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ABSTRACT

This thesis provides an overview of the state-of-the art in three current topics in

regression analysis. These topics are:

• model selection methods in regression,

• regularization path for logistic regression by l1- penalty or LASSO,

• regression discontinuity analysis.

Model selection is the task of choosing a best model for the given finite data. I

introduce some of the methods for model selection in Chapter One such as subset

selection, best subset selection by leaps and bound algorithm, and bootstrap model

selection. Then I give an overview of the shrinkage methods and least angle regression

algorithm.

Logistic regression is widely used as the method of analysis in a situation where

the outcome variable is discrete; binary or dichotomous. I introduce logistic regression

in Chapter Two. In addition, I give an over view for the Quadratic Lower Bound

Algorithm QLB Tian et al. (2008) an efficient methods for estimating constrained

parameters with application to lasso logistic regression. Using the proposed QLB

algorithm I implemented the R-code for this algorithm and the R-code for the Pseudo-

Newton method, which is faster than the fastest QLB algorithm.

Finally, I present the regression discontinuity (RD) designs in Chapter Three with

its statistical analysis and the model specification problem.

KEY WORDS: LARS -algorithm, QLB-algorithm, Branch-and-Bound algorithm,

RD-design.
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INTRODUCTION

Chapter 1

INTRODUCTION

Model selection is a difficult and important problem that is an important goal for

many types of statistical modelings. The difficulty of this problem is increased in

actual applications a true model may not exist. Given a data set, you can fit thousands

of models, but how do you choose the best? This thesis introduces some of the model

selection methods, especially in Linear model and extend it to some of the methods

for logistic regression.

Chapter One, gives an application for subset selection methods. We start with

Stepwise Procedures such as forward, backward, hybrid, and forward stagewise. These

methods typically produce a model that is interpretable but has high variance so, they

do not reduce the prediction error of the full model. Then we give an over view to All

Subsets Selection where the search for the best subsets with minimum RSS or any

other criteria can be done by computing all possible regressions but the amount of

computation required can be formidable. Also, we introduce some subset selection cri-

teria that used in model selection such as Mallow’s Cp (Mallows, 1973), Akaike Infor-

mation Criterion AIC (Akaike, 1974), Bayesian Information Criterion BIC (Schwarz,

1978), Extended Bayesian Information Criterion BICγ (Chen and Chen, 2008), An-

other Extended Bayesian Information Criterion BICq (Xu and McLeod, 2009). Then

we introduce Tournament Screening TS (Chen and Chen, 2009)when a small sam-

ple size, n, and extremely high-dimensional features or covariates space, p, are used.

Moreover, we give an application for subset selection by Cross Validation such as
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Delete-d, K-fold, and LOOCV. Furthermore, we present the best subset by leaps and

bound algorithm (Furnival and Wilson, 1974). The Leaps-and-Bounds strategy de-

rives the best models for each number of variables with out examining all possible

subsets. In addition, we present BestReg package in R (McLeod and Xu, 2009). Be-

stReg package utilizes the regsubset function in leaps package to find the models with

smallest sum of squares for size k = 0, 1, ..., p. We introduce a modified bootstrap

variable/model selection procedure by (Shao, 1996), in linear models, extended to

more complicated problems such as the nonlinear models, generalized linear models,

and autoregressive time series.

Chapter Two, presents the idea of shrinkage methods where coefficients are shrink-

age toward zero or exactly zero (Hastie et al., 2009). Ridge regression minimizes the

residual sum of squares together with the penalty term. LASSO penalizes by absolute

norm of the coefficients. The LASSO is a constrained version of OLS or Ordinary

least squares. Finally, we give an overview on the least angle regression (Hastie et al.,

2009), which is a new model selection algorithm related to forward selection.

In Chapter Three, we introduce the logistic regression which is widely used as the

method of analysis in situation where the response variable is discrete binary or di-

chotomous (Hosmer et al., 2000). We present the QLB-algorithm and Pseudo-Newton

algorithm (Tian et al., 2008) for regularized logistic regression and we implemented

the R-code for these algorithms.

In Chapter Four, we introduce Regression Discontinuity Analysis and its as-

sumptions to build an appropriate model which received a lot of attention recently

(Lawrence, 1995; William and Trochim, 2006). The main concern in regression dis-

continuity analysis is model specification. When you are misspecified the statistical

model your estimates of the treatment effect is likely to be biased. However, in typical

regression our main concerned is about the variables that we should include in the

2



model (William and Trochim, 1984).

3



Subset Selection

Chapter 2

Subset Selection

2.1 Introduction

In regression problems, a vector, X, of p-explanatory variables possibly related to a

response variable, Y . These explanatory variables may not contribute equally well or

may not contribute at all to the fitted model. In this case, we are looking to select the

model with the least variables and still the best model. The goal of any model-building

technique is to find the best fit that describes the relationship between the outcome or

response variable, and the explanatory variables or predictors/covariates. The goal in

using model selection methods is to find an accurate, parsimonious, interpretable, and

stable model. In this chapter we introduce a number of methods for subset selection

which are used to produce the best model by retaining only a subset of variables and

eliminating the rest (Hastie et al., 2009; Furnival, 1971). Because of this discrete

process, these methods usually have a high variance, and they do not reduce the

prediction error for the full model but, they provide interpretable models. There are

several methods that can be used (Hocking and Leslie, 1967). This chapter consists

of five sections.

In Section (2.2), we start with stepwise selection methods, which compare models

that have the same number of parameters, and they stop the process when adding or

excluding any of the variables does not improve the fits. Forward Selection starts with

the intercept only, and, step by step, builds up the model by including the variable

that improves the fit the most. Backward elimination starts with the full model, and,
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step by step removes the variable that improves the fit the least. Hybrid stepwise

selection methods use both forward and backward moves. Forward stagewise is an

attractive version of forward selection.

In Section 2.3 we give an over view to All Subsets Selection. The search for the

best subsets with minimum RSS or any other criteria can be done by computing all

possible regressions but the amount of computation required can be formidable.

Moving on, we introduce methods that works without stopping rule but, us-

ing some specific criterion such as Mallow’s Cp , Akaike Information Criterion AIC

(Akaike, 1974), and Bayesian Information Criterion BIC (Schwarz, 1978), Extended

Bayesian Information Criterion BICγ (Chen and Chen, 2008), Another Extended

Bayesian Information Criterion BICq (Xu and McLeod, 2009).

In Section 2.4.6, we introduce a tournament screening approach for subset selection

when a small sample size, n, and extremely high-dimensional features or covariates

space, p, are used. But only a small number of these covariates are related to the

response variable. The TS reduces the dimensionality of original feature space p� n

to K < n. Then any model selection method can be used to select the final mode.

In Section (2.5), we introduce cross-validation approaches to model selection such

as Delete-d, K-fold, and LOOCV which have been widely used.

In Section (2.6), we present the best-subset selection by Leaps and Bounds Algo-

rithm, that derives the best models for each number of variables with out examining

all possible subsets (Furnival and Wilson, 1974). It uses the a branch and bound

strategy.

In Section (2.7), we present BestReg package in R (McLeod and Xu, 2009). Be-

stReg package utilizes the regsubset function in leaps package to find the models with

smallest sum of squares for size k = 0, 1, ..., p.

5



In Section (2.8), we introduce a modified bootstrap variable/model selection pro-

cedure that select a subset from p explanatory variables, x, possibly related to a re-

sponse variable, y, by minimizing bootstrap estimates of the prediction error (Shao,

1996).

2.2 Stepwise Procedures

Stepwise procedures compare models that have the same number of parameters and

they stop the process when including or dropping any of the variables does not improve

the fit substantially.

2.2.1 Forward Selection or Forward Stepwise Selection

Forward selection starts with the intercept and step by step build up the model by

including the variables that improves the fit the most. The algorithm is described for

multiple linear regression; however, stepwise model selection may be used with many

other types of statistical models. The algorithm is defined as follow:

• Starts with the intercept and select the variable that improves the fit the most.

This may be done using the variable that results in the most significant F test.

• Calculate partial F values for all combinations of this variable with the remain-

ing variables in order to find the best pair of variables.

• Add the variable with the most significant F-test.

• The algorithm stops when the most significant F-statistic does not exceed a

pre-defined limit. In R, this pre-defined limit is 4.

More precisely, assume at stage m the variables (Xj : j ∈ Jm) are already chosen.

Let SSEm be the residual sum of squares from fitting the model

6



Y =
∑
j∈Jm

θjXj + error.

For each variable not in the model, Xk, k /∈ Jm, let SSEm(k) be the residual sum

of squares from fitting the model

Y =
∑
j∈Jm

θjXj + θkXk + error,

and define,

Fm(k) = (SSEm − SSEm(k))/(SSEm(k)/(n− k − 2)). (2.1)

If there is k /∈ Jm such that Fm(k) >pre-defined limit then include the variable

Xk that maximizes Fm(k) otherwise, stop the process. Note that forward selection

can be overly aggressive in selection in the respect that if Xj is already included in

a model, forward selection primarily adds variables orthogonal to Xj , thus ignoring

possibly useful variables that are correlated with Xj .

2.2.2 Backward Elimination or Pruning of Variables

Backward stepwise selection starts with the full model, and, step by step removes the

variable that improves the fit the least. For the linear regression model, backward

elimination uses the F-ratio to delete variables. Step by step, we delete the variable

that gives the smallest value of F, if it falls below a pre-defined limit. stopping

when all explanatory variables give value of F-ratio grater than pre-defined limit.

Backward selection works only when n > p, while Forward selection may be useful

when p ≥ n provided numerical problems do not arise due to multicollinearity. Note

that Backward elimination may be very computationally expensive if there are many

7



variables. But Backward Elimination is preferable to for Forward Selection if p < n

because it will often select a better model (Hastie et al., 2009).

2.2.3 Hybrid Stepwise Selection

Hybrid stepwise selection uses both forward and backward moves; at each step, we

add or delete one variable depending on pre-defined rule to determine when we should

use an add or drop move. The algorithm is defined as follow:

• Use the independent variable with the highest correlation with the response

variable as the starting variable.

• Calculate partial F values for all combinations of this variable with the remain-

ing variables. Add the one with the highest F values.

• Calculate partial F values for all variable in the current model and remove any

variable which falls below a pre-defined limit.

• Repeat the process until the most significant F-statistic does not exceed a pre-

defined limit.

2.2.4 Forward Stagewise (FS)

Forward stagewise is a version of forward selection, but behaves less greedy by produc-

ing less nested sequence of models, and it requirers many small steps before getting

to the final model. This algorithm produce more accurate prediction than forward

8



selection, which may eliminate a useful predictor by using large steps (Hastie et al.,

2009). The algorithm works as follow:

• Starts only with the intercept equal to ȳ in the model, and all the coefficients

are equal to zero, θ1 = θ2 = ... = θP = 0.

• Starts with residual equal to r = y − ȳ.

• Selects the first predictors as forward selections, such as, xj the one with the

highest absolute current correlation cj , with r. If θ̂ is the current stagewise

estimate, let cj be the vector of current correlations.

cj = Corr (r, xj),

cj = x́j(r − θ̂),

leaving the residual vector as a response variable.

• In the direction of the greatest current correlation takes small step 0 < ε < |cj |

to select xj the one with the largest current correlation with ε some small

constant.

ĵ = arg max |cj |.

• Update θ̂ by

θ̂ ←− θ̂ + ε.sign (c
ĵ
)x
ĵ
.

• Update r

r ←− r − ε.sign (c
ĵ
)x
ĵ
.

9



• Repeat the process until no correlation is found between the update r and the

predictors.

2.3 All Subsets Selection

The search for the best subsets with minimum RSS or any other criteria can be done

by computing all possible regressions (Morgan and Tatar, 1972) but, the amount of

computation required can be formidable. There are 2p possible subsets therefore, the

cost in computer time will be impractical specially when p ≥ 50 since all possible

models are considered. For p ∼ 10 or perhaps a little larger a direct enumeration

of all 2p subsets is quite feasible. Letting i = 0, 1, ..., 2p − 1 represent the index for

the model. The inputs to include in the i-th model are determined by the base 2

expansion of i. For example, let p = 8 and i = 217, we see that this corresponds to

the model using 1, 2, 4, 5, and 8.

i = IntegerDigits [217, 2, 8]

{1, 1, 0, 1, 1, 0, 0, 1}

2.4 Subset Selection Criteria

2.4.1 Cpmethod (Mallows, 1973)

The model with the lowest Cp value approximately equal to p is the best model.

Cp =
SSE

MSE
− n+ 2p, (2.2)

where SSE is the residual sum of squares for the model with p−1 variables, MSE

is the residual means squares for the full model, n denotes number of observations, p

denotes number of variables in the model +1.
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2.4.2 Akaike Information Criterion AIC (Akaike, 1974)

The model with lowest AIC is the best model.

AIC = −2 logL+ 2p, (2.3)

where L : Likelihood MLE, p : number of parameters, note that the error is normal

(i.i.d). For a linear regression model, the AIC may be equivalently written,

AIC = SSE + 2p. (2.4)

where n denotes the number of observations.

Note that AIC is asymptotically equivalent to Cp (Lahiri, 1999).

2.4.3 Bayesian Information Criterion BIC (Schwarz, 1978)

The model with lowest BIC is the best model.

