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Abstract: The authors develop a methodology for predicting unobserved values in a conditionally lognormal 
random spatial field like those commonly encountered in environmental risk analysis. These unobserved 
values are of two types. The first come from spatial locations where the field has never been monitored, the 
second, from currently monitored sites which have been only recently installed. Thus the monitoring data 
exhibit a monotone pattern, resembling a staircase whose highest step comes from the oldest monitoring 
sites. The authors propose a hierarchical Bayesian approach using the lognormal sampling distribution, in 
conjunction with a conjugate generalized Wishart distribution. This prior distribution allows different de- 
grees of freedom to be fitted for individual steps, taking into account the differential amounts of information 
available from sites at the different steps in the staircase. The resulting hierarchical model is a predictive 
distribution for the unobserved values of the field. The method is demonstrated by application to the ambi- 
ent ozone field for the southwestern region of British Columbia. 

Pr6visions spatiales et temporelles pour des champs 
de donn6es environnementales dispos6es en escalier 
Resume : Les auteurs developpent une methode permettant de faire de la prevision pour des valeurs non- 
observees dans un champ spatial al6atoire conditionnellement lognormal comme ceux que l'on rencontre 
fr6quemment dans l'analyse des risques environnementaux. Les valeurs non-observ6es correspondent soit 
a des sites oi le champ n'a jamais 6t6 mesure, soit ' des stations d'observation en activit6 mais qui n'ont 
6t6 install6es que r6cemment. On peut donc distinguer dans les donnees un patron monotone semblable 
a un escalier dont la plus haute marche correspond aux sites les plus anciens. Les auteurs proposent une 
approche bayesienne hidrarchique s'appuyant sur la loi lognormale et une loi a priori de Wishart g6ndralis6e 
conjugu6e. Cette dernmire autorise l'emploi de degres de libert6 diff6rents pour chacune des marches, ce 
qui permet de refleter la quantit6 d'information disponible a chacun des sites le long de l'escalier. On 
peut alors deduire de ce module hierarchique une loi previsionnelle pour les valeurs non-observees du 
champ. L'approche est illustr6e l'aide de donn6es sur le niveau ambiant d'ozone dans le sud-ouest de la 
Colombie-Britannique. 

1. INTRODUCTION 
Risk assessments of air pollution often require estimates of the concentration levels at locations 
where there are no monitoring sites. Such assessments may rely on data from monitored loca- 
tions. Spatial prediction methods should then be used to accomplish what Carroll, Ruppert & 
Stefanski (1995) call "regression calibration," a technique which Pierce, Stram, Vaeth & Schafer 

(1992) advocate as a way to reduce the potentially deleterious effects of measurement error. 
Such methods predict unmeasured air pollution levels at locations where people live, based on 
observed concentration levels at monitored sites. Such an approach has been used elsewhere (see 
Duddek, Le, Zidek & Burnett 1995; Zidek 1997; Zidek, White, Le, Sun & Burnett 1998). 

For chronic diseases such as cancer with long latency periods where cumulative exposure 
seems relevant, predicted concentrations are needed for long periods of time. Hence observed 
concentrations at some time periods may need to be used for predicting those at others. For 

example, in a case-control study, the residential histories of the participants are determined so 
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that their cumulative exposure estimates may be found by predicting concentrations at their for- 
mer residential locations. As well, in this case, levels may be predicted at currently monitored 
locations for time periods before their monitors were installed. We call making such predictions 
"backcasting". 

In recent years, a Bayesian methodology for both temporal and spatial prediction of air pol- 
lution has been developed, beginning with the work of Le & Zidek (1992). That method was 
seen as an alternative to kriging (see Cressie 1991). Its hierarchical prior model seemed to offer 
more flexibility than kriging, originally developed for interpolating fixed fields in geostatistics 
rather than the stochastic fields encountered in atmospheric science. Moreover, it was seen to of- 
fer a way of incorporating the uncertainty inevitably associated with the components of complex 
models. 

Ensuing development confirmed the early promise. The method can be enhanced to deal 
with the realistic multivariate setting where not all monitoring sites measure the same set of 
pollutants (Brown, Le & Zidek 1994a; Le, Sun & Zidek 1997). The method produces the joint 
predictive distribution for several locations and different time points using all available data, 
thus allowing the simultaneous temporal and spatial prediction. Moreover, unlike kriging, the 
method does not require the random field to be spatially stationary. Furthermore, it allows for the 
uncertainty associated with the mean and the spatial covariance of the field to be incorporated in 
the predictive distribution. 

Empirical comparisons (see Sun 1998) validate the method. In particular, the analysis of 
Sun (1998) indicates that the Bayesian predictor will outperform kriging. At least it outperforms 
a cokriging variant of kriging suggested by Haas (1996) in a multivariate setting. The Bayesian 
alternative produces predictive intervals with almost correct coverage probabilities while the 
cokriging-based prediction intervals yield coverage probabilities much lower than nominal. 

One important restriction in these methodological developments is that all monitoring sta- 
tions are required to be in operation for the same period. This restriction limits the flexibility of 
the methodology in that stations might be added over time to monitoring networks; data collected 
from networks with different operational periods cannot be integrated into a single analysis. 

In this paper, we address the practically important problem of temporal-spatial interpolation 
where stations have been added over time to a monitoring network. After appropriately reorder- 
ing the sites, the resulting data matrix will then have a staircase structure. That is, when the data 
are put together in an increasing order of the stations' operational periods, the data matrix has 
the appearance of a staircase. Combining active networks with different starting times will yield 
such a structure. 

The staircase pattern can be seen in the air pollution data from monitoring networks main- 
tained by the Ministry of Environment in the province of British Columbia (BC), Canada. Fig- 
ure 1 shows the locations along with their starting times and boxplots of the monthly average 
ozone levels. Here, each step of the staircase consists of stations having the same starting time. 
These data are the subject of the application considered in the next section. 

The staircase structure is also described as a monotone missing data pattern by some authors 
(Little & Rubin 1987; Rubin & Shaffer 1990; Liu 1999) who have studied it in the context 
of data imputation. In particular, an approach to obtaining parameter estimates in a Bayesian 
multivariate linear regression problem with such missing pattern has been studied by Liu (1996). 

