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Background

When using the usual Mann-Kendall tau to test for trend,
the data need to be i.i.d (Hipel and McLeod, 1994, Chapter
23).
Real-world data do not always meet this requirement.
El-Shaarawi & Niculescu (1992) derived an expression for
the exact variance of the Mann-Kendall tau in the case of
MA(1) and MA(2) errors and modified the test for such
data.
The Mann-Kendall tau needs to be studied further in more
general error models.
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Time Series Process with a Deterministic Trend

The observations of a time series exhibit a trend of the
form

Xt = M(t) + µt ,

where M(t) is a monotonic trend and {µt} is a zero mean
stationary process
Null hypothesis for testing trend

H0 : M(t) = M0,wlog,M0 = 0

P. Cabilio Y. Zhang and X. Chen Trend



Background
CLT for Mann-Kendall Tau Statistics

Bootstrap Methods for Mann-Kendall Tau Statistics
An Example & Conclusions

U-Statistics

Define the U-statistic

Un =
1(n
k

) ∑
(n,k)

h(Xi1 , . . . ,Xik ),

where
∑

(n,k) is taken over all subsets 1 ≤ i1 < . . . < ik ≤ n
of 1,2, . . .n, and k is called the degree of the kernel
h(Xi1 , . . . ,Xik ).
U-statistics are unbiased estimators of parameters in the
IID data case,

θ = E [h(Xi1 , . . . ,Xik )]

.
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Kendall’s Tau Statistic

For bivariate observations, let Ai = (Xi ,Yi), i = 1 . . . n be
continuous.

h(Ai ,Aj) = sgn(Xj − Xi)sgn(Yj − Yi).

Define

Ẑn =
1(n
2

) n∑
i<j

h(Ai ,Aj)

a U-statistic with a symmetric kernel h(Ai ,Aj), which is an
unbiased estimator of θ = E [h(Ai ,Aj)] for IID data.
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Mann-Kendall Tau Statistic, τ̂n

In the case of testing for (positive) trend, Yi is replaced by i ,
i = 1, . . . ,n. The Mann-Kendall statistic is denoted by τ̂n , which
is a U-statistic with a non-symmetric kernel

h(Xi ,Xj) = sgn(Xj − Xi)

Test statistic,

τ̂n =
1(n
2

) n∑
i<j

sgn(Xj − Xi)

which is a special version of the Kendall correlation.
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Error Term, µt

A covariance stationary process ARMA(p,q) may be written as

µt =ρ1µt−1 + ρ2µt−2 + . . .+ ρpµt−p

+ εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q

where εt are i.i.d. noises with E(εt ) = 0 and Var(εt ) = σ2
ε .
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Error Term, µt (Conti.)

Suppose that under the null hypothesis of no trend
Xt = M0 + µt , the error terms, {µt}, are AR(1) or MA(1)
processes.

AR(1) : µt = ρµt−1 + εt

MA(1) : µt = εt − ρεt−1

where εt are independent random noise terms from a standard
normal distribution, t ∈ {1, . . . ,n} where n is the length of the
time series and |ρ| < 1

P. Cabilio Y. Zhang and X. Chen Trend
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The simulated null distribution1 of τ̂n for time series with errors
following a normal AR(1) process
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1The histogram plots were generated by 10,000 realizations.
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The simulated null distribution of τ̂n for time series with errors
following a normal MA(1) process
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Probability Plots 2 of τ̂n
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Probability Plots of τ̂n (conti.)
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Simulation Results of the Null Distribution of τ̂n

τ̂n converges to the normal distribution faster in MA than in
AR.
τ̂n converges to the normal distribution faster when the
autocorrelation is weaker.
Normality can hardly be achieved when the time series is
nearly nonstationary.
Normality is robust in terms of the noise distribution.

P. Cabilio Y. Zhang and X. Chen Trend
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CLT in the Independent Case
CLT in the Dependent Case

CLT in the Independent Case

If {Xi} are i.i.d., under the null hypothesis of no trend, it is well
known that as n→∞

√
nτ̂n

D−→ N(0,4ξ1)

where
h1(a1) = E [h(a1,A2)]

ξ1 = Var[h1(A1)] =
1
9
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CLT in the Independent Case
CLT in the Dependent Case

Weakly Dependent Case: Strong Mixing

Suppose {Xt} is a stationary sequence defined on a probability
space (Ω,B,P) and Fm

n = σ{Xt : n ≤ t ≤ m} is the σ-algebra
generated by (Xn, . . . ,Xm). For n ≥ 1, define

β(m) = E{ sup
A∈F∞n+m

|P(A|Fn
0 )− P(A)|}

{Xt} is absolutely regular (or β) mixing if the coefficient
β(m)→ 0, as m→∞.

