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Traditionally the neighbourhood size k in the k-nearest-neighbour algorithm is either
fixed at the first nearest neighbour or is selected on the basis of a crossvalidation study.
In this paper we present an alternative approach that develops the k-nearest-neighbour
algorithm using likelihood-based inference. Our method takes the form of a generalised
linear regression on a set of k-nearest-neighbour autocovariates. By defining the k-nearest-
neighbour algorithm in this way we are able to extend the method to accommodate the
original predictor variables as possible linear effects as well as allowing for the inclusion
of multiple nearest-neighbour terms. The choice of the final model proceeds via a stepwise
regression procedure. It is shown that our method incorporates a conventional generalised
linear model and a conventional k-nearest-neighbour algorithm as special cases. Empirical
results suggest that the method out-performs the standard k-nearest-neighbour method
in terms of misclassification rate on a wide variety of datasets.

Some key words: Maximum pseudolikelihood; k nearest neighbour; Nonparametric classification; Probabilistic
nearest neighbour.

1. I

Within the field of statistical pattern recognition and machine learning the k-nearest-
neighbour algorithm, also known as instance-based learning or lazy learning (Aha, 1997),
is one of the most commonly used tools for prediction. The algorithm is remarkably simple
and has remained largely unchanged since its introduction in an unpublished USAF
School of Aviation Medicine report by E. Fix and J. L. Hodges. The k-nearest-neighbour
procedure uses a training dataset {y

i
, x
i
}n
i=1
to make predictions on new unlabelled data,

where y
i
µ{C1 , . . . , CQ} denotes the class label of the ith point and xi denotes a vector of

p predictor variables. The prediction for a new point, y
n+1
|x
n+1
is reported as the most

common class found amongst the k nearest neighbours of x
n+1
in the set {x

i
}n
i=1
. The

neighbours of a point are defined via a distance metric r(x
n+1
, x
i
) which is commonly

taken to be the Euclidean norm. A degree of confidence in the prediction can be provided
by the relative counts of each category within the k neighbours. Dasarathy (1991) provides
an overview of methods and a comprehensive collection of around 140 key papers.
The k-nearest-neighbour algorithm is a nonparametric procedure in that it makes no
assumption about the distribution of the underlying class conditional density r(x |y), and
it can be shown for a suitable choice of k that the error rate converges with n to the Bayes
risk; see Ripley (1996, Ch. 6) for details. The ‘vanilla’ algorithm with Euclidean norm has
just one parameter k and this method remains the most popular, partly because of its
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simplicity but also because of empirical evidence that shows the approach to be effective
at prediction on a wide variety of datasets (Michie et al., 1994, Ch. 9).
Traditionally, the value of k is chosen by crossvalidation on the misclassification rate

(Mitchell, 1997, Ch. 4; Ripley, 1996). In this paper we propose an alternative approach
by defining a conditional probability model for the data (y1 , . . . , yn ) that is specified by
a function of the k nearest neighbours and a single interaction parameter. Optimisation
of k can then proceed by a method of maximum pseudolikelihood. We illustrate how the
crossvalidation approach and our method both seek to maximise an additive cost function
of the data. The form of the cost function highlights the difference between the approaches.
The probability model we suggest has the form of a generalised linear model (McCullagh

& Nelder, 1989) on a set of nonlinear autocovariates defined by the class labels of the
nearest neighbours to each point. The method is shown to possess all of the properties of
the standard k-nearest-neighbour algorithm together with a number of key advantages:
the introduction of a probability model for (y1 , . . . , yn ) facilitates the use of the model
within a formal decision process where predictions lead to actions with associated costs
on outcomes; we can consider the choice of k as a generalised linear model variable-
selection problem for which a large body of theory exists; we can consider the inclusion
of the original predictors as linear terms within the model; and we can consider multiple
values for k which can be used to capture nonlinear effects that operate at different scales
within the data.
Nearest-neighbour models implicitly assume that the expectation E(y |x) is adequately