In this paper, we develop a Bayesian method for temporal-spatial interpolation using all avail- 
able data with this special feature. The method relies on the generalized inverted Wishart distri- 
bution (see Brown, Le & Zidek 1994b). Specifically, the monthly averages of ozone are assumed 
to follow a Gaussian distribution and the corresponding covariance is assumed to follow a gen- 
eralized inverted Wishart (GIW) prior distribution. 
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FIGURE 1: Boxplot of monthly average ozone levels (pg/m3) at 23 monitor sites 
in British Columbia, Canada, and their start-up times. 
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FIGURE 2: Observed monthly average ozone levels in pg/rnm3 at the Burnaby Mountain station between 
July 1986 and December 1994. Backcast values (solid) and corresponding 95% predictive intervals (dash) 

between January 1978 and June 1986. The vertical lines indicate when blocks are formed during this 
backcasting period. 

The methodology we develop yields the joint predictive distribution for several locations and 
time points using all the observed data in the staircase. The method extends the Bayesian methods 
discussed above and thus enjoys all the corresponding advantages. The method is applied to the 
BC data cited above. From the resulting predictive distribution, it is possible to get the temporal 
predictions and the corresponding predictive intervals for any locations of interest in the spatial 
field, e.g., as displayed in Figure 2. The method is seen to work reasonably well, in that the 
predicted means capture not only the temporal features demonstrated at specific stations but also 
spatial features of the pollution field. 

The paper is organized as follows. We demonstrate the use of our new method in Section 
2. The main theoretical results are described in Section 3 with relevant proofs given in the 
appendices. Parameter estimation is discussed in Section 4. Concluding remarks then follow in 
Section 5. 

2. APPLICATION 

2.1. Data set. 

We illustrate the methodology through an application to ozone data. The data set consists of 
monthly average ozone levels over 23 monitor sites in the southwestern region of Canada's west- 
ernmost province, British Columbia (BC). The monthly average levels, provided to us by the BC 
Ministry of Environment, were calculated as follows. First, daily averages were computed by 
averaging over hourly measurements for days with at least 18 hours of valid measurements. The 
monthly averages were then calculated based on these daily averages for those months with at 
most 7 days of missing values from January 1978 to December 1994. Many sites started opera- 
tion later than 1978, and the stations having the same starting time are grouped together to create 
steps in the staircase in Figure 1. The locations of these sites are shown in Figure 3. 
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FIGURE 3: Ozone monitor sites (1 - Rocky Point Park; 2 - Eagle Ridge; 3 - Kensington Park; 
4 - Confederation Park; 5 - Second Narrows; 6 - Burnaby Mountain). 
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FIGURE 4: Trend modeling at the Rocky Point Park station. Upper: partial autocorrelation function of 
residuals after removing annual cycle; Middle: residual plot; Lower: fitted trend and observations. 
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2.2. Covariates and randomly missing data imputation. 
In this example, the log-transformed monthly average ozone level is modeled by (1) in Section 
3 with covariates Z = { 1, cos(27rt /12), sin(27rt /12) }. This trend model has been used success- 
fully to describe the log-transformed monthly average ozone levels by other authors; see, for 
example, Brown, Le & Zidek (1994a) for Ontario data. 

Let Yit denote the monthly average ozone level at site i for month t. From model (1), given 
the parameters and covariates, lYit can then be written as 

git = AO + A C 
1os 

2 + 2 s+in - 
+ 

2 
itrt (12 ) 12 

Et 

where 
(el,t,..., 23,t) are independent over time and follow a normal distribution with mean 0 

and variance E. 

Figure 4 presents the fits of the model to the observed data for a typical site. For brevity, 
similar results for other sites are omitted. The results indicate a very strong yearly cycle for the 
data. This pattern was also observed for Ontario data. 

Figure 4 also shows the partial autocorrelation function of the fitted residuals. Although 
an indication of 3-month periodicity is observed in the plot, the partial autocorrelations do not 
greatly exceed the 5% critical values and so for brevity, they have been ignored in the model. The 
results therefore suggest that the log-transformed monthly average ozone levels can be assumed 
to be approximately independent. Also apparent in Figure 4 are low-lying outliers that appear to 

represent a systematic year-end effect for which we do not have a compelling explanation. 
Our theory assumes no randomly missing data within the staircase structure of observed 

data. Therefore, to proceed with the implementation of the method, we need to impute the 

randomly missing values, totaling 8% of the data among all stations. These missing observations 
do not appear to have any obvious pattern. We do the imputation using the standard method for 

imputation via the EM algorithm (Little & Rubin 1987). 

2.3. Spatial interpolation and backcasting. 

Using the trend covariates specified above, we apply our model and the results in Theorem 1 to 
the ozone data where groups of stations with the same starting time are considered as blocks (see 
Figure 1 for more details). 

The hyperparameters are estimated via the EM algorithm as described in Section 4. Given 
the estimated hyperparameters, the predictive distribution for concentration levels at various lo- 
cations and different times is fully characterized. This includes the interpolation and backcasting 
components. We could backcast (i.e., impute the systematically missing values for the moni- 

toring sites, which we will call "gauged" sites) or interpolate (i.e., for ungauged sites) the con- 
centration levels, along with the corresponding predictive intervals. Figure 2 shows the backcast 
ozone levels and 95% predictive intervals for the Burnaby Mountain station. The predictive 
intervals are obtained by simulating 1000 realizations at each month from the predictive distri- 
bution. This is achieved by sequentially generating realizations from the t-distributions, since 
the predictive distribution is characterized by a product of matrix-t distributions as given in The- 
orem 1. Hence predictive intervals can be computed without not much computing power, using 
subroutines available in standard libraries. 

Predictive intervals in Figure 2 for the months between January 1978 and September 1982, 
when only the first block of stations was in operation, are generally larger than those for the 
months between September 1982 and July 1986, when the first two blocks were in operation. 
This is expected since more observed data are available for predictions with two blocks and 
hence the corresponding predictive intervals are smaller. Backcast levels at other stations (not 
included here) show similar characteristics. 

The predictive distribution for the ungauged sites requires estimates of the hypercovariance 
matrix among the locations of interest. These are obtained via the powerful method proposed 
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by Sampson & Guttorp (1992) as described in Section 4.2. Briefly, the Sampson-Guttorp (SG) 
method first establishes a smooth mapping function between locations in the geographic space 
(G-space) where the spatial field under consideration is generally not stationary and locations in 
a new space, called dispersion space (D-space) where the spatial field is isotropic. The mapping 
function is estimated using the observed correlations between the monitoring sites. A fitted 
variogram, or equivalently the correlation function, in the D-space and the estimated mapping 
function are then used to obtain spatial correlations between all locations of interest. 

