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SUMMARY

Spectral methods are powerful tools to study and model the dependency structure of spatial temporal processes.
However, standard spectral approaches as well as geostatistical methods assume separability and stationarity
of the covariance function; these can be very unrealistic assumptions in many settings. In this work, we
introduce a general and flexible parametric class of spatial temporal covariance models, that allows for
lack of stationarity and separability by using a spectral representation of the process. This new class of
covariance models has a unique parameter that indicates the strength of the interaction between the spatial and
temporal components; it has the separable covariance model as a particular case. We introduce an application
with ambient ozone air pollution data provided by the U.S. Environmental Protection Agency (U.S. EPA).
Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ozone (O3) is a widely studied atmospheric pollutant because of its adverse health effects and its impact
on certain agricultural crops. In addition, it is also known to lead to the breakdown of certain categories
of materials. Ozone is a secondary pollutant and is formed by photochemical processes which involve
nitrogen oxides (NOX) and volatile organic compounds (VOCs). A complete description of the chemical
processes involving ozone can be found in Seinfeld and Pandis (1998). Because of the documented
effects on human health caused by ozone, the U.S. Environmental Protection Agency (U.S. EPA) has
implemented control strategies to reduce ozone levels in the atmosphere. A detailed look at these various
control programs at the Federal and local level can be found in U.S. National Research Council (2004).
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These control strategies have focused on the reduction of NOX and VOC emissions. A recent report,
U.S. EPA (U.S. Environmental Protection Agency, 2005), which focuses on the eastern U.S., indicates
that there have been significant reductions in NOX and VOC emissions in this part of the country over
the period from 1997 to 2004. As a direct result of the reductions in emissions, ozone levels have also
gradually decreased in the eastern U.S. It should also be noted that ozone levels in any given year and any
given region are strongly dependent on meteorological conditions. Thus reduced ozone levels in a given
region and a given year are likely to be dependent on meteorological conditions as well as emissions.

There is an extensive literature on the application of various statistical methods to the analysis and
prediction of ozone. Most of these papers analyze the data separately at each geographic location or
they assume stationary models. Thompson et al. (2001) reviewed those articles that applied various
statistical techniques to the forecasting of ozone levels, the estimation of ozone time trends and an
understanding of the fundamental mechanisms responsible for the production of ozone. They classified
these techniques into three main categories: regression analysis, extreme value analysis and space-time
analysis. A number of the more recent papers on the application of statistical techniques to the analysis
of ozone have been reviewed in Zheng et al. (2007). The emphasis here will be on research work which
emphases the spatial temporal aspects of ozone variability.

Three recent papers (Huerta et al., 2004; McMillan et al., 2005; Zheng et al., 2007) have explored
the spatial temporal aspects of ozone modeling. Huerta et al. (2004) use a dynamic linear model for
ambient ozone. McMillan et al. (2005) use a nearest-neighbor spatial model. Zheng et al. (2007) use
a dynamic linear model and a generalized additive model to explain ozone trends. A recent paper by
Sahu (2007) presents a very elegant approach, using ozone differentials to explain spatial temporal
patterns for ozone in Ohio. In their model, the authors add a correlated error structure using a linear
model of coregionalization that has a stationary covariance model. In this application we have a larger
geographic domain, so we need to go beyond this assumption of stationarity (defined below). In a space-
time regression context the use of dynamic linear models (as in all the papers just referred), in principle,
could overcome the problem of modeling complex space-time dependency structures, avoiding then, the
issue of having to propose general space-time parametric models for the covariance function. However,
simple dynamic linear models (DLM) with only white noise error components might not capture complex
space-time structures. The hybrid approach described in the application presented in this paper, using
DLM with space-time (nonstationary and nonseparable) correlated parametric covariance functions
may provide an optimal modeling framework.

The difficulty of modeling the spatial temporal structure of ambient ozone concentrations can
be overcome by using separable processes. The assumption of separability for spatial temporal
processes offers a simplified representation of any variance-covariance matrix, and consequently, some
remarkable computational benefits. A spatial temporal process Z(x, t), where x represents space and t

represents time, is separable if cov{Z(x, t), Z(x′, t′)} = CS(x, x′)CT (t, t′), where CS(·) is a purely spatial
covariance andCT(·) is a temporal covariance. For a separable process, the spatial and temporal structures
can be modeled separately. Therefore, many techniques that have been developed and successfully
implemented in time series analysis and geostatistics can be used with this subclass of separable spatial
temporal processes. Another advantage of assuming separability is the computational efficiency, since
the spatial temporal covariance matrix can be written as the Kronecker product of two smaller matrices.
But with ozone data, separability is not generally a realistic assumption. Nonseparable spatial temporal
covariance models have been proposed by Cressie and Huang (1999), Gneiting (2002), and Stein (2005).
Wikle et al. (1998) provide a review of Bayesian hierarchical space-time modeling for environmental
processes. In this paper, we introduce a new class of nonseparable covariance models, which has the
separable model as a particular case. In this new class of nonseparable stationary covariance models,
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there is a unique parameter to indicate the strength of the dependency between the spatial and temporal
components. This parameter could be used to construct a parametric test for separability.