approximated by a local mean fit to the data, using the nearest k neighbours. The extension
to include linear terms assumes that E(y |x) is smoothly changing around possible global
linear effects. A further potential advantage of our approach is that we can make use of
generalised linear model diagnostic tools, such as those discussed in Hosmer & Lemeshow
(2000, Ch. 5), to check the validity of our modelling assumptions; see § 3.
The problem of which linear, or which k-nearest-neighbour terms to include is handled
using a stepwise model-building procedure. In this manner, our method incorporates as
special cases a conventional generalised linear model, that uses just x, and the conventional
k-nearest-neighbour algorithm that uses just nearest neighbours. We demonstrate that the
model-fitting procedure for the two-class classification problem can be carried out using
any standard statistical software package that supports stepwise variable-selection for the
generalised linear model.
Our model is closely related to the autologistic model discussed in Besag (1974, 1986)

and the coloured lattice model presented in Strauss (1977); see also Geman & Geman
(1984). In fact our model can be viewed as an extension of these methods to include
multiple neighbourhood terms and to deal with nonspatial data in general high-
dimensional classification problems. Besag (1974) proposes the method of maximum
pseudolikelihood for estimation in these models and we use this idea here. Maximum
pseudolikelihood estimators have similar large-sample properties to their maximum likeli-
hood counterparts including asymptotic consistency and asymptotic normality but not
asymptotic efficiency (Mase, 1995; Jensen & Kunsch, 1994).
This paper is a development of the approach of Holmes & Adams (2002), who consider

two-class classification models with a single k-neighbourhood, using a Bayesian approach
with a prior distribution on k. Predictions are made via numerical integration. Here we
consider multi-class problems and, more importantly, multiple predictors including a mix-
ture of multiple nearest-neighbour terms and global linear effects. Our estimation follows
pseudolikelihood maximisation, which is computationally much more efficient than the
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Bayesian analysis, especially in the context of selecting multiple predictors. Some of the
benchmark datasets analysed in § 3 were previously analysed in Holmes & Adams (2002).
The results here suggest that improvements in predictive accuracy can be obtained with
the multiple-predictor method.
In § 2 we describe the model and discuss implementation issues. We illustrate the method

on a number of benchmark datasets in § 3, and in § 4 we provide a brief discussion. A full
Matlab version of our method is available on request from C. C. Holmes.

2. N-    

2·1. T he model

To begin, we consider the two-class classification problem, y
i
µ{C0 , C1}, using a single

value for the neighbourhood size k. We propose a sampling distribution for y
i
which for

the two-class problem is taken to be the Bernoulli distribution, y
i
~Ber (g

i
), with a mean

parameter g
i
that is determined by a function of the class labels of the k nearest neighbours

of x
i
. In particular, we rewrite the k-nearest-neighbour procedure as a generalised

linear regression on a nonlinear nearest-neighbour autocovariate using the conditional
distribution

pr (y
i
=C1 |y−i , xi )=gi=

exp{bz(k)
i
(C1 , xi )}

1+exp{bz(k)
i
(C1 , xi )}

, (1)

where y
−i
denotes the data with the ith observation removed, b is an interaction regression

parameter and z(k)
i
(C1 , xi ) is a k-nearest-neighbour autocovariate, defined by

z(k)
i
(C1 , xi )=

1

k
∑

j~k i

{I(y
j
=C1 )−I(yj=C0 )}. (2)

In (2), I(a)=1 if condition a is true, I(a)=0 otherwise and W
j~k i
denotes that the sum-

mation is over the k nearest neighbours of x
i
in the set {x1 , . . . , xi−1 , xi+1 , . . . , xn}, given

the distance metric r( . ). The autocovariate, which from now on we simply write as z(k)
i
,

records the proportion of class C1’s to class C0’s within the k nearest neighbours of xi . In
particular, z(k)

i
=1 if all of the k nearest neighbours of x

i
are of class C1 , z(k)i =−1 if all

the neighbours are of class C0 , and z(k)i =0 if there is a tie.
Restricting b to R+ in (1), we find that the decision boundary, defined by pr(y

i
=C1 )=

0·5 , is identical to that of the conventional k-nearest-neighbour algorithm for given k;
that is, in (1) the most probable class for a new point y

n+1
is given by the most common

class among its k nearest neighbours and the level of confidence in the prediction is
monotonic in the number of counts for that class.
Expression of the model in terms of the conditional predictive densities (1) is equivalent

to the autologistic method for smoothing binary spatial fields (Besag, 1972, 1974). Besag
(1974) discusses the advantages of defining the model via the conditional distributions
rather than the full joint probability distribution.
In order to estimate the regression parameter b, conditional on k, we mimic the pseudo-
likelihood approach of Besag (1974) and set b to maximise

a
n

i=1
pr(Y
i
=y
i
|y
−i
, x
i
).

