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A new portmanteau diagnostic test for vector autoregressive moving average (VARMA) models that is based on the
determinant of the standardized multivariate residual autocorrelations is derived. The new test statistic may be
considered an extension of the univariate portmanteau test statistic suggested by Peňa and Rodrı́guez (2002).
The asymptotic distribution of the test statistic is derived as well as a chi-square approximation. However, the
Monte–Carlo test is recommended unless the series is very long. Extensive simulation experiments demonstrate
the usefulness of this test as well as its improved power performance compared to widely used previous
multivariate portmanteau diagnostic check. Two illustrative applications are given.
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1. INTRODUCTION

The VARMA (p,q) model for a k-dimensional mean zero time series Zt ¼ (Z1,t, . . . , Zk,t)
0 can be written as

UðBÞZt ¼ HðBÞat; ð1Þ

where UðBÞ ¼ Ik � U1B � � � � � UpBp;HðBÞ ¼ Ik � H1B � � � � � HqBq, Ik is the identity matrix of order k, the coefficient
matricess are, U‘ ¼ (/i,j,‘)k·k,‘ ¼ 1, . . . , p; H‘ ¼ (hi,j,‘)k·k, ‘ ¼ 1, . . . , q and B is the backshift operator on t. Let b ¼ (vec U1, . . . , vec
Up, vec H1, . . . , vec Hq) be the vector of true parameters, where vec denotes the matrix vectorization function. We assume that an
efficient estimation algorithm such as maximum likelihood is used to produce the corresponding estimate b̂ so that
b̂ � b ¼ Opðn�1=2Þ. The white noise process, at ¼ (a1,t, . . . , ak,t)

0, is assumed independent normal with mean zero and covariance
matrix, Eðata0t�‘Þ ¼ d‘C0, where C0 is the innovation covariance matrix and d‘ ¼ 1 or 0 according as ‘ ¼ 0 or ‘ 6¼ 0. The assumption
of normality may be relaxed to that of strong white noise so that at, t ¼ 1, . . . , n are assumed to be i.i.d. with mean zero and
constant covariance matrix, C0. The model is assumed to be stationary, invertible and identifiable (Box et al., 2008, § 14.2). After
fitting this model to a series of length n, the residuals, ât ¼ ðâ1;t; . . . ; âk;tÞ0, t ¼ 1, . . . , n may be estimated and used to check the
model assumption that the innovations are white noise, that is, to test the null hypothesis that

H0 : C‘ ¼ 0; ‘ ¼ 1; . . . ;m; ð2Þ

where C‘ ¼ Cov fat, at�‘g and m is chosen large enough to cover all lags, ‘, of interest. Several versions of the multivariate
portmanteau test have been developed for this purpose (Li, 2004).

In the next two subsections, brief reviews are given of previous multivariate portmanteau tests as well as the univariate versions of
the generalized variance test of Peňa and Rodrı́guez (2002, 2006). In Section 2, the multivariate extension of the generalized variance
test of Peňa and Rodrı́guez (2002) is discussed and its asymptotic distribution is derived. As in the univariate case (Peňa and
Rodrı́guez, 2002, eqn 9), it is shown in eqn (18) that the stronger the multivariate autocorrelation, the smaller the generalized
variance. A chi-square approximation is suggested but for most purposes it is recommended to use a Monte–Carlo testing procedure
that is described in Section 2.2. Simulation experiments in Section 3, demonstrate the improvement in power over the widely used
previous multivariate portmanteau test. Illustrative applications are discussed in Section 4.

1.1. Multivariate portmanteau tests

The portmanteau test statistics, Qm and ~Qm and others, discussed in this section are all asymptotically v2
k2ðm�p�qÞ as n ! 1. It is also

assumed that m > p + q is fixed and that m large enough so that Theorem 5 in Li and McLeod (1981) holds.
Hosking (1980) defined the residual autocorrelation matrix,

R̂‘ ¼ L̂
0
Ĉ‘L̂; ð3Þ

where Ĉ‘ ¼ n�1
Pn

t¼‘þ1 ât ât�‘
0; Ĉ�‘ ¼ Ĉ0‘; ‘ � 0 and L̂ is the lower triangular Cholesky decomposition of Ĉ�1

0 . The multivariate
portmanteau test statistic may be written,
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Qm ¼ n
Xm

‘¼1

r̂‘
0ðR̂0

�1 � R̂0
�1Þr̂‘; ð4Þ

where r̂‘ ¼ vec R̂‘
0

is a row vector of length k2 formed by stacking the rows of R̂‘, and m represents the number of lags being tested.
In the univariate case, Qm is identical to Box–Pierce portmanteau statistic [Box and Pierce, 1970] and both statistics are asymptotically
v2

k2ðm�p�qÞ (Hosking, 1980, 1981b).
Li and McLeod (1981) defined,

R̂
ðyÞ
‘ ¼ ð̂ri;jð‘ÞÞk�k; ð5Þ

where r̂i;jð‘Þ ¼ ĉi;jð‘Þ=
pðĉi;ið0Þĉj;jð0ÞÞ, i, j ¼ 1, . . . , k and ĉi;jð‘Þ ¼ n�1

Pn
t¼‘þ1 âi;t âj;t�‘, ĉi;jð�‘Þ ¼ ĉj;ið‘Þ; ‘ � 0. Replacing R̂ by R̂ðyÞ in

eqn (4), another portmanteau test statistic Q
ðyÞ
m is obtained. The null distribution of Q

ðyÞ
m is also asymptotically v2

k2ðm�p�qÞ.
The definition of residual autocorrelations used in eqn (3) is equivalent to the residual autocorrelations in eqn (5) if the residuals used
eqn (5), ât , are replaced by the standardized residuals, L̂0ât .

