
FORECASTING TIME SERIES WITH NEURAL NETS

by

Yoshio Kajitani

Graduate Program

in

Statistics

Submitted in partial ful�llment

of the requirements for the degree of

Master of Science

Faculty of Graduate Studies

The University of Western Ontario

London� Ontario

April ����

c� Yoshio Kajitani ����

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Advisor Examining Board

Advisory Committee

The thesis by

Yoshio Kajitani

entitled

FORECASTING TIME SERIES WITH NEURAL NETS

is accepted in partial ful�llment of the

requirements for the degree of

Master of Science

Date

Chair of Examining Board

ii

ABSTRACT

FFNN �Feed�Forward Neural Nets� are one of the most widely used neural nets� In

this thesis the FFNN architecture is examined and compared with statistical time

series models for a variety of time series prediction problems� FFNN do not as�

sume any probability models� while statistical models are based on the probability

model� Therefore� if the goal of the modelling is rigorous quanti�cation of uncer�

tainty� statistical models are more suitable� However if the goal is merely prediction�

we demonstrate that neural nets have a lot to o	er� Widely di	erent parameter set�

tings in the neural net approach often lead to models which make virtually the same

predictions� Neural net o	er a more
exible approach to model building which is

especially helpful in nonlinear and nonGaussian situations� In this thesis� the per�

formance by NN models and statistical models for prediction is examined by using

visualization techniques and statistical tests�

Keywords� Feed�Forward Neural Nets� Linear and nonlinear time series models�

Forecasting� Nonlinear time series� Visualization

iii

Dedicated to my family

iv

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my supervisor Dr� A� Ian McLeod for his great

advice� encouragement� support and friendship�

I wish to thank Dr� Okada in Kyoto University for recommending me to study

in this wonderful place�

v

�

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

DEDICATION iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS �

2

ARIMA model for such data.

Neural networks are also being applied in such emerging fields of study as: Data

Mining, Knowledge Discovery in Databases , and Machine Learning .

Many excellent textbooks on the subject of neural networks are available, such

as Kasabov (1998), Menrotra, Mohan & Ranka (1997), Freeman (1994) and Hertz,

Krogh & Palmer (1991). Introductions to neural computing in the statistical liter-

ature have been given by Murtagn, (1999), Faraway & Chatfield (1998), Venables

& Ripley (1997), Stern (1996), Warner & Misra (1996), and Chen & Titterington

(1994). The theory and application of neural networks have also been further ad-

vanced by statisticians including De Veux et al. (1998), Ripley (1996) and Park et

al. (1992).

The history of the development of neural computation is the subject of the books

by Anderson and Rosenfeld (1998) and Johnson & Brown (1988).

Neural nets have been featured in the mass-circulation popular magazines as

such as Maclean’s (Kurzweil, 1999). Dyson (1997) provides an entertaining and

speculative look at the future of neural computation and its impact on the World-

Wide-Web. The book edited by Graubard (1990) contains several essays on the

impact of neural nets in the field of Artificial Intelligence.

Software for fitting neural networks is widely available. In our research we have

found the Splus functions developed by Ripley (1999) most useful. Ripley’s functions

were adapted by Faraway and Chatfield (1998) for the time series prediction problem

and we have implemented their Splus functions. We also examined the SPSS (1998)

package, Neural Connection. This package offers a visual modeling approach to the

development of a neural network architecture and provides many more options and

capabilities than the neural net functions based on Ripley (1999). However in our

work we found no advantage in Neural Connection over Ripley’s Splus functions.

1.1 Feed-Forward Neural Nets (FFNN)

FFNN are also often called Multilayer Perceptrons or Backpropagation Networks . In

this thesis the FFNN architecture is examined for a variety of time series prediction

3

problems. The FFNN architecture is perhaps the most widely used neural net and it

is in fact the only architecture supported by Ripley’s software. Ripley (1996) gives

a thorough treatment of the use of FFNN for pattern recognition.

The FFNN takes inputs, xi, i = 0, . . . p and produces an output y. We take x0 = 1.

This x0 is sometimes called the bias or dummy input node. In some applications,

multiple outputs could be produced instead of just one output. The weighted linear

sum of the inputs is fed forward to each of q hidden nodes where it is transformed

using a sigmoid-like function, typically the logistic function,

φh(z) =
1

1 + e−z
.

Another popular sigmoid function is the hyperbolic tangent (tanh). Figure ??

compares these functions. Both functions are equally as good but the logistic is more

tractable and is hence more widely used.

-4 -2 2 4

-1

-0.5

0.5

1

tanh

logistic

Figure 1: The logistic, 1/(1 + e−z), and hyperbolic tangent, tanh(z), activation

functions.

The weighted linear sum of the hidden nodes is then fed to the output node

where it is again transformed by a function φo(z). Popular forms for φo(z) include

the threshold step function for classification problems as well as the logistic and

linear function. For time series prediction the linear function, φo(z) = z is used.

The weights are called the connection strength for the nodes and φh(z) and φo(z) are

the node activation functions .

Figure ?? shows the structure of a FFNN with inputs x(t− 1) and x(t− 2) and

with two hidden nodes. The output, y(t), could be the predicted value of x(t) or an

4

estimate of some other quantity. Given the number of hidden nodes, the output y(t)

only depends on the weights using in the linear sums.

input hidden output

x2

x1

1

y

Figure 2: FFNN diagram for time series prediction problem using the last two

observations x1 = x(t− 1) and x2 = x(t− 2) and two hidden nodes. Depending on

the weights, y could be an `-step-ahead forecast.

In general, given p inputs, xi, i = 0, . . . p and q hidden nodes, the input to the

j-th hidden node is

Vj =

p∑
i=0

wj,ixi.

The j-th hidden node transforms this to obtain the node output φh(Vj). The

weighted sum of these hidden node outputs,

U =

p∑
j=1

Wj φh(Vj),

is received at the output node and is transformed to obtain the output y = φo(U).

The entire process can be summarized in a single equation,

y = φo(

q∑
j=1

Wj φh(

p∑
i=0

wi,jxi)).

The capability of this network is determined by the weights wi,j; i = 0, . . . , p; j =

1, . . . , q and Wj, j = 1, . . . , q. These weights comprise (p + 1)q + q parameters

which must be calibrated from available data. The number of hidden nodes, q,

determines the architecture. The larger q is, the larger the number of connection

weights which must be calibrated from data. On the other hand, with more hidden

nodes the FFNN is better able to approximate an arbitrary continuous function. It

5

has been shown that for a continuous function of the input, f(x1, . . . , xp) and for

any small ε > 0 we can make the error uniformly small, that is, |y− f(x1, . . . , xp)| <
ε uniformly for all (x1, . . . , xp) ∈ Rp (Mehrotra, Monan & Ranka, 1997, §3.5.3).

Discontinuous functions can also be approximated by adding a second hidden layer

to the architecture.

In time series modeling using the FFNN we shall for brevity denote the model

by NN(L; h), where L is the set of lags and h is the number of hidden nodes. For

example, the FFNN in Figure ?? would be denoted by NN(1, 2; 2).

1.1.1 Calibration, Training and Backpropagation

Given data comprised of N input sequences x
(µ)
1 , . . . , x

(µ)
p ; µ = 1, . . . , N with cor-

responding target values Y (µ); µ = 1, . . . , N and after specifying q the number of

hidden nodes, the problem is to calibrate or estimate the weights. In neural net

terminology this calibration or estimation is called training .

Typically the data is divided into two portions, N = N1 + N2 where N1 of the

data are used for training and N2 are used as test data to check the out-of-sample

predictions. In neural net terminology, the out-of-sample predictions test how well

FFNN generalizes . A common problem in FFNN design is choosing too many hidden

nodes so the FFNN fits the training portion extremely well but it fails to generalize.

When this occurs, the FFNN model is sometimes said to be overtrained.

The weights are chosen to minimize some energy function and the usual choice

is,

E =

N1∑
µ=1

(y(µ) − Y (µ))2,

where

y(µ) = φo(

q∑
j=1

Wjφh(

p∑
i=0

wi,jx
(µ)
i)).

A widely used method in FFNN for minimizing E is the gradient descent method

which is known as backpropagation. The term backpropagation arises because the

gradient descent computations can be implemented very efficiently in terms of propa-

gating the errors backwards through the network (Mehrotra, Monan & Ranka, 1997,

6

§3.3). However the convergence of the backpropagation algorithm can be very slow

and require a lot of computer time. Various improvements to the basic gradient

descent optimization algorithm have been suggested.

It should also be noted that for FFNN, E typically has many local minima and

so the global minimum is nearly impossible to determine in many cases. However,

in the spirit of the analogy with human learning, we may be content to halt the

training when the performance is good enough. Worrying too much about the op-

timization algorithm used is probably not going to lead to any real improvement in

the generalizability of the FFNN.

One obvious remedy to the problem of overtraining is to use fewer hidden nodes

in the architecture. However in practice another approach using a validation sample

is more convenient if the data are plentiful. In this approach the data are divided

into three portions N = N1 + N2 + N3 corresponding respectively to the training,

validation and test data. Backpropagation is used iteratively and the performance

of the FFNN is monitored on the validation sample. When performance of the

validation sample starts to deteriorate, training is halted.

1.1.2 Other Applications of FFNN

The FFNN architecture has been widely used. As briefly indicated above, in the

statistics arena, FFNN methods proved useful in problems handled by traditional

methods for regression, classification, discrimination and time series prediction.

We highlight a few of the interesting other applications which are discussed in

more detail in Hertz, Krogh and Palmer (1991, §6.3):

• Machine speech. NETtalk a FFNN that was taught to pronounce 1024 words

using 80 hidden nodes.

• Hyphenation. Complicated hyphenation algorithms were developed for En-

glish. No algorithms were available for other languages such as Danish and

German. FFNN approach has been used to obtain a quick and satisfactory

solution.

7

• Sonar target detection. A FFNN network with two hidden layers was trained

to distinguish metal cylinders on the ocean bottom from rock with reflected

sonar signals.

• Car navigation. A FFNN was trained to drive a car on a winding road.

• Image compression. Here a FFNN has the targets identical to the input image.

The image is compressed by using relatively fewer hidden nodes. The input-to-

hidden connections perform the encoding and the hidden-to-output connections

perform decoding.

• Backgammon. This is a popular and ancient game of skill. A variety of ap-

proaches have been tried to develop a computer program to play this game.

Neurogammon which was developed by training a FFNN won the gold medal

at the London Olympiad for computer backgammon in 1989.

• Postal Code Recognition. An FFNN has been developed to recognize postal

codes.

• Speech Recognition. This is a very difficult problem in Artificial Intelligence.

FFNN have been useful to solve some aspects such as distinguishing from a

given set of words.

1.2 Comparison of Forecast and Actuality

In this thesis we will be interested in comparing the out-of-sample forecasting perfor-

mance of FFNN with ARIMA and other time series models. We focus primarily on

one-step forecasting. There are several possible methods of implementing multi-step

forecasts with neural nets which are discussed in §??. A naive view is that since

in the long-run all reasonable forecasting methods for a stationary process are the

same, it is often the case that one-step forecasts discriminate the most between in-

adequate and adequate models. In most previous forecasting experiments with time

series one-step forecasts have been used. However, in actual practice, some models

8

perform depending on the lead time of the forecast and further work should be done

with multi-step forecasts with the FFNN.

For some time series data, zt, t = 1, . . . , N , suppose that we use a portion N1

for training and N2 as test data for out-of-sample forecasts. We wish to compare

the performance of two models which generate forecast errors e
(1)
t and e

(2)
t respec-

tively from specified target values Yt. For convenience we renumber these errors and

corresponding target values, t = 1, . . . , N2.

