Photos Problem

Statement of Problem

In summary, pictures are selected at random from among 19,134 possible unique pictures and displayed on a computer screen using a screen-saver. Let X be the number of pictures you need to view until you see the same one at least twice.

Solution

```
p = 19134;
k = Range [p];
y = Table[{r-1, 1-(Times@@ ((p - Range[k\llbracketr\rrbracket])/N[p]))}, {r, 2, p}];
pf = Transpose[{Range[p-2], Differences[(Last /@y)]}];
ListPlot[Take[pf, 500], Filling }->\mathrm{ Axis,
    PlotRange }->\mathrm{ All, Axes }->\mathrm{ False, Frame }->\mathrm{ True, AxesOrigin }->{0, 0}
```


mean

```
\mu= Total[Times [Sequence @@ #] & /@ pf]
171.033
prob = Last /@pf;
Take[prob, 10];
```

Variance

Sqrt[Total $\left[(\operatorname{Range}[1, \text { Length [prob] }]-\mu)^{2} \times\right.$ prob] $]$

90.2771

Probability that X is less than 160 or 161 is about 50%
\{Total[Take[prob, 160]], Total[Take[prob, 161]]\}
\{0.499264, 0.503529\}

