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SUMMARY

In practice, spatial data are sometimes collected at points (i.e. point-referenced data) and at other times
are associated with areal units (i.e. block data). The change of support problem is concerned with inference
about the values of a variable at points or blocks different from those at which it has been observed. In the
context of block data which can be sensibly viewed as averaging over point data, we propose a unifying
approach for prediction from points to points, points to blocks, blocks to points, and blocks to blocks. The
approach includes fully Bayesian kriging. We also extend our approach to the the case of spatio-temporal
data, wherein a judicious specification of spatio-temporal association enables manageable computation.
Exemplification of the static spatial case is provided using a dataset of point-level ozone measurements in
the Atlanta, Georgia metropolitan area. The dynamic spatial case is illustrated using a temporally extended
version of this dataset, enabling comparison at the common time point.

Keywords: Bayesian methods; Environmental risk analysis; Geographic Information System (GIS); Kriging; Modifi-
able areal unit problem; Simulation-based model fitting.

1. INTRODUCTION

Consider a univariate variable that is spatially observed. In particular, assume that it is observed either
at points in space, which we refer to as point-referenced or simply point data, or over areal units (e.g. coun-
ties or zip codes), which we refer to as block data. The change of support problem is concerned with infer-
ence about the values of the variable at points or blocks different from those at which it has been observed.

In the case where the data are collected exclusively at blocks and inference is sought exclusively at
new blocks, the problem has a rich literature and is often referred to as the modifiable areal unit problem
(see, for example, Cressie (1996)). In the case of an extensive variable (i.e. one whose value for a block
can be viewed as a sum of sub-block values, as in the case of population, disease counts, productivity
or wealth), areal weighting offers a simple imputation strategy. While rather naive, such allocation
proportional to area has a long history and is routinely available in geographic information system (GIS)
software. Recognizing that areal allocation does not capture tendency toward spatial clustering, model-
based approaches using ‘better’ covariates than area have recently emerge: see, for example, Flowerdew
and Green (1992), Mugglin and Carlin (1998), Mugglin et al. (2000), and Zhu et al. (2000).

†To whom correspondence should be addressed.

c© Oxford University Press (2001)



32 A. E. GELFAND ET AL.

1.1 Motivating dataset

A solution to the change of support problem is required in many health science applications, particularly
spatial and environmental epidemiology. To illustrate, we consider a dataset of ozone levels in the Atlanta,
GA metropolitan area, as reported by Tolbert et al. (2000). Ozone measures are available at between 8
and 10 fixed monitoring sites during the 92 summer days (June 1 to August 31) of 1995. Figure 1 shows
the one-hour daily maximum ozone measures at the 10 monitoring sites on July 15, 1995, along with the
boundaries of the 162 zip codes in the Atlanta metropolitan area. Here we might be interested in predicting
the ozone level at different points on the map (say, the two points marked A and B, which lie on opposite
sides of a single city zip), or the average ozone level over a particular zip (say, one of the 36 zips falling
within the city of Atlanta, the collection of which are encircled by the dark boundary on the map). The
latter problem is of special interest, since in this case relevant health outcome data are available only at
the zip level. In particular, for each day and zip, we have the number of paediatric ER visits for asthma,
as well as the total number of paediatric ER visits. Thus an investigation of the relationship between
ozone exposure and paediatric asthma cannot be undertaken until the mismatch in the support of the two
variables is resolved. Situations like this are relatively common, since personal privacy concerns often
limit statisticians’ access to health outcome data other than at the block average level.

A previous study of this dataset by Carlin et al. (1999) realigned the point-level ozone measures to the
zip level by using an ARC/INFO universal kriging procedure to fit a smooth ozone exposure surface, and
subsequently took the kriged value at each zip centroid as the ozone value for that zip. But this approach
uses a single centroid value to represent the ozone level in the entire zip, and fails to properly capture
variability and spatial association by treating these kriged estimates as observed values.