A simple comparison of the performance of the methods is given by just com-

paring the mean-square error or root-mean-square error of the forecasts. Median

absolute error, mean absolute percentage error and other criteria have been used

in previous forecasting studies (Hipel & McLeod (1994, Ch.15) and there are many

other possibilities. A new criterion which does not appear to have been used in

previous forecast studies is based on the Pitman Measure of Closeness (PMC) for

comparing statistical estimators. For comparing competing forecasts from models 1

and 2 the PMC is estimated by

PMC (1, 2) = p̂ =]{|e(1)
t | < |e(2)

t |}/N2,

where]{•} denotes the number of elements in the set. If model 1 is better than

model 2, PMC (1, 2) > 0.5. To test if the improvement is statistically significant we

can use a normal approximation to the binomial. So the two-sided significance level

is given by 2(1− Φ(|Z|)) where

Z =
√

N2
p̂− 0.5√
p̂(1− p̂)

.

The PMC criterion measures which forecast is most often nearest to the truth. Using

the the RMSE to compare the forecasts on the other hand is relevant when the

magnitude of the forecast error is of concern.

With one-step forecasts it is also possible to use a simple statistical test to check

if there is a statistically significant difference in mean-square error performance.

9

1.2.1 Pitman’s test

Since the one-step forecast errors under a valid model are approximately uncorre-

lated we can use Pitman’s test for testing the equality of variances in the paired

sample case. (Hipel & McLeod, 1994, §8.3.2). This test can tell us if the forecasting

performance as measured by mean square error is statistically significantly different

between the two models. Pitman’s test is easy to implement. Let St = e
(1)
t +e

(2)
t and

Dt = e
(1)
t − e

(2)
t where t = 1, . . . , N2. Then under H0 : Var {e(1)

t } = Var {e(1)
t }, St

and Dt should be uncorrelated. So to test the null hypothesis H0 we can compute

the Pearson correlation coefficient,

r =

∑
(St − S̄)(Dt − D̄)√∑

(St − S̄)2
∑

(Dt − D̄)2
.

The two-sided significance level is given Pr{T > |t̂|}, where

t̂ = r

√
N2 − 2

(1− r)× r
,

and T denotes a random variable from the t-distribution with N2 − 2 degrees of

freedom.

1.2.2 Visualization

Visualization and graphical methods often provide insight superior to significance

tests by indicating the magnitude of differences and often revealing unexpected out-

liers and other features of the data. Cleveland (1993) stresses the use of visualization

methods as diagnostic methods to check the statistical assumptions behind fitting

and also for exploratory data analysis where no explicit probability model is enter-

tained. We adapt some of the methods discussed by Cleveland (1993) to compare

the out-of-sample forecasting performance.

First we look at time series plots showing the observed and forecast. This is an

obvious plot to provide a quick examination of the forecasting capability. However

the time series plot is not very good at revealing differences between competing

models.

10

The residual-fit (RF) spread plot introduced by Cleveland (1993) provides a

visual summary of the amount of variability accounted for by a model and is readily

adapted to out-of-sample forecast comparison. The RF-spread plot is comprised of

two panels. Both panels are constructed from data quantile plots. Given some data,

say X1, . . . , Xm, the quantile plot is a plot of X(i) vs (i− 1/2)/m where X(i) denotes

the i-th smallest data value. The left panel shows the quantile plot of the targets

minus their mean, Yt − Ȳ . The right panel of the RF-spread plots is a quantile plot

of the forecast errors. The horizontal and vertical scales are identical on both plots.

Keeping the vertical scale the same means the amount of variability of the data in

the plot can be compared. For comparing the forecasting performance of two models

we keep the scales identical on both pairs of RF-spread plots.

Another plot that we have adapted for comparing the forecasting performance

is the Tukey mean-difference plot which is also discussed in Cleveland (1993). The

Tukey mean-difference plots is generally useful when we want to compare paired data,

(Ai, Bi), i = 1, . . . , m. If we look at a scatter plot of B vs A then the differences

between the pairs is indicated by the vertical displacement from the 45◦ line. Tukey,

noting that it is much easier to visualize vertical displacements from a horizontal

line, transformed the data by a planar rotation of 45◦. Thus the new coordinates,

(C, D) are given by

C = cos(45◦)A + sin(45◦)B

D = − cos(45◦)A + sin(45◦)B

Since sin(45◦) = 1/
√

2 and cos(45◦) = 1/
√

2 we see that

C = (A + B)/
√

2

D = (−A + B)/
√

2

Since the linear scaling is arbitrary, Tukey mean-difference plot consists of plotting

B − A vs (B − A)/2. For our forecasting experiments we take A and B to be

the target and forecast respectively. Our display then is comprised of two Tukey

mean-difference plots with the same scaling. The Tukey mean-difference plot was

11

found helpful in visualizing the difference in forecast performance between competing

models. Essentially the Tukey mean-difference plot used in this way is similar to the

standard model diagnostic plot of the residual vs the fit.

1.3 Statistical Models vs Neural Nets

Statistical models are based on probability assumptions whereas in neural nets there

is no probability assumption. This feature has its benefits and costs for both ap-

proaches. With a probability model the tools of statistical inference can be used

to make precise the amount of uncertainty involved in the parameter estimates, for

giving probability bounds to predictions and for checking the model adequacy by

checking how well the assumptions of the probability model are satisfied. Model

comparisons of statistical models can be made by the use of likelihood-ratio tests

and more generally using the Akaike or Bayes information criterion. Statistical di-

agnostic checking is also another advantage of statistical models.

In some statistical models, such as regression, the parameters estimated may

have some scientific or technological interest. This is not often relevant for ARIMA

time series forecasting but it is certainly relevant in other ARIMA modelling situ-

ations such as in Intervention Analysis and more generally regression and dynamic

regression with autocorrelated errors.

The parameters in the neural net approach do not have any particular scientific

meaning. In fact widely different parameter settings in the neural net approach may

lead to models which make virtually the same predictions. The lack of a probability

model makes the neural net seem comparatively like a purely black-box approach.

But by not specifying such rigorous probability and model assumptions the neural

net offers a more flexible approach to model building. This flexibility is especially

helpful in nonlinear and nonGaussian situations.

If the goal of the modeling is rigorous understanding, explication and quantifi-

cation of uncertainty, statistical models have a lot to offer. Sometimes the goal is

merely prediction and here the neural net approach is often helpful.

In this thesis the FFNN model is compared with statistical time series models for

12

several monthly time series datasets and for the annual lynx series. The usefulness

and limitations of the FFNN model for several types of Markovian dependence is

illustrated. We conclude with an application to half-hourly streamflow forecasting

where it is difficult to posit a suitable statistical model.

13

2 Airline Data

2.1 Introduction

The airline data were modeled by Box & Jenkins (1976) and also by previous authors.

This time series consists of the total number of airline passengers every month on

flights between U.S.A. and England over the period 1949–1960. A time series plot

of this data is shown in Figure ??.

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

1
2

3
4

5
6

Figure 3: The Airline Data

Faraway & Chatfield (1998) applied the FFNN to the airline data listed. Their

main conclusion was that it is dangerous to apply FFNN models blindly in the so

called black box mode and that FFNN models did not offer a substantial improve-

ment. In our review we find some problems with the methodology used in the study

of Faraway & Chatfield (1998) and we show that there is a definite improvement in

14

the out-of-sample forecasts.

We redo the computations of Faraway & Chatfield (1998) and we find several

flaws in their presentation and conclusions. All the calculations in this section were

done by using the statistical software S-plus function nnet (Ripley, 1999) which was

adapted by Faraway & Chatfield (1998) to time series prediction. We also compare

the Splus neural net package on this airline data set with the Neural Connection

package produced by SPSS Inc (1998).

2.2 Faraway & Chatfield’s Paper

Faraway & Chatfield (1998) divided airline data into two parts. The first 132 values

were used as training data and last 12 as test data for out-of-sample forecasting. Then

they compared varying 13 FFNN models with the seasonal autoregressive integrated

moving average model, SARIMA, of order (0, 1, 1)× (0, 1, 1)12, which was introduced

by Box & Jenkins (1976). They are compared by using the following statistics.

• S, the sum of squared residuals up to time 132. Note the residuals are the

within-sample one-step ahead forecast errors.

• σ̂ =
√

S/(n− p), the estimate of residual standard deviation, where n denotes

the number of effective observations used in fitting the model and p denotes

the number of weights function required in the model.

• The Akaike information criterion, AIC = n ln(S/n) + 2p.

• The Bayesian information criterion BIC = n ln(S/n) + p + p ln(n).

• The sum of squares of multistep-ahead forecast errors made from origin time

132 up to maximum lead time 144. This is denoted as SSMS in Table ?? of

the observations from time 132 + 1 to the end of the series.

• The sum of squares of one-step-ahead forecast errors of the observations from

time 132 + 1 to the end of the series. It is denoted as SS1S in Table ??.

15

The main results of Faraway & Chatfield (1998) are reproduced in Table ??.

Usually when we compare forecasts, Mean Square Error, denoted by MSE, or Root

Mean Square error, RMSE, is used. The RMSE for Table ?? is given in Table ??.

In the next two subsections we point out some major reservations that we have

with the methodology of Faraway & Chatfield (1998).

2.2.1 Multistep Ahead Forecast Comparison

Faraway & Chatfield (1998) obtained the multistep-ahead forecasts in the follow-

ing way:

• Construct a model with a training data set.

• Use the one-step-ahead forecast to replace the lag 1 value as one of the input

variables. The same architecture could then be used to construct the two-step-

ahead forecast and so on.

Their multistep-ahead forecasts are constructed by analogy with the known re-

sults for linear ARIMA models and are not really appropriate for nonlinear FFNN

models. Rather we should train the FFNN model for each forecast. Multistep-ahead

forecast calculated by the model trained for each forecast is given in Table ??. We

can see that the model NN(1, 12, 13; 2) produced the best forecasts and is different

from the results by one-step ahead forecast. We cannot see big differences between

this method and Faraway and Chatfield’s method, but it’s apparent that if the steps

become bigger, then this method will does much better than their multistep-ahead

forecast.

The third way to get the multistep-ahead forecast is to train the NN model by

setting several outputs for one FFNN model. For example, if we would like to get

12-steps-ahead-forecast, we should set 12 outputs for one FFNN model. This model

indicates that we get the 12-steps ahead forecast by using last few observation. It is

important to increase the number of hidden nodes correspondingly for each additional

16

Number Number of Measure of Fit Forecast

Lags of hidden weights

neurons S σ̂ AIC BIC SSMS SS1S

1,2,3,4 2 13 7.74 0.245 -333 -283 58.52 1.03

1-13 2 31 0.73 0.091 -545 -428 1.08 0.71

1-13 4 61 0.26 0.067 -605 -375 4.12 1.12

1,12 2 9 2.30 0.144 -456 -422 0.35 0.34

1,12 4 17 2.16 0.145 -448 -383 0.38 0.44

1,12 10 41 1.77 0.150 -424 -268 0.51 0.59

1,2,12 2 11 2.17 0.141 -459 -418 0.34 0.29

1,2,12 4 21 1.91 0.139 -455 -375 6.82 1.03

1,2,12,13 2 13 0.99 0.097 -543 -494 0.37 0.52

1,2,12,13 4 25 0.81 0.093 -543 -449 0.34 0.52

1,12,13 1 6 1.18 0.102 -537 -514 0.33 0.50

1,12,13 2 11 1.03 0.098 -543 -501 0.33 0.50

1,12,13 4 21 0.84 0.093 -547 -467 0.54 0.62

SARIMA model 2 1.08 0.095 -556 -546 0.39 0.43

Table 2.1: Faraway & Chatfield (1998)Results. Comparison of various FFNN mod-

els together with the corresponding values for the SARIMA airline model by Chatfield.

SSMS denotes sum of squares of residuals for multi-step ahead forecasts for the test

data and SS1S denotes sum of squares of residuals for one-step ahead forecast for

the test data. The number of training data is 132 and the number of test data is 12.