BIC = −2 logL+ log (n) p, (2.5)

where L is Likelihood MLE, p denotes number of parameters, n denotes number of

observations. For a linear regression model,

BIC = SSE + p log(n). (2.6)

2.4.4 Extended Bayesian Information Criterion BICγ (Chen and Chen,

2008)

When we have a moderate sample size but a huge number of covariates p, the BIC will

select models with too many parameters (Chen and Chen, 2008), suggested a prior
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uniform of models with fixed size instead of a prior uniform of all possible models.

An extended information criterion score can be written,

BICγ = −2 logL+ k log (n) + 2 γ log

(
k

p

)
, (2.7)

where L is Likelihood MLE, logL = −(n/2) log(SSE /n), k denotes number of pa-

rameters in the model, n denotes number of observations, p is the number of possible

input variables not counting the bias or intercept term. Notice that, k = 0 corre-

sponding to only an intercept term, k = p corresponding to using all parameters in

the model. The BICγ are shown to be consistent and particularly useful even when

the covariates are heavily collinear.

Note that, when p� n, we can not calculate BICγ directly. Chen and Chen (2009)

proposed tournament screening approach that can be used to calculate BICγ . In

the tournament screening approach Section 2.4.6, the penalized likelihood technique

(Tibshirani, 1996) is used to order models and BICγ is then used to make the final

selection.

2.4.5 Another Extended Bayesian Information Criterion BICq (Xu and

McLeod, 2009)

Xu and McLeod (2009) suggested a Bernoulli prior for the parameters with a proba-

bility q ∈ (0, 1). The extended information criterion can be written,

BICq = −2 logL+ k log (n) + 2 γ log q /(1− p), (2.8)

when q = 1/2, the BICq is equivalent to the BIC (Xu and McLeod, 2009). The full

model with all covariates is selected when q = 1. No parameters are selected when

q = 0 because the penalty is taken to be −∞.
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2.4.6 Tournament Screening TS (Chen and Chen, 2009)

Chen and Chen (2009) proposed a new approach for subset selection when a small

sample size, n, and extremely high-dimensional features or covariates space, p, are

used. But only a small number of these covariates are related to the response variable

such as, a microarry tumor studies. The TS reduces the dimensionality of original

feature space p� n to K < n. Then any model selection methods can be used in the

final selection. Chen and Chen (2009) preferred to work with the penalized likelihood

technique (Tibshirani, 1996) in the final selection.

The basic idea of the tournament screening is that the set of all covariates or

features is randomly partitioned into non-overlapping groups of approximately equal

size. Then, applied a penalized likelihood technique (Tibshirani, 1996) to each group

of covariates. A given number, the non-zero components, of the fitted are selected

and then pooled together. The dimensionality of the feature space is further reduced.

Repeat the process until you get the desirable dimension of the feature space.

2.5 Subset Selection by Cross Validation

The simplest method for estimating predication error is cross-validation (Hastie et al.,

2009). For the model y =
∑
j∈J

θjxj , the predication error is defined as

PE = E (y∗ −
∑
j∈J

θ̂jx
∗
j )

2, (2.9)

where θ̂ is given by the fit and the expectation is with respect to a new observation

(x∗, y∗). Since we do not know the joint distribution of (x∗, y∗), we need to estimate

this quantity. If we had additional data (x∗i , y
∗
i ) : i = 1...m, not used in fitting the

model, then the estimate of the prediction error is
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PE = E(y∗i −
∑
j∈J

θ̂jx
∗
i,j)

2. (2.10)

The data used to fit the model is called training data and the data used to estimate

the predication error is called test or validation data. Divided a Given a single dataset

to build a model into training and testing sets. Cross-Validation approaches to model

selection have been widely used.

2.5.1 Delete-d Cross-Validation

Shao (1993) proposed a delete-d method for model selection in linear regression which

is consistent in the sense that the probability of selecting the model with the best

predictive ability does converge to 1 as n −→ ∞ and d increase with n . As the

validation set a random sample of size d are used and in this way, many validation

sets are generated. As the training set the remaining part of the data is used. If

enough validation sets are used LOOCV Section (2.5.3) will give the same result as

the delete -d when d = 1. Shao (1997) recommends a much larger cross-validation

sample than is used in K-folder CV. Shao (1997), suggested “λn = log n”, and

d = n(1− (log n− 1)−1), (2.11)

where n is the number of observations.

2.5.2 K-fold Cross-Validation

In K-fold cross-validation, (Hastie et al., 2009), a sample of data is randomly parti-

tioned into subsamples approximately equal size. A single subsample is retained as

the validation data for testing the model. The remaining K − 1 subsamples are used

as training data. The process is repeated K times. The results for the K folds can
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be averaged or combined to produce a single estimation. With K-fold CV, (Hastie

et al., 2009), suggest using “one-standard deviation”. For each of the K validation

samples, the validation sum-of-squares is computed

Sk =
∑
i∈∏k lim(ê(−k)i)2, (2.12)

where ê(−k)i denotes the prediction error when the kth validation sample is removed.

Fit the model for the remainder of the data and predict the observation i ∈ ∏k in

the validation sample. The final cross-validation score is

CV =
1

n

K∑
k=1

limSk, (2.13)

where n is the number of observations. The cross-validation mean-square error,

CVk = Sk/Nk, where Nk denotes the number of observations in the kth valida-

tion sample can be calculated for each validation sample. For CV1, ...,CVK let s be

the sample variance. Then using the one-standard-deviation rule, CV ± 0.5s, is the

interval estimate of CV. For model selection, this suggests that the most parsimo-

nious adequate model will correspond to the model with the largest CV which still

inside this interval.

2.5.3 Leave-One-Out Cross-Validation

In Leave-One-Out CV, remove one observation, say the ith, and the fit is computed

using all the data except the ith. The prediction error, ê(i) for the missing observation

is calculated. The cross-validation process is then repeated for all observations i =

1, ...n and the prediction error sum of squares is calculated,

PRESS =
n∑
i=1

ê2
(i) (2.14)
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DM (1971), proposed PRESS method, which can be used very efficiently to compute

LOOCV in linear regression contest, ê(i) = êi, where êi is the usual regression residual

and hi,i is the ith element of the diagonal of the hat matrix H = X(X́X)−1X́.

LOOCV is asymptotically equivalent to the AIC (Stone, 1977).

2.6 Leaps and Bounds Algorithm

Leaps-and-Bounds is a widely used algorithm for best subset selection. The Leaps-

and-Bounds strategy derives the best models for each number of variables with out

examining all possible subsets. It uses a Branch and Bound strategy. The method

works by generating two trees (Furnival and Wilson, 1974). The first one, the bounds

tree, provides half of the models that include the last variable. The bound tree is

obtained by eliminating all pivots on the last variable from the original inverse tree.

A Gaussian elimination step is used to obtain a child from parent node. The second

tree, is called the regression tree, provides the other half of the models that do not

includes the last variable and this need not be an inverse tree. By moving from one

node to another the models are generated and at each time a model is obtained by

an updated matrix inverse computation. The Leaps-and-Bounds algorithm works out

the branches of the full inverse tree by simultaneously traverses of the regression tree

and the bound tree (Huo and Ni, 2006). In other words, the Leaps-and-Bounds algo-

rithm scans the full inverses tree through all the subsets, simultaneously, leaping over

those that are not the optimal subsets. A dot notation is used for labeling the nodes.

The integers listed before the dot represent the explanatory variables present in the

sub-matrix for which the pivots have not been performed; the subscripts after the dot

represents the variables on which pivots have been performed. Deletions are indicated

by missing subscripts, rows and columns associated with those variables have been
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deleted. For example, the submatrix 4.2 has been obtained from the original matrix

(X(1), X(2), X(3), X(4)) by deleting X(1), X(3) and pivoting on X(2).

2.6.1 The Regression Tree

The sequences of pivots of the Leaps-and-Bounds algorithm are derived from the

binary tree of Figure (2.1). The tree is constructed by starting at the root with the

original matrix and splitting the matrix into two new sub-matrices on the interior

nodes. The first one is obtained by pivoting on the first variable. The second one is

obtained by deleting the row and column associated with that variable. The process

is repeated until all variables have been treated either by deletion or by pivoting.

Note that, each leaf or terminal node is one of the 2p possible regressions including

the null regression where p is the number of covariates. For example, in Figure (2.2)

we have 4-variables, so we have in result 16 possible regressions including the null

regression. There are several algorithms for computing the residual sums of squares

for all possible regressions with minimum arithmetic (Furnival and Wilson, 1974)

their recursive applications define trees structure, and two of these algorithms can

be combined to form the Leaps-and-Bounds technique. The solution of Leaps-and-

Bound requires two trees-one for bounds or inverse tree and one for regressions which

is one of the four following trees. In the following trees deletions are implied and

interior and terminal nodes represent regressions.

• The Natural and Lexicographic Tree.

Search the tree of Figure (2.3) horizontally, level by level, from top to bottom

this process produces the regressions in a natural order all one-variable regres-

sion, followed by all two and three variable regressions Table (2.1). Search the
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Figure 2.1: The Regression tree for 3-variable

1234

234.1 Part− 2 ↓

34.12 34.1

4.123 4.12 4.13 4.1

.1234 .123 .124 .12 .134 .13 .14 .1

234

34.2 34

4.23 4.2 4.3 4

.234 .23 .24 .2 .34 .3 .4 null

part-2

Figure 2.2: The regression tree for 4-variable

– The natural and Lexicographic Tree.

Search the tree of Figure (2.3) horizontally, level by level, from top to bot-

tom this process produces the regressions in a natural order all one-variable

regression, followed by all two and three variable regressions Table (2.1).

Search the tree of Figure (2.4) vertically branch by branch beginning at

the root and moving from father to older son at an interior node. At the

terminal node, move to the next young brother, or if there is no brother,

to the father’s next young brother and so on. This process produces the

13

Figure 2.2: The Regression tree for 4-variable
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Table 2.1: Sequences of regressions for 3-variables.

Natural Lexicog. Binary familial

1 1 1 1
2 12 2 2
3 123 12 3
12 13 3 12
13 2 13 13
23 23 23 23
123 3 123 123

tree of Figure (2.4) vertically branch by branch beginning at the root and mov-

ing from father to older son at an interior node. At the terminal node, move

to the next young brother, or if there is no brother, to the father’s next young

brother and so on. This process produces the regressions in a lexicographic

order Table (2.2).

123

23.1 3.2 .3

3.12 .13 .23

.123

Figure 2.3: The natural and lexicographic tree for 3-variable

Table 2.1: Sequences of regressions for 3-variables.

Natural Lexicog. Binary familial

1 1 1 1
2 12 2 2
3 123 12 3
12 13 3 12
13 2 13 13
23 23 23 23
123 3 123 123

regressions in a lexicographic order Table (2.2).

14

Figure 2.3: The Natural and Lexicographic tree for 3-variable

• The Binary and Familiar Tree.

Search the tree of Figure (2.5) vertically, the regressions are produced in a bi-

nary order. Search the tree of Figure (2.5) both horizontally and vertically, the

regressions are produced in a familial order. Move from father to older son, as
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1234

234.1 34.2 4.3 .4

34.12 4.13 .14 4.23 .24 .34

4.123 .124 .134 .234

.1234

Figure 2.4: The natural and lexicographic tree for 4-variable

15

Figure 2.4: The Natural and Lexicographic tree for 4-variable

Table 2.2: Sequences of regressions for 4-variables.

Natural Lexicog. Binary familial

1 1 1 1
2 12 2 2
3 123 12 3
4 1234 3 4
12 124 13 12
13 13 23 13
14 134 123 23
23 14 4 123
24 2 14 14
34 23 24 24
123 234 124 34
124 24 34 124
134 3 134 134
234 34 234 234
1234 4 1234 1234
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described before but, when a node is visited, the sons of that node are listed

in order of age from oldest to youngest Table (2.1). Search the tree vertically

Figure (2.6), the regressions are produced in a binary order Table (2.2).

123

.1 1.2 12.3

.12 .13 1.23

.123

Figure 2.5: The Binary and familial tree for 3-variable

1234

.1 1.2 12.3 123.4

.12 .13 1.23 .14 1.24 12.34

.123 .124 .134 1.234

.1234

Figure 2.6: The binary and familial tree for 4-variable

17

Figure 2.5: The Binary and Familial tree for 3-variable

123

.1 1.2 12.3

.12 .13 1.23

.123

Figure 2.5: The Binary and familial tree for 3-variable

1234

.1 1.2 12.3 123.4

.12 .13 1.23 .14 1.24 12.34

.123 .124 .134 1.234

.1234

Figure 2.6: The binary and familial tree for 4-variable

17

Figure 2.6: The Binary and Familial tree for 4-variable

2.6.2 The Inverse Tree

The inverse tree in Figure (2.7) and (2.8) can be constructed as follow:

• The root node is the set of all the covariates {1, 2, ..., p}.
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• Level one is obtained by removing one covariate at a time from the set of all

covariates (p) by a decreasing order p, p− 1, p− 2, ..., 1. At the end of this level

we will have n ordered children.

• All the others levels are obtained by deleting one covariates from the subset

associated with its parent node. For example, if we have the node associated

with the subset (i1, i2, ...ik), where i1 < i2 < ... < ik and i ≥ 1, of the jth

child. The other levels are made by deleting one covariate at a time with order

(ik, ik−1, ik−2, ..., ik+2−j).

• The growth of the tree is stopped when we obtained the subsets of one covariate.

.1234

.123 .124 .134 .234

.12 .13 .14 .23 .24 .34

.1 .2 .3 .4

null

Figure 2.7: The Inverse tree for 4-variable

we will have n ordered children.