1.2 Model assumptions and analytic goals

The setting we work with is to assume that we are observing a continuous variable and that underlying
all observations of this variable is a spatial process. We denote this process by Y (s) for locations s ∈ D,
a region of interest. In our applications D ⊂ R

2 but our development works in arbitrary dimensions.
A realization of the process is a surface over D. For point-referenced data the realization is observed at
a finite set of sites, say si , i = 1, 2, . . . , I . For block data we assume the observations arise as block
averages. That is, for a block B ⊂ D,

Y (B) = |B|−1
∫

B
Y (s) ds (1)

where |B| denotes the area of B (see, for example, Cressie (1993)). The integration in (1) is an average
of random variables, hence a random or stochastic integral. Thus, the assumption of an underlying
spatial process is only appropriate for block data that can be sensibly viewed as an averaging over point
data; examples of this would include rainfall, pollutant level, temperature and elevation. It would be
inappropriate for, say, population, since there is no ‘population’ at a particular point. It would also be
inappropriate for most proportions of interest. For instance, if Y (B) is the proportion of college-educated
persons in B, then Y (B) is continuous but Y (s), assuming a single individual at a point, is binary.

In general, we envision four possibilities. First, starting with point data Y (s1), . . . , Y (sI ), we seek
to predict at new locations, i.e. to infer about Y (s′

1), . . . , Y (s′
K ) (points to points). Second, starting with

point data, we seek to predict at blocks, i.e. to infer about Y (B1), . . . , Y (BK ) (points to blocks). Third,
starting with block data Y (B1), . . . , Y (BI ), we seek to predict at a set of locations, i.e. to infer about
Y (s′

1), . . . , Y (s′
K ) (blocks to points). Finally, starting with block data, we seek to predict at new blocks,

i.e. to infer about Y (B ′
1), . . . , Y (B ′

K ) (blocks to blocks).
All of this prediction may be collected under the umbrella of kriging (again, see Cressie (1993)). Our

kriging will be implemented within the Bayesian framework enabling full inference (a posterior predictive
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Fig. 1. Zip code boundaries in the Atlanta metropolitan area and ozone levels at the 10 monitoring sites for July 15,
1995.

distribution for every prediction of interest, joint distributions for all pairs of predictions, etc.) and avoiding
asymptotics. We will, however, use rather noninformative priors, so that our results will roughly resemble
those of a likelihood analysis.

There is a substantial body of literature focusing on spatial prediction from a Bayesian perspective.
This includes Le and Zidek (1992), Handcock and Stein (1993), Brown et al. (1994), Handcock and Wallis
(1994), DeOliveira et al. (1997), Ecker and Gelfand (1997), Diggle et al. (1998), and Karson et al. (1999).
The work of Woodbury (1989), Abrahamsen (1993) and Omre and colleagues (Omre, 1987, 1988; Omre
and Halvorsen, 1989; Omre et al., 1989; Hjort and Omre, 1994) is partially Bayesian in the sense that
prior specification of the mean parameters and covariance function are elicited; however, no distributional
assumption is made for the Y (s).

Inference about blocks through averages as in (1) is not only formally attractive but demonstrably
preferable to ad hoc approaches. One such approach would be to average over the observed Y (si ) in B.
But this presumes there is at least one observation in any B, and ignores the information about the spatial
process in the observations outside of B. Another ad hoc approach would be to simply predict the value
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at some central point of B. But this value has larger variability than (and may be biased for) the block
average.

A new wrinkle we add to the change of support problem here is application in the context of spatio-
temporal data. In our Atlanta dataset, the number of monitoring stations is small but the amount of data
collected over time is substantial. In this case, under suitable modelling assumptions, we may not only
learn about the temporal nature of the data but also enhance our understanding of the spatial process.
Moreover, the additional computational burden to analyse the much larger dataset within the Bayesian
framework turns out still to be manageable.

More specifically, we illustrate with point-referenced data, assuming observations Y (si , t j ) at
locations si , i = 1, . . . , I , and at times t j , j = 1, . . . , J . Thus, we assume all locations are monitored
at the same set of times. In the sequel, we adopt an equally spaced time scale, so that we are modelling
a time series of spatial processes. In our development we assume that all I J points have been observed;
randomly missing values create no additional conceptual difficulty, but add computational burden. As a
result, the change of support problem is only in space. At a new location s′ we seek to predict the entire
vector (Y (s′, t1), . . . , Y (s′, tJ )). Similarly, at a block B we seek to predict the vector of block averages
(Y (B, t1), . . . , Y (B, tJ )).

The format of the paper is as follows. In Section 2 we develop the methodology for spatial data at a
single time point, while Section 3 presents the general spatio-temporal methodology. Section 4 applies
our approaches to the Atlanta ozone data. Finally, Section 5 offers some concluding remarks.