Figure 5 demonstrates the actions of the SG method in this application. The right panel 
shows the corresponding D-space coordinates, resulting from applying the mapping function to 
a biorthogonal grid in G-space. The left panel shows the fitted variogram in D-space. The hori- 
zontal dotted line there depicts a zero correlation corresponding to a dispersion of 2. The results 
in the panels can be used to estimate spatial correlations between any points in the G-space, e.g., 
by first identifying the points in D-space using the grid, then measuring the distance in D-space 
between them, and finally applying the fitted variogram to the distance to estimate their spatial 
correlations. Note that the SG method does not require that the units of the D-plane coordi- 
nates be explicitly specified. There is a built-in smoothing parameter in the mapping function to 
control the distortion between the G-space and the D-space. This feature allows users to ensure 
that the grid is not folded in the D-space and hence to maintain the spatial interpretability of the 
correlations; locally, then, the closer the stations are together, the higher the correlations. 
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FIGURE 5: Fitted variogram using D-space interstation distance (left panel) and D-space coordinates (right 
panel) with smoothing parameter equal to 0.3 used in the mapping function. 

Figure 6 displays four interpolated monthly average ozone levels (in pg/m3) in 1994. The 
seasonal variation of the monthly average ozone levels is quite obvious, with the lowest level in 
winter. As expected, the interpolated concentration levels at locations in the vicinity of the mon- 
itoring stations are strongly influenced by the observed levels at nearby stations. For locations 
far from monitoring stations, the interpolated levels are quite close to the overall average of the 
observed values at all stations. 
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FIGURE 6: Interpolated monthly average ozone levels (Mg/m3) for four months in 1994. 

This feature is more clearly demonstrated in Figure 7, which shows the contour plot of the 
interpolated average ozone level in June 1994. To assess the uncertainty of the interpolator, we 
present the standard deviation contour plot for the interpolations in June 1994 in Figure 8. 

The contour plot shows that the predictive distribution has a smaller standard deviation at 
locations close to the monitoring sites as expected. Similarly, locations that are far from any 
monitor, such as the center of the region and the southeast corner, have larger standard deviations. 

Overall, the results in this application indicate that the method works well in that the spatial 
predictions capture not only the temporal features demonstrated at specific stations, but also spa- 
tial features of the pollution field. The uncertainty reflected in the predictive distribution seems 
intuitively appropriate with more observed measurements yielding a smaller standard deviation. 
In the next section, we describe the main theoretical results. 

3. MAIN RESULTS 

3.1. Notation. 

Throughout the paper, 0 represents the Kronecker product between matrices. In addition, we let 

n = number of time points (e.g., number of months); 
u = number of locations with no monitors - called ungauged sites; 

g = number of locations with monitors - called gauged sites. 

The g gauged sites are organized into k blocks such that the jth block consists of gj stations 
having the same number mj of missing responses and hence, g = gi + - - - + gk. These blocks 
are numbered so that the observed measurements correspond to a monotone data pattern or a 
staircase structure, i.e., 

ml > m2 
_>... 

>mk ? O. 
If the response values prior to the first monitor in operation are of interest, then mk is set to be 

bigger than 0. 
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FIGURE 7: Contour plot of the interpolated log ozone field (In pg/m3) in June, 1994. 
The dots denote the stations. 
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FIGURE 8: Contour plot of the standard deviations for the interpolations 
in log-scale (In pg/m3) in June 1994. 
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The following notation is used to facilitate our presentation. Denote 

(a) the response variables at the gauged and ungauged sites by 

( y[gih] y[gkn] 
= y- y[g] ,..] 

y[g']1 y[gk] 

where 

(i) Y[ lu, n x u matrix, denotes the responses at ungauged sites, 

(ii) y[g7 ], mj x gj matrix, denotes the missing responses at the gauged sites in the jth 
block, 

(iii) Y19[f, (n - mj) x gj matrix, denotes the observed responses at the gauged sites in 
the jth block; 

(b) the observed measurements at the gauged sites by D where D = { Y[gil,..., Y[gI }; 

(c) the unobserved responses by Yunob = {y[u], y[g] 
,...y[gk 

] }; 

(d) the unobserved responses in blocks j to k by Y1[g7.1 
..km} 

(e) the responses from blocks j to k, including both observed and unobserved sites by 

y[gn] y[gn ] 

y[g ] ,...,g = k 

y[g]J y[g]9 

(f) the responses from all gauged sites by Y91[g] = 
Y[91,...,gk] 

We postulate ? time-varying covariates responses Zt = 
(Zt,..., Ztj)', at each time point t 

being constant across all sites, and write 
Z/ 

z=Z7). 
Z= 

Z" 
The ? x (u + g) coefficient matrix 3 corresponding to the ? covariates and covariance matrix E 
of dimension (u + g) x (u + g) over gauged and ungauged sites are partitioned conformably: 

('EM] E[ug] 

The coefficient matrix 
/[g] 

for the gauged sites is further partitioned by blocks as 

4[g] 
= (o[il , /3[., p ]k) and j3[g ,..,k] (j3[i .. 

Correspondingly, we partition E[g] as C~]. .. E[gi,g•] /~ J ... E[g,,gk] 

Sgk] =1. ~g]Eg•g] . ~ k 
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The following one-to-one transformation (Bartlett 1933) of the matrix E is used: 

Ekk - 

Ij - E[gj]_- ,.E[9j 
,g9j+1' 

)] ( E[gj+l ,gk]) -1E[(gj+l,.... g,),gj] 

_i ,g 
l ..) k l E [(9 j + 1, --, k 

,) 
,9 j ] 

, 
whereg] 

E[(gj~l,---,gk,,g] 
( ""gk)g] = 

I 
;j- 1,...,k-1. 

,E[g ,gj] 

The matrix E[g can then be obtained from {Ekk, (Fk-1, Tk-1) , (Fl, 171)} by means of this 
transformation. 

3.2. The model. 

The response matrix Y is assumed to follow a Gaussian-generalized inverted Wishart model. 
Specifically, using the notation described above, 

Y /3,1E ~ N(Z11, I,n 0 E), 

/3E 
L/01 F N(/0, F-1 

? E), (1) 

E r-,GIW(, J),I 

I 
where N(.,-) denotes the Gaussian distribution, 3o is the ? x (g + u) hyperparameter mean 
matrix of /3, F-1 is an ? x ? positive definite matrix representing the variance component of 
/3 between its ? rows, and Z is the matrix of covariates. GIW denotes a generalized inverted 
Wishart distribution of E with 5 = (5o, 

? .., 
k)' representing degrees of freedom, and T being a 

collection of hyperparameters defined below. The GIW distribution is recursively defined by 

E [191] GIW ([g], H[0]), 

F'l ] IW(*o, o), 

r[u 
I 
Il],~ 

N 
(r(0u, Ho(0 

@ 
) , 

where F[u] 
E[•Ul- _- 

[] _ -[U [91)-1[91 rU[] = 
[g])-1A[gu]. 