17

Number Number of RMSE RMSE

Lags of hidden weights for for
neurons SSMS SS1S

1,2,3,4 2 13 2.208 0.293

1-13 2 31 0.734 0.243

1-13 4 61 0.586 0.306

1,12 2 9 0.171 0.168

1,12 4 17 0.178 0.191

1,12 10 41 0.206 0.222

1,2,12 2 11 0.168 0.155

1,2,12 4 21 0.754 0.166

1,2,12,13 2 13 0.176 0.296

1,2,12,13 4 25 0.168 0.208

1,12,13 1 6 0.166 0.206

1,12,13 2 11 0.166 0.200

1,12,13 4 21 0.212 0.297

SARIMA model 2 0.180 0.189

Table 2.2: Root Mean Square Error (RMSE) Comparsions. Comparison of various

FFNN models together with the corresponding values for the SARIMA airline model

for 50 times iteration SSMS denotes sum of squares of residuals for multi-step ahead

forecasts for the test data and SS1S denotes sum of squares of residuals for one-step

ahead forecast for the test data. The number of training data is 132 and the number

of test data is 12.

18

Number Number of

Lags of hidden weights RMSE
neurons

1,12 2 9 0.175

1,12 4 17 0.201

1,2,12 2 11 0.171

1,2,12 4 21 0.211

1,2,12,13 2 13 0.180

1,12,13 2 11 0.159

SARIMA model 0.159

Table 2.3: Comparison of multistep-ahead forecasts trained for each forecast RMSE

is given for last 12 forecasts out of 144 data points.

output forecast. The result by this method is given in Table ??. However it does

not produce as good the result as the one produced by the other methods.

In addition there is another defect to be criticized for Faraway and Chatfield’s

multistep-ahead forecasts. Let et(k) denote the forecast error of the k-step ahead

forecast from forecast origin t. Then multistep ahead forecasts error variance can be

written Var (et(l)) = σ2V (k), where σ2 is innovation variance, ψj is coefficient at

lag j in the infinite moving-average expansion of the SARIMA model and V (k) is

the variance inflation factor, given by

V (k) =
l−1∑
j=0

ψj
2. (2.1)

Since the variance is completely different at each lag, it is not sensible to look at an

average of the multistep-ahead forecasts at lag 1,2, · · · , 12 as was done by Faraway

& Chatfield (1998). Figure ?? shows that for the fitted SARIMA model the variance

inflation factor, V (k) increases with k and for k = 12 implies a nearly 5-fold increase.

Figure ?? shows the difference of 60-steps ahead forecasts between the NN(1, 12; 2)

model and the SARIMA model.

19

Number Number of

Lags of hidden weights RMSE
neurons

1-12 2 0.622

1-12 4 1.488

1-12 24 0.690

1-12 36 0.986

SARIMA model 2 0.159

Table 2.4: Comparison of multistep-ahead forecasts obtained by setting 12 outputs.

RMSE is given for last 12 forecasts out of 144 data points. NN(1-12;24) and NN(1-

12;36) are calibrated by Neural Connection.

1

2

3

4

5

2 4 6 8 10 12

k

V(
k)

Figure 4: The variance inflation factor, fitted SARIMA model.

20

1954 1955 1956 1957 1958 1959

4
5

6
7

8
9

Box-Jenkins model
NN(1,12;2)

Figure 5: Multistep-ahead forecasts for the airline data using the SARIMA model

and the NN(1, 12; 2) model. Forecasts are computed at lags k = 1, ..., 60 starting with

a forecast origin of t = 72 which corresponds to January 1954.

2.2.2 Misuse of AIC and BIC

One of Faraway and Chatfield’s main conclusions about AIC is that if the model is

chosen on the basis of minimizing the AIC or σ̂, then the NN(1 − 13; 4) model will

be selected, see Table ??. But as Faraway & Chatfield (1998) point out, it leads to

poor forecast. Often it if there are a large number of parameters in the model, the

result is a poor forecasts. This result can be established theoretically in the sense

that if a parametric model is overfit, then the forecast is degraded.

Since AIC is expressed as n ln(S/n)+2p for the neural network, the reason why

NN(1 − 13 : 4) model gets the large number of AIC is that the n ln(S/n) terms

dominates the 2p term. In other words, AIC doesn’t penalize enough for the extra

parameters.

It is true that there is a trade-off between bias and variance on the number of

parameters but the only justification of this is by analogy with parametric statistical

models. The AIC is not defined for the FFNN model because there is no likelihood.

21

The energy function minimized is only analogous to a sum of squares in least squares.

It is not sensible to assume a probability function for the errors.

Another point to note is that if we were to fit a ridiculous model such as a

polynomial regression of high-order, say p, then by taking p large enough we can

drive S to zero and so the AIC would select this absurd model. For this reason,

Akaike has recommended the we never allow p > n/4 when using model selection

with the AIC. The NN(1− 13; 4) has 60 adjustable weight parameters and only 132

data values, so this principle has also been ignored by Faraway & Chatfield (1998).

Faraway & Chatfield (1998) use of the AIC and BIC is entirely on an ad hoc basis.

No other respected researcher in the neural nets has ever recommended the use of

AIC or BIC to select neural nets architecture. We believe the assumptions behind

the development of these information criterion are so different from the assumptions

in the FFNN and that consequently the AIC and BIC should not be used to select

neural net architecture. Instead in the neural net literature it is recommended that

we split the data into three parts: training, validation and test. We can make the

final model choice by comparing the performance on the test data.

22

2.3 Local Minima

Faraway & Chatfield (1998) were concerned about the fact that there are many local

minima for the energy function and these local minima typically produce different

values for the weights. Their results are reproduced in the Table ??. As a conclu-

sion, they mention that there is no guarantee that the model in the Table ?? with

the smallest S-value gives the global minima. They picked and examined only the

model NN(1, 12, 2), which has the smallest number of weights but what happens

with models with even more weights?

Faraway & Chatfield (1998) reported that the models reported are the result of

refitting the model at least 50 times from different random starting points and taking

the best of the resulting minima. However there is no mention about the number of

iterations. Table ?? shows the same experiment as Table ?? except the number of

iteration times is fixed to 50. It is not difficult to notice that those two tables are not

consistent with each other, especially in the cases where the number of parameters

is large. The same thing happens to Table ?? with 100 times iteration. This tells

us that the number of iterations is not enough for models with the large parameter

number. Note also in ?? that there is a big difference in the fit when the number of

hidden nodes increases from 2 to 4.

Table ?? shows four different local minima of the NN(1 − 13; 2) models after

500 times iteration. This model has a large number of parameters. Although there

are differences in forecast values, S-values are quite consistent. You could also see

that the model from the Table ?? produces a better forecast than other models even

though this model has the worst S-value.

23

Fit S SS1S

2.30 0.34

2.32 0.38

2.38 0.31

2.41 0.31

2.49 0.33

2.49 0.35

2.51 0.40

Table 2.5: Fit and forecast accuracy for seven local minima for the NN(1, 12; 2)

model with 132 training data in ascending order of fit accuracy by Faraway & Chat-

field (1998). S denotes sum of squares of one-step ahead forecast for 132 training

data. SS1S denotes sum of squares of one-step ahead forecast for the last 12 airline

test data.

2.4 Graphical comparison and statistical test for the

SARIMA model and FFNN models

We saw that NN(1, 2, 12; 2) produced the least sum of square value for the test data.

In this section we compare NN(1, 2, 12; 2) with the SARIMA(0, 1, 1)(0, 1, 1)12 model

graphically and we use Pitman’s test to see if the MSE produced by both models

are significantly different.

Graphical comparison gives more information than just comparing RMSEs.

Fitted values and Observed values for the airline data by SARIMA model and

NN(1, 2, 12; 2) is given in Figure ??. Both fitted values for out-of-sample forecast

appear to be quite close to the observed values but this graph is not very good at

comparing the differences in forecast errors.

Figure ?? and ?? show that the prediction errors for the NN(1, 2, 12; 2) are slightly

smaller. The difference is highly statistically significant, Pitman’s test r = 0.99,

t̂ = 26.41, achieved significance level of 2 Pr(t > t̂) = 1.4 × 10−10. In terms of the

Pitman statistical test, the FFNN does significantly outperform the SARIMA in

out-of-sample forecasting for the air data. There remains the question of practical

24

Number Number of

Lags of hidden weights S SS1S

neurons

1,2,3,4 2 13 5.87 1.68

1-13 2 31 0.66 1.43

1-13 4 61 0.18 2.45

1,12 2 9 2.30 0.32

1,12 4 17 2.08 0.30

1,12 10 41 1.59 15.45

1,2,12 2 11 2.17 0.29

1,2,12 4 21 1.73 0.33

1,2,12,13 2 13 0.72 1.05

1,2,12,13 4 25 0.81 0.52

1,12,13 1 6 1.18 0.51

1,12,13 2 11 0.99 0.48

1,12,13 4 21 0.80 1.06

SARIMA model 2 1.18 0.35

Table 2.6: Comparison of various FFNN models together with the corresponding

values for the SARIMA airline model for 50 times iteration. S denotes sum of

squares of one-step ahead forecast for 132 training data. SS1S denotes sum of squares

of one-step ahead forecast for the last 12 airline test data.

25

Number Number of

Lags of hidden weights S SS1S
neurons

1,2,3,4 2 13 5.86 1.67

1-13 2 31 0.67 1.31

1-13 4 61 0.21 1.67

1,12 2 9 2.30 0.32

1,12 4 17 2.07 0.30

1,12 10 41 1.44 1.00

1,2,12 2 11 2.17 0.29

1,2,12 4 21 1.76 0.36

1,2,12,13 2 13 0.98 0.50

1,2,12,13 4 25 0.72 0.37

1,12,13 1 6 1.18 0.51

1,12,13 2 11 0.99 0.48

1,12,13 4 21 0.78 1.01

SARIMA model 2 1.18 0.35

Table 2.7: Comparison of various FFNN models together with the corresponding

values for the SARIMA airline model for 100 times iterations. S denotes sum of

squares of one-step ahead forecast for 132 training data. SS1S denotes sum of squares

of one-step ahead forecast for the last 12 airline test data.

26

Fit S SS1S

0.642 0.78

0.649 0.78

0.657 0.73

0.671 1.26

0.73 0.71

(Table ??)

Table 2.8: Fit and forecast accuracy for four local minima for the NN(1 − 13; 2)

model with 132 training data in ascending order of fit accuracy with 500 times it-

eration. S denotes sum of squares of one-step ahead forecast for 132 training data.

SS1S denotes sum of squares of one-step ahead forecast for the last 12 airline test

data.

significance. This is partially answered by the RF-spread and Tukey mean-difference

plots which visually demonstrate the improved forecasts from the FFNN approach.

27

SARIMA

0 20 40 60 80 100 120 140

1
2

3
4

5
6

Observed

Fitted

training test

NN(1,2,12;2)

0 20 40 60 80 100 120 140

1
2

3
4

5
6

Observed

Fitted

training test

Figure 6: Fitted values for the airline data by the SARIMA model and

NN(1, 2, 12; 2). Observations are plotted with a solid line. The number of training

data is 132 and the number of test data is 20.

28

-1.0

-0.5

0.0

0.5

1.0

1.5

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

SARIMA

-1.0

-0.5

0.0

0.5

1.0

1.5

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

NN(1,2,12;2)

Figure 7: Residual-fit spread plots of the 12 airline test data by SARIMA model

and NN(1, 2, 12; 2). The left panel in each display shows the plot of quantile plot of

the fits minus the mean. The right panels are the quantile plots of the residuals.

29

SARIMA

3.5 4.0 4.5 5.0 5.5 6.0 6.5

-0
.4

-0
.2

0.
0

0.
2

NN(1,2,12;2)

3.5 4.0 4.5 5.0 5.5 6.0 6.5

-0
.4

-0
.2

0.
0

0.
2

Figure 8: Tukey mean difference plots of the 12 airline test data by SARIMA model

and NN(1, 2, 12; 2). The horizontal axis in each plot shows the (X + Y)/2 and the

vertical axis Y −X where X = one-step forecast and Y = observed.

30

2.5 Transformation of the Data

For statisticians, it is natural to use logarithms for the airline data to get the stable

variance and make the fit easier. The Application Guide with Neural Connection

SPSS Inc. (1998) recommends data preprocessing or filtering to remove if possible

outliers, lack of symmetry, normality or variance changes and to make the region

where the model is fit resemble as close as possible the region where data forecasts

are to be made.