Chitturi (1974) defined the residual autocorrelation matrix at lag ‘,

R̂
ðzÞ
‘ ¼ Ĉ‘Ĉ0

�1
; ð6Þ

and another portmanteau test statistic Q
ðzÞ
m is obtained by replacing R̂ by R̂ðzÞ in eqn (4), and its null distribution is also asymptotically

v2
k2ðm�p�qÞ.

Hosking (1981b) noted that Qm ¼ Q
ðyÞ
m ¼ Q

ðzÞ
m and the portmanteau test statistic may be expressed simply in terms of the residual

autocovariances,

Qm ¼ n
Xm

‘¼1

tr ðĈ‘
0
Ĉ0
�1

Ĉ‘Ĉ0
�1Þ; ð7Þ

where tr (�) denotes trace of matrix. The multivariate portmanteau test statistic is equivalent to a test based on the Lagrange
multiplier (Hosking, 1981a; Poskitt and Tremayne, 1982).

Hosking (1980) and Li and McLeod (1981) suggested modified versions of Qm so that the expected value of the modified
portmanteau statistic under the null hypothesis is equal to k2(m � p � q) + Op(1/n) and showed that both of these modifications are
satisfactory when n and m are large enough. Simulation experiments suggest that both these modified portmanteau tests work
about equally well (Li, 2004, §3).

The modified portmanteau test of Hosking (1980) is given by,

~Qm ¼ n2
Xm

‘¼1

r̂0‘ðR̂0
�1 � R̂0

�1Þr̂‘=ðn� ‘Þ: ð8Þ

In the univariate time series, the ~Qm test statistic approximately equal the Ljung–Box statistic (Ljung and Box, 1978) and both
statistics are asymptotically v2

k2ðm�p�qÞ (Hosking, 1980, 1981b).

1.2. Univariate generalized variance portmanteau test

Peňa and Rodrı́guez (2002) proposed a univariate portmanteau test statistic,

D̂m ¼ nð1� jR̂mj
1=mÞ; ð9Þ

where |�| denotes the determinant and R̂m is the residual correlation matrix of order m + 1,

R̂m ¼

1 r̂11ð1Þ . . . r̂11ðmÞ
r̂11ð1Þ 1 . . . r̂11ðm� 1Þ

..

.
. . . . .

. ..
.

r̂11ðmÞ r̂11ðm� 1Þ � � � 1

0
BBB@

1
CCCA: ð10Þ

Peňa and Rodrı́guez (2002) derived the asymptotic distribution of D̂m as gamma using the standardized values of residual
autocorrelations. Li (2004, §2.7) noted several interesting interpretations for this statistic. It was shown in simulation experiments
(Peňa and Rodrı́guez 2002) that the D̂m statistic had better power than the test of Ljung and Box (1978) in many situations. One
problem noted by Lin and McLeod (2006) is that the test statistic D̂m may not exist because, with the modified version of the residual
autocorrelations used, the residual autocorrelation sequence is not always positive-definite or even non-negative definite.

Furthermore, the size of the test may not be accurate due to the asymptotic approximation (Li, 2004, p. 19). To overcome these
difficulties Lin and McLeod (2006) suggested using a Monte–Carlo significance test and demonstrated that this approach provides a
test with the correct size and is often more powerful than the usual Ljung–Box test (Lin and McLeod, 2006, Table 6).

Peňa and Rodrı́guez (2006) suggested taking the log of the (m + 1)th root of the determinant in eqn (10),

~Dm ¼ �nðmþ 1Þ�1 log jR̂mj ð11Þ

and they derived a gamma distribution approximation for this test statistic.
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In the portmanteau tests based on the asymptotic distribution (Ljung and Box, 1978; Peňa and Rodrı́guez, 2002, 2006) not only is
the size of the test inaccurate if the series length n is not large enough but there is also a problem if m, the number of lags, is not
large enough as well. The Monte–Carlo significance test approach does not require any such assumption about m and has much
better finite-sample properties than tests based on the asymptotic distribution.

2. NEW MULTIVARIATE PORTMANTEAU TEST

The univariate residual autocorrelations in the Toeplitz matrix in eqn (10) are replaced by, R̂‘; ‘ ¼ 1; . . . ;m in eqn (3),

R̂m ¼

Ik R̂1 . . . R̂m

R̂01 Ik . . . R̂m�1

..

.
. . . . .

. ..
.

R̂0m R̂0m�1 . . . Ik

0
BBB@

1
CCCA; ð12Þ

where Ik ¼ R̂0. The proposed multivariate portmanteau test statistic is

Dm ¼ �n log jR̂mj: ð13Þ

From Hadamard’s inequality for the determinant of a positive definite matrix, jR̂mj � 1. When there is no significant
autocorrelation in the residuals, R̂‘ ¼ Opðn�

1
2Þ so R̂m is approximately block diagonal and hence jR̂mj 	 1.