IW denotes the in- 
verted Wishart distribution with hyperparameters (1o, 

,5o); 
the matrix ro 

, 
is the hyperparameter 

of riu]; and the matrix H0 is the variance component of rm between its rows. 
Moreover, the above GIW distribution is defined in a stepwise fashion through ?9g] with 

5[g] - (1, ..., 5g) 
and 

Wjg] 
being another collection of hyperparameters. The distribution of 

{Ekk, (Fk-1, 
7k-1),..., 

(F1, r1)} is defined as follows: 

Tj 
( 
Fj 

~ 
N(roy, Hj 

0 
Fj), j-= 1, ..., k-i1; (2) 

r j 
IW(Wj,=j), 

j= 1,...,k-1. 
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The hyperparameters involved in our Gaussian-GIW model can be written as 

t = {foF, ,FI}, 
where 

f- {[,0, 
70,,Ho0}, 

[g] 
= {fJk, (1j,Hy,roj0);j = 

1,...,k-1}, 
and 

The dimensions of the parameters in are as follows 

0 :ux u, ro0u :g x u, Ho :g x g, k : gk 
X gk, 

and for j = 1,...,k- 1, 

j :9gj x gj, rj :(gj+1+..+gk) X 9j, Hj :(gj + - - 
-++gk) x (g9j+1+ 9+gk). 

In our work, we adopt 

70j = 
(j+l,j+l)(j+m),j 

and 
Hj- 

=*+1,(3) 
(j1j1*+)j(j+1,j+ly (3 

Furthermore, we assume that the degrees of freedom, S,., .k, follow a gamma prior distribu- 
tion (Le, Sun & Zidek, 1998) where, for specified a and r, 

7r(J) OC 
(JZ''' 

k)'-Z 
exp{--r(z 

?+?+ k)}. 

Remarks. 

1. The GIW distribution, introduced by Brown, Le & Zidek (1994b), generalizes the IW 
distribution by allowing different degrees of freedom for a random positive definite matrix. 
A p x p positive definite matrix S has an IW distribution, denoted by IW(B, J), with S 

degrees of freedom if its density function is proportional to 

tr1 (s-iB) 
}. |SI-(6+p+1)/2 exp-{ 

1 tr (S-1B) 

2. The GIW distribution is a conjugate prior for a Gaussian distribution. This prior is very 
flexible and quite natural to deal with the staircase structure of the observed data. For 
example, different degrees of freedom for the k blocks can be expressed through the hy- 
perparameter vector J. 

3. The GIW modeling method also gives us considerable latitude in selecting the numbers of 
blocks in the GIW structure. For example, we could group all sites that started operation 
at the same time in one block. Alternatively, we could select each site as a block in the 
stair-case structure. 

3.3. The predictive distributions. 

This section showcases our principal results, the joint predictive distributions of all unobserved 
responses. Their means offer point predictors of those responses while the distribution as a whole 
allows us to assess the uncertainty of those predictors. Furthermore, they allow us to convolve 
the unknown function with impact distributions so as to incorporate that uncertainty fully in a 
hierarchical model. 

To facilitate the presentation of the main results, we introduce the following notation. Let 

p('i) (rn-x m )? -g 9]Tj 
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(A 
m xmy 

mj 

x (n - 
mj) 

11 12 MiX / 

A~22 A1 (n-my) xmy (n-my) x(n-my) 

= I, + 
ZF-1Z'.+ 

T[g9j+1, 
'9k]Hj([19j++19. 

,k 

where 

[+1.g k] -k 
- Z 

o+1,,k:,fo 
j = ,..., k - , 

0, forj = k. 

Moreover, for j = 
1,..., k, 

(1+2) )+1A1A 
` 2 

LA _-j-gA +1 A - A AV1 AU] (112) 6- -gj+n-mj+1 
11 12 22 21 

{ I ' 

j 

-1 

+ 
(1] 

j1 
rIj 

[ ] A i 2] 
(112)= j-gj+l 

1gfl)-•g-gj-n/1j(2) 
where j 

- 
Y [ 

] 
- 

p, 

,[ulg] -= 
Z 

)U].+l 
Tou, 

( [ulg In +g ZF1Z' + 

]H0 
(o [g]', 

and [s91 = Y[1] 
- Zo[g]0 

A matrix-valued random variable Xn x m is said to have a matrix t-distribution, i.e., 

X0tn x m (X(o), A&?B, ), 

where A is n x n and B is m x m, if its density function has the form 

f(X) 
cK A-/2 

I-n/2 
+n 

--1 

{- 

(X 
- X(O))} {(X - X(o))B 

} -(6+n+m-1)/2 

and the normalizing constant of the density is given by 

K 
- (S2) 

Fn+m{(1 

+ n + m - 1)/2} 

rA{(n + n - 1)/2}F(m{() + ( - 
1)/2}'- 

where 
p 

Fr(t)-) 
= 

(--)/4 
FJ{t - (i - 

1)/2} 

i=d1 

denotes the multivariate Gamma function. 
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THEOREM 1. The predictive distribution of the unobserved responses conditional on the ob- 
served data D and the hyperparameter set W is given by 

k-1 

(Yunob 
ODI 

) Y(Y[u9] Y•r 
m... 9',g] D,H) II (y9g71] 

Y -1 

D-l,,] 
,W) 

x 
(Y[gm] I• 

, 
j=1 

(4) 
where the three components of the conditional distributions are specified as follows: 

( ym] I D, Wi imk 
•9gk (1l12)) 

(I12) ? (112) (112) ) (5) 

Y[g7] I Y[gm+1.'9m,D,WT) ~ 
tmrX9jg 

P( 12)'1 4112) ? ( 12)6( 12) (6) 

(y[u].I Y. ....,m1], D,H)W tnxu (PJulU], 
(0- 

+ 1)- "ulg] ( 

0,0oJ--U+ 1. 
(7) 

Remarks. 