Computational issues in fitting such models are well developed. For instance, the model
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(1) has the form of a generalised linear model in Z and hence the calculation of b can be
performed via iteratively reweighted least squares (McCullagh & Nelder, 1989, p. 114).
We let b@

k
denote the maximum pseudolikelihood estimate of b conditional on k. It can

be seen that 2b@
k
is interpretable as the change in the log-odds of class C1 relative to class

C0 when observing a point of class C1 in the k nearest neighbourhood of xi .
Having written the k-nearest-neighbour algorithm in generalised linear model form
we then propose our best estimate for k as the value that maximises the profile
pseudolikelihood:

k@=arg max
k
lik (z(k), b@

k
),

where z(k)= (z(k)
1
, . . . , z(k)

n
)∞ is the set of k-nearest-neighbour autocovariate values at the n

data points and k is defined over a suitable range, kµ{1, 2, . . . , kmax}. From our assump-
tion of Bernoulli conditional likelihood we obtain

lik (z(k), b@
k
)= a

n

i=1
gy
ii
(1−g

i
)(1−y
i
) ,

with

g
i
=
exp (b@

k
z(k)
i
)

1+exp (b@
k
z(k)
i
)
,

where we take y
i
µ{0, 1} to be the class label.

Maximum pseudolikelihood selects a k@ and b@
k
that maximises the joint conditional

density of the class indicators given the data. This is in contrast to the conventional
approach using crossvalidation on misclassification rate which concentrates solely on
trying to place points on the correct side of the decision boundary. The difference between
the two approaches is best illustrated by examining the form of the additive cost function
that both procedures are attempting to maximise: we have

k@=arg max
k
∑
n

i=1
l{ f (x

i
|k) |y

i
},

where l ( . ) is the cost function and f (x
i
|k) is the prediction for y

i
given x

i
and k. For the

maximum pseudolikelihood method the cost function l ( . |y
i
) is the loglikelihood and f (x

i
|k)

is the probability forecast pr (y
i
=C1 ). For the standard crossvalidation method the predic-

tions are just the normalised counts of the number of C1’s among the k nearest neighbours,
f (x
i
|k)=k−1 W

j~k i
I(y
j
=C1 ), and the cost function is

l{ f ( . ) |y
i
}=cI{| f ( . )−y

i
|>0·5}

for some constant c<0. The cost of a prediction versus the actual prediction for a point
belonging to class C0 , yi=0, is illustrated in Fig. 1 for both methods. Note that the change
in cost associated with a change in prediction is a smooth function for the likelihood
method, whereas for the crossvalidation procedure we have a discontinuous step function
at f (x

i
|k)=0·5. This has the potential to make the results of crossvalidation sensitive to

points that lie near the decision boundary. Note that the scaling of the cost function for
the crossvalidation method is arbitrary. We believe that the smoothness of the cost function
for the maximum pseudolikelihood method is in part responsible for the improved empiri-
cal performance highlighted in § 3.
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Fig. 1. Additive loss l{ f (x
i
|k) |y

i
=C
0
} versus predic-

tion f (x
i
|k) for the maximum pseudolikelihood method

(solid) and crossvalidation method (dot-dashed) for a
data point for which y

i
=C0.

