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Purpose

First. This report provides an illustrative example of iterative regression model building including the use of
important regression plots and diagnostics:

• Scatterplot Matrix
• Variance Inflation Factor Barchart
• Visualization of Correlation Matrix
• Residuals vs Fitted plot
• Scale-Location plot
• Normal Q-Q plot
• Residual vs Leverage plot
• Residual dependency plots
• Overfitting model diagnostic check using polynomial regression

Second. It is shown how to use RMD (R markdown) to produce a beautiful, well organized PDF report.
In order to make this report more readable, I have suppressed the R code. Please see the associated RMD
file for the complete script to produce this document. I would like students to adopt this style with their
Assignments and Projects. Specifically:

• Strive to make your report readable and nicely formatted.
• Upload your Assignment as a PDF but also upload the Rmd file used to create the ouput

When compiling for PDF rather than HTML, an additional challenge in the quest to produce a well-organized
presentation is that figures will float and so are not necessarily in close proximity to the relevant parts of the
text. To overcome this you can:

• use the chunk options fig.height and fig.width
• use the latex command newpage to start a fresh page

Other style suggestions include:

• number all figures and tables
• include titles for all figures and tables
• no raw computer output - use only tables and figures
• can also use inline R output in text
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Preamble

Before running the Rmd-script for this document, you will need to install some CRAN packages by running
the following commands:

install.packages("tibbleverse")

I use ‘tibbleverse’ scripting to generate the residual dependency plots. Also I include a script for my function
vifx() which computes the variance inflation factors for a given design matrix.

Introduction to SAT Dataset

We input the spreadsheet in CSV format to R using the function read.csv(). Table 1 shows the beautifully
formatted output using stargazer to summarize the dataframe.

Table 1: Dataframe Summary.

Statistic N Mean St. Dev. Min Max
cost 50 5.905 1.363 3.656 9.774
ratio 50 16.858 2.266 13.800 24.300
salary 50 34.829 5.941 25.994 50.045
percent 50 35.240 26.762 4 81
verbal 50 457.140 35.176 401 516
math 50 508.780 40.205 443 592
sat 50 965.920 74.821 844 1,107

The question of interest for our analysis is what are the variables that are useful in predicting the total SAT
score from among the possible predictor variables: cost, ratio, salary and percent.
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Scatterplot Matrix

It is most important to read across the rows to see the y vs. x relationship for each variable!
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Figure 1: Scatterplot Matrix

From the scatterplot matrix we see:

• reading along the bottom row, we see sat vs each predictor.
• percent seems the most important predictor since the points are more tightly cluster around the loess

curve. Note that percent is negatively associated with sat, so low percent translates into high sat.
• ratio seems like the least important predictor
• panel (5,3), top row and 3rd panel from right, shows cost vs salary and we see the points are tightly

clustered around the loess curve. This indicates a strong relationship between these variables.
• panel (2,3), percent vs salary shows also that these variables are positively associated.
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In summary, the scatterplot matrix suggests sat is most closely predicted by percent since the data more
tightly cluster around the loess curve and that ratio is the least important predictor variable.

Variance Inflation Factor (VIF)

The VIF for the design matrix indicates which variables contribute to multicollinearity. Ideally, as in
randomized experimental designs, the variables are orthogonal so the XprimeX is a diagonal matrix. In
practice this never happens with observation data such as we face with the SAT scores dataset. The VIF for
the j-th variable, j = 1, . . . , p, in terms of its coefficient of determination, R2

j when it is regressed against all
the other input variables. Then the VIF for this variable is V IFj = 1/(1 −R2

j ). My function vifx() defined
in the Rmd source file provides a simple elegant method for VIF computation. An empoirical rule-of-thumb
is that when V IFj > 10 for any j = 1, . . . , p, near multicollinearity is an important consideration. The
problem with near multicollinearity is more care is needed in drawing conclusions about which variables are
really important.

It is helpful to use a barchart to visualize these VIF’s. This is especially useful when there are larger number
of input variables but even in this case with only four inputs it is a good idea. The barchart shown below
indicates that as might be expected from the scatterplot matrix that cost and salary are closely related.
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Figure 2: VIF for SAT input variables.

Multicollinearity, especially when only two variables are involved, can sometimes be detected from the
correlation matrix. Inspection of the correlation matrix in the table below indicates that cost and salary
are have a correlation 0.8698 which would be considered moderately strong but not hugely impressive since
the coefficient of determination for the regression of cost on salary is only 75.66%.

Table 2: Correlation Matrix

cost ratio salary percent
cost 1 -0.371 0.870 0.593
ratio -0.371 1 -0.001 -0.213
salary 0.870 -0.001 1 0.617
percent 0.593 -0.213 0.617 1
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Visualizing the correlation matrix as shown in Figure 3 below is often helpful since it makes patterns more
apparent. This is especially true when there are more explanatory variables. From Figure 4, the correlation
between cost and salary stands out.
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Figure 3: Visualization of the Correlation Matirx
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Proposed Model

Statisticians often work closely with subject matter experts. We will suppose that a school administrator
suggests that only cost and percent are really important since salary is a closely related to the annual
operating cost and ratio is not likely important to be important. If we follow this suggestion then we are
looking at a regression of sat on cost and percent.