We also extend this new model to the nonstationary case. Define s = (x, t). If Z(s) has finite second
moments, its mean function is constant and the covariance function of Z only depends on the distance
vector between s and s′ (i.e., s − s′), then Z(s) is a weakly stationary spatial temporal process. It is also
called a second-order stationary spatial temporal process. If Z(s) is weakly stationary, cov{Z(s), Z(s′)} =
C(s − s′), where C(·) is a valid covariance function. This implies that the relationship between the values
of the process at two locations only depends on the vector distance between these two locations. This
assumption of stationarity is not realistic for ozone data, especially when the geographic domain of
interest is large, as it is in our application. There is an extensive literature on nonstationary models, for
example, Sampson and Guttorp (1992), Nychka et al. (2002), Higdon et al. (1999), Fuentes (2002).
Fuentes (2005a, 2005b) introduce nonparametric tests for stationary and separability respectively, using
spectral methods. Pintore and Holmes (2007) introduce a spatial nonstationary model by allowing the
spectral density to be a power function of a stationary spectral density, with the power changing with
location. Our model also allows the spectral density to change with location, but it is not restricted to
be a power function of a stationary spectral density. Apart from that, in this paper we do not only work
with spatial data, the emphasis is in spatial temporal modeling. We introduce a nonstationary model
for space-time data that is also nonseparable. Our approach has some similarities to Higdon’s method
and that will be discussed. In this paper we introduce for the first time a parametric nonstationary
and nonseparable covariance model. Our model is flexible and general enough to explain the complex
space-time dependency structures of ozone data.

The models we propose here are based on spectral representations of the spatial temporal processes.
In Section 2 we describe the data used in the application presented in this paper. In Section 3 we

introduce a spectral representation of stationary spatial temporal processes. In Section 4 we propose a
new class for nonseparable stationary covariance models. The general model for nonseparability and
nonstationarity is introduced in Section 5. Section 6 presents a model for the large scale structure of a
space-time process. In Section 7 we apply the new statistical models to ozone data. We conclude with
a discussion in Section 8.

2. DATA DESCRIPTION

All of the ozone and meteorological data used in this study came from the U.S. EPA’s Clean Air Status
and Trends Network (CASTNET) monitoring stations. A complete description of this network can be
found at www.epa.gov/castnet. The CASTNET sampling period is 1 week long and runs from Tuesday
morning to Tuesday morning. All the meteorological data and the ozone values are available hourly.
The original dataset spanned the time from 1997 to 2004. There are 49 CASTNET stations in the spatial
domain used in this study (see Figure 1). In this study only the months from May to September 2002 (153
days) were used. This period constitutes the ozone season for most locations. It is a period dominated
by long days with abundant solar radiation input. It is also a time of year when stagnating high pressure
systems are more frequent. These systems are characterized by clear, very warm days with light winds,
conditions ideal for the formation of ozone.

The calculation of the 8-h average ozone values is based on EPA’s National Ambient Air Quality
Standards. See www.epa.gov/ttn/amtic/files/ambient/criteria/reldocs/guidefin.pdf.

Important meteorological variables in the spatial temporal modeling of the 8-h average ozone are:
daily minimum and average temperature at two meters, daily maximum and average solar radiation,
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Figure 1. Map with the locations of the ozone monitoring stations. The stations are classified into 5 subregions of stationarity

daily average relative humidity, and precipitation. These are the covariates used in our analysis and they
are measured at the CASTNET sites. The covariates were chosen based on the expertise and advise
given by our collaborators and on conducted exploratory analysis.

3. SPECTRAL REPRESENTATION FOR SPATIAL TEMPORAL PROCESSES

Consider {Z(x, t) : x ∈ D ⊂ Rd, t ∈ T ⊂ R} a stationary random field with spatial temporal covariance
C(x, t), then we can represent the process in the form of the following Fourier–Stieltjes integral (see,
e.g., Yaglom, 1987; Christakos, 1992; Stein, 1999):

Z(x, t) =
∫
Rd

∫
R

exp(iωTx + iτt)dY (ω, τ) (1)
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where Y is a random function that has uncorrelated increments with complex symmetry except for the
constraint, dY (ω, τ) = dY c(−ω, −τ), needed to ensure Z(x, t) is real valued. Y c denotes the conjugate
of Y . Using the spectral representation of Z and proceeding formally,