For these reasons we used the FFNN model for the transformed data

wt = ∇∇12 ln(zt),

where ∇ is the backward difference operator and ∇12 is the backward seasonal dif-

ference operator. A plot of the wt shown if Figure ?? shows that the resulting series

looks stationary and reasonably Gaussian.

The NN forecasts for fitting to the transformed series and the back-transforming

the forecasts to the original domain are shown in Table ??. It appears that the NN

models does not give better forecasts than the SARIMA(0, 1, 1)(0, 1, 1)12 model. This

is confirmed with the Pitman’s test. The attained significance level in comparing

the SARIMA(0, 1, 1)(0, 1, 1)12 model and the NN(1, 2, 12; 2) fit to wt model yielded

r = 0.031, t̂ = 1.830 and a significance level 0.070. This indicates the variances

within samples from both models are significantly different. In short, contrary to the

case without transformation, SARIMA(0, 1, 1)(0, 1, 1)12 does significantly outperform

NN(1, 2, 12; 2) in out-of-sample forecasting for the air data. The RF-spread and

Tukey mean difference plots shown in Figures ?? and ?? also confirm that there is

a little difference between the SARIMA and FFNN model.

Thus data transformation by logging, differencing and seasonal differencing do

not produce a better model in this case. A possible reason is that the FFNN models

is not suitable for the MA component that this modeled by the SARIMA. Using

more hidden nodes would not help model this sort of dependence.

31

1950 1952 1954 1956 1958 1960

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

out-samplein-sample

Figure 9: Time series plot of wt, the transformed air data.

32

FFNN models S SS1S

NN(1; 1) 1.33 0.57

NN(1; 2) 1.30 0.55

NN(1, 2; 1) 1.33 0.57

NN(1, 2; 2) 1.30 0.56

NN(1, 12; 1) 1.14 0.49

NN(1, 12; 2) 1.02 0.52

NN(1, 12; 1) 1.14 0.50

NN(1, 12; 2) 1.02 0.64

NN(1, 12, 13; 1) 1.09 0.47

NN(1, 12, 13; 2) 0.97 0.50

NN(1, 2, 12, 13; 1) 1.08 0.57

NN(1, 2, 12, 13; 2) 0.94 0.64

SARIMA model 1.18 0.35

Table 2.9: Results for FFNN models fitted to the differenced and seasonal differenced

logged data and corresponding Box & Jenkins model. Sum of squares are given after

back transformation S denotes sum of squares of one-step ahead forecast for 132

training data. SS1S denotes sum of squares of one-step ahead forecast for the last 12

airline test data.

33

SARIMA

0 20 40 60 80 100 120

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

Observed

Fitted

training test

NN(1,12,13;1)

0 20 40 60 80 100 120

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

Observed

Fitted

training test

Figure 10: Fitted values for the differenced and seasonally differenced logged airline

data by the SARIMA model and NN(1, 12, 13; 1). Observations are plotted with a

solid line. The number of training data is 132 and the number of test data is 20.

34

-0.10

-0.05

0.0

0.05

0.10

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

SARIMA

-0.10

-0.05

0.0

0.05

0.10

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

NN(1,12,13;1)

Figure 11: Residual-fit spread plots of the last 12 differenced and seasonally differ-

enced logged airline test data by SARIMA model and NN(1, 12, 13; 1). The left panel

in each display shows the plot of quantile plot of the fits minus the mean. The right

panels are the quantile plots of the residuals.

35

SARIMA

-0.05 0.0 0.05

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

NN(1,12,13;1)

-0.05 0.0 0.05

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

Figure 12: Tukey mean difference plots of the last 12 differenced and seasonally

differenced logged airline test data by SARIMA model and NN(1, 12, 13; 1). The

horizontal axis in each plot shows the (X + Y)/2 and the vertical axis Y −X where

X = one-step forecast and Y = observed.

36

2.6 Combining Forecasts

We investigate two methods of improving the forecast from the FFNN by combining

its forecast with the forecast from the SARIMA(0, 1, 1)(0, 1, 1)12. As suggested in

McLeod (1993) and in Hipel and McLeod (1994), combination of forecasts makes

most sense when the forecasts that are being combined make use of different in-

formation sets or when the forecasts are based on models which taken account of

different types information in the data. Since the neural net contains both the linear

and nonlinear information about the series, it is not clear from this principle whether

combination will help.

The standard method of combining forecasts (Winkler and Makridakis, 1983;

McLeod, Noakes, Hipel and Thompstone, 1987) consists of taking a weighted sum of

the two different forecast algorithms. If there are k forecasts available, the combined

forecast fc would be

fc =
k∑

i=1

wifi, (2.2)

where fi is the forecast produced by the ith model; wi is the weighting factor for the

ith forecast. The optimal weights are given by

wi =

∑k
j=1 αij∑k

h=1

∑k
j=1 αhj

, (2.3)

where the αij the (i, j)-entry in the inverse covariance matrix of the forecast errors

from the k methods. In practice the covariance matrix is estimated using the sample

covariance matrix of the forecast errors in the training sample. As can be seen

from Table ?? there is an improvement in the FFNN method by combining with the

SARIMA model.

Another approach is to utilize the forecast from the SARIMA(0, 1, 1)(0, 1, 1)12

model directly in the FFNN,

y = f(x, ẑt), , (2.4)

where y is the output for target value z(t), f is a FFNN function, x is a vector of the

lagged observed values and ẑt is the one-step forecast from SARIMA(0, 1, 1)(0, 1, 1)12.

For example, if the value at lag 1 and 12 is the input values then x = (zt−1, zt−12),

37

Model RMSE from FFNN models Combined RMSE

NN(1, 12; 2) 0.163 0.158

NN(1, 12; 4) 0.158 0.157

NN(1, 2, 12; 2) 0.155 0.150

NN(1, 2, 12, 13; 2) 0.166 0.158

Table 2.10: Combination: Standard Method. Combining SARIMA forecasts and

one-step-ahead forecasts for 12 airline test data by FFNN models. The data in Table

?? is used. RMSE for the SARIMA model is 0.170.

Model Combined RMSE

NN(1, 12, ẑt; 2) 0.197

NN(1, 12, ẑt; 3) 0.200

NN(1, 12, ẑt; 4) 0.253

NN(1, 2, 12, ẑt; 2) 0.219

SARIMA model 0.170

Table 2.11: Combination: New Method. Combining SARIMA forecasts and one-

step-ahead forecasts of Neural Network by using the equation ??

We use the ẑt forecasts from the SARIMA model and then fit the FFNN model using

x = (zt−1, zt−12). From Table ?? we see that the result is slightly worse than the

forecasts only by the SARIMA models. So this method does not appear promising.

38

2.7 Comparison of Neural Connection and nnet

The software which was used previously uses a popular algorithm called back-

propagation for computing the first derivatives of the objective function. Here, sum

of squares of the within-sample one-step-ahead forecast errors, E =
∑

t(x̂t − xt)
2

would be the most likely objective function. The derivatives, ∂E/∂w, where w de-

notes a weight, may be computed by the backpropogation algorithm. There are

many ways to use these derivatives for optimization and the fitting method relied on

the Broyden-Fletcher-Goldfarb-Shanno algorithm (Fletcher, 1987) which is a quasi-

Newton method.

Neural Connection includes several tools and neural network architecture for

modeling and forecasting. For the FFNN architecture Neural Connection provides

the following options:

1. number of hidden layers

2. number of nodes in each layer

3. transfer, or activation, function used by nodes

4. learning algorithm used by the FFNN

5. initial values of the weights between nodes

The first two options are the standard ways to improve the results and as a matter

of course, the S-PLUS software also can handle these. The last three options are

special to Neural Connection and could make this software more powerful. Although

the initial weight values might be crucial to the modeling, they must be inputted by

hand and this causes the iterations more troublesome for the user.

Table ?? and Table ?? show the differences between nnet and Neural Connection

for the airline data. We have used RMSE instead of sum of squares of one-step-ahead

forecasts. Mainly the default settings are used in Table ?? and Table ?? except the

distribution of weight function is used in two different ways. The other settings of

options are as follows:

39

• The activation function used by the nodes. The tanh function is one among

three functions.

• The weights range is set between -0.1 and 0.1 and its random seed is set to 50.

• As a learning algorithm, the conjugate gradient method is selected in two

methods.

The column Total correct indicates the total number of correct which results

from the Cross Tabulation Matrix . This matrix, produced by Neural Connection,

classifies the predicted values and tells us if the predicted values are close enough to

the actual values automatically.

From Table ?? it can be seen that RMSEs are consistent for the smaller RMSE

range between nnet and Neural Connection, but nnet does much better than Neural

Connection for the other range. In other words, Neural Connection is as good as

nnet only if the model is good as far as the airline data is concerned. In a sense

Neural Connection is good at telling us the difference between a good model and a

bad model compared to nnet .

There are few differences between uniform distribution, Table ??, function and

Gaussian distribution function, Table ?? for the weight.

As it is mentioned before, there are several ways to improve the model. Table

?? shows four local minimas for different starting weight values. All the values are

almost same, which means that different starting weight values do not influence on

the results for NN(1, 12; 2).

Table ?? shows four different local minimas for four different weight ranges. This

option does not improve the result either, but rather make the result worse as the

range becomes larger.

Table ?? shows 4 different local minima by using the steepest descent method

as a learning algorithm. There are two ways to update the weight. Epoch is the way

updating weights after an entire pass of patterns has been presented to the network

and Pattern is the way after each pattern has been presented to the network. The

number of patterns is same as the number of input sets. Though we can’t see any

40

Neural Connection nnet

L h σF σP σF σP

1,2,3,4 2 0.231 0.456 0.245 0.293

1-13 2 0.091 0.415 0.091 0.243

1-13 4 0.086 0.351 0.067 0.305

1,12 2 0.144 0.166 0.144 0.168

1,12 4 0.178 0.190 0.145 0.191

1,12 10 0.137 0.183 0.150 0.221

1,2,12 2 0.142 0.166 0.141 0.155

1,2,12 4 0.128 0.430 0.139 0.293

1,2,12,13 2 0.100 0.212 0.097 0.208

1,2,12,13 4 0.091 0.190 0.093 0.208

1,12,13 1 0.293 0.521 0.102 0.204

1,12,13 2 0.275 0.549 0.098 0.204

1,12,13 4 0.235 0.647 0.093 0.227

Table 2.12: Uniform Weight Initialization. Comparison of various FFNN mod-

els. The initial weights are the uniform function between -0.1 and 0.1, L is the

set of lags, σF is RMSE for training data and σP is RMSE for test data. For the

SARIMA(0, 1, 1)(0, 1, 1)12, σF = 0.095 and σP = 0.189.

41

Neural Connection nnet

L h σF σP σF σP

1,2,3,4 2 0.268 0.558 0.245 0.293

1-13 2 0.091 0.407 0.091 0.243

1-13 4 0.074 0.399 0.067 0.305

1,12 2 0.144 0.165 0.144 0.168

1,12 4 0.138 0.183 0.145 0.191

1,12 10 0.134 0.293 0.150 0.221

1,2,12 2 0.142 0.166 0.141 0.155

1,2,12 4 0.128 0.163 0.139 0.293

1,2,12,13 2 0.099 0.208 0.097 0.208

1,2,12,13 4 0.092 0.252 0.093 0.208

1,12,13 1 0.293 0.521 0.102 0.204

1,12,13 2 0.436 0.553 0.098 0.204

1,12,13 4 0.235 0.649 0.093 0.227

Table 2.13: Gaussian Weight Initialization. Comparison of various FFNN models

The initial weights are the Gaussian, L is the set of lags, σF is RMSE for training

data and σP is RMSE for test data. For the SARIMA(0, 1, 1)(0, 1, 1)12, σF = 0.095

and σP = 0.189.

