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CHAPTER 1 
 
 
1.1  Tensile strength of an alloy can be expected to increase with increasing hardness and 
density of the stock. Bivariate scatter plots of tensile strength against hardness and of 
tensile strength against density of the stock are useful. Such scatter plots indicate whether 
the relationship is linear, or more complicated.  
 
Bivariate scatter plots are unable to reveal 3-dimensional relationships. For that one 
needs to consider three-dimensional graphs. Alternatively, one can proceed as follows. If 
measurements on the tensile strengths of several different alloys of a given density but of 
changing values of hardness are given, one can plot tensile strength against hardness at 
this one fixed level of density. Furthermore, if tensile strength and hardness data for 
alloys of a second different density are available, one can construct a similar scatter plot 
for that other level of density. If the two scatter plots (scatter plots of tensile strength 
against hardness, at the two different levels of density) show different slopes, then the 
effect of hardness on tensile strength depends on the level of density. The factors 
hardness and density of the stock are said to interact in their effect on tensile strength. 
 
Data from experiments are usually more informative as one can control the conditions 
under which the experimental runs are carried out. Experimentation is probably not 
possible in case (f). The relative humidity conditions in the plant can not be varied 
according to a fixed experimental plan. Instead, one takes measurements in the plant on 
the relative humidity, and at the same time on the output (performance) of the process. A 
danger with such data is that the relative humidity in the plant may be affected by 
unknown factors that also affect the output. The root cause is not the humidity of the 
plant, but these other “lurking” variables. 
 
 
1.2  The graph given below indicates a linear relationship between ln(Payout) and the 
product of interest rate and maturity, with an intercept that depends on the invested 
principal. Note that the linear model in the transformed variables fits perfectly.  
 
This is expected from the model  Payout = Pexp(RT).  Taking the logarithm on both sides 
of the equation, leads to ln(Payout) = ln(P) + RT. The intercept changes with the 
logarithm of the invested principle; the regression coefficient of RT is one. 
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1.3 Selected examples are: 
 
Exercise 2.9: MBA grade point average and GMAT score: observational study 
Exercise 2.10: Fuel efficiency and car characteristics: observational study of 45 cars 
Exercise 2.24: Thickness of egg shell and PCB: observational study on pelicans 
Exercise 2.27: Absorption of chemical liquid; experimental data 
Exercise 4.12: Amount of plant water usage: observational study 
Exercise 4.14: Survival of bull semen: experimental data 
Exercise 4.15: Toxic action of a certain chemical on silkworm larvae: experimental data 
Exercise 4.21: Abrasion as function of hardness and tensile strength of rubber:  

           experimental data 
Exercise 6.14: Tear properties of paper: experimental data 
Exercise 6.17: Rigidity, elasticity and density of timber: observational study 
Exercise 8.1: Incumbent vote share in US presidential elections: observational study 
Exercise 8.2: Height and weight of boys: observational study 
Exercise 8.3: Soft drink sales: observational study  
 
 
1.4  The response variable may be the breaking strength of a viscose fiber, and the 
explanatory variables may be the percentage of certain chemicals in the spin bath and the 
speed at which the liquid viscose is pressed through the nozzles into the spin bath. A 
designed experiment varies the explanatory variables (the design factors) according to a 
well thought-out plan and randomizes the arrangement of the experimental runs. The 
breaking strength of the resulting material is measured for each experimental run. In this 
case the data arise from a designed experiment. 
 
However, the data could also be obtained through an observational study. The plant 
manager may take readings on the process – measurements on the breaking strength of 
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the fiber and on the chemicals present in the spin bath, as well as the speed of the process. 
The manager may do this every 4 hours, collect observational data, and construct a 
regression model relating the response to the explanatory variables.  However, several 
problems may arise with such observational data. First, the variation in the explanatory 
factors may not be large enough to actually affect the response. Second, and more 
importantly, the response may be affected by other variables that one has failed to control 
and account for. For example, the relative humidity may play a role. With observational 
data such as these one is never sure whether a “lurking” variable may be present. With 
designed experiments, and proper randomization of the experimental runs, such problems 
are much smaller. 
 
Monthly macroeconomic data on interest rates, GNP, and unemployment are examples of 
observational data. The data are given to the analyst who has no opportunity to affect the 
way the data are obtained. 
 
Survey data are other examples of observational data; for example, survey data that 
involve observations on brand choices and features of products. Alternatively, brand 
preferences can be assessed through designed experiments. Participants in such 
experiments are presented a sequence of brands with various characteristics, arranged in a 
random sequence, and their brand selections are measured. In this case the data arise from 
an experiment. 
 
 
1.5  Scatter plots for the data in Exercises 2.8, 2.9, 2.21, and 2.25 are given below. We 
notice a linear relationship in Exercise 2.8. There is no strong (linear) relationship in 
Exercise 2.9. The relationship in Exercise 2.21 may involve a quadratic component; more 
information on the response when x is in the range from 30 to 40 would be helpful. We 
notice an approximate linear relationship in Exercise 2.25. However, note that the two 
responses between 3 and 4 at the high level of x are somewhat different from the rest. 
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1.6 Usually it is not very easy to spot relationships from 3-dimensional graphs; see the 
two examples shown below. The bivariate scatter plots for the silkworm data set are 
easier to interpret. 
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1.7 Consider models with a single explanatory variable x. The quadratic model, 

 εβββ +++= 2
210 xxy  , 

is nonlinear in the explanatory variable x, but linear in the three parameters 0β , 1β  and 2β .  
The polynomial model (with p > 1), 
 εββββ +++++= p

p xxxy ...2
210 , 

is nonlinear in the explanatory variable x, but linear in the parameters. 
 
