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Abstract

A fast R (R Development Core Team 2010) algorithm is given for computing the
nearest neighbor autocovariates (Holmes and Adams 2003). These autocovariates may
be used to select k for kNN classifiers using a maximum pseudolikelihood estimate for
k. More general logistic regression and multinomial regression models may be developed
using nearest neighbor autocovariates. Computation of nearest neighbor autocovariates
and pseudolikelihood estimation of k are implemented in our nnc package (McLeod and
Islam 2010).
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1. Introduction

The k-nearest neighbor (kNN) classification algorithm is often considered among the most
important methods in data mining (Wu and Kumar 2009; Hastie, Tibshirani, and Friedman
2009). The nearest neighbor autocovariates defined by Holmes and Adams (2003) allows one
to determine the parameter k, the number of nearest neighbors in kNN, using maximum
pseudolikelihood estimation. Furthermore, Holmes and Adams (2003) showed that by includ-
ing several nearest neighbor autocovariates in a logistic or multilogistic model followed by a
best subset or stepwise selection, a better model may be obtained that includes non-linear
covariates along with the usual inputs. Empirical evidence presented in Holmes and Adams
(2003, Section 3) suggests that this method works better than kNN by itself. Moreover, it
was also found that the pseudolikelihood method tends to choose a larger value k for kNN
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than cross-validation methods1. Even if kNN is used by itself, the pseudolikelihood method
for choosing k seems to work better than leave-one-out cross-validation (Holmes and Adams
2003).

2. Nearest neighbor autocovariate for two classes

2.1. Pseudolikelihood function

Initially we consider the problem with two output2 classes, denoted by {−1, 1}, and p inputs.
Assume that there are n data values {yi, xi}, where xi ∈ ℜp, yi ∈ {−1, 1}, i = 1, . . . , n. The
nearest neighbor autocovariate corresponding to the ith data value is defined by

z
(k)
i =

1

k

∑
k

ℓ∼i

{ℐ(yℓ = 1)− ℐ(yℓ = −1)}, (1)

where the summation is over the k-nearest neighbors of xi in the set x1, x2, . . ., xi−1, xi+1,

. . ., xn and ℐ is the indicator function. The autocovariate z
(k)
i ∈ [−1, 1] represents the relative

share of class 1’s with respect to class −1’s in the k nearest neighbors of xi. Values of z
(k)
i

close to 1, indicate that 1’s are more abundant in the kth order neighborhood of xi while

values of z
(k)
i close to −1, indicate that −1’s are more abundant.

The logistic regression model containing the covariates z
(k)
i can be written as

�i = Pr(yi = 1)

=
exp(�kz

(k)
i )

1 + exp(�kz
(k)
i )

. (2)

For fixed k, the pseudolikelihood function for �k is,

Lk(�k) =

n∏
i=1

�ui
i (1− �i)1−ui , (3)

where ui = (z
(k)
i + 1)/2. It is called a pseudolikelihood because the input, z

(k)
i , has been

determined using the output, yi. For fixed k, the maximum pseudolikelihood estimate, �̂k,
using the glm function for logistic regression is obtained. Holmes and Adams (2003) note that
the predictions of the logistic regression defined in eqn (2) with �k = �̂k are identical to the
predictions obtained from kNN with neighborhood size k.

Holmes and Adams (2003) suggest maximizing the profile pseudolikelihood,

k̂ = argmax
k

Lk(�̂k), (4)

to obtain the optimal k, k̂.

1Larger k, corresponds to a more parsimonious model since there are few effective parameters
2Following Hastie et al. (2009) the response/explanatory variables are also called output/input variables

respectively.
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2.2. R algorithm

The nearest neighbor autocovariate is easily computed using the knn.cv function in the
standard R package class. The knn.cv function implements leave-one-out cross-validation
and, as a by-product, we may obtain ŷi, the leave-one-out prediction for the ith output and
pi, the proportion of votes for the winning class. Then (pik − (k − pik))/k is the required
autocovariate. The following script implements this computation for synth.tr, the training
sample in the synthetic mixture dataset in MASS.

R> library("MASS")

R> library("class")

R> X <- synth.tr[, 1:2]

R> y <- 2 * synth.tr[, 3] - 1

R> k <- 10

R> ans <- knn.cv(train = X, cl = as.factor(y), k = k, prob = TRUE)

R> pr <- attr(ans, "prob")

R> yfit <- as.numeric(as.character(ans))

R> NumberOfVotesForWinner <- pr * k

R> NumberOfVotesForLoser <- k - NumberOfVotesForWinner

R> ConsensusProportion <- (NumberOfVotesForWinner - NumberOfVotesForLoser)/k

R> z <- yfit * ConsensusProportion

R> str(z)

num [1:250] -0.8 -1 -1 -0.8 0.6 0 -1 -1 -0.8 -0.6 ...