Uniform Gaussian

σF σP σF σP

0.144 0.166 0.144 0.166

0.144 0.167 0.144 0.169

0.144 0.167 0.144 0.166

0.144 0.166 0.144 0.165

Table 2.14: Local Minima Found With Different Starting Weights. Four different

local minimas for the NN(1, 12; 2) model by changing starting weights between -0.1

and 0.1. σF is RMSE for training data and σP is RMSE for test data.

42

Weight range Uniform Gaussian

σF σP σF σP

+-0.2 0.144 0.167 0.144 0.167

+-0.3 0.144 0.166 0.146 0.193

+-0.5 0.144 0.166 0.145 0.191

+-1 0.144 0.204 0.148 0.204

Table 2.15: Local Minima Found by Varying the Weight Range. Four different

local minimas for the NN(1, 12; 2) model by changing starting weights range. σF is

RMSE for training data and σP is RMSE for test data.

Weight update Uniform Gaussian

σF σP σF σP

strategy

Epoch 0.147 0.220 0.145 0.183

Epoch 0.145 0.183 0.145 0.182

Pattern 0.145 0.203 0.146 0.199

Pattern 0.145 0.194 0.145 0.198

Table 2.16: Local Minima by Different Training Methods. Four different local

minimas for the NN(1, 12; 2) model by using the steepest descent method σF is RMSE

for training data and σP is RMSE for test data.

43

Number of σP

validation data Uniform Gaussian

12 0.279 0.283

18 0.269 0.204

24 0.319 0.311

Table 2.17: Three different local minimas for the NN(1, 12; 2) model by setting the

validation data σP is RMSE for test data.

improvement of the results. This option might do better because there are still

available options called momentum coefficient and learning coefficient , which can

change the algorithm.

Now we try to improve the forecasting results by using validation data sets.

It is given by dividing the training data set and allocating last few data. Using

the validation dataset, the model which has less error for the validation dataset is

selected. Table ?? shows the result by changing the number of validation data. In

this case, we cannot see any improvement again.

In summary, for the airline data, we could not see any better results than the

results by default setting for the airline data.

44

3 Sales of Company X

3.1 Introduction

In this section we treat a shorter time series and compare with the results for the

air data. This data consists of 77 observations of the monthly sales of an engineered

product over the period the January 1965–May 1971. A time series plot of this data

is shown in Figure ??.

1965 1966 1967 1968 1969 1970 1971

20
0

40
0

60
0

80
0

Figure 13: The Sales Data

Chatfield and Prothero (1973) misfit a SARIMA model to this data and wondered

why their fit was not adequate. This point was solved by Box & Jenkins (1973) and

Wilson (1973) who pointed out they had fit the wrong SARIMA model.

We briefly examine four methods of fitting a SARIMA model to this short time

series. The SARIMA model we fit is the one recommended by Wilson (1973) and

45

Box and Jenkins (1973) but we refit with newer time series algorithms. Since the

series is short, we might expect slightly different results from different ARIMA fitting

algorithms. The fitted models were:

• Method 1: Wilson’s model

• Method 2: McLeod approximate maximum likelihood with the optimal Box-

Cox transformation given by the MHTS package This method has the merit

that it reduces the calculation time.

• Method 3: McLeod approximate maximum likelihood with the optimal Box-

Cox transformation 0.34 as is given by Wilson

• Method 4: Ansley exact maximum likelihood

Although the SARIMA parameter coefficients are quite different, all the four methods

produce almost the same amount of RMSE and make no difference. We will use

method 2. The model in the method 2 is expressed as

(1 + 0.556B)∇∇12(Xt)
.281 = (1− 0.693B12)Zt

and which produces 52.63 of RMSE value.

To compare the difference of variability of the airline data and the sales data,

first we take a transformed and differenced data to make both data sets stationary

time series. Then we can meaningfully compare how much of the variability in these

two datasets are explained by the model using the RF-spread plot. The transformed

and differenced Sales data is given by (1−B)(1−B12)Xt
0.347 and is shown in Figure

??.

Then we apply an appropriate ARMA model to those two data sets and make

R-F spread plots. The residual and fitted value spread plots of the airline data and

the sales data are demonstrated in Figure ??. Both plots show the variability of

fitted value and residuals are almost same and hence the signal to noise ratios must

be about same.

46

1970 1980 1990 2000 2010 2020

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Figure 14: Logged Differenced, Seasonally-Differenced Sales Data

The Tukey mean-difference plot comparing the observed and fits for the best

fitting SARIMA models for the air data and sales data are shown in Figure ??. From

Figure ?? it appears that there is still some systematic error left in the SARIMA

model for the sales data since the five smallest data values on the left side correspond

to large positive errors. In the air data, there is an apparent slight upward trend

which also suggests lack of fit.

47

-0.10

-0.05

0.0

0.05

0.10

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

Airline data

-1.0

-0.5

0.0

0.5

1.0

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

Sales data

Figure 15: Residual-fit spread plots of the airline data and the sales data. Both

data are differenced and transformed. The left panel in each display shows the plot

of quantile plot of the fits minus the mean. The right panels are the quantile plots of

the residuals.

48

Airline Data

-0.10 -0.05 0.0 0.05 0.10

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

Sales Data

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 16: Tukey mean difference plots of the airline data and the sales data. The

horizontal axis in each plot shows the (X + Y)/2 and the vertical axis Y −X where

X = one-step forecast and Y = observed.

49

3.2 Comparison of forecasts between SARIMA model and

FFNN model

We use N1 = 65 as the length of training series and N2 = 12 for the test data

which correspond to the first 65 and last 12 values in the series. We fit the

SARIMA(1, 1, 0)(0, 1, 1)12 to the training data and obtained,

(1 + 0.594B)∇∇12(Xt)
.347 = (1− 0.558B12)Zt,

In this model, RMSE = 49.96 within-sample and RMSE = 68.20 out-of-sample. As

is usually the case of the out-sample-performance is not as good.

3.2.1 FFNN with nnet

We use nnet for the same training and test data. The results appear in Table ??. The

σP produced by nnet is by far worse than those produced by the SARIMA model.

Even the best model, NN(1, 2, 12, 13; 2), gives only 88 of the RMSE value, which is

worse than 68 of the RMSE value from the SARIMA model.

Plotting the fitted values by the SARIMA model and those by NN(1, 2, 12, 13; 2)

model is given in Figure ??. At first sight, we can tell from the Figure ?? that the

forecasts by the NN(1, 2, 12, 13; 2) model does not trace the test data set as well as

those by the SARIMA model does. Residual-Fit spread plots for the test data are

given in Figure ??. This plot shows that more variation is accounted by SARIMA

model than by the NN model. Tukey mean difference plots for the test data are

given in Figure ??. Residuals by FFNN models are a little more spread than those

by the SARIMA model.

The SARIMA model and NN(1, 2, 12; 2) model produce r = 0.70, t̂ = 5.85 and

achieved significance level 2 Pr(t > t̂) = 0.00067 for the Pitman’s test. This indicates

the variances within samples from both models are significantly different.

For the out-of-sample forecasts, the SARIMA model and NN(1, 2, 12; 2) model

produce PMC value p̂ = 0.25 with estimated standard deviation of 0.25. This also

indicates that the SARIMA model has better performance than the NN(1, 2, 12; 2)

model.

50

Number Number of

Lags of hidden weights σF σP

neurons

1,2 2 9 168 318

1,2,3 2 11 168 316

1,2,3 4 21 49 135

1,12 2 9 170 303

1,12 4 17 48 97

1,12 10 41 46 90

1,2,12 2 11 158 293

1,2,12 4 21 45 98

1,2,12,13 2 13 171 302

1,2,12,13 4 25 47 88

1,12,13 2 11 171 302

1,12,13 4 21 49 91

SARIMA model 50 68

Table 3.18: Comparison of various NN models together with the SARIMA model.

64 training data and 12 test data. σF is RMSE of the training data and σP is RMSE

of the test data.

51

SARIMA

1965 1966 1967 1968 1969 1970 1971

20
0

40
0

60
0

80
0

Observed

Fitted

training test

NN(1,2,12,13;2)

1965 1966 1967 1968 1969 1970 1971

20
0

40
0

60
0

80
0

Observed

Fitted

training test

Figure 17: Fitted values for the 12 sales test data by using SARIMA model and

NN(1, 2, 12, 13; 2). Observations are plotted with a solid line. The number of training

data is 64 and the number of test data is 12.

52

-200

0

200

400

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

SARIMA

-200

0

200

400

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

NN(1,2,12,13;2)

Figure 18: Residual-fit values spread plot for the 12 sales test data of the SARIMA

model and NN(1, 2, 12, 13; 2) The left panel in each display shows the plot of quantile

plot of the fits minus the mean. The right panels are the quantile plots of the residuals.

53

SARIMA

200 400 600 800 1000

-1
50

-1
00

-5
0

0
50

10
0

15
0

NN(1,2,12,13;2)

200 400 600 800 1000

-1
50

-1
00

-5
0

0
50

10
0

15
0

Figure 19: Tukey mean difference plots for the 12 sales test data by SARIMA model

and NN(1, 2, 12, 13; 2). The horizontal axis in each plot shows the (X + Y)/2 and

the vertical axis Y −X where X = one-step forecast and Y = observed.

54

3.2.2 FFNN with Neural Connection

Now we use the Neural Connection instead of nnet. Only the default setting for the

weight function and the way to update the weight is used. The result is given in

Table ??. There appears are some interesting differences between Neural Connection

and nnet. Neural Connection does not require as many hidden nodes to get the better

forecasts as NNET does. However the SARIMA model does much better than the

FFNN models again.

It is curious that the validation data set might be useful for the data which has

much variability. For the validation data set works as it prevents the model from

being over-trained. However, Table ?? shows us that it cannot beat the SARIMA

model. One possible reason that FFNN models failed is that the data length is too

short and they can not build a appropriate model, and it is not because the signal

to noise ratio is small since the sale data has almost same amount of signal to noise

ratio for the SARIMA model.

55

Number Number of

Lags of hidden weights σF σP

neurons

1,2 2 9 67 119

1,2,3 2 11 66 121

1,2,3 4 21 55 128

1,12 2 9 47 95

1,12 4 17 36 104

1,12 10 41 23 146

1,2,12 1 5 49 97

1,2,12 2 11 47 93

1,2,12 4 21 38 125

1,2,12,13 2 13 44 94

1,2,12,13 4 25 33 100

1,12,13 2 11 45 89

1,12,13 4 21 39 164

SARIMA model 50 68

Table 3.19: Comparison of various NN models by using Neural Connection to-

gether with the SARIMA model. 64 training data and 12 test data. σF is RMSE of

the training data and σP is RMSE of the test data.

Number Number of

Lags of hidden validation σF σP

neurons data

1,12 2 6 62 150

1,12 4 6 57 150

1,2,12 2 12 41 121

1,2,12 4 12 39 103

SARIMA model 50 68

Table 3.20: Comparison of various NN models with a validation data set by using

Neural Connection with SARIMA model 64 training data and 12 test data. σF is

RMSE of the training data and σP is RMSE of the test data.

56

3.3 Transformation of the sales data

The usual practice in time series modeling is first to make any necessary transfor-

mations to make the data approximately stationary and symmetrically distributed

or Gaussian. So the Splus nnet is used for the transformed and differenced data,

wt = (1−B)(1−B12)Xt
0.347.

The RMSE for the forecasts when back-transformed to the original untransformed

domain are given in Table ??. Though σF of SARIMA model is still smaller than

that of FFNN model, there are visible improvement in the FFNN model by using

the transformation, σP = 0.52 of NN(1; 2) corresponds to σP = 81 for the model

before transformation and it is the smallest value so far.