P. Cabilio Y. Zhang and X. Chen Trend
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CLT in the Independent Case
CLT in the Dependent Case

CLT in the Weakly Dependent Case

Yoshihara (1976) proves the CLT for a U-statistic on a
stationary absolutely regular process whose rate of
convergence of β(m) to 0 is O(m−(2+δ)/δ), for some δ > 0,
with additional conditions on the kernel of the U-statistic.
Mokkadem (1988) shows that stationary ARMA processes
are absolutely regular, with β(m) = O(rm) for some
0 < r < 1, so that the rate of convergence of β(m)→ 0
satisfies Yoshihara’s condition.

P. Cabilio Y. Zhang and X. Chen Trend
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CLT in the Independent Case
CLT in the Dependent Case

CLT in the Weakly Dependent Case (Conti.)

In the no trend case, if {µt} are stationary absolutely regular,
the τ̂n satisfies the kernel conditions, so that if the rate of
convergence condition of Yoshihara (1976) is met, then

√
nτ̂n

D−→ N(0,4σ2)

σ2 = σ2
1 + 2

∞∑
s=1

σ2
1,s

σ2
1 = Var[h1(X1)]

σ2
1,s = Cov[h1(Xt ),h1(Xt+s)].

P. Cabilio Y. Zhang and X. Chen Trend
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CLT in the Independent Case
CLT in the Dependent Case

Lemma 1: CLT of Mann-Kendall Tau in the ARMA
Error Case

In the no trend case, if {µt} is a zero mean stationary ARMA
process, √

n
2σ

τ̂n
D→ N (0,1) .

P. Cabilio Y. Zhang and X. Chen Trend
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Choosing Block Length
Type I Error and Power Comparison

Bootstrapping U-Statistics3 for Weakly Dependent
Data

Dehling and Wendler (2010) show that when the conditions of
Yoshihara (1976) are met, the block bootstrapped U-statistic,
follows a CLT, with

|Var∗(
√

blU∗n)− Var(
√

nUn)| a.s.−−→ 0,

and

sup
x
|P∗[
√

blU∗n − E∗[U∗n ]) ≤ x ]− P[
√

n(Un − θ) ≤ x ]| a.s.−−→ 0.

where b = number of blocks, and l = length of each block.

bl ≈ n
3The superscript * refers to bootstrap.
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Lemma 2: Bootstrapping Mann-Kendall Tau Statistics
in the ARMA Error Case

In the no trend case, if {µt} is a zero mean stationary ARMA
process,

P [τ̂n ≤ τ0] ∼ Φ

(
τ0/

√
bl
n

Var∗ (τ̂∗n )

)
(1)

P [τ̂n ≤ τ0] ∼ P∗
[√

bl
n

(τ̂∗n − E∗ [τ̂∗n ]) ≤ τ0

]
(2)

where τ̂∗n is the circular block or moving block bootstrap MK
statistics; τ0 is the observed MK statistic.
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Choosing Block Length

The optimal block length strongly depends on the
correlation structure.
We have chosen n1/3 for time series data with weak and
simple correlation structure such as AR(1) with moderate ρ
values;

√
n, otherwise, such as AR(2).

The effects of autocorrelation on the variance estimate
were examined by comparing the exact variance of τ̂n to a
sample mean of τ̂∗n based on 1000 simulations of normal
AR(1) processes, and block length l = n1/3.

Variance Ratio =
Var(τ̂n)

a sample mean of Var∗(τ̂∗n )

P. Cabilio Y. Zhang and X. Chen Trend
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Effects of Autocorrelation on Variance Estimate
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The bootstrap variance estimation underestimates
(overestimates) the true variance when ρ > 0 (ρ < 0).
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Approximating the Null Distribution of τ̂n

Eqns. (1) and (2) in Lemma 2 provides two block bootstrap
methods:

Bootstrap Distribution Approximation (Bootprob);
Normal Approximation with Bootstrap Variance
Estimate(Norm(app)).