2·2. Extension to multiple predictors including linear covariates

Having written the k-nearest-neighbour algorithm as a generalised linear model we find
that our procedure of selecting k@ is equivalent to a generalised linear model variable-
selection problem where the n×kmax design matrix is of the form

Z= (z(1) z(2) . . . z(k
max
) ),

and the task previously was to select a single ‘best’ column from Z using profile pseudolike-
lihood. The selection of a single column of Z appears an artificial restriction when working
with generic classification tasks within a generalised linear model paradigm, and hence
we might like to extend the procedure to consider all of the 2k

max
subsets of Z as potential

models for the data. This equates to allowing multiple values of k to be included within
the model. This can be extremely useful when nonlinear effects are operating at different
scales within the data. For instance, small values of k capture very local variations in the
underlying class probability surface while larger values of k record smooth underlying
trends. Both of these features may be present in a dataset and in this case the inclusion
of both terms will improve the model. An example of this is provided in § 3·3.
Furthermore, the autocovariates in Z model nonlinear effects in the data. However, it

may be that some of the original variables have a global linear relationship with the
response. This leads us to consider the original predictor variables as possible predictors
within the model. The augmented design matrix is then,

S= (1 X Z),

where S is an n×p* matrix with p*=p+kmax+1, starting with a column vector of ones,
and X is the original matrix of p predictor variables. By entertaining all possible subsets
of columns of S we include as special cases in the model space the conventional generalised
linear model, using the first p+1 columns of S, as well as a conventional k-nearest-
neighbour method, using a single column of Z.
The extension to include multiple columns of S leads to the following model for the
two-class problem:

pr (y
i
=C1 )=

exp (s(c)T
i
b)

1+exp (s(c)T
i
b)
,
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where c is a 1×p* indicator vector, c={c1 , . . . , cp*} with ciµ{0, 1} such that ci=1 if
the ith column of S is to be included in the model and y

i
=0 if the ith column is excluded.

We use m=Wp*
i=1
c
i
to record the number of columns included, so that b is an m×1 vector

of regression parameters and s(c)
i
is an m×1 vector of values extracted from the ith row

of S using the columns indicated by c.
The problem of which variables to include in a generalised linear model is usually solved

by ranking models using a model choice criterion which takes into account the complexity
of the model as well as the goodness of fit. The ‘best’ model under the criterion is then
adopted. We use the Bayesian information criterion,  (Akaike, 1977, 1978; Schwartz,
1978), which is closely related to the principle of minimum description length (Hansen &
Yu, 2001). The  is defined as

=−2 maximised log(pseudolikelihood)+ log(n)×number of parameters.

The user is free of course to adopt other criteria such as crossvalidation if they so wish.
One advantage of using  is that it is a standard option in many statistical software
packages for generalised linear model building. The significance of this last point is
discussed below.
The variable selection procedure for our model is complicated because there are models

to be tested. We adopt a stepwise selection approach (Venables & Ripley, 1999, p. 186;
Draper & Smith, 1981, p. 337). We begin by ranking by  score all models formed by
adding a single variable to the null model. If the addition of the ‘best’ single variable
results in a lower  score then that variable is retained. The process is then repeated,
seeking to add another variable, until no additional variable can be found to lower the
. We then attempt backward deletion by testing all of the variables in the model for
deletion and the submodels are ranked by . If the deletion of the ‘worst’ variable results
in an overall lower  score then that variable is removed and the procedure is repeated,
until no variable can be removed without causing an increase in  score. The final
model, S

c@
, indexed by c@, is then reported as the ‘best’ subset of S. It is extremely simple

to implement this procedure using standard packages such as S-Plus.

2·3. Extenstion to multinomial likelihood

In extending the above method for the two-class classification problem to the more
general case of multinomial data y

i
µ{C0 , . . . , CQ}, it is instructive to begin by considering

the model with a single k-nearest-neighbour component for which we write the probability
model as

pr (y
i
=C
j
|y
−i
, x
i
)=

exp (z(k,j)
i
h)

WQ
v=0
exp (z(k,v)

i
h)
, (3)

where h is a single regression parameter and the multiple class autocovariate z(k,v)
i
is in

relation to class C0 by

z(k,v)
i
=
1

k
∑

j~k i

{I(y
j
=C
v
)−I(y

j
=C0 )},

so that the autocovariate z(k,v)
i
records the proportion of class C

v
’s to class C0’s in the k

nearest neighbours of x
i
and hence z(k,0)

i
=0 for all i, k. As for the two-class model in (1)

the multinomial model (3) produces identical decision boundaries to the conventional
k-nearest-neighbour algorithm for given k. The model in (3) is equivalent to the spatial
system considered by Strauss (1977) on coloured lattices, also known as the Potts model.
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The construction of the multinomial model (3) reveals a difference between itself and a
conventional generalised linear model. In the latter the covariate values remain constant
across classes while the regression parameters differ. In contrast, in (3) it is the autocovari-
ate that changes across classes while the regression parameter h remains constant. This
ensures that the predictive class boundaries match those of the conventional k-nearest-
neighbour model.
We can extend the spatial model considered by Strauss (1977) in (3) to the general

classification situation by taking multiple covariates using multiple columns of the original
predictors x and multiple values for the autocovariates Z

pr (y
i
=C
j
)=

exp (x(cx)
i
b
j
+z(cz,j)
i
h)