The quadratic model with two explanatory variables, 
 εββββββ ++++++= 2112

2
222

2
11122110 )()( xxxxxxy  ,  
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is nonlinear in 1x and 2x , however it is linear in the parameters. The equation describes a 
quadratic function in two variables. For certain values of the parameters the expected 
response looks like a bowl with a unique minimum, an upside bowl with a unique 
maximum, or a saddle point. 
 
 
1.8  Consider a response y and a single explanatory variable x. The following models are 
nonlinear in the parameters. You may want to consider one of these models and trace out 
the mean response for changing levels of x. For example, take the first model with 

39.0=α  and 10.0=β  and consider x values between 8 and 40. This particular model is 
studied in Chapter 9; x is the age of a chemical product in weeks, and the response y is its 
remaining chlorine.  
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1.9  Sales may increase linearly with time, but the variability may depend on the level 
(the mean) of sales. If sales are very small, one can not expect tremendous variability. 
Sales can not be negative, so the variability is automatically bounded from below. On the 
other hand there is more room for bigger variability if the level of the sales is high. It is 
useful to think in terms of percentages. One may expect a variability (expressed as a 
standard deviation) of ± 10 percent. If sales are at level 10, this implies an uncertainty of 
± 1 units. On the other hand, if the level is at 1000, the uncertainty is ± 100 units. If the 
variability (standard deviation) is proportional to the level, one should analyze the 
logarithm of sales, and not the sales. You will learn in Chapter 6 that this transformation 
stabilizes the variance. In this situation the variability in the logarithms of sales does not 
depend on the level of the sales. 
 
Another situation, where the variability of the response can be expected to depend on the 
explanatory variable is when measuring distance. Assume that we want to determine the 
distances between pairs of points (where some are close together, while others are far 
apart). We can expect that the error in measuring close distances is smaller than the error 
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in measuring points that are far apart. The variability in the measurements can be 
expected to increase with distance. 
 
 
1.10  Economic “well-being” has an impact on people’s decision to have children. During 
the post World War II period, a period characterized by rapid economic growth, many 
young Europeans affected by the war delayed their decision to have children. Economic 
activity of the post World War II period also had an impact on the breeding space for 
storks and led to a decrease in the number of storks. Considering annual numbers of 
births and annual numbers of storks, one can observe a strong positive correlation. 
However, no one - except young children - would interpret this correlation as a causal 
effect. 
 
Poverty of a school district affects the number of students in subsidized lunch programs, 
with poorer districts having more children in these nationally subsidized programs. 
Poverty also affects the scholastic test scores in these districts. The strong positive 
correlation between the number of children in subsidized lunch programs and test 
achievement scores in these districts does not imply that there is a causal connection 
between subsidized lunch and test scores. It is poverty that is the driving causal factor. 
 
High summer temperatures are related to high beer sales. High summer temperatures are 
also related to increased sales of suntan lotion. Daily sales of suntan lotion and beer sales 
are positively correlated. This, however, does not imply a causal connection. It is not that 
people who drink require more sun tan lotion. 
 
 
1.11  Contact your state to obtain this information. 
 
 
1.12  (a)  Ignoring variability, we find that for the ith subject:  RelativeRaisei = 
βPerformancei . All points in the graph of RelativeRaise against Performance are on a 
straight line through the origin. 
 
The absolute raise (that is, the raise in terms of dollars earned) can be written as   
  AbsoluteRaise = (R)(PreviousSalary)  = (βPreviousSalary)Performance  
A graph of AbsoluteRaise against Performance does not exhibit a perfect linear 
association as the slope depends on the previous salary that changes from person to 
person. A regression of AbsoluteRaise on Performance may not provide the correct 
estimate of the parameter β. Take two workers; the previous salary of the first worker is 
half the salary of the second one, but the first worker is twice as productive. Their 
absolute raises are the same. The slope in the plot of AbsoluteRaise against Performance 
is zero, and not the desired parameter β. 
 
(b)  Let R = Relative Raise, where R is a small number such as 0.03 (3 percent). The ratio  
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CurrentSalary/PreviousSalary = [(1 + R)PreviousSalary]/PreviousSalary = 1 + R . A first-
order Taylor series expansion of ln(1 + R) ≈  R  is valid for small R . Hence   
ln(CurrentSalary/PreviousSalary) = ln(1 + R) ≈  R = βPerformance  is linearly related to 
Performance. A regression of ln(CurrentSalary/PreviousSalary) on Performance provides 
an estimate of β.  
 
 
1.13  The five separate scatter plots of final reading y against initial reading z, one for 
each contraceptive group, are given below. The graphs have identical scales on both axes, 
and the “best fitting” straight lines have been added to the plots. 
 
Model 1.8 assumes that the slopes in these five graphs are the same. The five graphs 
show that this may be a reasonable assumption. For the third group the slope is difficult 
to estimate. Apart from one subject with a very large initial reading (z = 102) there is 
little variation among the initial readings (all other z’s are between 50 and 65). It is 
difficult to pin down the value of the slope as the estimate is heavily influenced by the 
one subject with the high initial reading (z = 102) and response y = 100. Chapter 6 
discusses influential observations in detail. 
 
Assuming that  α = 1, one can look at the changes, y – z = final reading - initial reading. 
This implies that we compare five groups (samples), with the objective to test whether 
the means of the changes are the same. That is, H0: β1 = β2  = … = β5.  
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