- All the others levels are obtained by deleting one covariates from the subset

associated with its parent node. For example, if we have the node associated

with the subset (i1, i2, ...ik), where i1 < i2 < ... < ik and i ≥ 1, of the jth

child. The other levels are made by deleting one covariate at a time with order

(ik, ik−1, ik−2, ..., ik+2−j).

- The growth of the tree is stopped when we obtained the subsets of one covari-

ate.

18

Figure 2.7: The Inverse tree for 4-variable
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.12345

.1234 .1235 .1245 .1345 part-2 ↓

.123 .124 .125 .134 .135 .145

.12 .13 .14 .15

.1

.2345

.234 .235 .245 .345

.23 .24 .25 .34 .35 .45

.2 .3 .4 .5

null

part-2

Figure 2.8: The Inverse tree for 5-variable

• Branch and bound algorithm (BB).

(Land and Doig, 1960) first proposed Branch and bound method for linear pro-

gramming. Branch and bound is a general algorithm for optimization problems.

It requires the following steps:

- The fist step is called branching. A splitting procedure, that given a set of

candidates K, returns smaller sets K1, K2, .... whose union are K. To find the

minimum value of the function f(x) over K is min{k1, k2, ...}, where each kJ

19

Figure 2.8: The Inverse tree for 5-variable

2.6.3 Branch and Bound Algorithm

Land and Doig (1960) first proposed Branch and Bound method for linear program-

ming. Branch and Bound is a general algorithm for optimization problems. It requires

the following steps:

• The fist step is called branching.

A splitting procedure, that given a set of candidates K, returns smaller sets

K1, K2, .... whose union are K. To find the minimum value of the function f(x)

over K is min{k1, k2, ...}, where each kJ is the minimum of f(x) within Kj .

The subsets of K are the nodes of a search tree or regression tree.

• The second step is called bounding.

Computes upper and lower bound for the minimum {k1, k2, ...}.
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• The third step is called pruning.

For some tree node A, if the lower bound is grater than the upper bound for

some other node B, then discarde A from the search. Also, any node can be

discarded if its lower bound is grater than a global variable S, that records the

minimum upper bound that have been scanned up to this point. The procedure

stops when the candidate set K become a single elements; or also when the

upper bound for set K matches the Lower bound.

Branch and Bound algorithm computes the best subset regression models by

searching the whole regression tree that generates all possible subset models. However,

a number of authors have described procedures for finding the best subset regressions

with out computing all possible regressions (Hocking, 2003). All these methods are

based on RSS(A) ≤ RSS(B), where B is subset of A, and A is any set of independent

variables (B ⊆ A). In other word, deleting variables from the regression will not

reduce the residual sum of squares for the regression. Figure (2.9) shows the bound

tree for 4-variables.

.1234

.1234 .234

.1234 .134 .234 .34

.1234 .124 .134 .14 .234 .24 .34 .4

Figure 2.9: The bound tree

• Pair Tree.

The leaps-and-bounds algorithm is based on two trees, regression tree and bound

tree. The following pair trees construct the regression and the bound pairs for

the leaps-and-bound subsets. For p = 2 the pair tree is

(∅, {12})

↓

({1}, {2})

For p = 3

(∅, {123})

↙ ↘

({12}, {13}) ({1}, {23})

↓

({1}, {2})
21

Figure 2.9: The Bound tree
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2.6.4 Pair Tree

The Leaps-and-Bounds algorithm is based on two trees, Regression tree and Bound

tree. The following pair trees construct the Regression and the Bound pairs for the

Leaps-and-Bound subsets. For p = 2 the Pair tree is

(∅, {12})

↓

({1}, {2})

For p = 3

(∅, {123})

↙ ↘

({12}, {13}) ({1}, {23})

↓

({1}, {2})

For p = 4

(∅ , {1 2 3 4})

↙ ↓ ↘

({123}, {124}) ({12}, {134}) ({1}, {234})

↓ ↙ ↘

({13}, {14}) ({23}, {24}) ({2}, {34})

↓

({3}, {4})
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2.6.5 Optimality Test

At each step in of the computation, Leaps-and-Bounds algorithm produce both bound

and regression (RSS) by parallel pivots on sub-matrices from the product matrix and

its inverse Table (2.3). Which is equivalent to scanning through the pair tree according

to the following scheme:

• For the Pair tree, calculate the residual sum of squares for all subsets in the

root node and the nodes in level 1.

• Let A,B be an intermediate node. Let |.| be the size of subset |A| ≤ |B|.

• Let RSS(m) denote the minimum residual sum of squares of all the m-subsets

that have been scanned so far, where |A| ≤ m ≤ |B|.

• Skip all the descendants of node (A,B) when RSS(|A|) ≤ RSS(B). Because

all the descendant of node (A,B) will have residual sum of squares bigger than

RSS(m).

• Skip the first m children of node (A,B) if RSS(|B|−m) ≤ RSS(B) < RSS(|B|−

m− 1) for specific m, where (1 ≤ m ≤ (|B| − |A| − 1).

• If RSS(B) < RSS(|B| − 1), then do not skip any child from (A,B).

We discuss the procedure of Leaps-and-Bounds algorithm for p = 5 (Furnival and

Wilson, 1974) as follow
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• The sequence product of the traverse in Table (2.3) is the Lexicographic algo-

rithm.

• The asterisk in the Table (2.3) indicates failure of the test to leap.

• When the test of leaping is successful, the increment for the stage counter is

2p−k−1 where k is the pivot index.

• You always must performed the pivots of stage zero.

• Note that, the inverse source always bounds the regressions that can be pro-

duced from it and from the product source.

• At stage 1, the inverse source is the submatrix .1245 and the product source

is the submatrix 4.12. The RSS(612)of the submatrix .123 is larger than the

RSS(596) of the submatrix 1245. The asterisk indicates that our test fails.

• At stage 2, the first pivot, the inverse source is the submatrix .1345. Again the

inverse source always bounds the regressions that can be produced from it and

from the product source. The RSS (615) of the submatrix .12 is larger than the

RSS(605) of the submatrix .1345, our test fails.

• At Stage 2, the second pivot, the RSS (597) of the submatrix .125 is smaller

than RSS(605) of the submatrix .1345 therefore, we can leap by skipping the

last pivot. The stage increment is 25−2−1 or 1.

• At stage 4, the fist pivot, the RSS(668) of the submatrix .1 is larger than the

RSS(660) of the submatrix .2345, our test fails.

• At stage 4, the second pivot, the RSS(615) of the submatrix .12 is smaller than

RSS(660) of the submatrix .2345, our test is successful therefore, the regression

from the submatrix .2345 and 34.2 need not be produced.
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Table 2.3: Order of computations for Leap and Bound algorithm

Stage P ivot Product Traverse Inverse Traverse Stage

Number Index Source : Regr. RSS Source : Regr. RSS Bound

0 ∗ 1 1234. 234.1 668 .12345 .2345 660
∗ 2 234.1 34.12 615 .12345 .1345 605
∗ 3 34.12 4.123 612 .12345 .1245 596
∗ 4 4.123 .1234 592 .12345 .1235 596

1 ∗ 4 4.12 .124 615 .1245 .125 597 596

2 ∗ 3 34.1 4.13 641 .1345 .145 618 605
4 4.13 .134 612 .1345 .135 618

3 4 4.1 .14 648 .145 .15 618 618

4 ∗ 2 234. 34.2 702 .2345 .345 720 660
3 34.2 4.23 673 .2345 .245 667
4 4.23 .234 664 .2345 .235 666

5 4 4.2 .24 685 .245 .25 675 667

6 3 34. 4.3 746 .345 .45 736 720
4 4.3 .34 727 .345 .35 732

7 4 4. .4 792 .45 .5 799 736

• At stage 6, the RSS(668) of the submatrix .1 is smaller than RSS(720) of the

submatrix (.345), our test is successful- permits a leaps of two stages.

• The search is completed after evaluating 6 of the 22 possible subsets of stage

1− 7.

2.7 BestReg: Best Subset linear regression (McLeod and

Xu, 2009)

Lumley and Miller (2004) implemented the package leaps in R to solve the Branch-

and-Bound algorithm with other subset selection algorithms. When p ≤ 25 the leaps
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function, regsubset, can determined the best model of size k, k = 1, ..., p in few

seconds, while when p is large enough such as p ≥ 100 the problem will be more

complicated since the computer time grows exponentially with p, and in this case

there are 2100 all possible regressions. (McLeod and Xu, 2009) implemented the

package BestReg in R, that utilizes the regsubset function in leaps package to find

the models with smallest sum of squares for size k = 0, 1, ..., p. Cross-Validation or

information criterion such as AIC, BIC, BICq, and BICγ is used to find the best

model. For Cross-Validation (McLeod and Xu, 2009), implemented the Delete- d,

K-fold, and LOOCV in the BestReg package.

2.8 Bootstrap Model Selection

A Bootstrap Variable/Model Selection procedure is to select a subset from p ex-

planatory variables (x) that possibly related to a response variable (y) by minimizing

bootstrap estimates of the prediction error that is constructed based on a data set

of size n (Efron, 1982) and (Efron, 1979). This bootstrap procedure is inconsistent

because the probability of selecting the optimal subset of variables does not converge

to 1 as n −→ ∞. (Shao, 1996), and (Dongsheng and Shao, 1995) proposed two con-

sistent modification of bootstrap selection procedures in linear models, extended to

more complicated problems such as the nonlinear models, generalized linear models,

and autoregressive time series. First, for bootstrapping pairs (x, y), where m < n,

he suggest to generate m pairs of bootstrap data. Second, for bootstrapping resid-

ual, he suggest multiplying the residuals by factor
√

(n/m), where (m/n) −→ 0 as

m −→ ∞. The bootstrap selection procedures are asymptotically equivalent to the

selection procedures using information criterion, Cp.
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2.8.1 Linear Models

Assume that X = (x1, x2, ..., xn)́ is full rank and

µi = E(yi|xi) = x́iθ, V ar(yi|xi) = σ2,

i = 1, ..., n, (2.15)

where (xi, yi), i = 1, 2, ..., n are i.i.d data set, xi is the ith value of a p vector of the

explanatory variable, yi is the response variable at xi, and θ is a p vector of unknown

parameters.

A model α of the subset of P of size pα, is

µiα = E(yi|xi) = x́iαθα, Var(yi|xi) = σ2,

i = 1, ..., n, (2.16)

where α is a subset of {1, 2, ..., p} and xiα (or θα) is a subvector of xi (or θ). Use

least squares method to fit the model α

θ̂α = (X́αXα)−1X́αY,

where Xα = (x1α, ..., xnα)́ and Y = (y1, ..., yn)́. The efficiency of model α can be

measured by the average loss,

Ln(α) = 1
n

n∑
i=1

(µi − x́iαθ̂α)2,

=
||µ−µ̂α||2

n ,

where µ = (µ1, ..., µn)́, µ̂α = xαθ̂α and ||b|| =
√
b́b for any b vector. Select a model

over all α ∈ A so that Ln(α) may be as small as possible, where A is a collection of

some subsets of {1, ..p} this is equivalent to selecting a model with the best prediction

ability.
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Γn(α) = E[
1

n

n∑
i=1

(wi − x́iαθ̂α)2|y, x], (2.17)

= σ2 + Ln(α),

where Γn(α) is the average conditional expected loss in prediction, wi is a future

response at xi, and assume that wi are independent of the yi. Let ε = y − µ,

Hα = Xα(X́αXα)−1Xα and

∆n(α) =
||µ−Hαµ||2

n .

Then

Ln(α) = ∆n(α)− 2(µ−Hαµ)́ε

n
+
||Hαε||2

n
. (2.18)

For given α, model α is called a correct model if θα contains all nonzero components

of θ, then x́iθ = x́iαθα, for any xi. If α is the correct model, then µ = Xβ = Xαθα =

Hαµ, ∆n(α) = 0, and

Ln(α) =
||Hαε||2

n
. (2.19)

Let α0 be the subset corresponding to the correct model with smallest size, then

lim inf
n−→∞ 4(α) > 0 for any incorrect model α ,

and

lim
n−→∞P{Ln(α0) = min

α∈A
Ln(α)} = 1

Model α0 minimizes Ln(α) over α ∈ A as n −→ ∞, therefore , it is the optimal

model. The model selection procedure is said to be consistent if

lim
n−→∞P (α̂ = α0) = 1,

where α̂ is the estimate of α based on model selection procedure. The optimal α0

must be estimated because Ln(α) contains the unknown parameter θ.
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2.8.2 Bootstrap Selection Procedures

There are two ways of generating bootstrap observations for linear model or bootstrap

estimators of α0:

• Bootstrapping Paris (Efron, 1982).

Generate {(x∗i , y∗i ), i = 1, ..., n} i.i.d bootstrap data from the empirical distri-

bution F̂ putting mass n−1 on each pair (xi, yi). The bootstrap of θ̂α is

θ̃∗α = (X́∗αX
∗
α)−1X́∗αY

∗, (2.20)

where X∗ = (x∗1, ..., x
∗
n)́, Y ∗ = (y∗1, ..., y

∗
n)́, X́X −→ ∞, X́∗X∗ −→ ∞ almost

surly , and θ̃∗α can be replaced by θ̂α in the situation where (X́∗αX∗α)−1 does not

exist.

• Bootstrapping Residuals (Efron, 1983).