C(x, t) =
∫
Rd

∫
R

exp(iωTx + iτt)F (dω, dτ) (2)

where the function F is a positive finite measure and is called the spectral measure or spectrum for Z.
The spectral measure F is the mean square value of the process Y , E{|Y (ω, τ)|2} = F (ω, τ). It is easy
to see that for any finite positive measure F , the function given in Equation (2) is positive definite. If
F has a density with respect to Lebesgue measure, it is the spectral density, f , which is the Fourier
transform of the spatial temporal covariance function, and the corresponding covariance function is
given by C(x, t) = ∫

Rd

∫
R

exp(iωTx + iτt)f (ω, τ)dω dτ.
When f (ω, τ) = f (1)(ω)f (2)(τ), we obtain

C(x, t) =
∫
Rd

∫
R

exp(iωTx + iτt)f (1)(ω)f (2)(τ)dω dτ

=
∫
Rd

exp(iωTx)f (1)(ω)dω

∫
R

exp(iτt)f (2)(τ)dτ = C(1)(x)C(2)(t)

which means the corresponding spatial temporal covariance is separable.
A common parametric spatial (or spatial temporal) covariance function is the Matérn (Matérn, 1986)

given by

C(x) = πd/2γ

2ν−1�(ν + d
2 )α2ν

(α|x|)νKν(α|x|)

where Kν(α|x|) is a modified Bessel function (see Gradshteyn and Ryzhik, 2007, for example). The
parameter α−1 explains the rate of decay of the spatial correlation, γ is a scale parameter. The parameter
ν measures the degree of smoothness of the process Z. The corresponding spectral density is given by
f (ω) = γ(α2 + |ω|2)−ν−d/2.

In geostatistics, it is common to reparameterize the Matérn covariance and use instead the following

reparameterization: ν, ρ = 2ν1/2/α, and σ2 = γ�(ν)πd/2

�(ν+d/2)α2ν , where ν is the same as before, and the
parameter ρ measures how the correlation decays with distance; generally this parameter is called
the range. The parameter σ2 is the variance of the process Z, that is, σ2 = var(Z(x, t)), the covariance
parameter σ2 is usually referred to as the sill.

4. NEW CLASS OF NONSEPARABLE STATIONARY COVARIANCES

We propose the following spatial temporal spectral density that has a separable model as a particular
case,

f (ω, τ) = γ
(
α2β2 + β2|ω|2 + α2τ2 + ε|ω|2τ2

)−ν

(3)
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where γ , α, and β are positive, ν > d+1
2 , and ε ∈ [0, 1]. The function in Equation (3) is a valid spectral

density (see Appendix A).
In the representation (3), the parameter α−1 (spatial range) explains the rate of decay of the

spatial correlation, β−1 (temporal range) explains the rate of decay for the temporal correlation,
and γ is a scale parameter proportional to the variance σ2 (sill parameter) of the process. The sill
parameter is σ2 = var{Z(x, t)} = γ{∫

R2

∫
R

f (ω, τ)/γdω dτ}, ν (smoothness parameter) measures the
degree of smoothness of the process Z. The parameter ε (parameter of separability) indicates the
interaction between the spatial and temporal components. We define the covariance vector parameter,
�= (σ2, α−1, β−1, ν, ε). Next, we discuss two particular cases of this new model for spatial temporal
dependency structures presented in Equation (3).

� ε = 1. When ε = 1, Equation (3) can be written as

f (ω, τ) = γ
(
α2β2 + β2|ω|2 + α2τ2 + |ω|2τ2

)−ν = γ
(
α2 + |ω|2

)−ν (
β2 + τ2

)−ν

.

Therefore the corresponding spatial temporal covariance is separable. Moreover, in the expression
of this covariance, both the spatial component and the temporal component are Matérn-type
covariances, see Figure 2a. In Figure 2a we observe ridges along the lines where the spatial and
temporal lags are 0. For most physical processes, these ridges are not realistic, they are an artifact
due to the assumption of separability.

� ε = 0. When ε = 0, f (ω, τ) = γ(α2β2 + β2|ω|2 + α2τ2)−ν.

This function is an extension of the traditional Matérn spectral density. It treats time as an additional
coordinate, but it does have a different rate of decay for time, the parameters α−1 and β−1 explain
respectively, the rate of decay of the spatial and temporal components, see Figure 2b.
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Figure 2. (a) The contour plot for a separable spatial temporal covariance, with ε = 1, γ = α = β = d = 1, and ν = 3/2.
(b) The contour plot for a nonseparable spatial temporal covariance, with ε = 0, γ = α = β = d = 1, and ν = 3/2
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For ε ∈ (0, 1), we calculate analytically the spatial temporal covariance that corresponds to the
spectral density in Equation (3),

C(x, t) =
∫
Rd

∫
R

exp(iωTx + iτt)f (ω, τ)dω dτ =
∫
R

exp(iτt)g(x, τ) dτ

where g(x, τ) = ∫
Rd exp(iωTx)f (ω, τ)dω. The function g(x, τ) is available from the integration,

therefore C(x, t) can be computed by numerically carrying out a one-dimensional Fourier transformation
of g. This can be quickly approximated using the fast Fourier transform, this is the approach adopted
in the application presented in this paper. The expression of g is given by

g(x, τ) = πd/2γ

2ν− d
2 −1�(ν)

(
β2 + ετ2

)−ν
( |x|

θ(τ)

)ν− d
2

K
ν− d

2
(θ(τ)|x|)

where θ(τ) =
√

α2(β2+τ2)
β2+ετ2 . As ε goes from zero to one, the ridges in the covariance function get sharper.