1. We describe (5) and (6) as backcasting since they give the joint predictive distribution 
of the response variables at the gauged sites during their ungauged time period. More 
precisely, 

k-1 

(Ybackcasting I D, W) = I (y[g19] 
Y 

+9m. 
],D, J) 

x 
(ygm] I D,71). 

j=1 

2. We describe (7) as spatial interpolation since it is the predictive distribution of the response 
variables at the ungauged sites during the time period under consideration. More precisely, 

(Yinterpolation I Ybackcasting, D, W) - (y[u] I Yc gi, .km, 
D, 

. 

3. The result (4) can be used to obtain predictive distributions for forecasting. This can be 
achieved by appropriately choosing Z corresponding to the first ml components. For 
example, to forecast the (n+ 1)th month in the above application, we let the first component 
of Z be [1, cos{27r(n + 1)/12}, sin{2r(n + 1)/12}]. 

3.4. The posterior distributions. 

While our interest in this paper centers on predicting unobserved responses, we recognize that 
in some applications the model parameters themselves will be of inferential interest. The model 
"transfer" coefficients in /3, for example, give insight into the role of the covariates in shaping 
the joint response surface. The spatial covariance may reveal the influence of latent factors such 
as wind speed or direction. Thus we develop and investigate the relevant posterior distributions 
in this section. 

To present those posterior distributions, we adopt the following basic notation: 

K = (O, fI-m)F: (nF-mF) x n, Z(j) = K 
Z, 

y 
+(j 

) 

- 

I j 
""k, Fj - Z(j) (j) - F, 

Wy = 
F 

1Z(j) Z(j), 
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for j = 1,..., k. Next we define notation that uses the basic notation: 

)[g3 ] ((Z (j )) 
- Z/ )y ,I 

_ 
-gv+i+ ,',k 

)3[gj+1 . 
k 

= 

_ 
(Z(jZ) ZZjf j) 

Y[ 9+...gk 

•t,; _ w .tg•(I) 
z 

) g-1 
( 

= W + I-W) , - 9-7W/3 + 
,...,gk] 19gj+1 

,k gk] 
_ 

Wj i[gj+1, .,9k 
9 

1+(IWj)jo 

9k 

[ = Y[ - 
[gZ(j) 

- 
g, 

[ 9+ ,k. - ,gk[gj+l, ,gk 
_ Z(j) gj+l,...,gk] Uj 

- 
U-()0 

Finally, let 

= '1k + (g[gt]) (In-ink + Z(k)F-1Z'k) 
1 

lj 

= H + 

(g)g} 

'9 
Inm[g 

gj 

Z 
+ 

I.....19k] 
--l.j 

+7 

_0j)' InmJ 
+ 

Z(j)F 
1Z'j I 

1 

__ - 

' 
1 

_ 

+ 

(J 

) 
"1-Qi 

Ujl 
- j(j) 

+ (= by ,+ - gk] 

f(i, E ID, 7) = f( H 1 U, D, )Uf7(E D, ), 

where 

k-1 

f ( • I , D , 7 ) = f (9 9k1 D , E kk 
, • ) 

1 I ( it l ID ,/•t•,+ 1 , -,g l 9k 
j ,• 

with 
9k 

D, Ekkk-1(k 

H7gH]I D, 
1++1 

j ...,) 

9 

, N ,k 
n-m + ( i . k 

, 
F 

j 
, 

Hj H 0j+ 
I (g Ij ( j)I /9m+ (j)) 5LZ1I- 6-19 

(8) 

and 
k-1 

f f(H {HD, W = 
f(Ekk 

+ D, ) 
1f(ri I D, j, )F.9f(jI) D, )g 
j=1 

with 

39]I D, 2kk, i N 
(,?[gk] 

, I 0 kk) 

Ek I D, 
9] 

IW(k, 
k) j D, 

j, 
, N 

(j, Ij -, i D, 
+ 

IW( , 
j). 

(9) 
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COROLLARY 1. The posterior means of 3 given data D and hyperparameter set W are given by 

E (0[9k] D, IW7) - 

E([1j] D, W) + E +1.9k] DlW) -... 
tk} 

where 

E. 93+1...9k] D, W = {E (319j+1 D,-),I.. ..,E (3[ 
9k 

D,W)} 

is computed recursively for j = 1, ..., k - 1. 

We note that E(/3[ij] I D, W) = 
/[g,] for j - 1,..., k - 1, when the data are complete, i.e., 

when D contains no missing blocks. 
The posterior means of (Ekk,7 j,Fj,j = 1,..., k - 1) can be obtained directly from the 

Gaussian and inverted Wishart distributions using the theorem above. Other types of posterior 
expectations relevant to the estimation of parameters are given in Appendix B. 

4. PARAMETER ESTIMATION 

In this section, we discuss how the elements of the hyperparameter set W are estimated. These 
estimates are obtained in two steps. In the first, where data are available for direct estimation, 
the hyperparameters are found using the type II maximum likelihood approach. The second step 
involves the estimation of the hyperparameters associated with the ungauged sites. This step is 
done using the spatial covariance interpolator developed by Sampson & Guttorp (1992). 

4.1. Estimating hyperparameters using the EM algorithm. 
In the first step of the estimation procedure, we derive the EM algorithm corresponding to the 
model developed in the previous sections for estimating the hyperparameters. The resulting 
estimates are the Type II maximum likelihood estimates. This approach has been used in previous 
studies (Brown, Le & Zidek 1994a; Sun, Le, Zidek & Burnett 1998). 

Recall that the hyperparameters ('Fk, [i*j, Toj, Hj], j = 1, . ., k - 1) correspond to the par- 
tition of E through the Bartlett transformation; i.e., with the recursive notation 

/*jj 
I*j(j+1) 

IF(jj=) 
= 

, forj=1,...,k-1, 

the parameterization of 
(Tk, [j, [I7oyHj], j = 

1,..., 
k - 1) satisfies 

-1 
=k 

--kk, 
j jj - 

Tj(j+1)T(j+1,j+l)T(j+1)j 

It is easy to show from (3) that 

+( ~ o 

"j(j'+1,j+1)T"j TojJ(j+'j+i) 
\ 
I'(j 

+1,jT+1) 
Tj 

+(jT1,j 
+1) 

and 

The EM iterative algorithm (Dempster, Laird & Rubin 1977; Chen 1979; Brown, Le & Zidek 
1994a) requires at iteration p + 1, in the "E-step" the computation of 

Q(- 
(P)) = E [log{f(Y, 3,Z 7)} 

rr(6) D, CP)] 

= E [logf {Y 
,E} ID,7(P)] + E {logf( (4, E i()D,7P)} + 

logrr(6) 
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given the previous parameter estimate W (P) from iteration p. Then at the "M-step" we are re- 
quired to maximize 

Q(-(W 
IW(P)) over W to get W](P+l). Here, the expectation is taken over 3 

and E with respect to the posterior distribution 3, E | D, 
1D(,). 