θ̂ is the least square estimate (LSE) under linear model. The ith residual is

ri = yi − x́iθ̂. Generate ε∗1, ..., ε
∗
n i.i.d from the empirical distribution that puts

mass n−1 on (ri − r̄)/
√

(1− p)/n, i = 1, 2, ..., n, where r̄ is the average of the

ri. The bootstrap analog of θ̂α is

θ̂∗α = (X́αXα)−1X́αy
∗
α, (2.21)

where Y ∗α = (y∗1α, ..., y
∗
nα)́ , y∗iα = x́iαθ̂α + ε∗i , and {(xiα, y∗iα), i = 1, ..., n} are

the bootstrap observations under model α. The bootstrap estimate of the mean

of the prediction error Γn(α) is

E(Γn(α) = E[
||Y−Xαθ̂α||2

n ] + en(α),

where

en(α) = E[Γn(α)− ||Y−Xαθ̂α||
2

n ] .
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The bootstrap estimate of E[Γn(α)] is

Γ̂n(α) =
||Y−Xαθ̂α||2

n + ên(α).

This estimate is almost unbiased, but this procedure is inconsistent lim
n−→∞P (α̂ = α0) < 1,

unless α0 = {1, ..., p} is only the correct model. The bootstrap estimate of en(α)

is

ên(α) = E∗[
||Y−Xαθ̂∗α||2

n − ||Y
∗−X∗

αθ̂
∗
α||2

n ],

where θ∗α = θ̂∗α or θ̃∗α, and E∗ is the expectation with respect to bootstrap sam-

pling( pairs, residual). For bootstrapping residuals X∗α = Xα and Y ∗ = Y ∗α .

2.8.3 Modified Bootstrap Selection Procedures for Linear Model

Assume that the largest subset of the explanatory variables is αp. For any α ∈ A

Dn(α) = E(Γn(α)− Γn(αp))

Dn(α) = E(Ln(α)− Ln(αp)). (2.22)

Only in the case where αp is the only correct model, we can find a consistent estima-

tor D̂n(α) of Dn(α) such that

D̂n(α)
Dn(α) −→ 1 in probability, α ∈ A.

Let {mn} be a sequence of integers such that lim
n−→∞mn =∞ ,

lim
n−→∞

mn

n
= 0 , and lim

n−→∞P [α̂n,m = α0] = 1. There is one restriction on m is that

p/m should be reasonably small; we should choose an m so that the least squares

fitting of regression model with p regressors does not have too high variability.

First, for bootstrapping pairs, m < n, bootstrap estimator of E[Γm(α)] is

Γ̂n,m(α) = E∗ [
||Y −Xαθ̃∗α,m||2

n
], (2.23)
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where θ̃∗α,m is the bootstrap of θ̂α based on m i.i.d pairs (x∗i , y
∗
i ) generated from the

empirical distribution putting mass n−1 on (xi, yi), i = 1, 2, ..., n; that is

θ̃∗α,m = (
m∑
i=1

X∗iαX́
∗
iα)−1

m∑
i=1

X∗iαy
∗
i , (2.24)

we can modify the procedure in bootstrapping pairs by selecting the model αn,m ∈ A

that minimizes Γ̂n,m(α).

Second, for bootstrapping residuals, and for a special case where (xi = i
n), m < n

and the fact that

E∗ θ̃∗α,m ≈ E∗ θ̃∗α, V ar∗ θ̃∗α,m ≈ n
mV ar∗ θ̃

∗
α,

where θ̃∗α,m and θ̃∗α are defined in equation (2.24) and equation (2.20), respectively.

A modified bootstrap model selection procedure in bootstrapping residuals can be

done by multiplying a factor
√
n/m to the values from which the bootstrap data are

generated. The estimate of E[Γm(α)] is

Γ̂n,m(α) = E∗
||Y−Xαθ̂∗α,m||2

n ,

where

θ̂∗α,m = (X́αXα)−1
n∑
i=1

xiαy
∗
iα,

and y∗iα = x́iαθ̂α+ ε∗i and ε∗i , i = 1, ..., n, be i.i.d from the distribution that puts mass

n−1 on each
√
n
m(ri − r̄)

√
1−p
n , i = 1, ..., n. Under the linear model

Γ̂n,m(α) =
||Y−Xαθ̂α||2

n + pα
m(n−p)

n∑
i=1

(ri − r̄)2.

2.8.4 Generalized Linear Models

McCullagh and Nelder (1989), have provided many examples of generalized linear

models, such as logit models, log-linear models, gamma-distributed data models, and

survival data models. Let y1, ..., yn are the independent response variables, and
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µi = E(yi|xi) = µ(ηi), V ar(yi|xi) = σ2
i = φµ̇(ηi),

i = 1, ..., n, (2.25)

where µ̇(η) > 0 is the derivative of known differentiable function µ(η); φ > 0 is an

unknown scale parameter; the values of explanatory variables by a continuously dif-

ferentiable link function f is

f(µ(ηi)) = x́iθ; (2.26)

where θ is a p vector of unknown parameters. Let A be collection of subsets of

{1, ..., p} and let

µi = µ(ηiα), σ2
i = φ µ̇(ηiα), ηiα = (f o µ)−1(x́iαθα), i = 1, 2, ..., n be the model

corresponding to α, where xiα and θα are defined the same as before and, the optimal

model is still the correct model with the smallest size. Since the distribution of yi in

equation (2.25) and equation(2.26), is not specified, so we may not be able to obtain

the maximum likelihood estimator of θα therefore, we follow the general estimation

equation approach. That is, under model α, θα is estimated by θ̂α, a solution of

n∑
i=1

xiα Ψ(x́iαγ) [yi − f−1(xiαγ)] = 0,

where θ̂α is a weighted least squares estimator of θα, and Ψ is the first-order

derivative of (foµ)−1. We can use the same modified bootstrap model selection pro-

cedures that we discussed in linear model for selecting a model from A by select a

model that minimizes

Γ̂n,m(α) = E∗
n∑
i=1

[yi − µ(η̂∗iα)]2

n υiα
,

over α ∈ A, where

υiα ≡ µ̇(η̂iα), η̂iα = (f o µ)−1(x́iαθ̂α), η̂∗iα = (f o µ)−1(x́iαθ̂
∗
α)
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and θ∗α is bootstrap of θ̂0 obtained by bootstrapping (residual, pairs).

• Bootstrapping Residuals.

We generate i.i.d ε∗1, ..., ε
∗
n from the distribution putting mass n−1 to

√
n
m(ri − r̄),

where ri = [yi − f−1 (x́iθ̂)]/
√
υi, where θ̂ and υiare θ̂α and υiα with α =

{1, ..., p}. θ∗α can be defined as the linear bootstrap estimator

θ∗α = θ̂α − M̂−1
α

n∑
i=1

xiαΨ(x́iαθ̂α)
√
υiαε

∗
i ,

where

M̂α =
n∑
i=1

Ψ2(x́iαθ̂) υiα xiαx́iα.

• Bootstrapping Pairs.

We generate i.i.d Paris (x∗1, y
∗
1), ..., (x∗m, y∗m) from the distribution putting mass

n−1 to each (xi, yi), and let θ∗α to be the linear bootstrap estimator

θ̃∗α = θ̂α − M̂−1
α

n∑
i=1

x∗iαΨ(x́∗iαθ̂α)[y∗i − f−1(x́∗iαθ̂α)].

2.9 Illustrative Examples

2.9.1 Detroit homicide data for 1961-73 used in the book Subset

Regression by (Miller, 2002)

The data are on the homicide rate in Detroit for the years 1961 to 1973. The data were

originally collected and discussed by (Fisher, 1976) but the complete data set first

appeared in ((Gunst and Mason, 1980), Appendix A). Miller (2002) discusses this data

set throughout his book ‘Subset selection in regression’. There were 13 observations

and only the first 11 variables were used in Miller’s analysis as predictors. The

outcome is the number of homicides per 100000 of population; the predictors: x1 ≡

Full-time police per 100000 population, x2 ≡ Percent unemployed in the population,

x3 ≡ Number of manufacturing workers in thousands, x4 ≡ Number of handgun
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licences per 100000 population, x5 ≡ Number of handgun registrations per 100000

population, x6 ≡ Percent homicides cleared by arrests, x7 ≡ Number of white males

in the population, x8 ≡ Number of non-manufacturing workers in thousands, x9 ≡

Number of government workers in thousands, x10 ≡ Average hourly earnings, x11 ≡

Average weekly earnings, x12 ≡ Death rate in accidents per 100000 population, x13 ≡

Number of assaults per 100000 population, Y ≡ Number of homicides per 100000

of population. In this example none of the stepwise methods has performed well

in finding the best-fitting subsets of three or four variables. Table (2.4) shows the

performance of forward selection, backward elimination, stagewise procedure and

best subset regression by searching all possible regression. For convenience we have

labeled the input variables 1 through 11 to be consistent with the notation used in

(Miller, 2002). The best fitting subset regression with these 11 variables, uses only 3

inputs variables numbered (2,4,11) and has a residual sum of squares of 6.77. Table

(2.5) shows the RSS’s for different combinations of variables 2, 4, and 11. Forward

selection produces a best fit with 3 inputs variables numbered (4,6,10) with residual

sum of squares 21.19. Backward selection produces a best fit with 3 inputs variables

numbered (3,4,11) with residual sum of squares 23.51 and stagewise methods produce

similar results. It is remarkable that there is such a big difference. Note that the usual

forward and backward selection algorithms may fail since the linear regression using

11 variables gives essentially a perfect fit.

2.9.2 Passenger Car Mileage

The data for this example come from a study by (Heavenrich et al., 1991). Variation in

gasoline mileage among makes and models of automobiles is influenced substantially

by the weight and horsepower of the vehicles. The variables are cubic feet of cab

space vol, engine horsepower hp, average miles per gallon mpg, top speed miles per
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Table 2.4: RSS’s for subsets of variables for DETROIT data set. The numbers in
brackets are the number of the selected variables

No.ofvars. Forward Backward Stagwise Allsubset

2 33.83 134.0 33.83 33.83
(4, 6) (4, 11) (4, 6) (4, 6)

3 21.19 23.51 21.19 6.77
(4, 6, 10) (3, 4, 11) (4, 6, 10) (2, 4, 11)

4 13.32 10.67 13.32 3.79
(1, 4, 6, 10) (3, 4, 8, 11) (1, 4, 6, 10) (2, 4, 6, 11)

Table 2.5: RSS’s of DETROIT data set for combinations of variables numbered (2,
4, 11)

V ariable 2 4 11 2, 4 2, 11 4, 11 2, 4, 11
RSS 3080 1522 680 1158 652 134 6.77

hour sp, and vehicle weight/100 lb wt. The number of observation is 82. To predict

a car’s gas consumption mpg based on vol, hp, sp, and wt we us mpg as the response

variable and the other four variables as predictors. Figure 2.6 is a scatterplot matrix

showing every pairwise plot between the variables.

We see that hp, sp, and wt are correlated, and also vol and wt. We see also

that the response variable mpg is polynomial in hp and sp. We fit a linear model to

the data as shown in Table (2.6), as we see that the variable vol is not a significant

variable in the mode.

By using some of the methods for model selection we see the following: Forward

Stepwise selection chooses the full model buy using the AIC criterion where the

AIC = 217.3. Backward and Hybrid Stepwise Selections both choose the model

without vol where AIC = 215.8. Best subset selection chooses the model without vol

using Cp Mallow’s.
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Figure 2.10: A scatterplot matrix of the Passenger Car Mileage data.

Table 2.6: Results from a Linear Regression fit to the Passenger Car Mileage, mpg.

Coefficients:
Estimate Std.Error t-value Pr(> |t|)

(Intercept) 192.43775 23.53161 8.178 4.62e− 12 ∗ ∗∗
vol −0.01565 0.02283 −0.685 0.495
hp 0.39221 0.08141 4.818 7.13e− 06 ∗ ∗∗
sp −1.29482 0.24477 −5.290 1.11e− 06 ∗ ∗∗
wt −1.85980 0.21336 −8.717 4.22e− 13 ∗ ∗∗
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2.10 Review

We have described a number of approaches to variable subset selection with linear

regression. Stepwise procedures such as forward, backward, Hybrid stepwise, and

forward-stagewise regression (FS), compare models that have the same number of

parameters and they stop the process when including or dropping any of the variables

does not improve the fit substantially. These methods typically produce a model that

is interpretable but has high variance so, they do not reduce the prediction error of

the full model.

The subset selection criteria we have considered such as Mallow’s Cp (Mallows,

1973), Akaike Information Criterion (AIC) (Akaike, 1974), Bayesian Information Cri-

terion (BIC) (Schwarz, 1978), Extended Bayesian Information Criterion BICγ (Chen

and Chen, 2008), Another Extended Bayesian Information Criterion BICq (Xu and

McLeod, 2009), are all monotone function of the residual sum of the square.

Then we give an over view to All Subsets Selection where the search for the best

subsets with minimum RSS or any other criteria can be done by computing all possible

regressions but the amount of computation required can be formidable.

Moreover, we have described the tournament screening approach for subset selec-

tion when a small sample size, n, and extremely high-dimensional features or covari-

ates space, p, are used.