On the other hand, when there is autocorrelation present, jR̂mj will be expected to be smaller than 1. To see this we repeatedly
apply the formula for the determinant of a partitioned matrix [Seber, 2008, §14.1],

jR̂mj ¼
Ym

‘¼1

jIk � R̂ð‘ÞR̂
�1

‘�1R̂
0
ð‘Þj; ð14Þ

where R̂ð‘Þ ¼ ½R̂1 : � � � : R̂‘
 is the k-by-‘k block partitioned matrix. Then R̂‘ ¼ Ik � R̂ð‘ÞR̂
�1

‘�1R̂
0
ð‘Þ corresponds to the error covariance

matrix when a linear predictor of order ‘ is fit to L̂
0
ât using the previous ‘ values (Reinsel, 1997, eqn 3.15). Thus, eqn (14) is a direct

multivariate generalization of the well known univariate decomposition of generalized variance into the product of the one-step
ahead variances of the linear minimum-mean-square error predictors (McLeod, 1977, p. 532),

jR̂mj ¼
Ym
‘¼1

r̂2
‘ ; ð15Þ

where r̂2
‘ is the mean-square error for a fitted linear predictor of order ‘. In this case, R2

‘ ¼ 1 � r̂2
‘ , where R2

‘ is the square of
the multiple correlation for the order ‘ linear predictor, and so (Peňa and Rodrı́guez, 2002, eqn 7),

jR̂mj ¼
Ym
‘¼1

ð1� R2
‘ Þ: ð16Þ

In the multivariate case,

ĝ2
‘ ¼ 1� jIk � R̂ð‘ÞR̂

�1

‘�1R̂
0
ð‘Þj ð17Þ

is the proportion of the generalized variance that is accounted for by a linear predictor of order ‘. From eqns (14) and (17), the
corresponding multivariate equivalent of eqn (16) is

jR̂mj ¼
Ym
‘¼1

ð1� ĝ2
‘ Þ: ð18Þ

It follows from eqn (18), jR̂mj < 1 and that the smaller the value of jR̂mj, the more strongly autocorrelated the normalized
residuals, L̂

0
ât , are.

Using the Chitturi (1974) multivariate residual autocorrelations, eqn (6), the correlation matrix corresponding to eqn (12), R̂ðzÞm , is
defined by the block matrix with (i, j)-block, R̂

ðzÞ
i�j for i, j ¼ 1, . . . , m + 1. This matrix is not symmetric but jR̂mj ¼ jR̂ðzÞm j, so these

multivariate autocorrelations could also be used.
Multivariate autocorrelations are often defined as in eqn (5) (Box et al., 2008, eqn 14.1.2). Using this definition, the residual

autocorrelation matrix may be written,

R̂
ðyÞ
‘ ¼ D̂

�1=2
Ĉ‘D̂

�1=2
; ð19Þ

where D̂
�1=2 ¼ diag ðĉ�1=2

1;1 ð0Þ; . . . ; ĉ�1=2
k;k ð0ÞÞ. The correlation matrix corresponding to eqn (12) obtained by replacing R̂‘ by R̂

ðyÞ
‘ may

be denoted by R̂
ðyÞ
‘ and the corresponding generalized variance portmanteau statistic, jR̂ðyÞm j. A similar decomposition as given in

eqn (18) shows that small values jR̂ðyÞm j correspond to positive autocorrelation. On the other hand, when there is no autocorrelation
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present, the off-block diagonal entries in the matrix R̂
ðyÞ
m are Op(n�1/2). So, jR̂ðyÞm j 	 jR̂

ðyÞ
0 j

mþ1. When the innovation variance matrix,

C0, has large off-diagonal elements, jR̂ðyÞ0 j<1. Hence again jR̂ðyÞm j ¼ OpðrmÞ for some r 2 (0, 1). So, in both cases, autocorrelation or

no autocorrelation, jR̂ðyÞm j tends to be small provided the innovation covariance matrix is not diagonal. Numerical experiments
confirmed that the test using DðyÞm and Dm is essentially equivalent when C0 is diagonal but in the non-diagonal case, DðyÞm does not
provide a useful test.

2.1. Asymptotic distribution and approximation

Here, the asymptotic distribution for Dm in eqn (13) is derived and an approximation to this distribution is suggested. Since, as
shown in Lin and McLeod (2006, Figure 2) in the univariate case by simulation, the actual finite-sample distribution for Dm converges
slowly, the asymptotic distribution for Dm is not expected to be of much use in diagnostic checking multivariate time series models
unless n is very large.

We use the following notation as in Hosking (1980, §4), WðBÞ ¼ UðBÞ�1HðBÞ ¼
P1

i¼0 WiB
i and PðBÞ ¼ HðBÞ�1 ¼

P1
i¼0 PiB

i are
matrix power series such that the elements Wi and Pi converge exponentially to zero as i ! 1. Define

G ¼

G0 0 . . . 0
G1 G0 . . . 0

..

. ..
. . .

. ..
.

Gm�1 Gm�2 � � � Gm�p

0
BBB@

1
CCCA; ð20Þ

and

H ¼

H0 0 . . . 0
H1 H0 . . . 0

..

. ..
. . .

. ..
.

Hm�1 Hm�2 � � � Hm�q

0
BBB@

1
CCCA; ð21Þ

where Gr ¼
P1

i¼0 C0W
0
i � Pr�i and Hr ¼ C0 � Pr.