Notice that E{log f(Y 1/3, E) | D, 11(P) } does not depend on W.. Thus the algorithm requires 
only that we compute 

Q*(W I| W(P)) = E {log f(#, 
3E 4 W) I D, I()+ log r(5) 

at the E-step and maximize Q* over W at the M-step. 
With the parameterization introduced above 

Sk - +6k+gk+l k-1 1+6j+gji -9+k +1 

f(03, EW) c< {H0 ic(gYib)}I|EkkK 1 2 
(j1 1+61J..+1+2 

x 
1I=1 |Ijl |IFI| exp (- tr[El { + 

(/3 
- 

o)'F(0 
- 

3o)}]), 

where go = -gl and 

c(p,) - 26P/2Fp(5/2) 
Hence 

Q*(( |(P)) = E logf(/30, E IW) D, (P)} + log r(6) 
k 

= constant + ? log c(gj, j) + log ir(5) 
j=1 

-2(f+Sk + gk + 1)E (log1 Ekk| ID, W(P) 
k-1 

-lE(?+ bj +ggj 
+-"+Agk +l1)E(log|Fjll 

|ID, W(P) 2 
j=1 

k 

+- (?J + gi + + gj-) log |IW l + 2log IF 
j= 1 

-Itr EE-f {*{ + (3 - o)'F(3 - o)3)} D P)(10) 

Suppose the current estimate is 

a 
(T)-(a 

o (, maiFmz), ePp [Y] J 1 .., ., k-1. 
The EM algorithm at step (p + 1) is implemented in two steps. 

(i) E-step: Compute the posterior expectations involved in (10), given data and j(}). We 
present the detailed calculations in the Appendix B. 

(ii) M-step: Maximize Q* (7/ | (v)) over 7/to obtain the updated estimate W f( *l) of 7 at 
step (p + 1). This M-step is carried out by the following updating processes: 
(a) To update the estimates of 6, maximize 

k k 

j=1 j=1 

where we have set 1k = k3k for simplicity. 
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(b) To update the estimates of T, maximize 

k 

( gi + 
...- 

- - + gj -)log|jI~ { E- 
tr (E D( 1), DH(P)}. 

j=1 

(c) To update the estimates of 30 and F, maximize 

g log |F| - tr 
IFE (0 - oE(- 0o)'1 D, W(P)1 

Note that the estimation of (5, *) can be separated from that of (/30, F). 
To complete (a)-(c), let us consider the following recursive partition of 

E (E-1 I 
D,-(P)) 

ccB11 B1 gi x gi gi x (g2 ++g9k) 

B(1) B (g2 + + gk) X 91 (g2 + + 9k) X(g2 + + 9k) 

and 

BJ-) BJ-) (B(•-')1 B(j-) 
22 21 k11 112 

(1BJ BJ 
g 

x 

gJ 

g9 
X 

(g9j+1 

- 

gk) 

B) B (g+ +.j1 
+ g + k) X 9 g (gj+1 +. + 9k) (g+1 + + g9k) 

for j = 2,..., k - 1. Note that the partitions depend also on p, which is dropped from the index 
for simplicity. Let V)(x) = d{log r(x)}/dx denote the digamma function. It follows that the 
estimates of J and W can be updated by solving the equations 

f" 

( 

2i+i 

( 

2i+1 
+ (0g 

V+l) -log j-P) 
= 

2r-2(c- 1) 

for j = 
1,.., 

k - 1, then calculating 

S= ( +g) 
+"+ gj-1) 

(B(?) ) and(P+1) -Bj)(j)) 

forj =1,...,k- 1, and 

(p+1) = B(k) - 
B(k-1) B(k-) B(k-) 

k 22 21 
B11 B12 

(recall that gi + go = 0), where and are as given in the notation in 3.4 (preceding 
Theorem 2) with parameters replaced by the estimates at iteration p. 

The updated version of estimates of /3 and F are, respectively, 

and 

FpI _g-I 
E (/ EI' D, 

7-PP )){E( 
i DJ() E(~i ID 
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Iterating these EM steps until convergence produces estimates for the hyperparameters in- 

cluding {'k, (j', T0j, Hj), j = 1,..., k - 1}. These estimated hyperparameters can be used 
to form an estimate for 191g], associated with the spatial hypercovariance of the gauged sites, 

through the Bartlett transformation. This estimate is relevant to the estimation of !['] and 
ou the hyperparameters corresponding to the ungauged sites via the Sampson-Guttorp method as 

described below. 

4.2. Extending the covariance matrix estimate via the Sampson-Guttorp method. 

In this section, we describe how the Sampson-Guttorp method can be used to estimate T[u] and 

[ou]. Note that the SG method is designed to extend the spatial covariance from the gauged to 
the ungauged sites. The method and its applications have been described in other publications 
(Sampson & Guttorp 1992; Brown, Le & Zidek 1994a; Sun, Le, Zidek & Burnett 1998) and 
hence are not included here. 

For this problem, the estimates for T[u] and 7[u] can be obtained by first extending the esti- 
mated T191[g] to the ungauged sites using the SG method and then converting the resulting spatial 
hypercovariance to estimate the parameters of interest. To illustrate this step, we let k = 1 for 
simplicity, i.e., assume only one block of gauged sites. 

Let M be the hypercovariance of Y. Then 

M = (MU MU gMg Mgg) 
Thus, 

7u] Mgl Mgu (11) 

and 

,[U]- - g - 1)(u] - U - 1) 61u]-=I(Me 
- 

MygMg1Mgm ). (12) 
[•'] 

- 1 

The hypercovariance Mgg is estimated by 

M99 
?[jg] 

M•gg =_ 

61- g - 1 

The SG method is then used to extend Mgg to estimate M 
,, 

Mgu and Mug. The parameters of 
interest are estimated through equations (11) and (12) using these estimated M-matrices. More 
details on the SG method are given in the Application section. 

5. CONCLUDING REMARKS 

In this work, we have developed a Bayesian approach for spatial and temporal interpolation 
where observed data from monitoring stations following a staircase structure can be incorporated. 
The approach is an extension of the Bayesian methodology for spatial interpolation developed 
earlier by Le & Zidek (1992), which was further extended to a multivariate setting by Brown, 
Le & Zidek (1994a) and Le, Sun & Zidek (1997). This approach would allow for combining 
data from active networks with different starting times of operation in the interpolation and thus, 
providing the desirable property of borrowing-from-strength. The approach appears to work 
reasonably well in the interpolation of ozone concentration levels in British Columbia. This is not 
too surprising since the earlier developments of the Bayesian approach seem to work quite well 
with both real data and in a cross-validation setting (Sun, Le, Zidek & Burnett 1998; Sun 1998). 