The variable z displayed is the nearest neighbor autocovariate when k = 10. In general the
nearest neighbor autocovariate for any k may be computed using the function nnc in our
package nnc.

2.3. Application to synthetic mixture dataset

When using the glm function, it is more convenient to work with the deviance. We use the
nnc function to plot the deviance for various k.

R> library("nnc")

R> X <- synth.tr[, 1:2]

R> y <- synth.tr[, 3]

R> KMAX <- 100

R> L <- numeric(KMAX)

R> for (k in 1:KMAX) {

+ z <- nnc(X = X, Y = y, k = k)

+ L[k] <- deviance(glm.fit(x = z, y = y, family = binomial(link = "logit")))

+ }

R> khat <- which.min(L)

R> plot(L, xlab = "k", ylab = "deviance")

R> points(khat, L[khat], col = "blue", pch = 16, cex = 1.5)

R> title(sub = bquote(hat(k) == .(khat)))
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k̂ = 66

Figure 1: Deviance for pseudo-logistic regression and mle for k.

The result k̂ = 66 agrees with computation reported by Holmes and Adams (2003) for this
dataset.
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3. Nearest neighbor autocovariate for multiclass case

In the multiclass case we have Q classes, ℭ1,ℭ2, . . . ,ℭQ and the multiclass autocovariate for
class j = 2, . . . , Q, is defined by,

z
(k)
i,j =

1

k

∑
k

ℓ∼i

{ℐ(yℓ = ℭj)− ℐ(yℓ = ℭ1)}, (5)

where i = 1, . . . , n and z
(k)
i,j ∈ [−1, 1]. So the autocovariate, z

(k)
i,j , has the interpretation as the

relative proportion of ℭj to ℭ1 in a neighborhood of size k about the ith data point. The k

nearest neighbors excluding the ith data point itself are used. Positive values of z
(k)
i,j indicate

ℭj is more frequent than ℭ1. Similarly, negative values of z
(k)
i,j indicate ℭ1 is more numerous

than ℭj .

The multiclass autocovariate z
(k)
i,j may be computed conveniently in R using two passes of the

algorithm for computing autocovariates with two classes. Two new response or output vectors
are defined. For both output vectors, the class values corresponding to ℭ1 are set to −1 and
for the jth autocovariate, the values corresponding to ℭj are set to 1. In the first output
vector, values corresponding to all other classes set to −1 and in the second output vector
these values are set to 1. The nnc algorithm for binary classes using each of these output
vectors as response variables is used to obtain two autocovariate vectors. The average of these

two vectors produced by nnc is the required jth multiclass autocovariate, z
(k)
i,j , i = 1, . . . , n.

Doing this for j = 2, . . . , Q, produces all Q− 1 autocovariates.

The code snippet below illustrates how this works for the built-in dataset iris.

R> k <- 17

R> X <- iris[, 1:4]

R> Y <- iris[, 5]

R> n <- length(Y)

R> y <- numeric(n)

R> classes <- unique(Y)

R> Q <- length(classes)

R> ind1 <- Y == classes[1]

R> y[ind1] <- -1

R> z <- matrix(numeric(n * (Q - 1)), nrow = n)

R> for (j in 2:Q) {

+ indk <- Y == classes[j]

+ indOther <- !(ind1 | indk)

+ y[indk] <- 1

+ y[indOther] <- -1

+ zA <- nnc(X = X, Y = y, k = k)

+ y[indOther] <- 1

+ zB <- nnc(X, y, k)

+ z[, j - 1] <- (zA + zB)/2

+ }

R> tail(z, 5)
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[,1] [,2]

[146,] 0.05882353 0.9411765

[147,] 0.23529412 0.7647059

[148,] 0.05555556 0.9444444

[149,] 0.00000000 1.0000000

[150,] 0.17647059 0.8235294

The last 5 values for the nearest neighbor autocovariate corresponding to z
(k)
i,j , i = 146, . . . , 150,

j = 2, 3 and k = 17 are displayed.

As a further check, we have implemented the nearest neighbor autocovariate computation for
the multiclass case in Mathematica (Wolfram Research, Inc 2008). This algorithm uses the
definition in eqn (5) directly so the resulting algorithmic details are completely different but
the numerical results agree with our R function nnc. This Mathematica package is included
along with sample output in the documentation with our R package nnc.

Setting,

�i,j = Pr(yi = ℭj)

=
exp(�jz

(k)
i,j )∑Q

j=1 exp(�jz
(k)
i,j )

, (6)

where we set �1 = 0 and zi,1 = 0, i = 1, . . . , n. We see that the model has the form of a
multinomial regression (Hastie et al. 2009). In R, for fixed k, maximum pseudolikelihood
estimates for �2, . . . , �Q may be obtained using the multinom function in the package nnet.3

Using the pseudo maximum likelihood estimates for �2, . . . , �Q the model in eqn (6) gives
identical predictions as the kNN algorithm with parameter k (Holmes and Adams 2003).