THEOREM 1. Assume that the model specified in eqn (1) has i.i.d. innovations with mean zero and constant covariance matrix. The
model is fit to a series of length n using an n�1/2-consistent algorithm. After obtaining the residuals defined in eqn (3) and the test statistic,
Dm, in eqn (13), Dm is asymptotically distributed as

Xk2m

i¼1

kiv
2
1;i;

where v2
1;i; i ¼ 1; . . . ; k2m are independent v2

1 random variables and k1, . . . , kk2m are the eigenvalues of ðIk2 � QÞM, where M is
k2m · k2m diagonal matrix

M ¼

mIk2 O . . . O
O ðm� 1ÞIk2 . . . O

..

. ..
. . .

. ..
.

O O � � � Ik2

0
BBB@

1
CCCA; ð22Þ

and

Q ¼ XðX 0W�1XÞ�1X 0W�1 ð23Þ

is an idempotent matrix with rank k2(p + q), X is defined as k2m · k2(p + q) matrix (G�H), and W ¼ Im � C0 � C0 is positive-definite
symmetric.

PROOF. From the decomposition in eqn (14), it follows that,

�n log jR̂mj ¼ �n
Xm

‘¼1

log jIk � A‘j; ð24Þ

where A‘ ¼ R̂ð‘ÞR̂
�1

‘�1R̂
0
ð‘Þ. Using the fact that jIk � A‘j ¼

Qk
i¼1ð1 � kið‘ÞÞ, where ki(‘) are the eigenvalues of A‘, ‘ ¼ 1, . . . , m,

�n log jR̂mj ¼ �n
Xm

‘¼1

Xk

i¼1

logð1� kið‘ÞÞ: ð25Þ
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Expanding logð1 � kið‘ÞÞ ¼ �
P1

r¼1 r�1kr
i ð‘Þ and tr ðA‘Þ ¼

Pk
i¼1 kið‘Þ,

Dm ¼ n
Xm

‘¼1

tr ðA‘Þ þ Opðn�1Þ: ð26Þ

One can verify that

tr ðA1Þ ¼ tr ðR̂01R̂1Þ
tr ðA2Þ 	 tr ðR̂01R̂1Þ þ tr ðR̂02R̂2Þ

..

.

tr ðAmÞ 	 tr ðR̂01R̂1Þ þ � � � þ tr ðR̂0mR̂mÞ;

ð27Þ

so that,

Dm 	 n
Xm

‘¼1

ðm� ‘þ 1Þ tr ðR̂0‘R̂‘Þ: ð28Þ

Using the commutative property of trace,

Dm 	 n
Xm

‘¼1

ðm� ‘þ 1Þ tr ðĈ‘
0
Ĉ0
�1

Ĉ‘Ĉ0
�1Þ: ð29Þ

It follows from Neudecker (1969, eqn 2.12),

Dm 	 n
Xm

‘¼1

ðm� ‘þ 1Þðvec Ĉ‘Þ0ðĈ�1
0 � Ĉ�1

0 Þvec Ĉ‘;

¼ nðvec ĈÞ0ðIm � Ĉ�1
0 � Ĉ�1

0 ÞMðvec ĈÞ;
ð30Þ

where vec Ĉ ¼ ðvec Ĉ1 . . . vec ĈmÞ is k2m · 1 column vector and M is k2m · k2m diagonal matrix defined in eqn (22).
Hosking [1980, Theorem 1] showed that ffiffiffi

n
p

vec Ĉ � Nk2 mð0; ðIk2m � QÞWÞ; ð31Þ

where W�1 can be replaced by a consistent estimator Ŵ�1 ¼ Im � Ĉ�1
0 � Ĉ�1

0 , and Q is the idempotent matrix with rank k2(p + q)
in eqn (23).

From the theorem on quadratic forms given by Box (1954, Theorem 2.1), and eqns (30) and (31), the asymptotic distribution of Dm

is given by,

Dm !
Xk2 m

i¼1

kiv
2
1; ð32Þ

where! stands for convergence in distribution as n ! 1 and k1, . . . , kk2m are the eigenvalues of ðIk2m � QÞM. (

2.1.1. Approximation
The upper percentiles of the cumulative distribution function in eqn (32) could be evaluated by the Imhof (1961) algorithm. For the
univariate case, Lin and McLeod (2006, Table 2) showed that the convergence to the asymptotic distribution is very slow. In the case
of large-samples, an approximation based on Box (1954, Theorem 3.1) works well. Using this result, the test statistic in eqn (32) can be
approximated by av2

b, where a and b are chosen to make the first two moments agree with those of exact distribution of Dm. Hence,
a ¼

P
k2

i =
P

ki and b ¼
P

kið Þ2=
P

k2
i , where,

Xk2 m

i¼1

ki ¼ tr ðIk2 m � QÞM;

Xk2m

i¼1

k2
i ¼ tr ðIk2 m � QÞMðIk2m � QÞM:

ð33Þ

When p ¼ q ¼ 0, a ¼ (2m + 1) / 3 and b ¼ 1.5k2m(m + 1) / (2m + 1). In the VARMA (p, q) case, one degree of freedom is lost for
each parameter so Dm is approximately distributed as av2

b, where

a ¼ 2mþ 1

3
;

b ¼ 3k2mðmþ 1Þ
2ð2mþ 1Þ � k2ðpþ qÞ:

ð34Þ

2.2. Monte–Carlo significance test

Monte–Carlo significance tests, originally suggested by Barnard (1963), are feasible for many small-sample problems (Marriott, 1979)
and with modern computing facilities these types of tests are increasingly feasible for larger samples and more complex problems
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(Dufour and Khalaf, 2001). For a pure significance test with no nuisance parameters, as is the case, for example, for simply testing a
time series for randomness, accuracy of the Monte–Carlo procedure depends only on the number of simulations (Dufour, 2006,
Proposition 2.1).