WQ
v=0
exp (x(cx)

i
b
v
+z(cz,v)
i
h)
,

where cx and cz indicate which linear and which autocovariate variables are included
respectively, and hence define the dimensions of b and h. Following standard generalised
linear model practice we fix b0=0.
The departure from the conventional generalised linear model framework in (4) means

that standard statistical software procedures cannot be used to obtain maximum pseudo-
likelihood estimates for the model parameters {b1 , . . . , bQ , h}. Instead, in our implemen-
tation we obtain the maximum pseudolikelihood estimates using the Matlab optimisation
function fminunc.m, which performs a Broyden–Fletcher–Goldfarb–Shanno quasi-
Newton method (Press et al., 1990, Ch. 10) with a mixed quadratic and cubic line search.
This finds the maximum pseudolikelihood estimates for the model parameters and from
there the selection of which subsets of linear predictors and nonlinear autocovariates to
include proceeds, as before, by stepwise selection based on the  score.

3. E

3·1. Preamble

In this section we analyse five publicly available benchmark datasets and a real world
classification problem. For the benchmark tests in §§ 3·2 and 3·3 we are particularly inter-
ested in how our method compares with the conventional k-nearest-neighbour algorithm.
We use the standard performance measure of average out-of-sample prediction cost,

T=
1

n(t)
∑
n(t)

i=1
L (y
i
, q)×I qyiNarg maxq pr (yi=q |xi , Y , x)r ,

where the summation is over a test set of n(t) points, given a training set (Y , X), and L (y
i
, q)

is the cost of misclassifying class y
i
as class q.

In each example we use the stepwise procedure described in § 2 to select the model with
the parameters estimated by maximum pseudolikelihood. We take kmax=min(n, 200),
where n is the number of training points. Higher values for k could be considered if it
appeared that the data supported this. The two-class datasets used in §§ 3·2 and 3·3 have
previously been studied in Holmes & Adams (2002).

3·2. Synthetic two-class problem

The task is a binary classification problem where each class is drawn from a mixture
of two bivariate normal distributions; see Ripley (1994, 1996, Ch. 1). The data can be
obtained from www.stats.ox.ac.uk/pub/PRNN/, where a designated training set of
250 points and an out-of-sample test set of 1000 points are available.
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In Ripley (1994) 15 classification methods were tested on this dataset including
k-nearest-neighbour, logistic regression and a number of neural network models. We ran
our stepwise procedure which terminated having chosen a single autocovariate with k@=
66 and no linear component. This suggests that the problem is intrinsically nonlinear.
The model gave an average test error rate of 8·2% which would rank above all the 15
methods that Ripley analysed. The training data plus predictive probability contours
pr (y
i
=C1 )={0·1, 0·3, 0·5, 0·7, 0·9} for our maximum pseudolikelihood method are shown

in Fig. 2(a), where we see that the model is able to capture the nonlinear class bound-
ary of this problem. For comparison, in Fig. 2(b) we show the classification boundary
pr (y
i
=C1 )=0·5 of our model, dashed line, alongside the 5-nearest-neighbour boundary,

solid, reported by Ripley. The 5-nearest-neighbour method had a test error rate of 13·0%,
placing it 12th overall. Clearly the higher value of k@ chosen by maximum pseudolikelihood
produces a smoother curve and this leads, in this example, to a much improved error rate.
The best performance quoted by Ripley on this dataset is 8·3%, for an edited version of
5-nearest-neighbour method. For these data then, our approach is highly effective, and,
as shown in Fig. 2, has the advantage of giving probabilistic outputs which are not
obtained using standard k-nearest-neighbour methods. The selection of what appears to
be a high value of k@ for our model is typical of the method as a whole; see § 4. The decision
boundary shown in Fig. 2 is not as smooth as that reported in Holmes & Adams (2002).
However, the test error rate is lower, suggesting a better fit to the data.