Table 3 summarizes the fitted linear regression sat ~ cost + percent.

Table 3: Model Summary

Dependent variable:
sat

cost 12.287∗∗∗

(4.224)

percent −2.851∗∗∗

(0.215)

Constant 993.832∗∗∗

(21.833)

Observations 50
R2 0.819
Adjusted R2 0.812
Residual Std. Error 32.459 (df = 47)
F Statistic 106.674∗∗∗ (df = 2; 47)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Both variables are significant at less than 1% and R2 = 81.9% so provided the model diagnostic checks are
OK this model could be useful for prediction. Model diagnostic checks include the residual diagnostics plus if
appropriate the overfitting model diagnostic check.
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Basic diagnostic checks

The basic diagnostic checks for the model sat ~ cost + percent are shown in Figure 4.
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Figure 4: Basic Regression Diagnostic Checks

A problem is indicated in the Residuals vs Fitted diagnostic plot since the loess trend is not flat. The curve
suggests possible non-linearity due to interaction and some nonlinearity present in the inputs.
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Residual dependency checks

We use tidyverse scripting with ggplot2 to produce the residuals dependency plots - see Rmd file for an R
script you can use.
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Figure 5: Residual Dependency Diagnostic Checks

The residual dependence plot for percent shown in Figure 4 indicates that indeed percent exhibits a
nonlinear effect.

8



Improved Model

The diagnostic checks suggest that the previous model may be improved by including a quadratic term with
percent so the regression equation could be represented

sat = β0 + β1cost+ β2percent+ β3percent
2 + error.

Table 4 summarizes the fitted linear regression. We see that the quadratic term is significant.

Table 4: Model Summary

Dependent variable:
sat

cost 7.914∗∗

(3.498)

poly(percent, 2)1 −509.363∗∗∗

(32.734)

poly(percent, 2)2 139.109∗∗∗

(26.880)

Constant 919.188∗∗∗

(20.985)

Observations 50
R2 0.886
Adjusted R2 0.878
Residual Std. Error 26.084 (df = 46)
F Statistic 119.055∗∗∗ (df = 3; 46)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Model is sat ~ cost + poly(percent, 2). The basic regression plots are OK. The model appears to be
statistically speaking adequate as far as these plots go.
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Figure 6: Basic Regression Diagnostic Checks, Revised Model.
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But in the revised dependency plot their appears still some curvature in with cost as well salary. But the
curvature is weaker and seems influenced by the endpoints – this is a well-known problem with all smoothers.
We will consider an enlarged model which allows for quadratic dependence on salary in the next section.
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Figure 7: Residual Dependency Diagnostic Checks, Revised Model.
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Overfitting lack-of-fit test

As a final check on the model, we try overfitting the model.

First we overfit simply by adding in the inputs salary and ratio. The enlarged model is shown in the Table
5 and we see that the new variables are not significant at 10%.

Table 5: Model Summary

Dependent variable:
sat

cost 9.112
(8.545)

poly(percent, 2)1 −506.909∗∗∗

(35.671)

poly(percent, 2)2 152.085∗∗∗

(30.203)

salary −0.078
(1.953)

ratio 2.140
(2.832)

Constant 878.745∗∗∗

(45.192)

Observations 50
R2 0.889
Adjusted R2 0.876
Residual Std. Error 26.341 (df = 44)
F Statistic 70.266∗∗∗ (df = 5; 44)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We may use extra sum of squares principle to compare the model in Table 5 (the full model) with the
reduced model in Table 4. The resulting value of the F-statistic is 0.5528975 on (2, 46) DF which implies a
two-sided p-value about 57.9% so it is not significant at 10%. We accept the simpler model in Table 4.

Next we overfit by also including a quadratic term in salary so our fitted model is sat ~ cost + poly(percent,
2) + poly(salary, 2) + ratio. The ANOVA lack-of-fit test comparing this model with the simpler model sat
~ cost + poly(percent, 2) + poly(salary, 2) + ratio has a two-sided p-value about 30.3%. So the simpler
model is not rejected at 10%. We may attribute the apparent curvature in the plots shown in Figure 7 to
randomness since the evidence suggests it is not important.
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Conclusion

This example shows the iterative model building technique for linear regression. This technique is widely
used in statistical practice. It contrasts with the Machine Learning approach which focuses less on obtain a
statistical or mathematical model and more on finding a reasonable prediction algorithm. Both the algorithmic
and model building have their advantages and disadvantages so neither method is in a general sense better
than the other.

The report also demonstrates how a beautiful PDF report may be produced using R/RStudio. Sometimes
the reports like this are called dynamic documents since the report is easy to update if new data becomes
available. Another important advantage of this type of report is reproducibility. Since it is easy for the reader
to verify and check the computations and exact assumptions made in the claims reported. It is easy for errors,
either blunders or more subtle biases/assumptions, to creep in and so reproducibility is often critical in the
worlds of Science and Business.
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