Also we have introduced subset selection by Cross Validation which is a statistical

method for validating a predictive model. A data set partitioned into subsets, a subset

of the data are held out, to be used as validating sets; a model is fit to the remaining

data as training set and used to predict for the validation set. The results across

the validation sets can be averaged or combined to produce a measure of predication

accuracy. One form of Cross Validation is LOOCV, leaves out a single observation
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at a time. Another, K-fold cross-validation, splits the data into K subsets; each is

held out as the validation set. Finally, Delet-d cross validation, the best method for

use with model selection in linear regression Shao (1993), uses random sample of size

d as a validation set with larger cross-validation sample than is used in K-fold cross

validation.

An efficient algorithm, the Leaps and Bounds procedure for finding the best subset

regression gives smallest residual sum of squares has intrusted.

In addition, we present BestReg package in R (McLeod and Xu, 2009). BestReg

package utilizes the regsubset function in leaps package to find the models with small-

est sum of squares for size k = 0, 1, ..., p.

Finally, we have described the two consistent modifications of bootstrap selection

procedures in linear models developed by (Shao, 1996). Then Shao extended this

procedure to more complicated problems such as the nonlinear models, generalized

linear models, and autoregressive time series. This procedure select a subset from

p explanatory variables that related to a response variable by minimizing bootstrap

estimates of the prediction error.
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Regularization Methods

Chapter 3

Regularization Methods

3.1 Introduction

In these methods, coefficients are shrinkage rather than make a choice to include

or remove them from the model. This process is more continuous therefore, we

get lower variance than by subset selection and also reduce the prediction error of

the full model. Shrinkage often improves prediction accuracy, trading off decreased

variance for increased biased discussed in (Hastie et al., 2009). These methods are

also called Shrinkage Methods. In these methods, we standardize the variable in

advance because these methods work on the magnitude of the coefficients. Suppose

y = (y1, y2, ..., yn)́ is the response vector. xj = (x1j , x2j , ..., xnj )́ , j = 1, 2, ..p are

the linearly independent predictors. X = (x1, x2, ..., xp) is predictor matrix. This

chapter consists of three sections.

Section (3.2), presents one of the shrinkage methods. Ridge regression penalizes

by the sum-of-squares of the parameters.

Section (3.3), presents the Least Absolute Shrinkage and Selection Operator.

LASSO penalizes by absolute value of the parameter. In addition, we give an overview

on the degrees of freedom of LASSO (Zou et al., 2007).

In Section (3.4), we introduce the least angle regression (LARS ) (Efron et al.,

2004), which is a new model selection algorithm related to forward selection. Then

we move on to the modification on LARS to get LASSO.
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3.2 Ridge Regression (Miller, 2002)

Ridge regression was first introduced in statistics by (Hoerl and Kennard, 1970).

Ridge regression minimizes the residual sum of squares together with the penalty

term. Penalizing by the sum-of-squares of the coefficients will enhance the coefficients

estimates and reduce the variance, especially when there are many variables correlated

in the model. Ridge regression (Miller, 2002), includes all predictors in the model but

with smaller coefficients.

θ̂ridge = arg min
θ

[
n∑
i=1

(yi − θ0 −
n∑
j=1

θjxij)
2 + λ

p∑
j=1

θ2
j ], (3.1)

Where λ ≥ 0 is a tuning parameter that controls the amount of shrinkage. When

λ is larger, we get more θj , j = 1, 2, .., p are shrinkage toward zero. Note that we

usually fit the model without an intercept, and we assume that yi, xij have been

normalized. An equivalent way to write equation (3.1) is

θ̂ridge = arg min
θ

[
n∑
i=1

(yi − θ0 −
p∑
j=1

θjxij)
2], (3.2)

subject to

p∑
j=1

θj
2 ≤ u,

where u is a tuning parameter and is in correspondence with λ, the larger the λ the

smaller the u.

We also can write equation (3.1) in a matrix form as follow:

θ̂ridge = (XTX + λI)
−1
XT y, (3.3)
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where I is p x p identity matrix. By using a quadratic penalty θT θ, the solution of

ridge regression will be a linear function of y, so even if XTX is not of full rank, the

problem will be nonsingular, because the ridge solution will add a positive constant

to the diagonal of XTX before getting the inverse. Ridge regression is a continuous

process shrinks coefficients toward zero but does not set them to zero, so it keeps all

variables in the model. Therefore, we can not easily interpret the ridge model, but

the ridge model is more stable than subset models.

3.3 Least Absolute Shrinkage and Selection Operator

(Tibshirani, 1996)

Tibshirani (1996) proposed a new method for variable selection that produces an

accurate, stable, and parsimonious model called lasso. It penalizes by absolute norm

of the coefficients. The LASSO is a constrained version of OLS (Ordinary least

squares).

θ̂LASSO = arg min
θ

[
n∑
i=1

(yi − θ0 −
p∑
j=1

θjxij)
2 + λ

p∑
j=1
|θj | ], (3.4)

where λ > 0 is a smoothing or regularization parameter that controls the amount

of shrinkage.

An equivalent way to write equation (3.4) is

θ̂LASSO = arg min
θ

[
n∑
i=1

(yi − θ0 −
p∑
j=1

θjxij)
2], (3.5)

subject to

p∑
j=1
|θj | ≤ u,

44



where u is a tuning parameter and there is a relation between u and λ.

If u is large enough, then we get the usual least squares estimates. In contrast, using

a small value of u will shrink the coefficients estimates by setting some of them equal

to zero.

We assume that yi and xij have been normalized. For all λ ≥ 0, the solution of

θ0 is θ̂0 = ȳ, where ȳ =
n∑
i=1

yi/n. Lasso does model selection by setting some of the

variables to zero and that produce an easily interpretable model. Therefore, LASSO

combines the best feature of ridge regression and subset selection. Precisely, LASSO

does not depend on subsets but on a continuous shrinkage operation that can set some

of the coefficients to zero. Continuous shrinkage often improves prediction accuracy,

trading off decreased variance for increased biased. Note that the lasso estimate is a

non-linear and non-differentiable function of the response values; therefore we need

a quadratic optimization or iterative techniques to solve equation (3.4). (Tibshirani,

1996) suggested to solve equation (3.5) by starting from the overall least squares

estimate, introducing the constraints sequentially, searching for a feasible solution

satisfying Kuhn-Tucher conditions (Lawson and Hanson, 1974). Efron et al. (2004)

proposed another model selection algorithm, Least Angle Regression (LARS ),

which can be modified to solve the whole Lasso.

3.3.1 Estimation of the Tuning Parameter u

We describe two methods for the estimation of the lasso parameter u: Cross-Validation

and Generalized Cross-Validation. In these methods we assumed that the observations

(x, y) are drown from some unknown distribution. Assume a model y = f(x)+ε where

E(ε) = 0 and Var(ε) = σ2. The mean squared error for an estimate f̂(x) of f(x), is

defined by

MSE = E(f̂(x)− f(x))2.
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The predication error of f̂(x) is given by

PE = E(Y − f̂(x))2

PE = MSE + σ2.

For the linear models f(x) = x́β and the mean squared error has the simple form

MSE = (θ̂ − θ)́ V (θ̂ − θ), where V is the population covariance matrix of x.

(1) Cross - Validation method.

• Let s = u∑
θ̂oj

be the normalized parameter where θ̂oj is the full least squares

estimates.

• Estimate the prediction error for the lasso procedure over a grid of values of s

from 0 to 1 inclusive by five fold cross-validation as described in (Efron et al.,

2004).

• Selectee the value of ŝ that yield to the lowest estimated PE..

(2) Generalized Cross - Validation method.

• Write the constraint
p∑
j=1
|θj | ≤ u as

p∑
j=1

θ2
j

|θj |
≤ u. This constraint is equivalent

to adding λ
p∑
j=1

θ2
j

|θj |
to the residual sum of squares, with λ depending on u.

• Write the constrained solution θ̃ as the ridge regression estimator

θ̃ = (X́X + λ W−)−1 X́ Y,
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where W = diag(|θ̃j |) and W− denotes a generalized inverse.

• Calculate

GCV(u) =
1

n

RSS(u)

(1− p(u)/n)2 ,

where p(u) is the number of effective parameters in the constrained fit θ̃

p(u) = tr(X(X́X + λW−)−1 X́),

and RSS(u) is the residual sum of squares for the constrained fit with constraint

u.

3.3.2 On the Degrees of Freedom of the LASSO (Zou et al., 2007)

Zou et al. (2007) proved that the number of nonzero coefficients is an unbiased esti-

mate for the degrees of freedom of lasso. This unbiased estimator is also consistent,

and can be used to construct Cp, BIC type model selection criteria. This is a finite

sample, and it is true as long as the predictor matrix X is a full tank. This result

provides the optimal lasso fit through the LARS algorithm. Suppose

Ûλ(y) is the lasso fit, Zλ is the active set of β̂λ, where Z = [ j : sign(β)j 6= 0 ].

Therefore df(Ûλ) = E|Zλ|, where rank(X) = p, X is full rank.

Then, d̂f(Ûλ) = |Zλ|

Given any set of data, this method works as follow:

• Compute lasso through LARS algorithm.

• d̂f(λ) = |Zλ|.
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In general, for any model, Stein’s Unbiased Risk Estimation (SURE)theory (Stein,

1981) provides a definition of the degrees of freedom. Efron et al. (2004) has shown

that

df(û) =
n∑
i=1

Cov (ûi, yi)/σ
2 (3.6)

where û = δ(y) is the fit of the model. y ∼ (µ, σ2 I) ,where µ is the true mean, σ2

is the common variance.

Through the SURE theory, the best unbiased estimate for df(ûλ) should provide

an unbiased estimate for the prediction error of ûλ. By using the covariance penalty

method Mallow’s Cp

Cp(û) =
‖y − û‖2

n
+

2

n
d̂f(û)σ2. (3.7)

Where the Cp and AIC give the same result. The BIC for LASSO is

BIC(û) =
‖y − û‖2
nσ2 +

log (n)

n
d̂f(û). (3.8)

We need to find the optimal λ, λ∗ to get the optimal LASSO model.

λ∗ = arg min
λ
{‖y − ûλ‖

2

nσ2 +
A

n
d̂f(λ)}, (3.9)

where A = 2 for AIC and, A = log (n) for BIC.

We are looking for the optimal λ that minimizes AIC or BIC. Which of AIC or BIC

criteria is preferred to get the optimal λ? Use AIC when you are looking for the

model with the optimal prediction performance, and use BIC when your concern is

the sparsity of the model.
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3.4 Least Angle Regression (Efron et al., 2004)

Efron et al. (2004), produced a new technique that derived from a stagewise procedure

that reduced the small steps toward the final model, but not as much as forward

selection. LARS needs just P (number of covarates) steps to get to the final least

square- estimates while LASSO can have more than p-steps. However, the two results

are almost identical. LARS algorithm works as follow:

• Standardize predictors to have mean 0, and variance 1.

• Start with only the intercept in the model and all the coefficients equal to zero

(θ1 = θ2 = .... = θp = 0).

• Start with the residual equal to r.

r = y − ȳ.

• Select the first variable xj the one with the highest current correlation (cj) with

r. Performing the active set Zk during the step k leaving the residual vector as

responds variable.

cj = Corr(y, xj),

cj = x́j(y − θ̂).

• Move θj from 0 in the direction of its least-square coefficient until other pre-

dictors, that are not in the active set Zk for example, (xl) which has correlation

as xj with the current residual.

• In the direction of their joint least squares coefficients, move both θj and θl

until other predictors one or more, for example, (xh) that is not in the active

set Zk has as much correlation with the current residual as xj .
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• Repeat the process until all the predictors have entered the model, resulting in

the full least-squares solutions.

Note that in LARS , the predictors will stay forever in the active set when they

are added. Efron et al. (2004) applied a simple modification of the LARS algorithm

to implement the lasso. LARS modification is faster than the traditional lasso, and

it finds all the possible lasso estimates for the model. We can perform this restriction

on LARS to get lasso which is dropping the variable from the active set of variables if

its coefficients hits zero and recompute the current joint least squares direction. The

least-angle regression and LASSO produce more accurate, stable, and interpretable

predictions compared to other variable selection procedures such as stepwise or ridge

regression.

3.5 Illustrative example

3.5.1 Passenger Car Mileage

We use the same data set that we used in Example (2.9.2). We performed a Regu-

larization Method on this data set. Ridge regression shrinkage the variables toward

zero and keeps all the variables as shown in Figure (3.1).

The lines in the Figure (3.1) represent the θ̂ridge as a function of λ for each of the

independent variables. LASSO shrinkage some of the variables toward zero and set

the other variables to zero as shown in Figure (3.2).

The lines in the Figure (3.2) represent the θ̂LASSO as a function of u for each of

the independent variables.

50



0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

x$lambda

t(
x$

co
ef

)

Ridge

vol
sp
hp
wt

Figure 3.1: Ridge Regression. In black is the line representing θ̂
ridge
vol as a function of

λ ; same for θ̂
ridge
hp red, θ̂

ridge
sp green, and θ̂

ridge
wt blue.

51



* *
*

** * *

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

*

*
*

**
* *

* * * **

* *

* * *

**

*
*

LASSO

4
3

1
2

0 1 3 5 6

vol
sp
hp
wt

Figure 3.2: LASSO Regression. In black is the line representing θ̂LASSO
vol as a function

of u; same for θ̂LASSO
hp red, θ̂LASSO

sp green, and θ̂LASSO
wt blue.

52



3.6 Review

We have introduced the shrinkage methods. This process is more continuous than

subset selection and does not suffer a lot from high variability as subset selection.