Fig. 2. Synthetic two-class problem (Ripley, 1994). (a) shows the training data, y
i
{+, o},

with predictive probability contours for the maximum pseudolikelihood method using
a single autocovariate k@= 66. (b) shows the decision boundary pr (y

i
=C1)=

0·5 for the maximum pseudolikelihood method (dashed line) and 5-nearest-neighbour
method (solid).

3·3. Benchmark series

We next consider a collection of five datasets available from the University of California,
Irvine machine learning repository (Blake & Merz, 1998), four of which were used in the
Statlog project (Michie et al., 1994). The datasets we used were Australian Credit,
Diabetes, Heart, German Credit and the Vowel data. Characteristics of these datasets and
the analysis that we undertook are given in Table 1. The first four datasets are two-class
problems from S.
To assess performance we replicated the evaluation procedure undertaken in S
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Table 1. Benchmark dataset characteristics and algorithm performance. T est
method refers to the manner in which performance is estimated, either N-fold
crossvalidation or the size of an independent test set. T he  column quotes
estimated test performance for our maximum pseudolikelihood method, along
with the rankings compared to the 25 models tested in Michie et al. (1994),
except for the vowel data, where rankings come from Friedman (1997). T he
k- column has corresponding results for the k-nearest-neighbour method,
where k is selected by crossvalidation. T he p-value is provided from McNemar’s
test under the null hypothesis that the error rates of the two approaches are

equal.

Test
Dataset n method p Q  k- p value

Australian Credit 690 10-fold 14 2 0·133 (2) 0·149 (9) 0·0218
Diabetes 768 12-fold 8 2 0·239 (5) 0·267 (13) 0·1981
Heart* 270 9-fold 13 2 0·414 (5) 0·418 (5) 0·0053
German Credit* 1000 10-fold 24 2 0·548 (3) 0·591 (5) 0·0000
Vowel 528 462 10 11 0·493 (1) 0·658 (25) 0·0000

n, number of observations in each dataset; p, number of variables; Q, number of classes.
* Datasets have associated misclassification costs.

(Michie et al., 1994, Ch. 7). In particular, as highlighted in Table 1, we use N-fold cross-
validation (Mitchell, 1996, Ch. 5) to assess performance. Crossvalidation provides an
unbiased assessment of prediction error and is widely used in nonlinear model assessment;
see Hastie et al. (2001, Ch. 7) for a more detailed discussion.
Among the S datasets, the Australian and German Credit datasets are both
concerned with the problem of allocating new customers to a good or bad risk category
according to application form and demographic data. The German dataset has misclassifi-
cation costs with Type II errors, of classifying a bad debtor as good, being 5 times more
costly than the reverse. The Australian dataset does not quote a misclassification cost, for
reasons of commercial confidentiality.
The Heart dataset is concerned with predicting whether or not a patient suffers from

heart disease based on a set of continuous variables, including blood testing and electrocar-
diogram derived measurements. The cost of misclassifying a sufferer of heart disease as
healthy is five times as costly as the reverse misallocation. The Diabetes dataset is con-
cerned with predicting whether or not patients are likely to test positive for diabetes
according to a World Health Organization criterion, using eight variables, observed on a
group of adult females of Pima Indian heritage.
The Vowel dataset is included as a multinomial example. The problem consists of

classifying the 11 steady state vowel sounds in British English, using a collection of vari-
ables obtained in a speaker normalisation study; see a 1989 University of Cambridge
Ph.D. thesis by D. H. Deterding. The training data refer to vowel sounds recorded by one
group of speakers, while the test data refers to sounds recorded by a different group.
The performance of our method on these benchmark datasets is also given in Table 1,

along with the performance of the conventional k-nearest-neighbour method with k chosen
by a 10-fold crossvalidation study on each training sample. In all of the examples the
maximum pseudolikelihood method with multiple predictors outperformed the conven-
tional approach. Many of the models studied in S are not able to incorporate
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costs into the predictions and hence the ranking of the model on the Heart and German
Credit data may appear artificially high. However, real-world classification tasks often
have unequal costs associated with false positive and false negative predictions and we
see the ability to deal with this as an advantage of our approach.
The results in Table 1 hint at potential improvements in estimation by maximum

pseudolikelihood over standard crossvalidation. To test this formally we applied
McNemar’s test (Ripley, 1996, Ch. 2). The p-values for the test are shown in Table 1; in
all but one of the tests the difference in error rate is significant at the 2·5% level.
Insight into the data can be provided by examining the variables selected by the model.