In this work, the Sampson-Guttorp method is used to estimate the non-stationary spatial co- 
variance field. The estimated spatial correlations may be subject to considerable errors which 
are not incorporated in the current methodology. Assessments of earlier developments of this ap- 
proach, however, indicate that predictive intervals are well-calibrated without taking into account 
that uncertainty (Sun, Le, Zidek & Burnett 1998; Sun 1998). 
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The development of the interpolation approach comes with a related Bayesian design theory 
(Le & Zidek 1994; Zidek, Sun & Le 2000). Here it is possible to redesign monitoring networks 
with such staircase structures. Results for this work will be forthcoming. 

It would be desirable to extend this methodology to a multivariate setting where observed data 
for several pollutants with staircase structure are available for interpolation. This would allow 
for even more borrowing-from-strength. The work by Sun, Le, Zidek & Burnett (1998) has 
demonstrated that substantial improvements could be achieved when observed data for different 

pollutants are used to impute any specific pollutant, particularly for those with high correlations. 
Work in this direction is currently underway. 

We have seen above that monthly averages of ozone concentration levels exhibit only moder- 
ate temporal correlations. In contrast, hourly or daily levels of various pollutants including ozone 
and PM10 have strong temporal correlations (Li, Le, Sun & Zidek 1999). Spatial interpolation 
for these hourly or daily fields is crucial for examining the acute health impact of air pollution. 
Furthermore, monitoring networks often add or remove stations during their operational periods, 
creating data patterns that are not considered in this work. Extension of the current method to 
these aspects is under consideration. 

In recent years, several authors have improved the traditional kriging method by incorpo- 
rating it into various Bayesian frameworks (see, e.g., Handcock & Stein 1993; Handcock & 
Wallis 1994; De Oliveira, Benjamin & Short 1997; Gaudard, Karson, Linder & Sinha 1999). It 
would be worth comparing the performances of the proposed method with these Bayesian kriging 
approaches. 

APPENDIX A: LEMMAS AND PROOFS OF THEOREMS 

LEMMA 1. Define matrices Y : n x g, 3, /30 :1 x g, E > 0, T > 0 : g x g, Z : n x 1, 
F > 0 : x l, and A > 0 : n x n. The Gaussian-Inverted-Wishart model 

Y 0, E 
, N(Z3, A 0 E) 

iE --, N( o, F-1 0 E) 

E~ IW(*, 5) 

implies the following predictive distribution 

Y - tnxg [Z30, (J - g + 1)-1(A + ZF-1Z') 0 o , - g + 1] 

and the posterior distributions 

( A, Y ~ N(W1) + (I - W)+0, -1 q), 
E | Y ~ IW(W + (Y - Z 3o)'(A + ZF-iZ')-i(Y - Z o), 5 + n), 

where 

W-= 
(Z'A-1Z + F)-1Z'A-1Y, 

= 
(Z'A-1Z)- Z'A-1Y, F 

= 
Z'A-1Z + F. 

Proof of Lemma 1. The proof follows arguments of Anderson (1984); see also Brown (1993). 

Note. Using the identity 

(A + Z F -Z')-• 
= 

A-• - A-iZ (F-i + Z'A-iZ) -iZ' A-i, 
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one can show that 

(Y - Z3o)'(A + ZF-1Z')-(Y 
- Zoo) 

= (Y - 
Z/o)'A-I(Y 

- 
Z/o) 

+ (/3 
- 

o)' {F-1 + (Z'A-1Z)-1 }-1 (•3 
- 

/30), 

reflecting the contributions from the likelihood and the prior distribution. 

To state the next lemma, we let Y = (y[u], y1g]), yu] and y]91 having n x u and n x g 
dimensions, respectively. We adopt the following transformation of the partitioned covariance 
matrix E of Y: 

( Ell E1 
12 

E 
- 2 E -2 (E22, 7, r) 

E21 E22 

for matrices El 1 : x u, E21 1 9 X U, 22 g x g and r = E221E21, E1 - 12 221E21 

LEMMA 2. Adopt the Gaussian and Generalized Inverted Wishart model specified by: 

Y 11, E - N(Z1 , A 
E), 

/E I 
. N(/30o, F-1 0 E), 

7r 
SN (ro, H 0 F), (13) 

F 
e% 

IW( 1, 61), 

E22 IW(2, 62) 

where 
Z': 

nx ?, = 3[u],3191]) (?x u, fxg) and/30o 
= (0 ],0) (Lx 

u, 
x g). Then 

the predictive distribution of (Yu Y 191) is 

y[u] y[g] 
tnxu (P[ulg], I[Ulg] D[ulg] 61 - u + 1) 

where 

P -ulg = Zjou] + y[g] - Z)o970, 

[u=g] - A + ZF-1Z' + Ye] - Z/3) H Y191(y -Z 

j lug] -= 
(b1 

- u + 1)1 i1Wi. 

Proof of/Lemma 2. (i) Suppose 3 = 0. Then by standard results for the multivariate normal 
distribution, the conditional distribution of (Yu] yg], E), which does not depend on 

E22, can 
be expressed as 

(Y u] y l] , v)F N (Y 1g7, 
.r 0 v)- 

Applying Lemma 1 to this distribution with the prior distributions of r and F in (13) yields 

(y[u] 
Y 

[ 
tnxu ([17"0, 

(i - u+ 1)-1 (I + 
Y0a]HY[) 'l'l, 

1 - u + 
1i. 
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(ii) Now suppose 3 follows the distribution in (13). Notice that 

(A + ZF-IZ')-1I2(Y - Z/30) IE - N(0, I 0 E). 

The lemma follows immediately from the result in (i). 

LEMMA 3. In the setting of Lemma 2, assume further 

yy1- 
(1) 

y~g]=( 
1) 

Y[](2) 

where the matrix Y g]: m x g, m < n, holds the unobserved responses at the gauged sites. Let 

(P 

( 1 mx g 
= 

ZOO ( /1(2) (n- m) x g 

(All A12 / M Xrn mx (n-m) 

A21 A22 (n-m)xm (n-m)x(n-m) 
= A + 

ZF-Z'l, 
A•I A22 (.- m)? 