Since multinom prints convergence information and since we need to call this function many
times, it is useful to use sink, as in the code snippet below to omit unnecessary output.

R> library("nnet")

R> kmax <- 50

R> d <- numeric(kmax)

R> for (k in 1:kmax) {

+ z <- nnc(X = X, Y = Y, k = k)

+ sink("junk.txt")

+ d[k] <- multinom(Y ˜ z)$deviance

+ sink()

+ }

R> unlink("junk.txt")

R> khat <- which.min(d)

R> plot(d, xlab = "k", ylab = "deviance")

R> points(khat, d[khat], col = "blue", pch = 16, cex = 1.5)

R> title(sub = bquote(hat(k) == .(khat)))

3 The function multinom seems to have better convergence properties in the non-penalized case than glmnet.
The non-penalized case is obtained by setting the argument lambda=0 in glmnet.
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k̂ = 18

Figure 2: Estimate for the k parameter in kNN for iris dataset. Fisher linear discriminant
analysis uses 5 parameters for this problem, the kNN-pseudolikelihood method produces k̂ =
18 which is equivalent to about � ≈ 8 effective parameters.

Our function nnc handles the multiclass case and we have also implemented a function khat

that uses the profile pseudolikelihood to estimate k. When Q = 2, the profile pseudolikelihood
is obtained using glm and for Q > 2, multinom is used.

In the vignette accompanying our R package nnc, we provide a script for a cross-validation
comparison of Fisher linear discriminant analysis and kNN for the iris dataset. The delete-d
cross-validation method with 104 randomly chosen test samples was used. The computations
took about 27 minutes on a Mac Pro running eight threads. The observed misclassification
rates are 0.18088 and 0.01978 for kNN and Fisher linear discriminant analysis respectively. It
was not surprising the Fisher linear discriminant analysis outperformed kNN for this dataset
since an exploratory analysis of the iris dataset does not suggest nonlinearity is an issue. More
details are given in the vignette.

4. Application to logistic regression
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Holmes and Adams (2003) suggest including nearest neighbor autocovariates as inputs in
logistic regression models to allow for nonlinear effects. By using these autocovariates cor-
responding to various size neighborhoods, we can incorporate a greater range of nonlinear
effects than simply using one neighborhood.

To illustrate this method, we use the kyphosis data that is included in the rpart library. The
output is a binary indicator of the presence or absence of the condition after treatment and
there are three inputs, Age, Number and Start. First we estimate k for pure kNN and we
find k̂ = 8.

R> library("rpart")

R> X <- kyphosis[, 2:4]

R> Y <- kyphosis[, 1]

R> kHat <- khat(X = X, Y = Y, plot = FALSE)

R> kHat

[1] 8

This result suggests using the first eight autocovariates as additional inputs. We fit with a
linear logistic regression followed by stagewise model selection using the AIC criterion.

R> Z <- sapply(1:8, function(k) nnc(X = X, Y = Y, k = k))

R> dimnames(Z)[[2]] <- paste("z", 1:8, sep = "")

R> kdf <- data.frame(Z, kyphosis)

R> ans <- glm(Kyphosis ˜ ., family = binomial(link = "logit"), data = kdf)

R> step(ans, trace = 0)$coefficients

(Intercept) z1 z5 z6 z7 z8

-4.12166880 -2.35111478 11.07409030 -11.07094427 -6.80680382 9.85025556

Age Number Start

0.02371589 0.90752239 -0.39572491

Instead of using the built-in R function step for stagewise optimization, an exhaustive best
subset approach using bestglm (McLeod and Xu 2009) is available when the number of inputs
is not too large.

R> library("bestglm")

R> Xy <- data.frame(X, Z, Kyphosis = as.numeric(Y) - 1)

R> ans <- bestglm(Xy = Xy, family = binomial(link = "logit"), IC = "AIC")

Morgan-Tatar search since family is non-gaussian.

R> ans$BestModel$coefficients

(Intercept) Age Number Start z1 z5

-4.12166880 0.02371589 0.90752239 -0.39572491 -2.35111478 11.07409030

z6 z7 z8

-11.07094427 -6.80680382 9.85025556
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In this case the exhaustive subset method produced the same answer.

It might be even better to use a regularization approach for logistic and multinomial regres-
sion as is implemented in the R package glmnet (Friedman, Hastie, and Tibshirani 2010b,a).
This method can not only handle a large number of inputs but it also produces even better
predictions. Recent work with non-concave penalty methods for regularization is also very
promising (Fan and Li 2001; Zhang 2010).

Nearest neighbor autocovariates may easily be incorporated into multinomial regression as well
as many types of classification algorithms (Islam 2008). In particular, Islam (2008) showed
that nearest neighbor autocovariates could be used to improve predictions with regularized
discriminant analysis in microarray data (Guo, Hastie, and Tibshirani 2007).
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