Ridge regression (Hoerl and Kennard, 1970) minimizes the residual sum of squares

subject to abound on the l2-norm of the coefficients. Ridge regression keeps all the

predictors in the model therefore, it can not produce a parsimonious model.

The LASSO (Tibshirani, 1996) penalized least squares method imposing an l1-

penalty on the regression coefficients. The LASSO does both continuous shrinkage

and automatic variable selection simultaneously.

Finally, we have described a new model selection algorithm Least Angle Regression

LARS with its modification to implement LASSO with less computer time than

previous methods. LARS a technique that derived from a stagewise procedure that

reduced the small steps toward the final model, but not as much as forward selection.
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Application of lasso in logistic regression

Chapter 4

Application of lasso in logistic regression

4.1 Introduction

Logistic regression is widely used as the method of analysis in a situation where

the outcome variable is discrete binary or dichotomous. Typically logistic regression

models are used to predict the probability of occurrence of an event.

Section One, presents the logistic regression model where the outcome variable is

binary or dichotomous. In Section Two, we give an overview of the efficient methods

for estimating constrained parameters with application to lasso logistic regression

(Tian et al., 2008). We implemented the R code for the both procurers: the Faster

Quadratic Lower-Bound QLB algorithm for estimation in lasso logistic regression

where the convergence is not generally ensured and the Pseudo-Newton method,

which is faster than the Fastest Quadratic Lower-Bound algorithm. In addition, we

calculated the bootstrap variance estimation. Finally, we tried to use the faster QLB

algorithm in the case when p > n the number of the parameter is bigger than the

number of the observation, but it did not work well.

4.2 Logistic Regression

Logistic regression is a model used to predict a discrete outcome by using a set of pre-

dictor variables that maybe numerical, categorical or any other form (Hosmer et al.,

2000) and (Agresti, 1996). The response variable is usually binary or dichotomous,
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such as having heart disease or not, success or failure. However logistic regression

can be used in cases where the response variable has more than two cases, which is

called multinomial. In this section, we are going to focus our work on cases where the

response variable is binary. In other words, the response variable can take the value

1 with probability of success p, or 0 with probability of failure q. Logistic regression

is part of a class of models called generalized linear models, and it is widely used in

the medical area, social sciences, and business. We prefer to use logistic regression

rather than linear regression when the outcome is binary because, the predicted val-

ues will become greater than 1 and less than 0, with linear regression, and this is not

acceptable. In addition, the variance in the binary variable is pq, while the variance

of y across x should be constant in the assumption of linear regression. Finally, it is

a function that is easy to used and interpret.

4.2.1 The Model

In logistic regression, there is no linear relationship between the predictor and the

response variables. The logistic curve has the S-shape, which relates the explanatory

variables that take any value from −∞ to ∞, as an input to the rolling mean of the

response variable π(x) that take values between 0 and 1 as an out put. There are two

cases for the logistic regression:

4.2.1.1 Univariate Case

There is only one independent variable. Suppose, π(x) = E(y|x) is the conditional

mean of y given x then,

π(x) =
expa+θx

1 + expa+θx , (4.1)
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where a is the constant of the equation, θ is the coefficient of the predictor.

Transformation of π(x) is the logit transformation

f(x) = ln{ π(x)

1− π(x)
}, (4.2)

f(x) = a+ θx, (4.3)

which is linear in the parameters.

4.2.1.2 Multiple Case

Suppose we have p independent variables denoted by XT = (x1, x2, ...., xp), then the

logit transformation is:

f(x) = a+ θ1x1 + θ2x2 + ....+ θpxp, (4.4)

π(x) =
expf(x)

1 + expf(x) . (4.5)

4.2.2 Fitting Logistic Regression Models

Maximum likelihood estimation MLEia a popular method used for fitting logistic

regression models (Dobson, 2002). The maximum likelihood estimation picks the pa-

rameters that maximize the probability of the sample data. For the two cases of lo-

gistic regression, suppose we have n independent observation {(xi, yi), i = 1, 2, ...., n}

the likelihood function is given by

l(θ) =
n∏
i=1

Λ(xi), (4.6)
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where

Λ(xi) = π(xi)
yi [1− π(xi)]

1−yi , (4.7)

where π(xi) is defined as equation (4.1) in the univariate case or as equation (4.5) in

the multiple case. The logarithmic likelihood function is given by

L(θ) = log (l(θ)) =
n∑
i=1
{ yi log π(xi) + (1− yi) log (1− π(xi)) }. (4.8)

We maximize L(θ), as follows:

• Set the result of the derivatives to zero, and get the score equations,

n∑
i=1
{ yi − π(xi)} = 0,

the first score equation specifies that
n∑
i=1

yi =
n∑
i=1

π(xi), because the first com-

ponent of xi is 1 and,
n∑
i=1

xi(yi − π(xi)) = 0. (4.9)

• Use the Newton-Raphson algorithm to solve equation (4.9). Calculate the

second-derivative (Hessian matrix)

∂2L(θ)

∂θ∂θ́
= −

n∑
i=1

xix́i π(xi)(1− π(xi)). (4.10)

• Update the coefficients, a single Newton update is:

θnew = θold − (
∂2L(θ)

∂θ∂θ́
)

−1
∂L(θ)

∂θ
. (4.11)
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• Repeat the process until θold is close enough to θnew.

We can write the above in the matrix notation as follows:

Y is the response vector of yi, X denotes the n x (p+1) matrix of xi, π is the vector of

fitted response probabilities, K: n x n diagonal matrix of weights with the diagonal

element π(xi, θ
old)(1− π(xi, θ

old))

∂L(θ)
∂θ = X́(y − π)

∂2L(θ)
∂θ∂θ́

= −X́ K X.

The Newton steps is:

θnew = θold + (X́KX)
−1
X́(y − p), (4.12)

θnew = (X́KX)
−1
X́K(Xθold +K−1(y − p)), (4.13)

θnew = (X́KX)
−1
X́Kw, (4.14)

where,

w = Xθold +K−1(y − p). (4.15)

This algorithm is called Iteratively Reweighed Least Squares (IRLS. )

4.3 Quadratic Lower-Bound QLB Algorithm (Tian et al.,

2008)

For optimization problems with box or linear inequality constraints, (Tian et al.,

2008) have developed a quadratic lower-bound QLB algorithm, then generalized this

algorithm to penalized problems, the faster QLB algorithm, in which the penalty

function may not be totally differentiable. This algorithm is used for estimation in

lasso logistic regression, where the convergence is not totally ensured. They also have
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developed a Pseudo-Newton method that combines the good features of the QLB

and Newton methods which are simplicity and fast convergence. They used these

algorithms with independent binary data.

4.3.1 QLB Algorithm for Optimization with box or Linear inequality

Constraints

The algorithm consists of two steps:

• T-step : find GM, Global Majorization Matrix, B, so that

B = ĆC where C is an upper triangular matrix calculated via Cholesky decom-

position.

• M-step : update the current estimate by using some built-in SPLUS functions

(Venables and Ripley, 2002).

The algorithm is working as follow:

Defined a positive defined matrix B > 0, and B is independent of θ, so that ∀ θ ∈ Rq:

B ≥ −∇2l(θ), (4.16)

where ∇2l(θ) is the Hessian matrix, and B = ĆC where C is an upper triangular

matrix calculated via Cholesky decomposition. Let ξ be a q-vector depend on B and

θt where θt ∈ [a, b],

ξ = ξ(B, θ(t)) = (C−1)́∆l(θ(t)) + Cθ(t). (4.17)

We want to find constrained MLE θ̂

θ̂ = arg max
θε[a,b]

l(θ), (4.18)
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where

l(θ) =
m∑
i=1
{ yi(x́(i)θ)− ni ln[1 + exp(x́(i)θ] }. (4.19)

l(θ) is twice continuously differentiable and concave function. yi ∼ Binomal(ni, pi),

logit(pi) = x́iθ, 1 ≤ i ≤ m and yi are independent and denote the number of subjects

with positive response in ni trials.

Since the QLB algorithm has ascent property that is the likelihood increases in

each QLB iteration, then finding equation (4.18) is similar to iterative finding

θ(t+1) = arg max
θε[a,b]

Q(θ|θ(t)), (4.20)

where for any θ and θ́ε Rq

Q(θ|θ́) = l(θ́) + (θ − θ́ )́∇l(θ́)− 0.5 (θ − θ́ )́B(θ − θ́). (4.21)

The equation (4.20) becomes

θ(t+1) = arg min
θ∈[a,b]

‖ξ(β, θ(t)) − Cθ‖2. (4.22)

To update θ(t) through equation (4.22), we can use some built-in SPLUS functions

like nnls .fit, nonnegative least squares, and nlregb , nonlinear least squares subject

to box constraints, to perform M-step.
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4.3.2 QLB Algorithm for Penalized Problems or The Faster QLB

algorithm

We want to find penalized MLE θ̃ so that

θ̃ = arg max
θ

lλ(θ) = arg max
θ
{ l(θ)− λJ1(θ) }, (4.23)

where

J1(θ) is the penalty function, λ > 0 is the smoothing parameter.

Using QLB algorithm, we can find θ̃ by iteratively calculating

θ(t+1) = arg max
θ

Qλ(θ|θ(t)) = arg max
θ
{ Q(θ|θt))− λJ1(θ) }, (4.24)

where Q is the same as equation (4.21).

4.3.3 A Pseudo-Newton method

The QLB algorithm is usually criticized for its slow convergence in high-dimensional

data analysis. Therefore, (Tian et al., 2008) developed a Pseudo-Newton method

which retains the speed of convergence of the Newton method and the simplicity of

QLB algorithm. In this method we want to find

θ̂ = arg max
θε [a,b]

l(θ). (4.25)

By using the Newton method, finding equation (4.25) is similar to iterative finding

θ(t+1) = arg min
θ ε [a,b]

‖ξ(−∇2 l(θ)(t), θ(t))− C(t)θ‖2, (4.26)
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the Cholesky decomposition should be calculated at each iteration in equation (4.27),

−∇2 l(θ(t)) = (C(t) )́ C(t), (4.27)

If −∇2 l(θ(t)) in equation (4.27) replaced with a surrogate matrix β̂u > 0, then

Pseudo-Newton algorithm is defined by the following iteration:

θ(t+1) = arg min
θ ε [a,b]

‖ξ(B̂u, θ(t))− C∗θ‖
2
, (4.28)

where

B̂u = Ć∗ C∗, (4.29)

is the expected information which is calculated only once, θ̂u is unconstrained MLE

of θ in equation (4.18).

4.3.4 The Faster QLB and the Pseudo-Newton algorithms in Logistic

regression with constraints

The first step in the QLB algorithm is to find the GM matrix B so that B > 0 and B

does not depend on θ and satisfying the equation (4.16). For each i, 0.25 ≥ pi(1− pi)

therefore, for the Fastest QLB algorithm the smallest GM matrix (Bohning and Lind-

say, 1988) for the logistic regression is

B = (
1

4
) X́ N X, (4.30)
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where N = diag (n1, n2, ...., nm), X́ = (x(1), ....x(m)) i = 1, ....,m, and

∆l(θ) =
m∑
i=1

(yi − nipi) = X́(y −Np),

−∆2l(θ) =
m∑
i=1

nipi(1− pi)xix́i = X́NDX.

For Pseudo-Newton algorithm

B̂u = X́ N diag(d̂ui , ...., d̂
u
m) X, (4.31)

where

D = diag (p1 (1− p1)....pm(1− pm)), (4.32)

p̂ui =
exp {x́(i) θ̂

u}
1 + exp{x́(i) θ̂

u}
, (4.33)

where θ̂u is the unconstrained MLE of θ in the logistic model equation (4.19), and

d̂ui = p̂ui (1− p̂ui ) if p̂ui ∈ (0, 1), and d̂ui = 0.25 otherwise, i = 1, ...,m.

For a logistic model, the LASSO regression is to find

θ̂LASSO = arg max
θ
{ l(θ)− λ

q∑
j=1
|θj | }, (4.34)

where λ > 0 is a smoothing parameter. By using the faster QLB algorithm, we can

find equation (4.34) by iteratively calculating

θ(t+1) = arg min
θ
{ ‖ ξ(B, θ(t))− Cθ‖2 + λ

q∑
j=1
|θj |}, (4.35)

where θ̂u is the unconstrained MLE of θ in the logistic model, v = (v1, ...., vq )́ is

a sign vector, vj = sign (θ̂uj ) = + 1 , 0 , or − 1 corresponding to positive, zero, or
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negative values of θ̂uj . ξ(B, θ(t)) and B are defined in equation (4.17) and equation

(4.30), respectively.

From the property of the lasso solution, we know that θ̂LASSO and θ̂u share signs

(Efron et al., 2004)

θ(t+1) = diag (v) B(t+1),

and

B(t+1) = arg min
B ε R

q
+

‖ η(B, θ(t))− Z B‖2, (4.36)

η(B, θ(t)) = (Ź)
−1 { diag (v Ć ξ(B, θ(t))) − 0.5λ}, (4.37)

where Z can be obtained via the Cholesky decomposition Ź Z = diag(v) Ć C diag(v).

Because equation (4.36) is a quadratic optimization problem with non-negative con-

straints, we can use nnls.fit function in S-plus or nnls in R to solve it. Note that

we can get, λ̂opt, the optimal smoothing parameters by minimizing an approximate

generalized cross-validation GCV statistic (Craven and Wahba, 1979) where

GCV =
−l(θ̂LASSO

λ )

m[1−e(λ)
m ]

2 ,

where

e(λ) = tr[ X(X́NDX + λW−)−1X́ND], (4.38)

is the effective number of parameters.