In summary, in this new class of spectral density/covariance functions the parameter ε controls the
degree of lack separability by explaining the potential interaction between the dependency structure of
the spatial and temporal components. To incorporate the lack of stationarity in this model, we allow the
nonseparable spectral function f to be space dependent, as explained in the next section.

5. NONSTATIONARY MODELS FOR SPACE-TIME COVARIANCES

In the previous sections, we introduced the spectral representation of stationary spatial temporal
processes, and proposed a new class of nonseparable stationary spectral densities. Now we generalize the
idea to nonstationary spatial temporal processes, and we define a generalized class for spatial temporal
nonseparability and nonstationarity. In this class, the spectral representation itself and the corresponding
spectral distribution function (or spectral density) can change slowly in space and time. Let Z(x, t) be
a general space-time process, x ∈ D ⊆ Rd , and t ∈ T ⊆ R, we use the following representation

Z(x, t) =
∫
Rd

∫
R

exp(iωTx + iτt)dYx,t(ω, τ) (4)

We are going to assume throughout this section that the mean of the process is zero. We capture the
potential lack of stationarity by allowing the spectral process Y associated with Z to change in space
and time. The general spectral representation proposed in Equation (4) provides an ideal framework to
model complex space-time dependent structures. Next, we present a flexible model that correspond to
processes with this type of spectral representation.
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5.1. Mixture of local spectrums

A particular case of the general representation in Equation (4) is when the lack of stationarity is explained
by allowing the amplitude of the spectral process Y to be space-time dependent. This means

Z(x, t) =
∫
Rd

∫
R

exp(iωTx + iτt)φx,t(ω, τ)dY0(ω, τ) (5)

where φx,t(ω, τ) is a space-time dependent amplitude function, and Y0 is a space-time invariant Wiener
process, which satisfies the relation, E

[
Y0(ω, τ)Yc

0 (ω′, τ′)
] = δ(ω − ω′)δ(τ − τ′), where δ is the delta

Dirichlet function. This is a space-time version of the evolutionary spectrum presented by Priestley
(1965). We assume the functions φx,t(ω, τ) satisfy the condition,

∫
Rd

∫
R

|φx,t(ω, τ)|2dω dτ < ∞, for
all x and t. This condition is necessary for the variance of Z(x, t) to be finite. The functions φx,t(ω, τ)
must also satisfy φx,t(ω, τ) = φc

x,t(−ω, −τ) to ensure Z(x, t) is real valued.
Then, it is easy to see that the covariance function of the process Z is given by the following formula,

we have that cov{Z(x1, t1), Z(x2, t2)} is

C(x1, t1; x2, t2) =
∫
Rd

∫
R

exp{iωT(x1 − x2)} exp{iτ(t1 − t2)}φx1,t1 (ω, τ)φc
x2,t2

(ω, τ)dω dτ (6)

In particular, var{Z(x, t)} = C(x, t; x, t) = ∫
Rd

∫
R

|φx,t(ω, τ)|2dω dτ.
The representation in Equation (5) may be interpreted as a representation of the process Z in the

form of a superposition of sinusoidal oscillations with different frequencies ψ = (ω, τ) and random
amplitudes φx,t(ω, τ) varying over space and time. The function Fx,t(ω, τ) defined by the relation
dFx,t(ω, τ) = |φx,t(ω, τ)|2dω dτ is the spatial temporal spectral distribution function of the process
Z, and fx,t(ω, τ) = |φx,t(ω, τ)|2 is the spatial temporal spectral density of Z. There exist different
representations of the form (4) for a spatial temporal process Z, each representation is based on a
different family of φs(ψ) functions, where we write s = (x, t) and ψ = (ω, τ) to simplify the notation.
This problem is similar to the selection of a basis for a vector space. Apart from that, it would not be
physically meaningful to interpret ψ as the frequency in all cases. In the physical theory of oscillations the
function As(ψ) = φs(ψ) exp(isTψ) is said to describe the amplitude modulated oscillation of frequency
ψ only if the ‘amplitude’ φs(ψ) is slowly varying compared to exp(isTψ) function, that is, if the Fourier
transform of φs(ψ) as a function of s includes mainly frequencies much lower than ψ. It is even often
assumed that this transform must be concentrated in a neighborhood of zero frequency. We restrict
the permissible variability of the function φs(ψ) of s by considering only functions φs(ψ) that admit a
generalized Fourier representation φs(ψ) = ∫