We re-ran the model using all of the data and in Table 2 we list the variables selected for
each dataset alongside their corresponding values of b@ in brackets. In Table 2, x(i) indicates
that the ith linear predictor was included and z(j) indicates that the j-nearest-neighbour
autocovariate was included. For the synthetic dataset of § 3·2, the interaction parameter
b@=5·72 indicates that there is a strong association between the classes of neighbouring
points. The high values for b@ and k@ suggest that the classes are reasonably well separated
in this example. In the Diabetes dataset, the second and sixth predictor variables were
included as linear effects. These variables relate to blood glucose level and age respectively
and it seems highly plausible that these could have a global positive linear effect on the
probability of exhibiting diabetes. The single autocovariate z(42) in the Diabetes example
has a fairly high value of k, which suggests that some smooth nonlinear effects remain
after the linear terms are included. In the German Credit data we see that just two
nonlinear terms are included relating to k=144 and k=7. This suggests that nonlinear
effects are operating at different scales within the data; that is, the k=7 term is capturing
very local effects while the k=144 is modelling smoother structure.

Table 2. Variables used in Benchmark datasets.
T he term x(i) denotes that the ith predictor was
included as a linear term and z(j) denotes that
the j-nearest-neighbour autocovariate was

included

Dataset Variables selected (b@ )

Synthetic z(66) (5·72)
Australian Credit x(9) (−0·64), x(14) (1·95), z(66) (4·40)
Diabetes x(6) (0·40), x(2) (0·48), z(42) (2·18)
Heart* z(12) (3·09)
German Credit* z(144) (5·14), z(7) (0·62)

* Datasets have associated misclassification costs.

3·4. Osteoporosis example

The final example in this section relates to part of the European Prospective
Osteoporosis Study. The area of investigation is the automatic classification of osteopor-
osis sufferers using statistical pattern recognition models on X-ray data.
A preliminary detection method for osteoporosis usually involves an expert examining

an X-ray for signs of vertebral fractures, often taken as evidence for osteoporosis. However,
this has been criticised as being too subjective, and a number of methods of defining
vertebral deformities based on measurements of the X-ray have been proposed (Minne
et al., 1998; Melton et al., 1993; McCloskey et al., 1993). Such methods are widely used
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in clinical trials and epidemiological studies, although there is no agreement about which
method performs best (Black et al., 1995).
Details of the procedure used to perform and measure the radiographs are given in

Lunt et al. (1997). The raw X-ray image is digitised and the anterior, mid and posterior
heights of 13 vertebrae are measured from the digitised image using a mouse-caliper system
on a back-lit digitising board. Technically, the 13 vertebrae are the fourth to the twelfth
thoracic vertebrae, T4 to T12, and the first four lumbar vertebrae, L1 to L4. The dataset
consists of 667 records and the observed proportion of patients with vertebral deformity
is 0·269.
We ran our model on the data and the variables selected, with the associated b@ , were
x(6) (0·41), x(12) (0·58), x(18) (0·40), x(30) (0·48), z(43) (11·07) and z(10) (3·59), in the notation
of Table 2. The four linear terms selected relate solely to the posterior height recorded on
the sequence T5, T7, T9 and L1. The fact that the estimated regression parameters associ-
ated with these terms are all positive suggests that the posterior height of the even ver-
tebrates may be an important global feature in this classification task, though it should
be noted that all variables enter into the autocovariates. The presence of the autocovariates
suggests there is clearly some nonlinear structure remaining after the linear terms. The
autocovariates selected record both small- and large-scale interaction between classes in
feature space. These findings are the basis of on-going work.
We now turn to the question of model validity. As mentioned in § 1, one advantage of

the generalised linear model framework is that it allows for standard diagnostic measures
to be introduced to assess the validity of the modelling assumptions. One such statistic is
the Pearson chi-squared residual

x2= ∑
n

i=1
r2
i
,

where

r
i
=

y
i
−y@
i

√{y@
i
(1−y@

i
)}
,

in which y@
i
is the model’s prediction for y

i
, is the Pearson residual for y

i
. The contribution

of the ith observation to the chi-squared residual can be measured by the decrease in the
value of x2 brought about by the removal of the observation from the dataset, namely