2. METHODOLOGY FOR THE STATIC SPATIAL CASE

We start with a stationary Gaussian process specification for Y (s) having mean function µ(s; β) and
covariance function c(s − t; θ). Here µ is a trend surface with coefficient vector β while θ denotes the
parameters associated with the stationary covariance function. Beginning with point data observed at sites
s1, . . . , sI , let YT

s = (Y (s1), . . . , Y (sI )). Then

Ys | β, θ ∼ N (µs(β), Hs(θ)) (2)

where µs(β)i = µ(si ; β) and (Hs(θ))i i ′ = c(si − si ′ ; θ).
Given a prior on β and θ, models such as (2) are straightforwardly fit using simulation methods

either through importance sampling (e.g. Ecker and Gelfand (1997)) or Gibbs sampling (e.g. Karson et
al. (1999)). Regardless, we can assume the existence of posterior samples (β∗

g, θ
∗
g), g = 1, . . . , G from

f (β, θ | Ys). The required inversion of Hs(θ) in order to evaluate the likelihood can be problematic when
I is large.

Then for prediction at a set of new locations, i.e. YT
s′ = (Y (s′

1), . . . , Y (s′
K )), we require only the

predictive distribution

f (Ys′ | Ys) =
∫

f (Ys′ | Ys, β, θ) f (β, θ | Ys) dβ dθ. (3)

By drawing Y∗
s′,g ∼ f (Ys′ | Ys, β

∗
g, θ

∗
g) we obtain a sample from (3) which provides any desired

inference about Ys′ and its components.
Under a Gaussian process,

f

((
Ys

Ys′

)∣∣∣∣ β, θ

)
= N

((
µs(β)

µs′(β)

)
,

(
Hs(θ) Hs,s′(θ)

H T
s,s′(θ) Hs′(θ)

))
(4)

with entries defined as in (2). Hence, Ys′ |Ys, β, θ is distributed as

N (µs′(β) + H T
s,s′(θ)H−1

s (θ)(Ys − µs(β)), Hs′(θ) − H T
s,s′(θ)H−1

s (θ)Hs,s′(θ)). (5)
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Sampling from (5) requires the inversion of Hs(θ
∗
g), which will already have been done in sampling θ∗

g ,
and then the square root of the K × K covariance matrix in (5).

Turning next to prediction for blocks, B1, . . . , BK , i.e. YT
B = (Y (B1), . . . , Y (BK )) we again require

the predictive distribution, which is now

f (YB | Ys) =
∫

f (YB | Ys; β, θ) f (β, θ | Ys) dβ dθ. (6)

Under a Gaussian process, we now have

f

((
Ys

YB

)∣∣∣∣ β, θ

)
= N

((
µs(β)

µB(β)

)
,

(
Hs(θ) Hs,B(θ)

H T
s,B(θ) HB(θ)

))
, (7)

where

(µB(β))k = E(Y (Bk) | β) = |Bk |−1
∫

Bk

µ(s; β) ds,

(HB(θ))kk′ = |Bk |−1|Bk′ |−1
∫

Bk

∫
Bk′

c(s − s′; θ) ds′ ds,

(Hs,B(θ))ik = |Bk |−1
∫

Bk

c(si − s′; θ) ds′.

Analogously to (5), YB |Ys, β, θ is distributed as

N (µB(β) + H T
s,B(θ)H−1

s (θ)(Ys − µs(β)) , HB(θ) − H T
s,B(θ)H−1

s (θ)Hs,B(θ)). (8)

The major difference between (5) and (8) is that in (5), given (β∗
g, θ

∗
g), numerical values for all of the

entries in µs′(β), Hs′(θ) and Hs,s′(θ) are immediately obtained. In (8) every analogous entry requires an
integration as above. Anticipating irregularly shaped Bk , Riemann approximation to integrate over these
regions may be awkward. Instead, noting that each such integration is an expectation with respect to a
uniform distribution, we propose Monte Carlo integration. In particular, for each Bk we propose to draw
a set of locations sk,�, � = 1, 2, . . . , Lk , distributed independently and uniformly over Bk . Here Lk can
vary with k to allow for very unequal |Bk |.