Rd+1 eisTσdHψ(σ), with |dHψ(σ)| having its maximum at
σ = 0 for any fixed ψ. This condition guarantees that the Fourier transform of φs(ψ), as a function of
s, includes mainly frequencies much lower than any ψ, as has been suggested by Priestley in the time
series context. Since φs(ψ) is a slowly varying function of space and time, it is clear that the process Z

may be regarded as being ‘approximately stationary’ within subregions in our spatial temporal domain.
If, however, we examine the behavior of Z within two subregions which are sufficiently far apart, we
could find that although Z is practically stationary in both subregions, the spectral distribution function
of the two ‘portions’ of Z will, in general, be different. Since the functions φs(ψ) = 1 clearly satisfy
the conditions to be imposed on φs(ψ), the representation (4) certainly includes all the spatial temporal
stationary processes having a finite variance. A particular case is when φ is a separable function of
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spatial frequency and temporal frequency, that is

φs(ψ) = φ(1)
x (ω)φ(2)

t (τ) (7)

When φ is of the form (7) the spatial temporal process is separable, since

cov{Z(x1, t1), Z(x2, t2)}

=
∫
Rd+1

exp{iωT(x1 − x2)}exp{iτT(t1 − t2)}φ(1)
x1

(ω)φ(2)
t1

(τ)(φ(1)
x2

(ω))c(φ(2)
t2

(τ))cdω dτ

=
∫
Rd

exp{iωT(x1 − x2)}φ(1)
x1

(ω)(φ(1)
x2

(ω))cdω

∫
R

exp{iτT(t1 − t2)}φ(2)
t1

(τ)(φ(2)
t2

(τ))cdτ

= C(1)(x1, x2)C(2)(t1, t2) (8)

where C(1) and C(2) are spatial and temporal covariance functions. We propose a more general model
for φ that has the separable model in Equation (7) as a particular case. We model φ as a mixture of local
spectral (amplitude) functions,

φs(ψ) =
k∑

j=1

K(s − sj)φsj (ψ) (9)

where each φsj (ψ) function explains the spatial temporal structure of Z in a neighborhood of sj . K(s − si)
is a kernel function.

Locally (in a neighborhood of sj), we use the nonseparable parametric model proposed in Equation (3)
for φsj , that has a separable model as a particular case. We can write φsj (ω, τ) as

φsj (ω, τ) = γj

(
α2

jβ
2
j + β2

j‖ω‖2 + α2
j |τ|2 + εj‖ω‖2|τ|2

)−(νj+d+1)/2
(10)

Again, the parameterα−1
j explains the rate of decay of the spatial correlation component. For the temporal

correlation, the rate of decay is explained by β−1
j and γj is a scale parameter. The parameter νj > 0

measures the degree of smoothness of the process Z at sj , the higher the value of νj the smoother Z

would be. If εj = 0 we have a d + 1 dimensional Matérn type model with different spatial and temporal
ranges, which takes into account the change in units from the spatial to the temporal domain. If εj = 1
we have a separable model,

φsj (ψ) = γj

(
α2

j + ‖ω‖2
)−(νj+d)/2 (

β2
j + |τ|2

)−(νj+d)/2
.

Then, the corresponding (local) covariance is separable (as in Equation (8)).
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Hence, the spectral model for a nonseparable and nonstationary spatial temporal process Z(s) =
Z(x, t) is given by

Z(s) =
∫
Rd+1

exp(iψTs)


 k∑

j=1

K(s − sj)φsj (ψ)


 dY0(ψ) (11)

where φsj (ψ) = φsj (ω, τ) which is defined in Equation (10). The value of k is the number of local
(stationary) spectral functions, it can be estimated from the data using the Akaike information criterion
(AIC, Akaike, 1974) or the Bayesian information criterion (BIC, Schwarz, 1978), sj corresponds to
the center of the subregion which gives the jth local stationary component, K(s − sj) represents the
contribution from the jth local stationary components. The K-means cluster procedure is used to subdive
the domain and form the subregions that help identify the domains of stationarity. We iterated this process
until the AIC or BIC suggested that there was no significant improvement in the estimation of the spectral
density (covariance) parameters. If the kernel function K is a separable function of space and time, and
εj = 1 for j = 1, . . . , k, the process Z(s) is separable and nonstationary.

Higdon et al. (1999) considered other classes of nonstationary models. The development of Higdon
et al. relies heavily on the Gaussian form of kernel function and it is not clear how restrictive
this is. The approach proposed here has a quite different motivation, but it also includes Higdon’s
model as a particular case. In model (5), if we treat the amplitude function, Ax(ω), defined as
Ax(ω) = φx(ω) exp(ixTω), as a positive kernel function and Y0 as a Wiener process, we obtain Higdon’s
representation. However, our representation is more general, Ax is a complex function and Y0 a
process with orthogonal increments (not necessarily a Wiener process). The alternative representation
of a nonstationary process introduced by Fuentes (2002) as a mixture/convolution of independent
local stationary processes is not reducible to the one introduced here, because of the assumption of
independency between the local processes, if the processes are allowed to be dependent then that model
is a particular case of the more general one introduced here.