In the case of diagnostic checking, the model parameters must be estimated and Dufour (2006, Proposition 5.1) has shown that,
provided consistent estimators are used, Monte–Carlo tests remain asymptotically valid. Since we assume n�1/2-consistent estimators
are used, the requirements for Dufour (2006, Proposition 5.1) are met.

Simulations for Dm in the univariate case (Lin and McLeod, 2006 Table 3) as well as our simulations for the multivariate case in
Section 3.1, suggest the impact of nuisance parameters is negligible. The p-value for all of the portmanteau test statistics presented in
this article may be obtained using the Monte–Carlo method outlined below. We use the statistic Dm in the description but ~Qm could be
used instead.

Step 1: Set N, the number of simulations. Usually, N 1000 but smaller values may be used if necessary. By choosing N large
enough, an accurate estimate of the p-value may be obtained.

Step 2: After fitting the model and obtaining the residuals, compute the portmanteau test statistic for lag m or possibly a set of
lags such as ‘ ¼ 1, . . . , m, where m � 1. Typically m is chosen large enough to allow for possible high-order autocor-
relations. Denote the observed value of the test statistics by D

ðoÞ
‘ ; ‘ ¼ 1; . . . ;m.

Step 3: For each i ¼ 1, . . . , N, simulate the fitted model, refit it, obtain the residuals from this model, compute the test statistic,
D
ðiÞ
‘ ; ‘ ¼ 1; . . . ;m.

Step 4: For each ‘, ‘ ¼ 1, . . . , m, the estimated p-value is given by,

p̂ ¼ #fDðiÞ‘ � D
ðoÞ
‘ ; i ¼ 1; 2; . . . ;Ng þ 1

Nþ 1
: ð35Þ

The approximate 95% margin of error for the p-value is, 1:96
p

p̂ð1 � p̂Þ =N.
The above algorithm is simply a restatement of the Monte–Carlo testing algorithm given by Lin and McLeod (2006, §3) for the

univariate case. Lin and McLeod (2006, Table 3) demonstrate that the Monte–Carlo testing procedure has the correct size for an
AR (1) and this is verified for some VAR (1) models in Section 3.1.

REMARK 1. In the Monte–Carlo test procedure, it is assumed that the innovations used in our simulations in Step 3 are normally
distributed but any distribution with constant covariance matrix could be used. In particular, using the empirical joint distribution is
equivalent to bootstrapping the multivariate residuals. Using bootstrapped residuals is implemented in our software (Mahdi and
McLeod, 2011).

REMARK 2. A limitation of the Monte–Carlo diagnostic check is the assumption of constant variance. Many financial time series
exhibit conditional heteroscedasticity. In practice this means that our test may overstate the significance level (Duchesne and
Lalancette, 2003). This means that when used for constructing a VAR or VARMA model, the final fitted model may not be as
parsimonious as a model developed using a portmanteau test which takes into conditional heteroscedasticity (Francq and Raı̈si,
2007; Duchesne, 2006). Our Monte–Carlo portmanteau test can also be used to test for the presence of multivariate conditional
heteroscedasticity simply by replacing the residuals by squared or absolute residuals. An illustration of this procedure is given later in
Section 4.2.

REMARK 3. Francq and Raı̈si (2007) discuss a more general asymptotic multivariate portmanteau diagnostic test that is valid
assuming only that the innovations are uncorrelated. This test requires a large sample though.

REMARK 4. Lin and McLeod (2008) discuss the Monte–Carlo portmanteau test for univariate ARMA with infinite variance. The
Monte–Carlo method of Lin and McLeod (2008) for infinite-variance ARMA has been extended to the multivariate case as well and is
available in our R package (Mahdi and McLeod, 2011).

3. SIMULATION RESULTS

The purpose of our simulations is to demonstrate the improved power as well as the correct size of the Monte–Carlo (MC) test using
Dm. We also compare the empirical Type 1 error rates for the av2

b-approximation discussed in Section 2.1.1.

3.1. Comparison of type 1 error rates

The empirical error rates have been evaluated under the Gaussian bivariate VAR (1) process Zt ¼ UiZt�1 + at,i ¼ 1, . . . , 4 for the
portmanteau test statistic Dm using the MC and av2

b-approximation to evaluate the p-value. The covariance matrix of at has unit
variances and covariance 1/2 and the coefficient matrices are taken from Hosking (1980) and Li and McLeod (1981),

U1 ¼
0:9 0:1

�0:6 0:4

� �
;U2 ¼

�1:5 1:2

�0:9 0:5

� �
;U3 ¼

0:4 0:1

�1:0 0:5

� �
;U4 ¼

0:3 0:5

0:0 0:3

� �
:
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The empirical error rates are shown in Table 1. For each entry in Table 1, 103 simulations were done. The MC test also used
N ¼ 103.