Hence, we replace (µB(β))k , (HB(θ))kk′ and (Hs,B(θ))ik with

(µ̂B(β))k = L−1
k

∑
�

µ(sk,�; β),

(ĤB(θ))kk′ = L−1
k L−1

k′
∑

�

∑
�′

c(sk� − sk′�′ ; θ),

(Ĥs,B(θ))ik = L−1
k

∑
�

c(si − sk�; θ). (9)

In our notation, the ‘hat’ denotes a Monte Carlo integration which can be made arbitrarily accurate and
has nothing to do with the data Ys . Note also that the same set of sk� can be used for each integration
and with each (β∗

g, θ
∗
g); we need only obtain this set once. In obvious notation we replace (7) with the

(I + K )-dimensional multivariate normal distribution f̂ ((Ys, YB)T | β, θ).
It is useful to note that, if we define Ŷ (Bk) = L−1

k

∑
� Y (sk�), then Ŷ (Bk) is a Monte Carlo integration

for Y (Bk) as given in (1). Then, with an obvious definition for ŶB , it is apparent that

f̂ ((Ys, YB)T | β, θ) = f ((Ys, ŶB)T | β, θ) (10)
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where (10) is interpreted to mean that the approximate joint distribution of (Ys, YB) is the exact joint
distribution of Ys, ŶB . In practice, we will work with f̂ , converting to f̂ (YB | Ys, β, θ) to sample YB

rather than sampling the Ŷ (Bk) through the Y (sk�). But, evidently, we are sampling ŶB rather than YB .

Hence, we ask when ŶB
P→ YB . An obvious sufficient condition is that realizations of the Y (s)

process are almost surely continuous. In the stationary case, Kent (1989) provides sufficient conditions
on c(s − t; θ) to ensure this. Alternatively, Stein (1999) defines Y (s) to be mean square continuous if

limh→0 E(Y (s + h) − Y (s))2 = 0 for all s. But then Y (s + h)
P→ Y (s) as h → 0, which is sufficient to

guarantee that ŶB
P→ YB . Stein notes that if Y (s) is stationary, we only require c(· ; θ) continuous at 0

for mean square continuity.
Finally, suppose we start with block data, i.e. we observe YT

B = (Y (B1), . . . , Y (BI )). Then, analogous
to (2), the likelihood is well defined, i.e.

f (YB | β, θ) = N (µB(β), HB(θ)). (11)

Hence, given a prior on β and θ, the Bayesian model is completely specified. As above, evaluation of the
likelihood requires integrations. So, we replace (11) with

f̂ (YB | β, θ) = N (µ̂B(β), ĤB(θ)). (12)

Simulation-based fitting is now straightforward, as below (2), albeit somewhat more time-consuming due
to the need to calculate µ̂B(β) and ĤB(θ).

To predict for Ys′ we require f (Ys′ | YB). As above, we only require f (YB, Ys′ | β, θ) which has
been given in (7). Using (10) we now obtain f̂ (Ys′ | YB, β, θ) to sample Ys′ . Note that f̂ is used in (12)
to obtain the posterior samples and again to obtain the predictive samples. Equivalently, the foregoing
discussion shows that we can replace YB with ŶB throughout. To predict for new blocks B ′

1, . . . , B ′
K , let

YT
B′ = (Y (B ′

1), . . . , Y (B ′
K )). Now we require f (YB′ | YB), which in turn requires f (YB, YB′ | β, θ).

The approximate distribution f̂ (YB, YB′ |β, θ) employs Monte Carlo integrations over the B ′
k as well as

the Bi , and yields f̂ (YB′ | YB, β, θ) to sample YB′ . Again f̂ is used to obtain both the posterior and
predictive samples.

Note that, in all four prediction cases, we can confine ourselves to an (I +K )-dimensional multivariate
normal. Moreover, we have only an I × I matrix to invert repeatedly in the model fitting, and a K × K
matrix whose square root is required for the predictive sampling.

For the modifiable areal unit problem (i.e. prediction at new blocks using data for a given set of
blocks), suppose we take as our point estimate for a generic new set B0 the posterior mean

E(Y (B0) | YB) = E{µ(B0; β) + HT
B,B0

(θ)H−1
B (θ)(YB − µB(β)) | YB},

where HB,B0(θ) is I × 1 with i th entry equal to cov(Y (Bi ), Y (B0) | θ). If µ(s; β) ≡ µi for s ∈ Bi , then
µ(B0; β) = |B0|−1 ∑

i |Bi ∩ B0|µi . But E(µi | YB) ≈ Y (Bi ) to a first-order approximation, so in this
case E(Y (B0) | YB) ≈ |B0|−1 ∑

i |Bi ∩ B0|Y (Bi ), the areally weighted estimate.