X 
(1 - m) X 

(-- () 

#(112) 
= 

#(1) 
+ A12 

(A22)- 

- 
[(2) ) 

6 -g+(1 
(112) - J2 - 9 + 

Im 1Aim 

- 

AI2(A22)-IA21}, J62-g+n-m+1 

(112) = 
629+1 {2+ (2 

- 1(2))' (A22)1 (Y - (2 ) , 

6(112) =62-g+n-m+1. 

- , g] [ g] i Then the predictive distribution (1) given dataY(2) is 
0JYi) givn]data1(2 

Y• vY2 
7) , tm xg (P(112)i (112) 0 (12) 6(12)) (14) 

Proof of Lemma 3. The GIW model (13) implies the GIW sub-model 

y[9] /3[g], 
522 ~ 

N(Z/3[h, A 0 
022), 

[g] E22 
N (i3], F-1 0 

E22), 

Y]22 ~• I W( • 2 , •2 ) . 

Therefore, by Lemma 1 

tnxg 
[ 

Znx 
g ]0 

(2 -g 

9 

1)-(A 
+ZF-1Z') 

?92, 
62 - g + 1]. 

(5 

ynngt Conditioning the distribution in (15) upon Yia] yields the predictive distribution (14). 
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Proof of Theorem 1. Part (i) of the proof is a straightforward application of Lemma 3. For part 
(ii), the distribution is obtained by first applying Lemma 2 to y[gj] conditional on 

Y1J+1,...,9] and then applying Lemma 3 to y[g9] conditional on y[g'] and 
y[g+,.,9]. 

Part (iii) is an 
immediate result of Lemma 2. 

Proof of Theorem 2. (i) Model (1) implies 

9k 
Ikk,/30, F N ()k]I F-1 0 Ykk ( 

(16) 

y[gk] 
] kk, 

N 
(Z(k)/3[g] 

Imk 
0, 

- 
kk 

, 

which gives the posterior distribution of 
(/3[9k] ID, Ekk, J7), as in (8), by means of Lemma 1. 

Similarly, model (1) implies 

,391 

3 

[ 49'+l, -9k 1,7- 0---,g 
2k 093 1, 9,k 

)9 -10 T 

yj -,] l 
(+11k + 1)3 19, H N (Z(1-)3] + 1 

j F-1 0 F() y~g'] 
]•(lvgJ+l ....,gk], ]3[gj,gj+1,...-,gkl], 

- 

.7j, 

j 
, 

j 

-I 

W N 
Z(j)]3[gJ]- 

[-g9g+l,...,gk],j)7j, 

F-1 
(2 

F) ) , 

(17) 
where 

-gl +l , g 
_ 

[gj+1, 
] 9k 

_ 
Z(j),og3+l ...,gk] 

(W) - gW(j 

Applying Lemma 1 again gives the posterior of (/3[gJ1] I D, 
I3[9J.+1 

.g ,9 7j, Fj, 7) as in (8). 
(ii) Combining (16), (17) and (2) and using the result of Lemma 1 yields distribution (9). 

Proof of Corollary 1. Taking conditional expectations of the 3's given (D, 71) in Theorem 2 

yields the result. 

APPENDIX B: CALCULATION OF POSTERIOR EXPECTATIONS 

LEMMA 4 (This is the same as Corollary 1 in the text). The posterior means of 3 given data D 
and hyperparameter set 71 are given below: 

E ([319] D, H) = +{E([ID 

where 

E 

-1g+1 
k 

D, ( = E (1[i+11 I , 

..., 
E([k] I D1)) 

is computed in a recursive fashion, for j = 1,..., k - 1. 

Proof of Lemma 4. Straightforward using Theorem 2 and a conditional expectation argument. 

LEMMA 5. The posterior mean of E-1 E= given data D and hyperparameter set 'N is ? (11) 

computed recursively as follows: 

(r= 
k-1 

a 

E 

JJ) 
I 

L"']-[) =- 

_jj-l•~•f•;_t (fj•_j _ j(ir'Ii+I 
D 1Q11•) 

forj=-1.k- 1, and E '-(kk)I D, 71)=6 kk-1J 1 
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Proof of Lemma 5. Notice that 

E-1)=_ 

-1 

-1,r 
-jr-1 

"jr-1,7") --1 

ki 
-jj 

(r 
33 

- 

r-F 

r r + (j+1,j+1)) forj - 
1,..., 

k - 1. 

Using Theorem 2, 

E 
(F-1D I D, 7) =Sj1 

E 
(Fy-r1; 9 

D,DI) = 

6j~ijr'I 
g, 

E1..r 
31 7j| DI) 

-= 
ii31 Hf, 

forj = 1.. . k - 1, and E 
E-(kk) 

J = E (E-1 ID, ) = k7 -1.This proves the 

lemma. 

LEMMA 6. Let 0 denote the digamma function. Then we have 

ilk 

(k -i 
1 

E (log IEkk| I D,J7) = -gk log 2 
- 

) + log k k, 

and 
-i71 E (log Fr3I I D, J) = -gj log2 - tV (3 +) +log |'I . 

Proof of Lemma 6. See Chen (1979). 

LEMMA 7. The posterior expectation E (j3E-1 I D, J7) is obtained as follows: 

E (/37 E D = E 1I kE |D E (/3 I DI E1 3[g 
.....g1•]I-)( l 

I 
- 

E([g+1"k] 

, 
) 

D - s (j - 
1)9" 

- 

g/+1. 
g9k1 

k) 
, (?9 .. k -+g?g~l 

. 9 

andfinally E ([k I D,7l) = k 

Proof of Lemma 7. We can write 

,3[gj .... gkIv-1 

S((/,3[gj]_ •[93+ l,,gkl 3[7 +1, .g,9k]- 
1 (3 [g 

gj+- .gk]j) 
F I 

Taking expectations and using this result recursively yield the lemma. 

LEMMA 8. The posterior expectation 3E- 1, is as follows: 

E (/3YP-3 I D, ) = 
k•a lak 

1- 

k-1 

-' j 

( _[g ] 
- 

+~[g 
1,..,k '. 

1 (1[g 
] 

_ 
[g + 

., 
k 

j=1 

k-1 k 

j=1 j=1 
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Proof of Lemma 8. The proof is obtained by observing that 

O 
- 
)1=391-)[k/+ Y~-1(,3[gj] 

- 
.,k]r)Fj('3[g3] 

-...[9k] . 

Taking expectation given (D, 71) on both sides of above leads to the result. 
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