The 95% confidence interval assuming the 5% rejection rate for each test is (3.6,6.4). There are 17 entries outside this interval with
the av2

b approximation and only one with the Monte–Carlo test. In conclusion, size-distortion with the Monte–Carlo test appears to
be negligible but is sometimes present when the av2

b approximation is used.
In Section 4, we found that there is a much larger discrepancy between the p-values using the av2

b approximation and those using
the Monte–Carlo test.

3.2. Power comparisons

Only Monte–Carlo significance tests are used to compare the empirical power of 5% level tests with ~Qm and Dm. Possible size-
distortion sometimes makes power comparisons between asymptotic tests and Monte–Carlo tests invalid. In our comparisons, VAR
models are fitted to various multivariate models. The power of diagnostic tests using Dm versus ~Qm are compared using simulation.
In all comparisons, the p-values were evaluated using the Monte–Carlo (MC) method with N ¼ 103. We consider a VAR (1) model
fitted to simulated data generated from eight VARMA models selected from well-known textbooks as cited below.

Model 1
Lütkepohl (2005, p. 17).

Z1;t

Z2;t

� �
�

0:5 0:1

0:4 0:5

� �
Z1;t�1

Z2;t�1

� �
�

0 0

0:3 0

� �
Z1;t�2

Z2;t�2

� �
¼

a1;t

a2;t

� �

C0 ¼
1:00 0:71
0:71 1:00

� �

Model 2
Brockwell and Davis (1991, p. 428).

Z1;t

Z2;t

� �
�

0:7 0

0 0:6

� �
Z1;t�1

Z2;t�1

� �
¼

a1;t

a2;t

� �
�

0:5 0:6

�0:7 0:8

� �
a1;t�1

a2;t�1

� �

C0 ¼
1:00 0:71
0:71 2:00

� �

Table 1. The empirical 5% significance level, in percent, comparing approximation, av2
b , and Monte–Carlo, MC, for the portmanteau test statistic Dm

n ¼ 100 n ¼ 200 n ¼ 500

m av2
b MC av2

b MC av2
b MC

U1

5 5.9 4.6 5.1 4.7 4.8 4.8
10 5.2 4.5 4.4 5.2 3.7 4.2
15 5.7 5.4 4.5 4.4 3.6 3.8
20 6.8 5.8 4.8 4.0 3.8 3.8
25 7.8 4.9 5.3 4.1 4.0 4.0
30 9.0 4.8 5.8 3.7 4.4 4.1

U2

5 4.7 4.8 4.0 4.8 3.5 4.7
10 4.8 3.8 3.8 4.0 3.5 4.8
15 5.7 3.9 4.3 3.9 3.6 5.0
20 6.9 4.2 4.9 4.2 3.8 4.8
25 8.2 4.0 5.3 3.9 4.1 5.3
30 9.5 4.3 5.8 4.0 4.5 5.4

U3

5 4.0 4.6 3.6 5.7 3.2 5.2
10 4.5 4.8 3.8 6.5 3.1 5.3
15 5.1 4.2 4.1 6.3 3.3 5.1
20 6.6 4.3 4.6 6.2 3.6 5.2
25 7.7 4.5 5.3 5.4 4.0 5.3
30 9.0 4.2 5.9 5.5 4.3 5.0

U4

5 2.9 4.3 2.6 4.7 2.5 5.2
10 3.9 4.6 3.2 4.9 3.0 4.5
15 4.9 4.1 3.9 4.6 3.2 5.0
20 6.1 4.4 4.5 5.3 3.6 4.9
25 7.3 3.9 5.0 5.0 3.9 4.8
30 8.7 3.9 5.6 5.2 4.3 4.7
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Model 3
Reinsel (1997, p. 81).

Z1;t

Z2;t

� �
�

1:2 �0:5

0:6 0:3

� �
Z1;t�1

Z2;t�1

� �
¼

a1;t

a2;t

� �
�
�0:6 0:3

0:3 0:6

� �
a1;t�1

a2;t�1

� �

C0 ¼
1:00 0:50
0:50 1:25

� �

Table 2. Empirical power comparison of Dm and ~Qm for a nominal 5% test

n ¼ 50 n ¼ 100 n ¼ 200

Model m Dm
~Qm Dm

~Qm Dm
~Qm

1 5 35 24 68 53 96 90
1 10 24 16 55 36 90 73
1 15 18 14 46 30 85 61
1 20 13 13 39 26 80 52
1 30 10 12 30 23 68 43
2 5 70 48 100 94 100 100
2 10 60 38 99 82 100 100
2 15 50 35 99 75 100 100
2 20 43 34 97 70 100 99
2 30 28 37 93 64 100 97
3 5 99 84 100 100 100 100
3 10 96 64 100 99 100 100
3 15 93 48 100 97 100 100
3 20 88 39 100 91 100 100
3 30 73 36 100 77 100 100
4 5 51 27 93 62 100 98
4 10 37 24 84 48 100 89
4 15 27 22 74 40 99 81
4 20 20 22 65 37 98 73
4 30 13 22 53 33 95 65
5 5 99 68 100 100 100 100
5 10 95 46 100 93 100 100
5 15 90 36 100 81 100 100
5 20 83 32 100 72 100 100
5 30 69 30 100 60 100 97
6 5 83 45 100 90 100 100
6 10 74 32 100 69 100 100
6 15 62 28 99 57 100 96
6 20 54 28 98 52 100 92
6 30 40 27 95 44 100 84
7 5 29 21 65 49 97 91
7 10 19 14 53 33 92 74
7 15 14 12 43 27 86 61
7 20 13 11 35 22 82 53
7 30 11 11 27 19 72 41
8 5 77 28 96 85 100 100
8 10 65 19 92 61 100 99
8 15 52 17 84 48 100 94
8 20 38 14 76 40 100 90
8 30 15 13 55 33 100 78

Power is in percent. 104 simulations with N ¼ 103.