3. METHODOLOGY FOR SPATIO-TEMPORAL DATA

Following Section 2, we start with point-referenced data, Y (si , t j ), i = 1, 2, . . . , I , j = 1, 2, . . . , J
and specify a stationary Gaussian multivariate process for Y(s)T = (Y (s, t1), . . . , Y (s, tJ )). In particular,
we set E(Y (s, t) | β) = µ(s, t; β), a temporal trend surface model (i.e. a polynomial in s and t). As
for the cross-covariance structure, i.e. the matrix of covariances between Y(si ) and Y(si ′), we assume the
( j, j ′) entry,

cov(Y (si , t j ), Y (si ′ , t j ′)) = σ 2c(1)(si − si ′ ; φ) · c(2)(t j − t j ′ ; ρ), (13)
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where c(1) is a valid two-dimensional correlation function and c(2) is a valid one-dimensional correlation
function. The multiplicative form conveniently separates space and time in the calculations below,
enabling feasible computation for the change of support problem. In view of the discreteness of the time
scale, (13) suggests that we may view the entire specification as a time series of spatial processes. Spatial
association at a fixed time point is captured through c(1); decay in such association over time is captured
by c(2). Forms such as (13) have a history in spatio-temporal modelling: see, for example, Mardia and
Goodall (1993) and references therein.

Collecting all the observed data into a vector YT
s = (YT (s1), . . . , YT (sI )) we have Ys distributed

as an I J -dimensional multivariate normal with, in obvious notation, mean vector µs(β) and covariance
matrix

	Ys (σ
2, φ, ρ) = σ 2 Hs(φ) ⊗ Ht (ρ), (14)

where ‘⊗’ denotes the Kronecker product. In (14), Hs(φ) is I × I with (Hs(φ))i i ′ = c(1)(si − s′
i ; θ), and

Ht (ρ) is J × J with (Ht (ρ)) j j ′ = c(2)(t j − t j ′ ; ρ).
Given a prior for β, σ 2, φ, and ρ, the Bayesian model is completely specified. Simulation-based model

fitting can be carried out similarly to the static spatial case by noting the following. The log likelihood
arising from Ys is

−1

2
log |σ 2 Hs(φ) ⊗ Ht (ρ)| − 1

2σ 2
(Ys − µs(β))T (Hs(φ) ⊗ Ht (ρ))−1(Ys − µs(β)).

But |σ 2 Hs(φ) ⊗ Ht (ρ)| = (σ 2)I J |Hs(φ)|J |Ht (ρ)|I , and (Hs(φ) ⊗ Ht (ρ))−1 = H−1
s (φ) ⊗ H−1

t (ρ). In
other words, even though (14) is I J × I J , we need only the determinant and inverse for an I × I and a
J × J matrix, so that Gibbs sampling is tractable.

With regard to prediction, first consider new locations s′
1, . . . , s′

k with interest in inference for
Y (s′

k, t j ). As with the observed data, we collect the Y (s′
k, t j ) into vectors Y(s′

k), and the Y(s′
k) into a

single K J × 1 vector Ys′ . Even though we may not necessarily be interested in every component of Ys′ ,
the simplifying forms which follow below suggest that, with regard to programming, it may be easiest
to simulate draws from the entire predictive distribution f (Ys′ | Ys) and then retain only the desired
components.

Since f (Ys′ |Ys) has a form analogous to (3), given posterior samples (β∗
g, σ

2∗
g , φ∗

g, ρ
∗
g), g =

1, . . . , G, we draw Y∗
s′,g from f (Ys′ | Ys, β

∗
g, σ

2∗
g , φ∗

g, ρ
∗
g). Analogous to (4),

f

((
Ys

Ys′

)∣∣∣∣ β, σ 2, φ, ρ

)
= N

((
µs(β)

µs′(β)

)
, σ 2

(
Hs(φ) ⊗ Ht (ρ) Hs,s′(φ) ⊗ Ht (ρ)

H T
s,s′(φ) ⊗ Ht (ρ) Hs′(φ) ⊗ Ht (ρ)

))
, (15)

with obvious definitions for Hs′(φ) and Hs,s′(φ). But then Ys′ | Ys, β, σ 2, φ, ρ is also normally
distributed, with mean

µs′(β) + (H T
s,s′(φ) ⊗ Ht (φ))(Hs(φ) ⊗ Ht (ρ))−1(Ys − µs(β))

= µs′(β) + (H T
s,s′(φ)H−1

s (φ) ⊗ IJ×J )(Ys − µs(β)), (16)

and variance

Hs′(φ) ⊗ Ht (ρ) − (H T
s,s′ ⊗ Ht (ρ))(Hs(φ) ⊗ Ht (ρ))−1(Hs,s′(φ) ⊗ Ht (ρ))

