR as
well as VARMA series.  In general the VARMAH p, qL model may be written,

(24)ΦHBL Zt = Ζ + ΘHBL At

where At ~ NIDH0, DL, where D is the k ´k  covariance matrix.  Often it will  may be the case that D is nondiagonal and so we say
that instantaneous causality is present (McLeod, 1979 and references to Pierce,  1977 and Haugh and Pierce,  1977).  The AR and
MA components are  respectively  ΦHBL = 1k - Φ1 B - … - Φ p Bp  and ΘHBL = 1k - Θ1 B - … - Θq Bq  where  1k  denotes the k ´k

identity matrix and Φ1, …, Φ p, Θ1, …, Θq  are all  k ´k  matricies.  It is  essential that eqn (24) represent a stationary time series.

Sometimes homogenous nonstationary processes  may be allowed  but explosive time series  are unrealistic and may cause numeric
problems so they should be avoided.  A process is said to be explosive if detHΦHzLL = 0 has a root inside the unit circle  and it is
homogenous nonstationary or stationary when detHΦHzLL = 0 has all roots on or outside the unit circle.

For our simulation function we will  assume stationarity so that detHΦHzLL = 0 has all roots outside the unit circle.

The VARMAH p, qL process in (24) may be simulated recursively once initial values have been determined. Many previous authors
have simply used (24) to generate a series  of length n + L and then deleted the first L values for warmup. A better approach is to
obtain the initial values using a high order MA approximation,
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(25)Zt U Ζ + At + Ψ1 At-1 + … + ΨL At-L

where the Ψh, h = 1, 2, … are determined recursively by solving the identity,

ΦHBL ΨHBL = ΘHBL
So

Ψh = -Θh + Φ1 Ψh-1 + … + Φ p Ψh- p

where we define Θ0 = -1k , Θh = 0 for h < 0 and similarly Ψ0 = 1k  and Ψh = 0 for h < 0.

This simulation is typically more accurate.  If stationarity is assumed then Ψh ® 0 has h ® ¥.  In practice we choose L so that ΨL is
negligible, °ΨL´ < Ε, where the matrix norm is indicated and Ε is a small positive number.

Using eqn. (25)  we  can obtain starting values,  when q > 0,  Zp, Zp-1, …, Z1, Ap, …, Ap-q+1  and when q = 0 we  only need,

Zp, Zp-1, …, Z1.

Previously in the gvtest package, I used C code to compute the recursions involved in eqns. (24) and (25) in the univariate case.
For maximum efficiency this needs to be extended to the multivariate case.

4. Further Work Needed

We will  focus entirely on checking the adequacy of VAR models.  Perhaps we should also look at the white-noise testing problem
as well  since it is relatively simple. In the univariate case, the generalized variance test worked better than the usual portmanteau
test but less spectacularly so than in the residual diagnostic checking problem (Lin 2006).

Our simulations should focus on the empirical power. It would be nice if we parameterize the alternative model in the simulation so
that one particular parameter setting corresponds to the original model since the power in this case is the type 1 error rate. In this
way we can easily compare the size of the test as well.  We have already noted that MC tests usually have the correct size but this is
sometimes not the case for asymptotic tests.

I am currently developing an R package to implement multivariate portmanteau tests.  I am making use of previous R code from Jen-
Wen Lin but I have made some improvements on the efficiency. I like the simulation for AR that was developed. I am thinking of
using C code for some of the loops to speed it up.

Monte-Carlo testing can very easily be implemented using the software Rmpi and so it can be run effectively on multi-core CPU as
well as on departmental cluster.  This means we can do a lot more simulation.

It seems unlikely that D
`

L

÷
 or even DL is really going to be optimal in all situations relative to QL.

We need to be very careful with the design of our simulation study.  We need to pay attention of how we are going to present the
results. We need to investigate how the correlation structure, D, affects the tests.  Most simulations can be done with k = 2 but we
should try some simulation with k = 3, 4, 5 just to check how the test is effected by dimension.

We should also be sure to include models with seasonal lags corresponding to s = 12 for monthly data.

Another concern is  that the models should be stationary (and perhaps identifiable also).   Identifiability in the case of VARMA
models is very complex -- see Hannan (1979) for example. 

In the case of the k-dimensional VARH pL model, ΦHBL Zt = At, where ΦHBL = 1 - Φ1 B - … - Φ p B, At ~ NIDH0, DL, where each of

Φ1, …, Φ p are k ´k matricies, the stationarity condition is that all zeros of the equation, detHΦHzLL = 0 are outside the unit circle,  that

is,  z > 1.  For the VARH1L case, this means that all  eigenvalues of Φ1  are less  than 1 in absolute value.  But when p > 1, the

stationarity condition is  not so easily determined computationally.  This suggests using an approach such as Newton (1982)  or

perhaps Tiao and Tsay (1989) for simulating the alternative higher order VAR process.
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