W = diag(|θ̂LASSO
λ |), where W− is the Moore-Penrose generalized inverse of W .
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4.3.5 R-Code for fastest QLB algorithm and Pseudo-Newton algorithm

Tian et al. (2008) used SPLUS and some of its built-in functions with these algo-

rithms. We implemented the R-codes for the fastest QLB algorithm and Pseudo-

Newton algorithm; then, we used these codes with the same data set they used for

lasso logistic regression, which is the Kyphosis data Example ??and we obtained the

same result as (Tian et al., 2008) found.

4.3.6 Simulated study

We have simulated vector y (1000 × 1) binary data (0, 1) to represent the response

variable, and a matrix x (1000× 2000) binomial as the explanatory variables. Then

we followed all the steps we discussed above to get the QLB algorithm and Pseudo-

Newton algorithm with the case p > n (number of parameters > number of

observation), but the algorithms did not work well because all the values for the

unconstrain θ ≥ 1000 are missing. The lasso selects at most n=1000 variables before

it saturates, therefore we could not find the optimal λ via the GCV method; also did

not get a positive definite matrix when we calculated the Cholesky decomposition,

which has effect on the other functions that we used for this method.

4.4 Illustrative Examples

4.4.1 South African Heart Disease

In this example we present an analysis of binary data to demonstrate the statistical

use of logistic regression model. The scatterplot in Figure(4.1) is a retrospective

sample of white males between 15 and 64, in a heart-disease high-risk region of the

Western Cape, South Africa. The aim of the study was to establish the intensity of

ischemic heart disease risk factors in the high-incidence region. The response variable,
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Table 4.1: Results from a logistic Regression fit for to the South African heart disease
data,

Coefficients:
Estimate Std.Error Z Score

(Intercept) −0.5080306 0.2045921 −2.483139
sbp 0.0013387 0.0010581 1.265192

tobacco 0.0165841 0.0048610 3.411664
ldl 0.0331791 0.0106747 3.1082

adiposity 0.0023026 0.0047696 0.4827659
famhist 0.1734290 0.0412746 4.201834
typea 0.0060817 0.0020369 2.985763

obesity −0.0111711 0.0070315 −1.588722
alcohol −0.0002364 0.0008284 −0.2853694

age 0.0068440 0.0019868 3.444735

chd, is the presence or absence of myocardial infarction. The independent variables

sbp: systolic blood pressure, tobacco: cumulative tobacco (kg), ldl: low densiity

lipoprotein cholesterol, adiposity, famhist: family history of heart disease (Present,

Absent), typea: type-A behavior, obesity, alcohol: current alcohol consumption, age:

age at onset. A sample of size 463 are used. There are roughly two controls per

case of chd. Many of the chd positive men have undergone blood pressure reduction

treatment and other programs to reduce their risk factors after their chd event. In

some cases the measurements were made after these treatments. These data are taken

from a larger dataset, described in (Rousseauw et al., 1983). Table (4.1 ) shows the

results from a logistic-regression model fitted by maximum likelihood. This summary

includes Z scores for each of the coefficients in the mode. Any coefficients whose Z

score is nonsignificant, can be dropped from the model. A Z score significant at the

level %5 if it is grater than approximately 2 in absolute value.

From Table (4.1) we can see that systolic blood pressure, sbp, is not significant !
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Figure 4.1: A scatterplot matrix of the South African Heart Disease data.
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Table 4.2: Results from Stepwise logistic Regression fit for to South African heart
disease data,

Coefficients:
Estimate Std.Error Z Score

(Intercept) −0.237407 0.068561 −3.462712
tobacco 0.017263 0.004815 3.585254

ldl 0.032533 0.010076 3.228761
famhist 0.178173 0.041395 4.304215

age 0.006836 0.001603 4.264504

Nor adiposity, alcohol, and obesity which is with negative sign. However, both sbp

and obesity are significant on their own and with positive sign. This is a result of

the correlation between the set of predictors. In Table (4.2) we did model selection

by dropping the least significant coefficient, and refit the logistic model. Repeat

the process above until no further terms can be dropped. All Z score grater than

approximately 2 in absolute value.

4.4.2 Kyphosis data

These data are taken from a dataset, described in (Hastie and Tibshirani, 1990). The

outcome is the status of Kyphosis (1=present, 0=absent); the predictors: X1 ≡ age

in months at time of the operation, X2 ≡ number of vertebrae levels, X3 ≡ starting

vertebrae level. The data set is for 83 laminectomy patients. We want to determine

the risk factor for Kyphosis in this study. We did not include the interaction effects,

as (Tian et al., 2008) did, and we included the three main effects and their quadratic

effects since the predictor effects are known to be non-linear. The full logistic model

is

logit{Pr(Y = 1)} = θ0 +
3∑
j=1

θj xj +
3∑
j=1

θ3+j x
2
j . (4.39)
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To get the Faster QLB algorithm, we did the following:

• Standardized the data.

• Calculate the unconstrained MLE.

θ̂u = ( − 2.642, 0.827, 0.767,−2.269,−1.541, 0.032,−1.158)

• Find the sign vector.

( − 1, 1, 1, − 1, − 1, 1, − 1)

• Use the assumption that θ̂LASSO and θ̂u share signs.

• Find λ̂optimal via Generalized Cross Validation GCV static . The optimalλ̂opt =

0.351, and the plot of generalized cross-validation is shown in Figure (4.2).

• Use θ(0) = v as initial value.

• Find GM matrix B via equation (4.29).

• Use some built-in R functions; nnls defines the Lawson-Hanson NNLS algorithm

for non-negative least squares that solves the least squares problem Ax = b

with the constraint x ≥ 0, and nlminb which is a function for unconstrained

and constrained optimization using PORT routines to calculate equation (4.34).

The lasso solution is:

( − 2.264, 0.6581, 0.692, − 1.837, − 1.252, 0.004, − 0.859)

The monotone convergence of the algorithm is shown in the Figure (4.3).

• We calculate the standard error with 1000 bootstrap replications

( 0.557, 0.482, 0.466, 0.624, 0.607, 0.623, 0.489)
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Figure 4.2: Plot of generalized cross-validation for kyphosis data
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Figure 4.3: The monotone convergence of the Faster QLB algorithm for Kyphosis
data
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Figure 4.4: The monotone convergence of the Psude-Newton for Kyphosis data

To get the Pseudo-Newton algorithm, we can use the same process above, except

use B̂u in equation (4.31) instead of B in equation (4.30). We used the same set of

data above with this method, which they did not use, and we found that the Pseudo-

Newton algorithm is faster in convergence than the faster QLB algorithm. The lasso

solution is

(−2.433, 0.735, 0.725,−2.035,−1.381, 0.018,−0.997).

The monotone convergence of the Psude-Newton is shown in Figure (4.4).
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4.5 Review

We have presented the logistic regression model where the outcome variable is binary

or dichotomous. In Example 4.4.1 we did an analysis of binary data, South African

Heart Disease, to demonstrate the statistical use of logistic regression model also, we

use forward selection procedure to find the best model.

We have investigated some of the methods in lasso logistic regression, such as

the Quadratic Lower-Bound (QLB) Algorithm, and Pseudo-Newton algorithm. We

implemented the R-cods for the both QLB and Pseudo-Newton algorithms. We tried

to use the two methods in the case where p � n), but the algorithms did not work

well because we obtained a singular matrix for x.
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Regression Discontinuity Analysis

Chapter 5

Regression Discontinuity Analysis

5.1 Introduction

Regression discontinuity (RD) designs were first introduced by (Thistlethwaite and

Campbell, 1960) and are recently receiving more attention. The recent monograph

by Shadish et al. (2002) was reviewed favorably by Anderson-Cook (2005) in the

prestigious statistical journal Journal of the American Statistical Association and a

special issue of a major econometric journal was devoted to the topic of RD (Imbens

and Lemieux, 2008). As noted by Anderson-Cook (2005), many statisticians feel that

the only valid methodology for making scientific causal inferences are Randomized

Designs. Undoubtedly randomized experimental designs were one of the greatest sci-

entific and technological inventions of the 20th century but much of the data available

to social scientists as well as in finance, medicine and epidemiology are observational.

Great philosophical progress has been made by Pearl (2000) on elucidating the na-

ture of causality and describing and qualifying when causal inferences may be drawn

from observation data. Application papers using RD have appeared in the Journal

of the American Statistical Association and theoretical contributions to RD have ap-

pears in the Annals of Statistics, so RD can most definitely be considered mainstream

statistics even it is not widely taught in Statistics Departments.

There were several reasons that the regression discontinuity design did receive little

attention until recently. The design was not well understood, because the program

and comparison groups are chosen differently from the other multiple group designs.
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If the program group consists of high pretest scorers, the comparison group will be

lower scorers, and vice versa. Another difficulty is that it is not easy to implement

the RD design. There may be political or social difficulties that threaten the correct

execution of the design. Finally, the statistical analysis of the regression discontinuity

design is not always easy since it may be difficult to select the appropriate statistical

model. Despite all the reasons we discussed, the RD design is important and widely

used as an applied social research technique because of it ability to accomplish the

political and social goals of allocating scarce resources to those that need them most

(van der Klaauw, 2008).

There are different structures of the regression discontinuity design. Two impor-

tant RD’s are the Two-Group Pretest-Posttest Design and the Nonequivalent Group

Design. In their most basic form, we will need a statistical model that includes a term

for the pretests, posttest, and a dummy-coded variable to represent the assignment

status of the person in the study such as received the program or did not received the

program (Lee, 2008). In typical regression analysis, we usually concerned about the

variables that we should included them in the model, and the nature of the functional

form. However, the main problem in regression discontinuity analysis is model spec-

ification because the measure of included are determined by the design (Bloob et al.,

2005). The Regression-Discontinuity Design starts with a selection criterion that sep-

arates people into two groups on the basis of some measurement such as achievement

then, test wither some invention or program has any impact on the outcome measure.

This chapter consists of two sections.

Section One, introduces the basic regression-discontinuity design with it’s assump-

tions. Moreover, we discuss the differences between the fuzzy and sharp regression-

discontinuity design.

Section Two presents the statistical analysis of the regression-discontinuity design
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(Imbens and Lemieux, 2008). In addition, we introduce the model specification, the

curvilinearity problem, the analysis steps, and the multiple cutoff points.

5.2 The Basic Regression-Discontinuity Design

In regression discontinuity design all persons are assigned to program or compari-

son group according to a cutoff score on the preprogram measure pretest. Thus,

all persons scoring on one side of the cutoff score are assign to one side group for

example, program group while persons who scoring on the other side are assigned to

the other group such as comparison group. This is the case in medicine, for example,

this design is applicable for assessing the effect of giving a new surgical procedure to

all patients who exceed a certain score on a presurgical measure of severity of illness.

There are several assumption which must be made in order for the analytic model to

be appropriate:

• The cutoff criterion must be followed.

The regression discontinuity design assume a perfect assignment no misassign-

ment relative to the cutoff unless it is know to be random. Persons scoring on

one side of the cutoff score are assign to one group not be placed in the other.

Misassignment can arise from a different reasons. First, political. Persons who

are able to misassign them into a desirable group or out of an undesirable one.

Second, administrative error, administrators do not adhere to the cutoff crite-

rion.

Campbell (1969), termed the misassignment relative to the cutoff score by fuzzy

regression-discontinuity. This types of misassignment unless is know to be ran-
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dom yield to biased estimates of the effect of the program (Goldberger, 1972).

Analysis in the presence of fuzzy cutoff points will result in two problems:

– Effects the significant of the test.

The two samples of disturbance terms for the study cannot considered

to be random samples. Therefore, we loss the justification for applying

statistical theory.

– The overlap between the groups can gives a different result for the effect

of the treatment.

The term sharp regression-discontinuity design is used when there is no mis-

assignment.

• One Factor.

The second assumption is that only one factor would result in a discontinuity

in the pre-post relationship at the cutoff point which is the program effect. If

there are more than one factor this will lead to misunderstand which factor is

the result of an observed effect. It may be due to the program effect or partially

to some other factor consequently, the result may not be valid.

• Continuous Pretest Distribution.

The cutoff point determined the division between the two groups: control and

program which both must come from a single continuous pretest distribution.

In some cases, there are intact groups such as two groups of patients or students

from two different geographical regions which coincidental divide on some mea-

sure so as to imply some cutoff. This kind of groups could reflect a selection bias
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because they are different naturally at the cutoff prior to the program which

introduce some discontinuities at this point.

• In both program and comparison groups, there must be a sufficient number of

points in order to obtain the regression lines.

• The true pre-post distribution must be describable as polynomial in x. The

model is misspecified and the estimates of the program effect are not accurate

if the true model is not polynomial for example, exponential or logarithmic.

Therefor, this data should be transformed to a polynomial distribution prior to

analysis however, the model will be more problematic to interpret.