Bootprob and Norm(app) were compared with the Monte Carlo
test (MC) and the null distribution of τ̂n assuming the process is
IID.
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Type I Error Comparison4 for AR(1) Norm Noise Case,
n = 50, block size l = n1/3

ρ Size MC Bootprob Norm(app) IID
0 10% 0.095 0.102 0.099 0.093

5% 0.047 0.058 0.055 0.049
1% 0.008 0.016 0.013 0.010

0.1 10% 0.104 0.114 0.111 0.120
5% 0.053 0.069 0.065 0.070
1% 0.011 0.024 0.021 0.017

0.2 10% 0.106 0.123 0.119 0.145
5% 0.055 0.074 0.070 0.088
1% 0.011 0.029 0.025 0.028

0.3 10% 0.104 0.127 0.122 0.168
5% 0.053 0.079 0.073 0.110
1% 0.009 0.030 0.025 0.040

0.4 10% 0.108 0.140 0.136 0.195
5% 0.057 0.091 0.084 0.137
1% 0.011 0.042 0.033 0.060

0.5 10% 0.105 0.150 0.146 0.220
5% 0.054 0.100 0.092 0.161
1% 0.009 0.048 0.038 0.078

4The simulated significance level was based on 10,000 tests.
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Type I Error Comparison for AR(2) Norm Noise Case,
n = 200, block size l = n1/2

(φ1, φ2) Size MC Bootprob Norm(app) IID
(0.5, 0.25) 10% 0.109 0.158 0.156 0.328

5% 0.058 0.107 0.101 0.283
1% 0.012 0.053 0.042 0.206

(1,−0.25) 10% 0.108 0.133 0.132 0.295
5% 0.054 0.084 0.079 0.241
1% 0.009 0.030 0.024 0.159

(1.5,−0.75) 10% 0.105 0.098 0.097 0.179
5% 0.051 0.049 0.049 0.124
1% 0.008 0.011 0.010 0.050

(1,−0.6) 10% 0.102 0.101 0.100 0.114
5% 0.051 0.052 0.052 0.062
1% 0.010 0.012 0.012 0.016
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Type I Error Comparison Results

The MC method achieves significance levels very close to
the nominal levels.
The two block bootstrap methods show similar tendencies
for Type I error inflation. However the inflation levels are
consistently smaller than those for the IID estimates,
particularly as correlation increases.
Larger sample sizes reduce the levels for Bootprob and
Norm(app), which is not the case for the IID levels.
Larger sample sizes and proportionally large block sizes
may be required for more complex correlation structures.
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Power Comparison

Trend decomposition is the necessary first step in implementing
the block bootstrap method. To remove the linear trend, we
estimated the magnitude of trend in a time series {Xi}
(i = 1, . . . ,n) using

β̂ = Median(
Xj − Xi

j − i
), ∀i < j .

β̂ is the estimate of the slope of the linear trend;
Xi is the i-th observation.
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Power Comparison (Conti.)

We obtained the empirical power of MC, Norm(app) and
Bootprob based on 10,000 tests for detecting positive linear,
quadratic, and square root trends in the data with errors {µt }
generated from normal AR(1) models.

Xt = βt + µt

Xt = βt2 + µt

Xt = β
√

t + µt

P. Cabilio Y. Zhang and X. Chen Trend



Background
CLT for Mann-Kendall Tau Statistics

Bootstrap Methods for Mann-Kendall Tau Statistics
An Example & Conclusions

Choosing Block Length
Type I Error and Power Comparison

Empirical power of MC and Normal(app) for data with linear
trend, normal AR(1) errors and n = 50 (α = 0.05; l = n1/3)
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Power Comparison Results

In the case of β = 0, the empirical significance levels for
two bootstrap methods are very similar to the simulated
values in the known null process, which is not the case for
MC.
The bootstrap method and the MC test have comparable
powers for testing for trend.
The power decreases with increasing ρ.
The power for the square root case was found to be as
good or better than in the linear case, whereas the
opposite occurs for quadratic trend. In the latter case the
power was still fairly good for β = .05, and for moderate
values of ρ.
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An Example

Stikine River Annual Mean Daily Streamflow (1965-2009)5
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5Stikine river (BC) data were downloaded from the Reference Hydrometric
Basin Network (RHBN) databases of Environment Canada (2010).
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Example Results

Station Basin
name

Record Mean Median Median
estimated slope

Norm(app) IID

identifier (yrs) (m3/s) (m3/s/yr ) β̂ P-value P-value
08CE001 Stikine

river
45 410.98 408 1 0.054 0.030
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Conclusions

CLT holds for the Mann-Kendall statistic based on
stationary ARMA processes.
Using the Bootstrap method, the performance of the
estimated null distribution of the Mann-Kendall tau statistic
for stationary dependent data depends on the sample size,
the model structure, and the block size.
The MC needs complete information of the dependence
structure, and without such knowledge the MC test is not
applicable.
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Conclusions (Conti.)

In testing for trend in weakly dependent processes, with
dependence structure and distribution information
unknown, block bootstrap methods provide good
approximations, when the sample size is relatively large or
the autocorrelation is small.
A practical approach to implementing the Norm(app) or
Bootprob method can achieve reasonable empirical
results.
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