6. SPATIAL TEMPORAL TREND FOR OZONE

In the previous sections we have introduced some new models for space-time covariance functions. In
this section, we introduce spatial temporal models for the mean structure of a space-time process, using
covariates that have space-time dynamic coefficients.

In general, a spatial temporal process can be represented by

Z(x, t) = µ(x, t) + ε(x, t)

where x ∈ D ⊆ Rd and t ∈ T ⊆ R. The function µ(x, t) represents the mean surface. The residual
term ε(x, t) is a zero mean space-time correlated error that explains the spatial temporal short scale
dependency structure. The statistical models proposed in the previous section are used to explain the
spatial temporal correlation structure of ε(x, t).
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Here, we represent the large scale structure (e.g., trend surface) of Z using a space-time dynamic
statistical model:

µ(x, t) =
m∑

i=1

βi(x, t)fi(x, t) (12)

where {fi}i are m covariates (e.g., weather data) of interest with coefficients βi that vary in space and
time.

We model the dynamic coefficients βi using a hierarchical model in terms of an overall time
component γi,t and a space-time process γi(x, t),

βi(x, t) = γi,t + γi(x, t)

where

γi,t = γi,t−1 + u(t) and γi(x, t) = γi(x, t − 1) + η(x, t)

η and u are independent white noise processes. Here we present both γi,t and γi(x, t) in the form of an
(intrinsic) autoregression model. More general forms can be used. In our application, the components
γi(x, t) are kept constant within subregions of stationarity, so γi(x, t) = γij,t for all x in subregion j.

By letting the coefficients βi to be random, the correlations among the coefficients are added to the
final (marginal) models. To avoid lack of identifiability, one possible solution is to model the process
η as a mean-zero spatial temporal process and treat the residual term ε as a white noise process.
Alternatively, we could simplify the dynamic model for βi and let the residual term ε have a spatial
temporal correlation structure. The later solution is the one adopted in this paper. We simplify the model
for the large scale structure by representing βi in terms of two components. One is an overall effect and
the other component explains the variation within subregions of stationarity (as defined in Section 5).
Therefore, we represent the trend surface in our application as

µ(x, t) =
m∑

i=1

[γi,t + γij,t]fi(x, t), if x ∈ Sj (13)

where Sj, j = 1, . . . , k, are the subregions of stationarity used in the model for ε(x, t) (as in Section 5).

7. APPLICATION

7.1. Modeling ozone

We apply the nonseparable and nonstationary model introduced in this paper to observed ozone from
CASTNET . We model the ozone data, Z, using the representation given in the previous section,
Z(x, t) = µ(x, t) + ε(x, t). The goal of this applications section is to examine the relationship between
large scale synoptic weather patterns and maximum ozone levels. Our modeling framework is uniquely
designed to provide detailed patterns of ozone, which can be directly compared with meteorological
conditions at individual weather stations. The level of cloud cover at these weather stations is a critical
factor in the production of ozone.

As previously mentioned, we use CASTNET daily 8-h maximum ozone data for 49 locations east
of the Mississippi River (Figure 1) for the 2002 ozone season (1 May–September). The percentage of
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missing ozone data is 2.69%. For convenience, we refer to the 8-h maximum ozone simply as ozone.
The units for ozone are ppb (parts per billion). A major advantage of using the CASTNET data is that
there are meteorological observations and chemical observations at the same location. However, there
are no upper air meteorological observations, which have been shown to be important covariates in the
modeling of ozone (Eder et al., 1994; Davis et al., 1998).

Empirical analysis suggested that normality was a reasonable assumption. Thus all computations
were done using ozone in the original scale. The spatial domain that we are looking at is fairly large;
thus, one could not expect spatial stationarity across this domain. To overcome this problem the domain
has been divided into subregions of stationarity using K-means cluster analysis. Figure 1 shows the
final subregion configuration for ozone based on the K-means clustering procedure. These subregions
(or clusters) are similar to those found in Zheng et al. (2007), which used the same data set for the
period 1997–2004. Each of these subregions has unique weather conditions over the period that is being
examined; however, during the summer months the spatial variability is much less than that in the winter
months. The number of subregions was determined using BIC.