FFNN models σF σP

NN(1; 1) 0.48 0.53

NN(1 : 2) 0.45 0.52

NN(1 : 3) 0.42 0.57

NN(1, 2; 1) 0.48 0.54

NN(1, 2; 2) 0.41 0.75

NN(1, 12; 1) 0.47 0.53

NN(1, 12; 2) 0.41 1.79

NN(1, 2, 12; 1) 0.46 0.54

NN(1, 2, 12; 2) 0.37 0.85

NN(1, 2, 12, 13 : 1) 0.45 0.65

NN(1, 2, 12, 13 : 2) 0.35 0.65

SARIMA model 0.45 0.44

Table 3.21: Comparison of various NN models with SARIMA model for the Sales

data by using data transformation difference technique. 52 training data and 12 test

data. σF is RMSE of the training data and σP is RMSE of the test data.

57

The fitted values for the ARMA model and NN(1; 2) are plotted in Figure ??.

This plots shows clearly that observed values for the test data does not follow the

same trend as observed values for the training data have, which causes the difficulty

of forecasting. Considering the fact that SARIMA produces better forecasts than

NN models, SARIMA model is in a sense more flexible than FFNN models.

Residual-fit value spread plots for the test data are given in figure ??. It is shown

that more variety is accounted by ARMA model than by the FFNN model. Tukey

mean difference plots for the test data are given in figure ??. There is an upward

trend for the plot by NN(1; 2). Totally, ARMA model produced less forecast errors.

The SARIMA model and NN(1; 2) model produce r = 0.27, t̂ = 1.93, and

achieved significance level 2 Pr(t > t̂) = 0.081 for the Pitman’s test . This indi-

cates the variances for within-sample forecasts from both models are significantly

different.

Comparison of forecasts by three different methods is given in Figure ??. We

see that the ARMA model does better than the FFNN models, but at least data

transformation and differencing did improve the performance in this case. As a

conclusion, in keeping with standard statistical practice, the possibility of using a

suitable data transformation should always be examined.

58

SARIMA

0 10 20 30 40 50 60

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Observed

Fitted

training test

NN(1;2)

0 10 20 30 40 50 60

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Observed

Fitted

training test

Figure 20: The fitted values for the differenced and seasonally differenced power

transformed sales data by the ARMA model and NN(1; 2). The number of the training

data is 65 and the number of training data is 12. The sales data is transformed and

differenced. Observations are given with the solid line. observed values for the test

data does not follow the same trend as observed values for the training data have.

59

-1.0

-0.5

0.0

0.5

1.0

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

ARMA

-1.0

-0.5

0.0

0.5

1.0

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

NN(1;2)

Figure 21: Residual-fit value spread plot of the 12 test sales data for the ARMA

model and NN(1; 2) The sales data is transformed, differenced and seasonally differ-

enced. The left panel in each display shows the plot of quantile plot of the fits minus

the mean. The right panels are the quantile plots of the residuals.

60

ARMA

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

NN(1:2)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 22: Tukey mean difference plots of 12 sales test data for the ARMA model

and NN(1;2). The sales data is transformed, differenced and seasonally differenced.

The horizontal axis in each plot shows the (X + Y)/2 and the vertical axis Y − X

where X = one-step forecast and Y = observed.

61

1970
Jun

1970
Jul

1970
Aug

1970
Sep

1970
Oct

1970
Nov

1970
Dec

1971
Jan

1971
Feb

1971
Mar

1971
Apr

1971
May

20
0

40
0

60
0

80
0

10
00

12
00

observed value
NN(1:2) with transformation
NN(1,2,12,13; 2)
SARIMA model

Figure 23: Comparison of fitted values for the 12 sales test data by three different

models, NN(1; 2) with data transformation and difference, NN(1, 2, 12, 13; 2) and the

ARMA model. Observed values are given with a solid line.

62

4 The average monthly water usage

4.1 Introduction

We now turn to the average monthly consumption series in millions of liters per

day in London from 1966 to 1988, which has longer data length than previous two

examples. The time series plot in Figure ?? shows that the series is highly seasonal

and nonstationary as was the case with the airline and sales data. It is somewhat

longer than the airline and sales series.

1970 1980

10
0

15
0

20
0

Figure 24: The Average Monthly Water Usage.

63

Hipel & McLeod (1994) fit the SARIMA (1, 0, 1)(0, 1, 1)12 model with -0.75 power

transformation to this data set. The residual-fit spread plot for the water usage data

are illustrated in Figure ??. As in the previous chapter, this plot is applied to the

stationary series obtained after transformation and difference. To give us better

understanding, the residual-fit spread plot for the SARIMA models fitted to the

water usage and sales data are compared.

These plots suggest that signal to noise ratios of two data are almost same, but

more proportion of the data of Water usage data is located around 0 than that of

the data of Sales data is.

Figure ?? shows Tukey mean difference plots. The SARIMA model for the water

usage seems fine but as we pointed out previously there is an indication of a problem

with the SARIMA model for the sales data.

64

-0.004

-0.002

0.0

0.002

0.004

0.006

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

Water usage data

-1.0

-0.5

0.0

0.5

1.0

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

Sales data

Figure 25: Residual-fit spread plots of the water usage data and the sales data. The

left panel in each display shows the plot of quantile plot of the fits minus the mean.

The right panels are the quantile plots of the residuals.

65

 Water usage data

-0.002 0.0 0.002

-0
.0

02
0.

0
0.

00
2

0.
00

4
0.

00
6

Sales Data

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 26: Tukey mean difference plots of the water usage data and the sales data.

The horizontal axis in each plot shows the (X + Y)/2 and the vertical axis Y − X

where X = one-step forecast and Y = observed.

66

4.2 Comparison of forecasts between SARIMA model and

FFNN models

Now we apply SARIMA models and FFNN models to the water usage time series

data. We divide the data set into two parts, training data set and test data set. Two

schemes are examined. One scheme is 264 training data and 12 test data and the

other is 200 training data and 76 test data. Because the last twenty four observations

are quite different from previous observations, it would be difficult to predict those

even though the data is less spread than the sales data. The point of these two

dividing schemes is to check the robustness of our conclusions.

We also examine the effect of transformation and differencing. In this case the

appropriate transformation is

wt = (1−B12)Xt
−0.75.

The modeling is carried out in the transformed domain of the wt but the forecasts

are back-transformed to the original domain, as was done in the last two chapters.

4.2.1 Original Domain, N1 = 264, N2 = 12

The results appear in Table ??. NN(1, 12, 13; 4) gives RMSE value of 11.80 and this

is slightly better than 12.05 produced by SARIMA model.

Plotting the fitted values by the SARIMA model and those by NN(1, 12, 13; 4)

model is given in Figure ??. We see that both the NN(1, 12, 13; 2) model and the

SARIMA model produce quite close fitted values. This means the performances of

the FFNN and SARIMA are same as far as this data dividing scheme is concerned.

Residual-fit spread plots for the test data are given in Figure ??. Residual-fit

spread plots shows there is one positive outlier for both models.

Tukey mean difference plots, Figure ??, show that NN(1, 12, 13; 2) has upward

trend, while the SARIMA model a little declining trend.

The SARIMA model and NN(1, 12, 13; 4) model produce r = 0.0021, t̂ = 0.14,

achieved significance level 2 Pr(t > t̂) = 0.89 for the Pitman’s test. According to this

67

test the SARIMA and FFNN produce equal variances are in fact much closer might

be expected.

FFNN models σF σP

NN(1, 2; 2) 23.70 59

NN(1, 2 : 4) 9.47 47.87

NN(1, 2, 3 : 2) 9.77 20.41

NN(1, 2, 3; 4) 9.20 23.83

NN(1, 12; 2) 23.38 58.34

NN(1, 12; 4) 7.10 15.37

NN(1, 2, 12; 2) 7.47 12.43

NN(1, 2, 12 : 4) 6.69 15.91

NN(1, 2, 12, 13; 2) 7.45 12.65

NN(1, 2, 12, 13 : 4) 7.41 12.78

NN(1, 12, 13; 2) 7.44 12.75

NN(1, 12, 13; 4) 7.18 11.80

Box-Jenkins model 6.75 12.05

Table 4.22: Comparison of various NN models and Box-Jenkins model. The

number of training data is 264 and that of test data is 12. σF is RMSE of the

training data and σP is RMSE of the test data.

68

SARIMA

1970 1980

10
0

15
0

20
0

Observed

Fitted

training test

NN(1,12,13;4)

1970 1980

10
0

15
0

20
0

Observed

Fitted

training test

Figure 27: Fitted values of the water usage by SARIMA model and by

NN(1, 12, 13; 4). Observations are plotted with a solid line. The number of train-

ing data is 264 and the number of test data is 12.

69

-20

0

20

40

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

SARIMA

-20

0

20

40

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

NN(1,12,13;4)

Figure 28: Residual-fit value spread plots of the 12 water usage test data by

SARIMA model and by NN(1, 12, 13; 4). The left panel in each display shows the

plot of quantile plot of the fits minus the mean. The right panels are the quan-

tile plots of the residuals. We see that SARIMA model shows one positive outlier

more clearly. For the bulk of remaining data, the SARIMA model produced smaller

residuals.

70

SARIMA

140 160 180 200 220

-2
0

0
20

40
60

NN(1,12,13;4)

140 160 180 200 220

-2
0

0
20

40
60

Figure 29: Tukey mean difference plots of the 12 water usage test data by the

SARIMA model and by NN(1, 12, 13; 4). The horizontal axis in each plot shows the

(X+Y)/2 and the vertical axis Y −X where X = one-step forecast and Y = observed.

71

4.2.2 Original Domain, N1 = 200, N2 = 76

The results are given in Table ??. The best FFNN model, NN(1, 12, 13; 2) pro-

duces 13.93 of RMSE value, which is much worse than 7.67 of that produced by the

SARIMA model.

Plots of the fitted values by the SARIMA model and those by NN(1, 12, 13; 2)

model are set out in Figure ??.

Figure ?? clearly shows that NN(1, 12, 13; 2) cannot trace the last 24 observations

while SARIMA model traces the observation quite well. From these two data dividing

schemes and experiments, the following conclusion can be led. The first data dividing

scheme makes the training data set include the half of last 24 observations which

looks a little extraordinary compared to the observations before. On the contrary to

that, the second data dividing scheme does not include the last 24 different trend data

for the training data set. Therefore, what FFNN models can do is only reproducing

the old trend and cannot treat with the trend which is different from the former

trend.

Residual-Fit spread plots for the test data are given in figure ??. It is shown that

more variety is accounted by SARIMA model than by the FFNN model. Tukey mean

difference plots for the test data are given in figure ??. Plot for the NN(1, 12, 13; 2)

has more systematic upward trend than that for the SARIMA model, which tells

NN(1, 12, 13; 2) fit is not enough for representing the test data.

Now we apply Pitman’s test to out-of-sample forecasts for seeing the signifi-

cance of difference for variances produced by both model. The SARIMA model

and NN(1, 12, 13; 2) model produce r = 0.50, t̂ = 8.59 achieved significance level

2 Pr(t > t̂) = 9.87×10−13. Therefore, the variances for out-of-sample forecast errors.

from both models are significantly different. These model produce PMC p̂ = 0.38

for out-of-sample forecasts with the achieved significance level α = 0.033 under the

null hypothesis that p = 0.5, which tells us that the SARIMA model outperforms

the NN(1, 12, 13; 2) model because SARIMA is better 100− 38 = 62% of the time.

72

SARIMA

1970 1980

10
0

15
0

20
0

Observed

Fitted

training test

NN(1,12,13;2)

1970 1980

10
0

15
0

20
0

Observed

Fitted

training test

Figure 30: Fitted values of the water usage by SARIMA model and by

NN(1, 12, 13; 2). Observations are plotted with a solid line. The number of train-

ing data is 200 and the number of test data is 76.

73

-40

-20

0

20

40

60

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

SARIMA

-40

-20

0

20

40

60

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1,12,13;2)

Figure 31: Residual-fit value spread plots of the 76 water usage test data by

SARIMA model and by NN(1, 12, 13; 2). The left panel in each display shows the

plot of quantile plot of the fits minus the mean. The right panels are the quantile

plots of the residuals.