5.2.1 The statistical Analysis of the Regression-Discontinuity Design

The analytic model has been described in (William and Trochim, 1984) presented as

follow:

yi = α0 + α1x̃i + α2zi + α3x̃izi + ...+ αn−1x̃i
kzi + αnx̃i

kzi + ei, (5.1)

where:

xi is the preprogram measure, pretest for individual i.

yi is the post program measure, posttest for individual i.

x̃i = xi − xct, (5.2)

where xct is the value of the cutoff, k is the degree of the polynomial, α0 is the

intercept at cutoff for comparison group, α1 is the linear slope parameter, α2 is the

estimate of the main effect of the program, αn parameter for the kth polynomial or

interaction terms, ei is the random error.
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The hypothesis of interest is:

H0 : α2 = 0 v.s H1 : α2 6= 0.

The mechanics of this model works as in the example follow:

• Suppose that the true function is linear.

The model can be written as follow:

yi = α0 + α1xi + α2zi. (5.3)

The comparison group line would be:

yi = α0 + α1x̃i, (5.4)

the estimate where this line intersect the cutoff in yct = α0 and x̃i = 0 at the

cutoff point.

The program group line would be:

yi = α0 + α1x̃i + α2, (5.5)

the estimate where this line intersects the cutoff in yp = α0 + α2.

The main effect is defined as the vertical difference between the lines at the

cutoff.

yp − yct = (α0 + α2)− α0 = α2, (5.6)

therefore, the main program effect would be α2.
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• Suppose that the true function includes both a main and interaction effect.

The model can be written as follow:

yi = α0 + α1xi + α2zi + α3xizi. (5.7)

The comparison group line would be:

yi = α0 + α1x̃i, (5.8)

the estimate where this line intersect the cutoff in yct = α0 and x̃i = 0 at the

cutoff point.

The program group line would be:

yi = α0 + α1x̃i + α2 + α3x̃i, (5.9)

the estimate where this line intersects the cutoff in yp = α0 + α2 + α3x̃i.

The difference between these lines at the cutoff is:

yp − yct = (α0 + α2 + α3x̃i)− α0

yp − yct = α2 + α3x̃i, (5.10)

where α2 is the main effect of the program and α3 is the difference in slopes

between the lines of the two groups. α0 is where the comparison group line hits

the cutoff. α2 + α3 is the program group cutoff intercept.

5.2.2 Model Specification

The main goal in regression-discontinuity is to obtain an unbiased and statistically

efficient estimate of program effect. To achieve this goal, the subset of variables that
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is selected from the general model must describes the true pre-post relationship ac-

curately. There are three types of specifications:

• Exactly specify the true model. Specify the model where there are no unnec-

essary terms in it. In practices exact specification is hard to obtain. When we

exactly specify the true model we get an unbiased and sufficient estimates of

the treatment effect as shown in the example follow:

If the true model is:

yi = α0 + α1xi + α2zi + α3xizi

We fit the model :

yi = α0 + α1xi + α2zi + α3xizi + ei

We obtain an unbiased and efficient estimate.

• Overspecify the true model. Specify the model where there are unnecessary,

extra, terms. In this case, our estimate will be unbiased because we included

all the necessary terms, but not efficient because of the extra terms. Thus, it is

hard to us to see the treatment effect even if it exists as shown in the example

follow:

If the true model is:

yi = α0 + α1xi + α2zi

We fit the model :
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yi = α0 + α1xi + α2zi + α3xizi + ei

We obtain an unbiased ,but an efficient estimate.

• Underspecify the true model. Specify the model where we excluded some nec-

essary terms as shown in the example follow:

If the true model is:

yi = α0 + α1xi + α2zi + α3xizi

We fit the model :

yi = α0 + α1xi + α2zi + ei

We obtain both biased and inefficient estimate.

In Practice, it is difficult to specify the exact true model. Therefore, we prefer to

overspecify the true model rather than underspecify. Then, in the analysis, gradually

remove higher-order terms until the model diagnostic for example, residual plots

indicate that the model fits poorly.

5.2.3 The Curvilinearity Problem

Misspecify the statistical model, is the main problem in analyzing data from the

regression-discontinuity design because this will lead to get a biased estimates of the

treatment effect. If the true pre-post relationship is curviline and we fit a straightline

model to the data the conclusion of the treatment effect will be inaccurate, made a
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difference when it did not. Suppose that there is no jump or discontinuity in the data

when we plot the curveline. However, there is a cutoff value.

• Force the slop of the program group and the slop of the pretest group to be equal.

Use the model with out any interaction between the program and pretest group.

The straight line model suggests that there is a jump at the cutoff however,there

is no jump in the true data .

• Allowing the slop of the program group and the pretest group to be differ.

Use the model with interaction between the program and the pretest groups.

The straight line model suggests that there is a jump at the cutoff, but the

pseudo-effect in this case is smaller than the first case.

5.2.4 The Analysis Steps

The analysis of the basic regression-discontinuity design consist of the following steps:

• Ordered the data a cording to the pretest values (xi).

• Find the cutoff point for example the median of the pretest (xi).

• Assign the dummy-coded variable z where,

zi=1 receiving the treatment (program group).

zi=0 comparison group.

• Subtract the cutoff value from each pretest score in order to set the intercept

equal to the cutoff value. The modified pretest (x̃i) will be equal to 0 at the
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cutoff value making the cutoff the intercept point because the intercept is by

definition the value of y when x = 0.

x̃i = xi − xct, (5.11)

where xct denoted the cutoff value.

• Plot the pre-post relationship to determined if there is a discontinuity in the

data. Also, count the number of times the distribution flexes or bends.

• Use the rule of thumb. Go two orders of polynomial higher than the numbers

of flexion points that you obtained in step five. For example, if the bivariate

distribution shows no flexes or bends points, use second-order (0 + 2) poly-

nomial transformations. The first-order polynomial already exist in the model

(x). You have to create the second-order polynomial by squaring x to obtain x2

also, you have to create the interaction term by multiplying the polynomial by z.

• Use any multiple regression program. If there is a discontinuity at the cutoff,

it would be estimated by the coefficient associated with the z term. Test the

significance of the coefficient by a standard t-test. If the coefficient is highly

significant, conclude that there is a program effect.

• Remove the an unnecessary terms from the overspecified model. Examine the

significant of the coefficients of the highest-order term in the current model, the

goodness-of-fit measure, and the pattern of residuals. If these measures indicate

not a significant coefficients and poorly fitting model, drop the highest-order

term and repeat the analysis until all the coefficients will be significant. The
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final model may still contain unnecessary terms, but they are less than before

and their efficiency will be grater.

5.3 Multiple Cutoff Points

Sometimes we need more than one cutoff value for assignment. In this situation it

will be two programs group and one control group. This will be powerful tool when

the program could applied to those who needed the most. The comparison condition

to those who do not need it, and the other program to persons falling in between

these two groups. The analysis of this design is similar to the case of one cutoff point

except we need two assignment (z) variables. Assume a linear relationship between

the pre-pos data and there is no interaction effect. The analysis mode would be

yi = α0 + α1xi + α2z1i + α3z2i + ei,

where all terms are as equation (4.1) except

z1i=1 if program 1; 0 otherwise, z2i=1 if program 2; 0 otherwise, α2 is the

different between program 1 and the comparison group, α3 is the different between

program 2 and the comparison group, and α2−α3 is the different between program

1 and program 2.

In the cases of two cutoff points, only one cutoff point can be subtracted from the

pretest to obtain (x̃i) term. For example, if the cutoff point that separates the pro-

gram 1 and program 2 groups is subtracted from the pretest value, then α2 would

estimate the vertical distance between the lines of the two groups at the subtracted

cutoff value. In the multiple cutoff points the model specification problem will be

more complicated than one cutoff point.
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Table 5.1: Data for Hypothetical Sharp Regression Discontinuity Analysis

school

Title A B C D E F G H I J

Rating 10 11 12 13 14 15 16 17 18 19
Treatment 1 1 1 1 1 0 0 0 0 0
Outcome 20 25 30 35 40 30 35 40 45 50

5.4 Illustrative Examples

5.4.1 The Impact of Receiving an Extra Counseling Program on

Student Achievement

For a hypothetically data, suppose we want to study the impact of receiving an extra

counseling program on student achievement. These data are taken from (Bloom and

Kemple, 2005). The example assume that the out comes are a linear function of rating

and the ratings are set so that funding is targeted to school with lowest rate. The

district will award schools who their scoring bellow a given rate, while those above

that score are not. Table (5.1) shows the case of sharp regression-discontinuity design

where all schools are assigned perfectly without any exception to treatment group,

receiving the counselor program, or comparison group by the rating index (cutoff

point). Table (5.2) shows the case of fuzzy regression-discontinuity design where one

school assigned to the treatment group by the rating index did not receive treatment

and one school assigned to the comparison group by the rating index did receive

treatment. This could occurs if consideration other than the rating index caused the

district officials to choose some schools over others for the program. Figure (5.1)

and Figure (5.2) show the different of the main effect between the two cases. The

discontinuity at the cutoff point will be muted because of the misassignment.
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Table 5.2: Data for Hypothetical Fuzzy Regression Discontinuity Analysis

school

Title A B C D E F G H I J

Rating 10 11 12 13 14 15 16 17 18 19
Treatment 1 0 1 1 1 0 0 1 0 0
Outcome 20 25 30 35 40 27 32 37 42 47
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Figure 5.1: Change At The Margin With a Sharp Regression Discontinuity
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Figure 5.2: Change At The Margin With a Fuzzy Regression Discontinuity
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5.4.2 Reducing Delinquency of Female Teenagers

As an artificial example of the regression-discontinuity design, we introduced the

example in (Manly, 1992). The problem concerns girls with poor home conditions,

so that extra counselling is introduced to the girls with poor conditions. Table(5.3)

shows the scores of x and y where, x is the scale of the home condition where high

scores indicate poor conditions that is the value of x above the median, y represents

the delinquency which is determined for all girls after six months. Figure (5.3) shows

the home condition scores (x), plotted against the observed delinquency scores. After

ordering the data according to the value of x, and assigning the the value of z where

z = 1 for the girls that received counselling the value of x is grater then the median

of all x, and z = 0 for the other girls as shown in Table (5.4).

The model is simple linear regression,

yi = α0 + α1xi + α2zi + ε,

where: α0 represent the constant term when there is no counselling, α0 +α2 represent

the constant term when there is counselling.

The fitted regression equation is :

ŷ = 18.79 + 1.70x− 2.02z.

The estimated standard errors associated with the coefficients of x is (0.72) and with

z is (1.65) by using the software R. The t-statistics for the coefficients of x is (2.39)

and for z is (−1.22) each with 37 degrees of freedom. The coefficient of x is significant

at the 5% level, but the coefficient of z is not significant at the same level. Therefore,

we can conclude that the level of delinquency is related to home condition, but there

is no enough evident to support the idea that counseling is reducing delinquency.
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Table 5.3: The data of assess the effect of counseling on problem teenage girls
(x=index of home condition, y=delinquency score after six months

No Couns. Counseling

No x y x y

1 4.3 28.2 6.0 27.3
2 3.7 21.9 5.9 30.3
3 4.9 25.9 6.5 26.7
4 4.1 23.0 6 25.4
5 4.4 31.1 6.1 24.7
6 5.0 30.3 6.7 30.9
7 5.1 28.8 7.3 25.7
8 4.2 23.2 6 20.3
9 4.5 26.6 6.2 25.8
10 2.5 26.8 5.1 26.9
11 3.0 25.4 5.3 31.6
12 3.6 20.9 5.6 23.1
13 3.7 24.6 5.7 28.0
14 3.8 24.4 5.9 27.5
15 4.5 29.9 6.2 27.7
16 3.3 21.6 5.4 23.2
17 3.3 24.0 5.4 25.0
18 4.7 28.3 6.3 30.6
19 4.7 27.1 6.4 31.3
20 5.0 24.1 6.9 30.0
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Table 5.4: The data of assess the effect of counseling on problem teenage girls after
ordered x and assigned the value of z

No Counseling Counseling

No x y z x y z

1 2.5 26.8 0 5.1 26.9 1
2 3.0 25.4 0 5.3 31.6 1
3 3.3 21.6 0 5.4 23.2 1
4 3.3 24.0 0 5.4 25.0 1
5 3.6 20.9 0 5.6 23.1 1
6 3.7 24.6 0 5.7 28.0 1
7 3.7 21.9 0 5.9 30.3 1
8 3.8 24.4 0 5.9 27.5 1
9 4.1 23.0 0 6 25.4 1
10 4.2 23.2 0 6 20.3 1
11 4.3 28.2 0 6.0 27.3 1
12 4.4 31.1 0 6.1 24.7 1
13 4.5 26.6 0 6.2 25.8 1
14 4.5 29.9 0 6.2 27.7 1
15 4.7 28.3 0 6.3 30.6 1
16 4.7 27.1 0 6.4 31.3 1
17 4.9 25.9 0 6.5 26.7 1
18 5.0 30.3 0 6.7 30.9 1
19 5.0 24.1 0 6.9 30.0 1
20 5.1 28.8 0 7.3 25.7 1
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Figure 5.3: Delinquency scores plotted against home conditions for problem teenage
girls. The lines shown are the expected frequencies from the fitted regression equation
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5.5 Review

We have introduced the regression-discontinuity design and its assumption to build an

appropriate model. In addition, we introduced the misspecification, and the curvilin-

earity problems. The regression-discontinuity design is useful to study any program

or procedure that is given out on the basis of need or deserve.

Model misspecification is the most important problem in analyzing data from RD

design because it leads to wrong conclusion about the treatments effect. If a linear

relation is assumed, the result would threatened by possibility of nonlinearities. In

some situations, one could use more than one cutoff value for assignment however,

the model specification problem will be more complicated.
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