Dx2
i
=

r2
i

1−h
ii
,

where h
ii
is the ith diagonal element of the ‘hat’ matrix

H=V DS
c@
(S∞
c@
VS
c@
)−1S∞
c@
V D,

where V is a diagonal matrix with elements v
ii
=y@
i
(1−y@

i
) and, as before, S

c@
denotes the

selected predictors. The hat matrix is derived from the weighted least squares approxi-
mation to logistic regression; see Pregibon (1981) and Hosmer & Lemeshow (2000, Ch. 5).
Large values of Dx2

i
highlight influential outliers that are poorly fitted by the model. In

Fig. 3 we plot these effects against the prediction y@
i
for our model of the osteoporisis data;

y
i
=0 denotes a fractured vertebra. Two highly influential outliers are observation number
239, which was predicted as a fracture when in fact it was a non-fracture, and observation
324, which was predicted as a non-fracture when it was a fracture. On further analysis we
found that observation 239 had exceptionally low mid-height measures on T8 and T9,
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Fig. 3. Osteoporosis example. Plot of contribution to
the Pearson chi-squared residual for each data point.

which is usually indicative of a fractured vertebra. These measurements on 239 were much
lower than any other non-fracture sample. We have been unable to determine if this
observation has been mislabelled by the radiologist. Observation 324 is an example of a
‘compression fracture’ where, for one or more vertebrae, the anterior, mid and posterior
measurements are all low because of a partial collapse of the vertebrae. This makes 324
an outlier in our sample of fracture examples and its nearest neighbours turn out to be
non-fractures. Though this class is rare, if necessary we should distinguish it as a separate
category and form a multinomial model with labels non-fracture, compression fracture
and non-crush fracture.

4. D

Our analysis suggests there is often advantage, in the sense of predictive performance,
in using more than one k term. This insight seems to have remained largely undiscovered
in the k-nearest-neighbour literature. Furthermore, our method tends to favour higher
values of k than are typically considered in conventional k-nearest-neighbour methods.
The higher values of k will tend to produce smoother probability models for the data.
One of the referees made the interesting observation that editing methods also tend to
produce smoother boundaries. Editing methods reduce the number of observations used
in constructing predictions in order to improve classification performance (Ripley, 1996,
Ch. 6, p. 198). Many editing methods exist and which ones perform best in which situations
is an on-going area of research. Dasarathy et al. (2000) provides a comparison of several
editing procedures. We are currently investigating how to use maximum pseudolikelihood
to infer the editing model.
While our examples suggest that our method can be more accurate than the standard

k-nearest-neighbour method, this clearly will not be the case in all situations. In practical
applications our recommendation would be to evaluate both models using some unbiased
measure, such as 10-fold crossvalidation, and select the one that performs best. However,
there are other issues surrounding the choice of procedure. The fitting of the multiple
model by maximum pseudolikelihood is slower than the standard k-nearest-neighbour
especially for the multinomial response data where a Broyden–Fletcher–Goldfarb–Shanno
quasi-Newton optimiser is needed. In some applications the extra computation may prove
prohibitive especially for on-line classification where new data are arriving over time. Of
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further note is that the k-nearest-neighbour algorithm is guaranteed to converge to the
Bayes risk (Ripley, 1996, Ch. 6) whereas the maximum pseudolikelihood method’s per-
formance does not share this guarantee. This result may be worthy of consideration for
very large datasets in low dimensions.
The osteoporosis example presented in § 3·4 suggests that the method has utility for

elucidating structure in data, in addition to its utility for classification. Current work is
concerned with investigation of weighted distance metrics, rather than the Euclidean norm
reported here, in order to allow each predictor to have a different influence in the resulting
autocovariates.
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