= (Hs′(φ) − H T
s,s′(φ)H−1

s (φ)Hs,s(φ)) ⊗ Ht (ρ), (17)
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using standard properties of Kronecker products. In (16), time disappears apart from µs′(β), while in (17),
time ‘factors out’ of the conditioning. Sampling from this normal distribution does require the inverse
square root of the conditional covariance matrix, but conveniently, this is

(Hs′(φ) − H T
s,s′(φ)H−1

s (φ)Hs,s′(φ))−
1
2 ⊗ H

− 1
2

t (ρ),

so the only work required beyond that in (5) is obtaining H
− 1

2
t (ρ), since H−1

t (ρ) will already have been
obtained in evaluating the likelihood, following the discussion above.

Returning to blocks B1, . . . , BK , we set YT (Bk) = (Y (Bk, t1), . . . , Y (Bk, tJ )) and then set YT
B =

(YT (B1), . . . , YT (BK )). Analogous to (6) we seek to sample f (YB | Ys), so we require f (YB |
Ys, β, σ 2, φ, ρ). Analogous to (15), this is

f

((
Ys

YB

)∣∣∣∣ β, σ 2, φ, ρ

)
= N

((
µs(β)

µB(β)

)
, σ 2

(
Hs(φ) ⊗ Ht (ρ) Hs,B(φ) ⊗ Ht (ρ)

H T
s,B(φ) ⊗ Ht (ρ) HB(φ) ⊗ Ht (ρ)

))
,

with µB(β), HB(φ), and Hs,B(φ) defined as in Section 2. Hence, f (YYs, β, σ 2, φ, ρ) is again normal
with mean and variance as given in (16) and (17), but with µB(β) replacing µs′(β), HB(φ) replacing
Hs′(φ), and Hs,B(φ) replacing Hs,s′(φ). Using the same Monte Carlo integrations as proposed in
Section 2 leads to sampling the resultant f̂ (YB | Ys, β, σ 2, φ, ρ), and the same technical justification
applies.

If we started with block data, Y (Bi , t j ), then following (11) and (14),

f (YB | β, σ 2, φ, ρ) = N (µB(β), σ 2(HB(φ) ⊗ Ht (ρ)). (18)

Given (18), the path for prediction at new points or at new blocks is clear, following the above and the end
of Section 2; we omit the details.

Finally, though our interest is in change of support at observed times, the association structure in (13)
allows forecasting of the spatial process at time tJ+1 in the series. This can be done at observed or
unobserved points or blocks following the foregoing development. To retain the above simplifying forms,
we would first simulate the variables at tJ+1 associated with observed points or blocks (with no change of
support). We would then revise Ht (φ) to be (J + 1) × (J + 1) before proceeding as above.

4. ANALYSIS OF ATLANTA OZONE DATA

4.1 Static spatial case

In this section, we use the approach of Section 2 to perform point–point and point–block inference for the
Atlanta ozone data pictured in Figure 1. Recall that the target points are those marked A and B on the map,
while the target blocks are the 36 Atlanta city zips. The differing block sizes suggest use of a different Lk

for each k in equation (9). Conveniently, our GIS, ARC/INFO, can generate random points over the whole
study area, and then allocate them to each zip. Thus Lk is proportional to the area of the zip, |Bk |. Our
procedure produced 3743 randomly chosen locations distributed over the 36 city zips, for an average Lk

of nearly 104.
Suppose that log-ozone exposure Y (s) follows a second-order stationary spatial Gaussian process,

using the simple spatial covariance function c(si −si ′ ; θ) = σ 2e−φ‖si −si ′ ‖, where ‖si −si ′ ‖ is the Euclidean
distance between sites si and si ′ . A preliminary exploratory analysis of our dataset suggested a constant
mean function µ(si ; β) = µ is adequate for our dataset: cf. Figure 3 and the associated discussion
in Section 4.2 below. We place the customary flat prior on µ, and assume that σ 2 ∼ I G(a, b) and
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φ ∼ G(c, d) where I G and G denote the inverse gamma and gamma distributions with probability

density functions p(σ 2|a, b) = e−1/(bσ2)

�(a)ba(σ 2)a+1 and p(φ|c, d) = φc−1e−φ/d

�(c)dc respectively. We chose a = 3,
b = 0.5, c = 0.03 and d = 100, corresponding to fairly vague priors. We then fit this three-parameter
model using an MCMC implementation, which ran three parallel sampling chains for 1000 iterations each,
sampling µ and σ 2 via Gibbs steps and φ through Metropolis–Hastings steps with a G(3, 1) candidate
density. Convergence of the sampling chains was virtually immediate. We obtained the following posterior
medians and 95% equal-tail credible intervals for the three parameters: for µ, 0.111 and (0.072, 0.167);
for σ 2, 1.37 and (1.18, 2.11); and for φ, 1.62 and (0.28, 0.13).