74

SARIMA

120 140 160 180 200 220

0
20

40
60

NN(1,12,13;2)

120 140 160 180 200 220

0
20

40
60

Figure 32: Tukey mean difference plots of the 76 water usage test data by the

SARIMA model and by NN(1, 12, 13; 2). The horizontal axis in each plot shows the

(X+Y)/2 and the vertical axis Y −X where X = one-step forecast and Y = observed.

75

FFNN models σF σP

NN(1, 2; 2) 9.29 20.70

NN(1, 2 : 4) 9.34 20.85

NN(1, 2, 3 : 2) 9.15 21.40

NN(1, 2, 3; 4) 9.15 21.40

NN(1, 12; 2) 7.05 13.68

NN(1, 12; 4) 7.07 13.60

NN(1, 2, 12; 2) 7.03 14.87

NN(1, 2, 12 : 4) 7.06 14.00

NN(1, 2, 12, 13; 2) 7.04 14.11

NN(1, 2, 12, 13 : 4) 7.04 14.07

NN(1, 12, 13; 2) 7.04 13.93

NN(1, 12, 13; 4) 6.68 16.28

Box-Jenkins model 6.81 7.67

Table 4.23: Comparison of various NN models and Box-Jenkins model. The

number of training data is 200 and that of test data is 76. σF is RMSE of the

training data and σP is RMSE of the test data.

76

4.2.3 Transformed Domain, N1 = 252, N2 = 12

The results are given in Table ??. In this time the Pitman test for variances declares

no statistically significant difference.

r = 0.0022, t̂ = 0.15 and the achieved p-value was 0.88, which indicates once

again the agreement is unusually strong.

FFNN models σF σP

NN(1; 1) 1.3× 10−3 9.0× 10−4

NN(1 : 2) 1.3× 10−3 9.0× 10−4

NN(1, 2; 1) 1.3× 10−3 8.3× 10−4

NN(1, 2; 2) 1.3× 10−3 8.5× 10−4

NN(1, 12; 1) 1.4× 10−3 7.42× 10−4

NN(1, 12; 2) 1.4× 10−3 9.8× 10−4

NN(1, 2, 12; 1) 1.1× 10−3 9.5× 10−4

NN(1, 12, 13 : 1) 1.4× 10−3 7.44× 10−4

NN(1, 2, 12, 13 : 1) 1.2× 10−3 9.3× 10−4

Box-Jenkins model 1.2× 10−3 8.6× 10−4

Table 4.24: Comparison of various NN models with the corresponding values for

the water usage data. The data is seasonally differenced and power transformed.

252 training data and 12 test data are used. σF is RMSE of the training data

and σP is RMSE of the test data. σP = 7.42 × 10−4 corresponds to 10.58 after

back-transformation, which is less than the value 11.80 obtained by NN(1, 12, 13; 4)

without transformation and difference.

77

4.2.4 Transformed Domain, N1 = 188, N2 = 76

Some of the FFNN models perform better than ARMA model in Table ??. The

model which produces the least RMSE value 7.42×10−3 is NN(1, 12; 1). This RMSE

value corresponds to 10.58 when the back-transformation is exerted, and this is

less than the value 11.80 without transformation and difference of data. Fitted

values of the SARIMA model and the NN(1, 12; 1) are plotted in Figure ??, but the

fitted values are not consistent with observed values, which indicates that NN(1, 2; 2)

should rather be used. Fitted values of NN(1, 2; 2) are plotted in Figure ??.

Residual-fit spread plots for the test data are given in figure ??. It is shown

that more variability is accounted by ARMA model than by the FFNN model.

Tukey mean difference plots in ?? shows that there is upward trend of residuals

for NN(1, 2; 2) model.

The SARIMA model and NN(1, 2; 2) model produce r = 0.20, t̂ = 4.3 and

achieved significance level 2 Pr(t > t̂) = 5.1 × 10−5 for the Pitman’s test. This

indicates the variances within samples from both models are significantly different.

The SARIMA model and NN(1, 2; 2) model produce PMC value p̂ = 0.58 for out-

of-sample forecasts with a achieved significance level 2 Pr(z > ẑ) = 0.16, which

indicates that SARIMA model and the NN(1; 2) model has the equally close resid-

uals to the observed values. This means, due to the transformation and difference,

forecasting accuracy of the FFNN model is improved.

In Table ??, ARMA model produces better RMSE value than any other FFNN

model does, even though transformation and difference of the data is exerted. How-

ever if 8.7×10−3 of RMSE, which is produced by NN(1, 2, 12; 1), is back transformed,

this valued corresponds to 8.61. This is much better than 13.93 without transfor-

mation and difference of data. Considering this remarkable enhancement, it can be

concluded that the transformation and difference should be examined in any cases.

Residual-fit value spread plots for the test data are given in figure ??. It is

shown that more variety is accounted by ARMA model than by the FFNN model.

Tukey mean difference plots for the test data are given in figure ??. The plot of

78

NN(1, 2, 12; 1) has a systematic trend again.

The SARIMA model and NN(1, 2; 2) model produce r = 0.0021, t̂ = 0.15 and

achieved significance level 2 Pr(t > t̂) = 0.89 for the Pitman’s test. This indicates

the variances within samples from both models are not significantly different. The

SARIMA model and NN(1, 2; 2) model produce PMC value p̂ = 0.58 for out-of-

sample forecasts with a achieved significance level 2 Pr(z > ẑ) = 0.16, which indicates

that the NN(1; 2) model has as performance as the SARIMA model. This result also

confirms the requirement of transformation.

FFNN models σF σP

NN(1; 1) 1.4× 10−3 9.4× 10−4

NN(1 : 2) 1.4× 10−3 9.4× 10−4

NN(1, 2; 1) 1.4× 10−3 9.4× 10−4

NN(1, 2; 2) 1.5× 10−3 9.7× 10−4

NN(1, 12; 1) 1.5× 10−3 9.7× 10−4

NN(1, 2, 12; 1) 1.3× 10−3 8.7× 10−4

NN(1, 12, 13 : 1) 1.5× 10−3 9.7× 10−4

NN(1, 2, 12, 13 : 1) 1.3× 10−3 9.0× 10−4

Box-Jenkins model 1.3× 10−3 7.8× 10−4

Table 4.25: Comparison of various NN models with the corresponding values for

the water usage data. The data is seasonally differenced and power transformed. 188

training data and 76 test data. σF is RMSE of the training data and σP is RMSE

of the test data. σP=8.7 × 10−3 obtained by NN(1, 2, 12; 1) corresponds to 8.61 and

this is better than 13.60 of least RMSE value by NN(1, 12; 4) without difference and

transformation.

79

ARMA

0 50 100 150 200 250

-0
.0

04
-0

.0
02

0.
0

0.
00

2
0.

00
4

Observed

Fitted

training test

NN(1,12;1)

0 50 100 150 200 250

-0
.0

04
-0

.0
02

0.
0

0.
00

2
0.

00
4

Observed

Fitted

training test

Figure 33: Fitted values for the water usage data by the ARMA model and by

NN(1, 12; 2). The data is seasonally differenced and power transformed. Observations

are plotted with a solid line. The number of training data is 252 and the number of

test data is 12.

80

NN(1,2;2)

0 50 100 150 200 250

-0
.0

04
-0

.0
02

0.
0

0.
00

2
0.

00
4

Observed

Fitted

training test

Figure 34: Fitted values for the water usage data by NN(1, 2; 2). The data is

seasonally differenced and power transformed. Observations are plotted with a solid

line. The number of training data is 252 and the number of test data is 12.

81

-0.002

-0.001

0.0

0.001

0.002

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

ARMA

-0.002

-0.001

0.0

0.001

0.002

Fitted Values minus Mean

0.2 0.4 0.6 0.8

Residuals

0.2 0.4 0.6 0.8

f-value

NN(1,2;2)

Figure 35: Residual-fit spread plots of the transformed and seasonally differenced

12 water usage test data by ARMA and by NN(1, 2; 2). The left panel in each display

shows the plot of quantile plot of the fits minus the mean. The right panels are the

quantile plots of the residuals.

82

ARMA

-0.0015 -0.0010 -0.0005 0.0 0.0005 0.0010

-0
.0

02
-0

.0
01

0.
0

0.
00

1

NN(1,2;2)

-0.0015 -0.0010 -0.0005 0.0 0.0005 0.0010

-0
.0

02
-0

.0
01

0.
0

0.
00

1

Figure 36: Tukey mean difference plots of the transformed and differenced 12 water

usage test data by ARMA model and by NN(1, 2; 2). The horizontal axis in each plot

shows the (X + Y)/2 and the vertical axis Y −X where X = one-step forecast and

Y = observed.

83

ARMA

0 50 100 150 200 250

-0
.0

04
-0

.0
02

0.
0

0.
00

2
0.

00
4

Observed

Fitted

training test

NN(1,2,12;1)

0 50 100 150 200 250

-0
.0

04
-0

.0
02

0.
0

0.
00

2
0.

00
4

Observed

Fitted

training test

Figure 37: Fitted values for the differenced and transformed water usage data by the

ARMA model and by NN(1, 2, 12; 2). The data is seasonally differenced and power

transformed. Observations are plotted with a solid line. The number of training data

is 188 and the number of test data is 76.

84

-0.003

-0.002

-0.001

0.0

0.001

0.002

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

ARMA

-0.003

-0.002

-0.001

0.0

0.001

0.002

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1,2,12;1)

Figure 38: Residual-fit value spread plots of the transformed and differenced 76

water usage test data by ARMA and by NN(1, 2, 12; 1). The data is seasonally dif-

ferenced and power transformed.

85

ARMA

-0.003 -0.002 -0.001 0.0 0.001

-0
.0

03
-0

.0
02

-0
.0

01
0.

0
0.

00
1

0.
00

2

NN(1,2,12;1)

-0.003 -0.002 -0.001 0.0 0.001

-0
.0

03
-0

.0
02

-0
.0

01
0.

0
0.

00
1

0.
00

2

Figure 39: Tukey mean difference plots of the transformed and differenced 76 water

usage test data by ARMA model and by NN(1, 2, 12; 1). The data is seasonally differ-

enced and power transformed. The horizontal axis in each plot shows the (X + Y)/2

and the vertical axis Y −X where X = one-step forecast and Y = observed.

86

5 Markovian Dependence

5.1 Introduction

Stern (1996) compared the forecasting abilities of ARMA models with those of

FFNN. In particular Stern (1996) made comparisons between various types of second-

order autoregressive models, AR(2) and the FFNN model. Stern (1996) found that

FFNN models produced acceptable forecasts provided that the signal-to-noise ratio

in the AR(2) model was high. In general for a stationary time series Xt with vari-

ance σx
2 and innovation variance σe

2, the signal-to-noise ratio is η = σ2
x/σ

2
e . For the

AR(2) it can be shown that,

η =
1− φ2(

(φ2 − 1)2 − φ1
2
)

(1 + φ2)
. (5.5)

For the data with low signal-to-noise ratio, so called over-training can happen easily.

It should be noticed that the airline data and the sales data were non-stationary

process and the idea of signal-to-noise ratio is only defined for stationary processes.

Therefore, it is necessary to transform and difference the non-stationary data to

make the series stationary.

In this chapter, we critically review Stern (1996) and show examples where the

FFNN approach outperforms the AR model as well as a Markovian example where

neither modeling approach works.

Stern (1996) used FFNN models with 5 inputs for AR(2) Data. However, in a

natural sense it makes more sense to use NN(1, 2; 1) or NN(1, 2; 2) as an appropriate

model instead of his FFNN model with lags at 1,2,3,4,5 because in an AR(2) model,

the present value is determined only by previous two values. In practice, it may be

useful to look at the autocorrelation function to assist in determining the number of

lags to use in an FFNN model.

We perform the AR(2) simulation as in Stern (1996). In these simulations, σx

is set to 1. Innovation variance is obtained after solving Equation ??. The AR(2)

87

models used here and by Stern to generate AR(2) data sets are given in Table ??.