We model the trend using the model in Equation (13), where the covariates fi are: daily minimum
and average temperature at 2 m, daily maximum and average solar radiation, daily average relative
humidity, and precipitation. Ozone is a secondary pollutant that depends on the photolysis of nitrogen
dioxide for its formation. As a result, ozone formation is dependent on a number of meteorology
variables that have an impact on the photolysis rate. The meteorology variables are measured at the
CASTNET locations. Zheng et al. (2007) found that ozone values were most strongly correlated with
maximum temperature and average daytime relative humidity. For many sites, the contribution of solar
radiation was also important, but to a lesser extent. In this study, the temperature at 2 m above the
ground, solar radiation, relative humidity, and precipitation were found to be important. The Henry’s
Law (Seinfeld and Pandis, 2006) value for ozone indicates that the dissolution of ozone in cloud water
droplets is very small and thus ozone is only weakly scavenged by rain. Precipitation is probably a
surrogate for cloud cover, which would limit the photolysis rate.

7.2. Prior distributions

In terms of the prior distributions for the coefficients of the weather and the other covariates, we use
normal priors, N(0, 0.01) (0.01 is the precision). For the uncorrelated error term component (nugget
effect), we use a zero-mean normal prior, where the hyperprior for the standard deviation is a Unif(1,3).
We introduce knowledge about the precision of the instruments used to measure ozone in determining
this prior distribution for the ozone measurement error effect.

In terms of the prior distributions the covariance vector parameter is � (Section 4). The prior for
ε is a mixture of a point mass distribution at zero, a point mass distribution at one, and a Unif (0,1),
using a multinomial logit prior (Gelfand et al., 2005) for the weights of the mixture. The spatial range
(km), the temporal range (days), and the sill parameter (ppb2) have uniform priors with support (0,
300), (0, 30), and (0, 100), respectively. The smoothness parameter has a uniform prior with support
(0, 4). These hyperpriors are chosen in a noninformative fashion compatible with the data to ensure
acceptable MCMC convergence.

7.3. Posterior distributions

Figure 3a shows the posterior mean for the overall trend,
∑m

i=1 γi,tfi(x, t) (where the parameters are
estimated by their posterior means), for the period being examined, while Figure 3b shows the variation
in the trend for each subregion j,

∑m
i=1 γij,tfi(x, t) (using posterior means of the parameters). From
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Figure 3. Posterior mean of the overall trend for the ozone values and the variation within each subregion.(a) The fitted overall
trend; (b) variation for each cluster

Figure 3a, it appears that the peak period for ozone is in July; although, strong peaks in ozone can be
found at other times (e.g., the peak that occurred in early September). From the plot for the variation
in each subregion, one can see that for subregion 4 there is little variation from the overall trend, while
for subregions 2 and 3 there is positive variation. Subregions 1 and 5 show negative variation.

In Table 1, we have a summary of the posterior distribution for the covariance vector parameter � (as
defined in Section 4). The posterior distribution for the sill for each subregion is also shown in Figure 4.
The smallest sill values occur in subregion 5, which is to be expected given the uniformity in the weather
conditions in Florida. The other subregions show greater variability which is expected since summer
weather conditions would be more variable in those regions than in Florida.

The posterior distribution for the smoothness parameter is shown in Figure 5. There is not a lot of
variation in the smoothness parameter between subregions.

Table 1. The mean and standard deviation of posterior distributions of the parameters

Subregion 1 Subregion 2 Subregion 3 Subregion 4 Subregion 5

Sill 5.35 (2.2) 12.81 (6.1) 6.49 (4.3) 2.73 (1.1) 0.08 (0.03)
Spatial range 16.28 (7.3) 25.29 (9.2) 18.29 (10) 9.01 (2.3) 8.58 (2.6)
Temporal range 0.75 (2.4) 1.57 (3) 1.27 (3.3) 0.56 (0.9) 0.54 (0.2)
Smoothness 2.3 (0.1) 2.2 (0.1) 2.0 (0.1) 1.5 (0.09) 2.0 (0.2)
Separability 0.8 (0.1) 0.3 (0.05) 0.6 (0.05) 0.1 (0.04) 0.5 (0.24)
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Figure 4. Posterior distribution for the sill parameter for each subregion of stationarity

In terms of the (epsilon) parameter that controls the potential lack of separability between space and
time, we present its posterior summary in Table 1. An epsilon value of one indicates complete spatial
temporal separability. This implies that the spatial structure does not change with time nor the temporal
structure with space. Subregion 1 comes closest to meeting the separability criteria, while subregion 4
is most distant from an epsilon value of one. From a meteorological standpoint, one would have thought

Figure 5. Posterior distribution for the smoothness parameter for each subregion of stationarity
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Figure 6. Ozone predictive surfaces, using the mean of the posterior predictive distribution. (a) 16 June 2002; (b) 17 June 2002;
(c) 18 June 2002; (d) 19 June 2002

that subregion 5 would be the most likely to exhibit separability because of the spatial and temporal
consistency of the weather conditions during the ozone season. In that subregion, one would not expect
to see much spatial variation with time or much temporal variation with space.