Figure 2 maps summaries of the posterior samples for the 36 target blocks (city zips) and the two target
points (A and B); specifically, the posterior medians, q0.50, upper and lower 0.025 points, q0.975 and q0.025,
and the lengths of the 95% equal-tail credible intervals, q0.975 −q0.025. The zip-level medians show a clear
spatial pattern, with the highest predicted block averages occurring in the southeastern part of the city near
the two high observed readings (0.144 and 0.136), and the lower predictions in the north apparently the
result of smoothing toward the low observed value in this direction (0.076). The interval lengths reflect
spatial variability, with lower values occurring in larger areas (which require more averaging) or in areas
nearer to observed monitoring stations (e.g. those near the southeastern, northeastern, and western city
boundaries). Finally, note that our approach allows sensibly differing predicted medians for points A and
B, with A being higher due to the slope of the fitted surface. Previous centroid-based analyses (like that
of Carlin et al. (1999)) would instead implausibly impute the same fitted value to both points, since both
lie within the same zip.

4.2 Spatio-temporal case

To illustrate the method of Section 3, we use a spatio-temporal version of the Atlanta ozone dataset. As
mentioned in Section 1, we actually have ozone measurements at the 10 fixed monitoring stations shown
in Figure 1 over the 92 summer days in 1995. Figure 3 shows the daily one-hour maximum ozone reading
for the sites during July of this year. There are several sharp peaks, but little evidence of a weekly (7 day)
period in the data. The mean structure appears reasonably constant in space, with the ordering of the site
measurements changing dramatically for different days. Moreover, with only 10 ‘design points’ in the
metro area, any spatial trend surface we fit would be quite speculative over much of the study region (e.g.
the northwest and southwest metro; see Figure 1). The temporal evolution of the series is not inconsistent
with a constant mean autoregressive error model; indeed, the lag 1 sample autocorrelation varies between
0.27 and 0.73 over the 10 sites, strongly suggesting the need for a model accounting for both spatial and
temporal correlations.

We thus fit our spatio-temporal model with mean µ(s, t; β) = µ, but with spatial and temporal
correlation functions c(1)(si − si ′ ; φ) = e−φ‖si −si ′ ‖ and c(2)(t j − t j ′ ; ρ) = ρ| j− j ′|/(1 − ρ2). Hence
our model has four parameters: we use a flat prior for µ, an I G(3, 0.5) prior for σ 2, a G(0.003, 100) prior
for φ, and a U (0, 1) prior for ρ (thus eliminating the implausible possibility of negative autocorrelation
in our data, but favouring no positive value over any other). To facilitate our Gibbs–Metropolis approach,
we transform to θ = log φ and λ = log(ρ/(1 − ρ)), and subsequently use Gaussian proposals on these
transformed parameters.

Running three parallel chains of 10 000 iterations each, sample traces (not shown) again indicate
virtually immediate convergence of our algorithm. Posterior medians and 95% equal-tail credible intervals
for the four parameters are as follows: for µ, 0.068 and (0.057, 0.080); for σ 2, 0.11 and (0.08, 0.17); for
φ, 0.06 and (0.03, 0.08); and for ρ, 0.42 and (0.31, 0.52). The rather large value of ρ confirms the strong
temporal autocorrelation suspected in the daily ozone readings.
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Fig. 2. Posterior point–point and point–block summaries, static spatial model, Atlanta ozone data for July 15, 1995.
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Fig. 3. One-hour maximum ozone by day, July 1995, 10 Atlanta monitoring sites.

Comparison of the posteriors for σ 2 and φ with those obtained for the static spatial model in
Section 4.1 is not apt, since these parameters have different meanings in the two models. Instead,
we make this comparison in the context of point–point and point–block prediction. Table 1 provides
posterior predictive summaries for the ozone concentrations for July 15, 1995 at points A and B (see
Figure 1), as well as for the block averages over three selected Atlanta city zips: 30317, an east-central
city zip very near to two monitoring sites; 30344, the south-central zip containing the points A and
B; and 30350, the northernmost city zip. Results are shown for both the spatio-temporal model of this
section and for the static spatial model previously fit in Section 4.1. Note that all the posterior medians
are a bit higher under the spatio-temporal model, except for that for the northern zip, which remains
low. Also note the significant increase in precision afforded by this model, which makes use of the
data from all 31 days in July, 1995, instead of only that from July 15. Figure 4 shows the estimated
posteriors giving rise to the first and last rows in Table 1 (i.e. corresponding to the July 15, 1995
ozone levels at point A and the block average over the northernmost city zip, 30350). The Bayesian
approach’s ability to reflect differing amounts of predictive uncertainty for the two models is clearly
evident.