Table 3. IBM and S&P 500 Index Data

VAR(1) VAR(3) VAR(5)
av2

b MC av2
b MC av2

b MC
m Dm

~Qm Dm
~Qm Dm

~Qm Dm
~Qm Dm

~Qm Dm
~Qm

5 0.2 * * * 10.4 0.6 1.7 0.6 NA NA 91.2 89.9
10 0.1 0.3 * 0.2 13.5 6.1 2.8 4.0 77.4 50.3 59.4 50.2
15 0.3 2.1 * 2.2 20.4 22.3 6.4 22.1 84.0 61.2 63.1 61.4
20 0.2 * * * 15.4 2.6 5.0 2.2 71.8 11.3 45.2 9.9
25 0.1 * * * 8.7 1.1 2.3 0.7 53.0 7.6 27.5 7.1
30 0.2 * * * 7.3 2.7 2.3 2.2 46.2 13.7 23.3 12.0

av2
b , approximation. MC, Monte–Carlo N ¼ 103. NA, not applicable. The p-values are in percent. The � indicates a p-value less than 0.1%.
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Model 4
Tsay (2005, 2nd edn, p. 371).

Z1;t

Z2;t

� �
�

0:8 �2

0 0

� �
Z1;t�1

Z2;t�1

� �
¼

a1;t

a2;t

� �
�
�0:5 0

0 0

� �
a1;t�1

a2;t�1

� �

C0 ¼
1:00 0:71
0:71 1:00

� �

Model 5

Reinsel (1997, p. 25).

Z1;t

Z2;t

� �
¼

a1;t

a2;t

� �
�

0:8 0:7

�0:4 0:6

� �
a1;t�1

a2;t�1

� �

C0 ¼
4 1
1 2

� �

Model 6

Tsay (2005, 2nd edn, p. 350).

Z1;t

Z2;t

� �
¼

a1;t

a2;t

� �
�

0:2 0:3

�0:6 1:1

� �
a1;t�1

a2;t�1

� �

C0 ¼
2 1
1 1

� �

Model 7

Lütkepohl (2005, p. 445).

Z1;t

Z2;t

� �
�

0:5 0:1

0:4 0:5

� �
Z1;t�1

Z2;t�1

� �
�

0 0

0:25 0

� �
Z1;t�2

Z2;t�2

� �
¼

a1;t

a2;t

� �
�

0:6 0:2

0 0:3

� �
a1;t�1

a2;t�1

� �

C0 ¼
1:0 0:3
0:3 1:0

� �

Model 8

Reinsel et al. (1992, p. 141).

Z1;t

Z2;t

Z3;t

2
64

3
75�

0:4 0:3 �0:6

0:0 0:8 0:4

0:3 0:0 0:0

2
64

3
75

Z1;t�1

Z2;t�1

Z3;t�1

2
64

3
75 ¼

a1;t

a2;t

a3;t

2
64

3
75�

0:7 0:0 0:0

0:1 0:2 0:0

�0:4 0:5 �0:1

2
64

3
75

a1;t�1

a2;t�1

a3;t�1

2
64

3
75

C0 ¼
1:0 0:5 0:4
0:5 1:0 0:7
0:4 0:7 1:0

0
@

1
A

The power of the portmanteau statistics Dm and ~Qm for nominal 5% tests using the MC test are shown in Table 2. The power is
evaluated for 104 simulations for each parameter setting and and N ¼ 103 is used in the MC algorithm. It is clear from Table 2 that
the Dm test is often substantially more powerful than the ~Qm. Only when n ¼ 50 and m ¼ 30 is the ~Qm test more powerful and this
only occurs for Models 2 and 4.
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4. ILLUSTRATIVE APPLICATIONS

4.1. IBM and S&P index

Tsay (2010, chap. 8) uses the portmanteau diagnostic test in constructing a VAR model for the monthly log returns of IBM stock and
the S&P 500 index for January 1926 to December 2008. So here, n ¼ 996. Univariate analysis for both of these series indicates the
presence of conditional heteroscedasticity (Tsay, 2010, p. 408) but for forecasting purposes, we may consider a VAR model rather a
more complex VAR/GARCH model (Weiss, 1984; Francq and Raı̈si, 2007). There are n ¼ 996 and the AIC selects a VAR(5) model.
We found that the BIC selects a VAR(1) model. Table 3 compares the p-values for the portmanteau tests for the VAR(p) for p ¼ 1,3,5.