7.4. Ozone mapping

We examine the 8-h maximum ozone in some detail for the period 16–23 June. This was a period of
increasing ozone levels. Figures 6 and 7 show the mean of the posterior predictive distribution for the
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Figure 7. Ozone predictive surfaces, using the mean of the posterior predictive distribution. (a) 20 June 2002; (b) 21 June 2002;
(c) 22 June 2002; (d) 23 June 2002

ozone and they illustrate how the ozone levels changed over that period of time. Figures 8 and 9 show
how the synoptic scale meteorological conditions changed during the same period of time. We present
the weather maps for June 16 and June 20 at 7 am (local time) as an illustration, but similar maps were
examined for the other days during our time window. The lines on Figures 8 and 9 are for sea-level
pressure (hPa). Each station is plotted with detailed information. The wind bard shows the direction
from which the wind is coming along with the speed (see Ahrens (2003) for a detailed description
of the station information). The circle in the middle of the plot indicates cloud cover information.
Temperature (F) is to the upper left of this circle, while the dew point temperature is to the lower left.
Flow around the low pressure area is counterclockwise, while around the high pressure area the flow
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Figure 8. Weather map

is clockwise. In a general sense, since ozone production relies on the photolysis process, cloud cover
will have a major influence on ozone levels. Davis and Speckman (1999) found cloud cover to be an
important covariate in the development of an ozone prediction model for Houston. It should be noted
that loud cover is only one factor in determining local ozone levels.

On 16 June (Figure 8), the region is dominated by a low pressure area located over the Great Lakes.
The locations in and around this low pressure system and around the stationary front in south Florida
have mostly overcast conditions. It is also cloudy in central Tennessee. Ozone levels are all low in
all these areas. The low ozone levels in central Tennessee stand out in comparison to the areas to
the south, where there is less cloud cover. There are some small mostly cloud-free areas along the
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North Carolina coast and in portions of central Virginia and Maryland. Ozone levels are higher in
these areas.

Over the next 3 days high pressure is in control of most, but not all, of the region. A stationary front
in the southeast brought cloudy conditions to Florida and some of the states bordering it. Cloud cover
persisted in portions of the northeast for much of this period. Observed ozone levels were low along the
southeast coast particularly on the 18th and 19th as a result of the stationary front. As usual there were
localized areas of high or low ozone depending on local conditions. During this period, temperatures
ranged from the low 50s in the northern portions of the study region to the mid to upper 70s in Florida.

The map for 20 June (Figure 9) shows an approaching cold front from the west as the high pressure
system moved eastward. By 21 June, a portion of the front had become stationary. As the high pressure

Figure 9. Weather map
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Figure 10. Validation plot at a randomly selected hold-out monitoring station (latitude=41.84 degrees, longitude= −72.01
degrees, site in CT). The observations are plotted as points, the predicted values (mean of the posterior predictive distribution)

are plotted as solid lines and the 95% prediction intervals are plotted as a dashed line

area over the northern Great Lakes moved eastward the eastern portion of the front dropped to the
south and generally maintained that position for the rest of the study period although there was some
northward movement on the 23rd. After the 21st, the front is near the northern boundary of our study
region. Conditions for the formation of ozone were generally favorable in the northern portion of the
study region and appeared to become increasing more unfavorable in the southern portion of the region.
Cloud cover persisted along the southeast coast and inland during much of this period. These conditions
contributed to the low ozone levels in this region.

7.5. Calibration

In Figure 10, predicted ozone levels for a monitoring station (41.84◦ latitude, −72.01◦ longitude),
chosen randomly, which was not part of the original data analysis are compared with observed data. Our
model is clearly able to capture the daily variations in maximum 8-h ozone with regard to the amplitude
and phase of the observed ozone cycle. The predicted ozone levels are 94.8% of the time within the 95%
prediction bands. Similar results were obtained at other sites. We conclude our model is well calibrated.
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8. DISCUSSION

We have introduced a flexible spatial temporal model that allows for lack of stationarity and separability
of the covariance function. This model includes a parameter that explains the potential lack of
separability, the parameter is estimated from the data. By studying if this parameter is significantly
different than 1 (separable case), using its posterior distribution or a likelihood-based approach, we can
obtain a parametric test for separability. Our model is used to study spatial temporal patterns of ozone,
taking into account the effect of different weather covariates. The model seems to be flexible enough
to characterize complex spatial temporal dependency structures of ambient ozone.
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APPENDIX A

Proposition: The function in Equation (3) is a valid spectral density.

Proof. We have that f (ω, τ) > 0 everywhere, and f (ω, τ) ≤ γ(α2β2 + β2|ω|2 + α2τ2)−ν. Thus, since

∫
Rd

∫
R

exp(iωTx + iτt)γ(α2β2 + β2|ω|2 + α2τ2)−νdω dτ

= π
d+1

2 γ
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 (14)

∫
Rd

∫
R

exp(iωTx + iτt)f (ω, τ)dω dτ exists.
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