Finally, Figure 5 plots the posterior medians and upper and lower 0.025 quantiles produced by the
spatio-temporal model by day for the ozone concentration at point A, as well as those for the block average
in zip 30350. Note that the overall temporal pattern is quite similar to that for the data shown in Figure 3.
Since point A is rather nearer to several data observation points, the confidence bands associated with it
are often a bit narrower than those for the northern zip, but this pattern is not perfectly consistent over time.
Also note that the relative positions of the bands for July 15 are consistent with the data pattern for this day
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Table 1. Posterior medians and 95% equal-tail credible intervals for ozone levels at
two points, and for average ozone levels over three blocks (zip codes), purely spatial

model versus spatio-temporal model, Atlanta ozone data for July 15, 1995

Spatial only Spatio-temporal
Point 95% interval Point 95% interval

Point A 0.125 (0.040, 0.334) 0.139 (0.111, 0.169)
Point B 0.116 (0.031, 0.393) 0.131 (0.098, 0.169)
Zip 30317 (east-central) 0.130 (0.055, 0.270) 0.138 (0.121, 0.155)
Zip 30344 (south-central) 0.123 (0.055, 0.270) 0.135 (0.112, 0.161)
Zip 30350 (north) 0.112 (0.040, 0.283) 0.109 (0.084, 0.140)
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b) Point A, spatio-temporal
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Fig. 4. Posterior predictive distributions for ozone concentration at point A and the block average over zip 30350,
purely spatial model versus spatio-temporal model, Atlanta ozone data for July 15, 1995.

seen in Figure 1, when downtown exposures were higher than those in the northern metro. Finally, the day-
to-day variability in the predicted series is substantially larger than the predictive variability associated
with any given day.
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Fig. 5. Posterior medians and upper and lower 0.025 quantiles for the predicted one-hour maximum ozone
concentration by day, July 1995; solid lines, point A; dotted lines, block average over zip 30350 (northernmost Atlanta
city zip).

5. CONCLUDING REMARKS AND FUTURE DIRECTIONS

With continuous measurements on R
1 (directly or by suitable transformation) and without replication,

there is little hope of distinguishing a joint Gaussian distribution for the data from a heavier-tailed
choice, such as a t with low degrees of freedom v. To clarify, if W ≡ (W (s1), . . . , W (sn)) has mean

0 and covariance matrix σ 2	W , then Z = 	
− 1

2
W W is distributed as N (0, σ 2 I ) under the normal model,

but tv(0, σ 2 I ) under the t model. Though the components of Z are independent under the normal and
dependent under the t , in either case they are identically distributed and uncorrelated. It will thus be
difficult to effectively diagnose non-normality.

Our data analyses were primarily intended as illustrative, using simple exponential forms for the
covariance function c(si − si ′ ; θ) in Section 4.1 and c(1)(si − si ′ ; φ) in Section 4.2. However, other
isotropic and geometrically anisotropic forms could be fitted just as easily using our approach, since they
lead to only small increases in the dimension of the parameter space and the associated computational
burden. Taking this idea a step further, one might wish to shed the stationarity assumption entirely. Here
a rich class of nonstationary models can be created through forms Y (s) = ∑

i ai (s)Yi (s) where the Yi

are independent stationary processes with covariance functions ci and the ai (s) are specified functions
(Fuentes, 2000). In practice ci would have associated parameters θi , whence

cov(Y (s), Y (s′)) =
∑

i

ai (s)ai (s′)ci (s − s′; θi ). (19)
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Hence in Section 2 (and therefore, implicitly, in Section 3), we can replace c(s − s′; θ) with (19).
Lastly, for point-referenced data which are not continuous (e.g. categorical or count data), only

prediction at new locations is meaningful. Bayesian kriging in such cases is by now well discussed. An
approach for indicator kriging using clipped Gaussian fields is discussed in DeOliveira (2000); a more
general approach using hierarchical models is developed in Diggle et al. (1998).
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