These portmanteau tests suggest that the VAR(5) is adequate and that the VAR(1) and VAR(3) both exhibit lack of fit. The VAR(4) is
not shown but the results for this model are similar to the VAR(3). As noted in Remark 2, the presence of conditional
heteroscedasticity means that the p-values in Table 3 are too small and this implies that, possibly, a lower-order model than the
VAR(5) may be adequate. This possibility could be investigated using the multivariate portmanteau test of Francq and Raı̈si (2007).

Table 3 also shows that av2
b approximation for the p-value of Dm is inaccurate whereas for ~Qm the asymptotic approximation

agrees quite well with the Monte–Carlo result.

4.2. Investment, income and consumption time series

The trivariate quarterly time series, 1960–1982, of West German investment, income and consumption was discussed by Lütkepohl
(2005, §3.2.3). For this series, n ¼ 92 and k ¼ 3. As in Lütkepohl (2005, §4.3.1) we model the logarithms of the first differences. Using
the AIC, Lütkepohl (2005, Table 4.5) selected a VAR (2) for this data. Only lags m ¼ 5,10,15 are used in the diagnostic checks since n is
relatively short. All diagnostic tests reject simple randomness, VAR (0). The Monte–Carlo tests for VAR (1) suggests model inadequacy
at lag 5. Table 4 supports the choice of the VAR (2) model.

As pointed out in Remark 2, we may test for multivariate heteroscedasticity by using the squared residuals and Table 5 gives the
p-values with this test for the VAR(2) model. In this case, av2

b approximation for Dm as well as the asymptotic v2 approximation for ~Qm

are quite inaccurate. Based on the Monte–Carlo tests there is little evidence to reject that null hypothesis of constant variance.

5. CONCLUDING REMARKS

Box et al. (2008) stress the importance of constructing an adequate and parsimonious model in which the residuals pass a suitable
portmanteau diagnostic check. In forecasting experiments with monthly riverflow time series, Noakes et al. (1985) found that simply
using a criterion such as the AIC or BIC may provide a model that either does not pass a suitable diagnostic check for randomness of
the residuals or that may have more parameters than necessary. Monthly riverflow time series models chosen with the fewest
number of parameters that pass the portmanteau diagnostic check for periodic autocorrelation (McLeod, 1994) tend to produce
better one-step ahead forecasts (Noakes et al., 1985). McLeod (1993) suggested formulating the principle of parsimony as an
optimization problem: minimize model complexity subject to model adequacy. In any case, in the overall approach suggested many
years ago and presented in their recent book (Box et al., 2008), portmanteau diagnostic checks play a crucial role in constructing time
series models.

Table 4. Trivariate West German macroeconomic series

VAR(0) VAR(1) VAR(2)
av2

b MC av2
b MC av2

b MC
m Dm

~Qm Dm
~Qm Dm

~Qm Dm
~Qm Dm

~Qm Dm
~Qm

5 * * 0.1 0.1 3.1 4.7 2.2 4.8 33.1 29.8 31.2 38.0
10 * 0.6 0.3 0.5 4.0 14.7 7.0 12.7 49.5 48.0 54.2 50.6
15 * 0.2 0.4 0.6 4.1 13.7 17.7 12.4 32.8 34.6 56.2 35.5

av2
b , approximation. MC, Monte–Carlo using 103 replications. The p-values are in percent and � indicates a p-value less than 0.1%.

Table 5. The residuals of the fitted VAR(2) model on West German macroeconomic series are tested for heteroscedastic effects

MC
m Dm

~Qm Dm
~Qm

5 0.2 15.2 31.9 81.3
10 0.3 6.3 24.4 37.9
15 * * 12.2 1.6

av2
b , approximation. MC, Monte-Carlo using 103 replications. The p-values are in percent and � indicates a p-value less than 0.1%.
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In Section 2.2, Remark 2, it was pointed out the Monte-Carlo test with Dm may also be useful in diagnostic checking for
multivariate conditional heteroscedasticity when used with squared or absolute residuals. This test is implemented in Mahdi and
McLeod (2011). There is an extensive literature on testing residuals in VAR and VARMA models for conditional heteroscedasticity
(Ling and Li, 1997; Dunchesne and Lalancette, 2003; Duchesne 2004; Rodrı́guez and Ruiz, 2005; Duchesne, 2006; Chabot-Hall and
Duchesne, 2008). The power study presented Section 3.2 suggests that the Dm with squared or absolute residuals may be useful.
Peňa and Rodrı́guez (2002) also suggested that using squared-residuals with their generalized-variance portmanteau test would
outperform the usual diagnostic check (McLeod and Li, 1983). Other tests designed for particular alternatives might be expected to
perform better than an omnibus portmanteau test such as Dm or ~Qm when these alternatives hold. For example, Rodrı́guez and Ruiz
(2005) developed a diagnostic check for heteroscedasticity for the case of small autocorrelations.

The multivariate portmanteau diagnostic test developed by Francq and Raı̈si (2007) does not require independent and identically
innovations but only uncorrelated innovations. This test would be appropriate for the bivariate example in Section 4.1.

Scripts for reproducing all tables in this article are available with our freely available software (Mahdi and McLeod, 2011). This
package can utilize multicore CPUs often found in modern personal computers as well as a computer cluster or grid (Schmidberger
et al., 2009). On a modern eight core personal computer, the computations for Tables 4 and 5 take about one minute. Table 3 takes
about six minutes due to the longer series length and increased number of lags. The simulations reported in Section 3 were run on a
computer cluster.
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