Stern (1996) observed that models with small signal-to-noise ratio have smaller

residual variances in the training set than their true innovation variance. This indi-

cates that the over-training apparently happened and it is natural that those models

produce poor forecasts. Table ?? shows the comparison between Stern’s NN(1−5; 2)

model and our own NN(1, 2; 1), NN(1, 2, 2), and NN(1− 5, 2) model. By and large,

we could see Stern’s model and our NN(1− 5; 2) produces worse forecasts from the

table. For convenience, the predicted value is plotted in Figure ?? to see the differ-

ence of the performances clearly between the FFNN models with 2 inputs and FFNN

models with 5 inputs. The variance of NN(1, 2; 1) and NN(1, 2; 2) are consistent with

the variance of the true AR(2) model compared to the variance of NN(1−5, 2). Fig-

ure ?? shows the test data of AR(2) time series data and fitted values of NN(1, 2; 1)

model. They are quite consistent with each other and as a conclusion, NN model

can do much better even though the signal-to-noise ratio is as low, as 1.69 in Figure

??, provided that care is taken in selecting the lags used.

Model φ (1) φ (2) σe
2 η

a 0.7 -0.49 0.7695 1.30

b 0.9 -0.81 0.5088 1.97

c 0.9 -0.97 0.2163 4.62

d 1.4 -0.99 0.1002 9.98

Table 5.26: AR(2) models used here to generate data sets and corresponding η.

88

σ NN(1, 2; 1) NN(1, 2; 2) NN(1− 5; 2) Stern

σF σP σF σP σF σP σP σF

0.7695 0.73 0.74 0.68 0.76 0.57 0.89 0.57 1.02

0.5088 0.54 0.47 0.51 0.52 0.45 0.57 0.42 0.63

0.2163 0.20 0.21 0.18 0.21 0.15 0.23 0.18 0.30

0.1002 0.09 0.10 0.09 0.10 0.08 0.11 0.84 0.13

Table 5.27: RMSE of several FFNN models for the different AR(2) time series data.

σ is a standard deviation of the noise. The column Stern show the results by NN(1−
5; 2) given in Stern (1996). σF is RMSE of the training data and σP is RMSE of

the test data.

Standard Deviation of the residual for the true model

P
re

di
ct

ed
 R

M
S

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1002 0.2163 0.5088 0.7695

AR(2)
NN(1,2;1)
NN(1,2;2)
NN(1,2,3,4,5;2)

Figure 40: RMSE of the fitted values of the FFNN model for the varying AR(2) time

series data.

89

a) Xt = 0.7Xt−1 + 0.49Xt−2 + N(0, 0.76952) b) Xt = 0.9Xt−1 − 0.81Xt−2 +

N(0, 0.50882)

0 20 40 60 80 100

-3
-2

-1
0

1
2

0 20 40 60 80 100

-2
-1

0
1

2

c) Xt = 0.9Xt−1 − 0.97Xt−2 + N(0, 0.21632) d) Xt = 1.4Xt−1 − 0.99Xt−2 +

N(0, 0.10022)

0 20 40 60 80 100

-1
.0

-0
.5

0.
0

0.
5

1.
0

0 20 40 60 80 100

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 41: AR(2) time series data to test the Neural Networks. Dividing scheme is

E. Solid lines are time series; dashed lines are fitted values by the neural network.

90

5.2 AR(1) Simulation Experiments

The AR(1) the model can be expressed by

Xt = φXt−1 + et,

where et are independent identically distributed normal deviates with variance σe
2.

In this case, the variance of Xt can be written as

σx
2 =

σ2
e

1− φ2
. (5.6)

where we assume |φ| < 1. The signal-to-noise ratio is given by calculating σ2
x/σ

2
e is

thus determined by φ. The AR(1) models which are examined here and correspond-

ing are shown in Table ??. The signal to the noise ratio ranges from 1.1 to 5.3 in

those examples which is comparatively smaller than those in the previous section.

In this section we compare our conclusions with Stern (1996) when an AR(1)

model is used instead of AR(2). The AR(1) model is a form of Markovian depen-

dence. The behaviour of AR(1) series is less complex than AR(2). We concentrate

on comparatively smaller signal to noise ratio than those in previous section. For, we

already know NN model was valid for the data with smallest signal-to-noise ratio in

the previous section as long as the model is appropriate. Further more, we examine

the several lengths of test data sets to test how much length of data affects on the

forecasting accuracy. Table ?? shows a data dividing scheme in each AR(1) model.

It can be easily found that RMSE of each FFNN model is varying for the small

data set and they are quite consistent for the large data set. For small data sets,

NN(1; 1) model produces better forecasts than other models. It is natural because

the true model is AR(1) model and a present value only depends on the previous

value. Therefore, we could say that it is important that we choose an appropriate

model for the small data set.

Figure ?? illustrates the comparison of the test data of AR(1) models and fore-

casts by the NN(1; 1) model. Here, we use the scheme E which divides 200 data into

100 data as a training data set and 100 as a test data set similar to the scheme Stern

(1996) used. Since the signal-to-noise ratios are lower in the AR(1) model than the

91

AR(2) and it looks like difficult that fitted values trace perfectly the test data as the

NN(1, 2; 1) model did for AR(2) data. Especially, models with negative coefficients

look more chaotic, and fitted values are quite inconsistent with observed values.

Figure ?? shows residual fitted values spread plots for each AR(1) test data in

Figure ??. As the coefficient φ gets bigger, much variability gets to be accounted

by the FFNN model. In other words, as the signal-to-noise ratio gets bigger, Fitted

values by the FFNN model becomes better.

Figure ?? shows Tukey mean difference plots for each AR(1) test data in Figure

??. As the coefficient φ gets bigger, the shape gets less systematic, which is more

desirable.

Dividing Scheme number of training data number of test data

A 25 25

B 75 25

C 50 50

D 175 25

E 100 100

F 475 25

G 250 250

Table 5.28: Data dividing scheme for each AR(1) model.

φ signal-to-noise ratio

-0.9 5.3

-0.6 1.6

-0.3 1.1

0.3 1.1

0.6 1.6

0.9 5.3

Table 5.29: Coefficients of AR(1) model and corresponding signal-to-noise ratio.

The results for each AR(1) time series data is given in from Table ?? to Table

??.

92

Scheme NN(1; 1) NN(1; 2) NN(1; 3) NN(1, 2; 2) NN(1, 2, 3; 2)

σF σP σF σP σF σP σP σF σP σF

A 0.54 0.36 0.51 0.40 0.38 0.41 0.40 0.52 0.31 0.52

B 0.42 0.50 0.42 0.49 0.40 0.53 0.40 0.54 0.38 0.46

C 0.39 0.50 0.39 0.52 0.36 5.10 0.35 0.52 0.31 0.56

D 0.43 0.45 0.42 0.45 0.41 0.44 0.42 0.45 0.41 0.45

E 0.46 0.41 0.45 0.42 0.44 0.42 0.43 0.43 0.42 0.44

F 0.45 0.41 0.45 0.41 0.44 0.41 0.44 0.41 0.44 0.40

G 0.43 0.47 0.42 0.47 0.42 0.48 0.42 0.48 0.42 0.49

Table 5.30: RMSE of various FFNN models for the AR(1) data generated by Xt =

−0.9Xt + N(0, 0.19). σF is RMSE of the training data and σP is RMSE of the test

data.

Scheme NN(1; 1) NN(1; 2) NN(1; 3) NN(1, 2; 2) NN(1, 2, 3; 2)

σF σP σF σP σF σP σP σF σP σF

A 0.57 0.90 0.49 1.02 0.31 1.04 0.41 0.98 0.27 5.46

B 0.75 0.71 0.72 0.87 0.70 0.96 0.69 0.74 0.63 0.87

C 0.76 0.85 0.67 0.82 0.59 1.42 0.62 0.93 0.59 0.98

D 0.84 0.83 0.82 0.84 0.81 0.80 0.81 0.83 0.78 0.86

E 0.82 0.88 0.79 0.91 0.77 0.94 0.76 0.96 0.74 1.00

F 0.84 0.83 0.84 0.80 0.83 0.82 0.84 0.86 0.84 0.85

G 0.84 0.85 0.84 0.86 0.83 0.87 0.83 0.86 0.82 0.91

Table 5.31: RMSE of various FFNN models for the AR(1) data generated by Xt =

−0.6Xt + N(0, 0.64). σF is RMSE of the training data and σP is RMSE of the test

data.

93

Scheme NN(1; 1) NN(1; 2) NN(1; 3) NN(1, 2; 2) NN(1, 2, 3; 2)

σF σP σF σP σF σP σP σF σP σF

A 0.73 1.10 0.66 1.20 0.62 1.24 0.46 1.09 0.42 1.66

B 0.94 0.90 0.90 1.18 0.84 1.21 0.86 1.17 0.82 1.23

C 0.87 1.16 0.84 1.29 0.80 1.19 0.76 1.21 0.71 1.39

D 0.96 1.14 0.96 1.14 0.95 1.13 0.92 1.25 0.89 4.60

E 0.97 1.01 0.94 1.26 0.92 1.21 0.88 1.13 0.85 1.22

F 0.99 1.11 0.98 1.11 0.98 1.04 0.97 1.22 0.96 1.15

G 0.98 1.03 0.96 1.04 0.94 1.04 0.96 1.07 0.91 1.10

Table 5.32: RMSE of various FFNN models for the AR(1) data generated by Xt =

−0.3Xt + N(0, 0.91). σF is RMSE of the training data and σP is RMSE of the test

data.

Scheme NN(1; 1) NN(1; 2) NN(1; 3) NN(1, 2; 2) NN(1, 2, 3; 2)

σF σP σF σP σF σP σP σF σP σF

A 0.89 1.17 0.72 1.55 0.65 1.46 0.50 1.11 0.41 1.32

B 0.98 1.10 0.95 1.23 0.88 1.11 0.92 1.05 0.86 1.22

C 1.00 1.06 0.92 1.13 0.83 1.68 0.90 1.46 0.78 1.31

D 0.93 1.07 0.91 1.16 0.90 1.17 0.89 1.10 0.85 1.15

E 0.93 0.97 0.91 0.99 0.89 1.00 0.86 4.82 0.85 1.07

F 0.94 0.86 0.93 0.86 0.93 0.84 0.93 0.83 0.91 0.88

G 0.90 0.99 0.89 0.97 0.88 0.98 0.87 1.00 0.85 1.06

Table 5.33: RMSE of various FFNN models for the AR(1) data generated by Xt =

0.3Xt + N(0, 0.91). σF is RMSE of the training data and σP is RMSE of the test

data.

94

Scheme NN(1; 1) NN(1; 2) NN(1; 3) NN(1, 2; 2) NN(1, 2, 3; 2)

σF σP σF σP σF σP σP σF σP σF

A 0.66 0.89 0.60 0.91 0.55 1.81 0.49 1.42 0.46 1.15

B 0.84 0.80 0.82 0.73 0.79 0.77 0.75 0.79 0.73 0.83

C 0.76 0.94 0.70 1.03 0.65 1.00 0.66 1.01 0.64 1.04

D 0.80 0.77 0.77 0.80 0.76 0.80 0.76 0.76 0.75 0.89

E 0.75 0.89 0.73 0.87 0.71 10.30 0.70 0.87 0.69 0.95

F 0.79 0.77 0.78 0.78 0.78 0.80 0.77 0.77 0.77 0.78

G 0.76 0.81 0.75 0.83 0.73 0.86 0.73 0.86 0.73 0.86

Table 5.34: RMSE of various FFNN models for the AR(1) data generated by Xt =

0.6Xt + N(0, 0.64). σF is RMSE of the training data and σP is RMSE of the test

data.

Scheme NN(1; 1) NN(1; 2) NN(1; 3) NN(1, 2; 2) NN(1, 2, 3; 2)

σF σP σF σP σF σP σP σF σP σF

A 0.34 0.46 0.25 0.61 0.23 0.63 0.19 1.52 0.20 0.75

B 0.43 0.35 0.42 0.39 0.39 0.43 0.40 0.47 0.35 0.41

C 0.42 0.40 0.40 0.48 0.36 0.56 0.35 0.62 0.27 0.61

D 0.36 0.38 0.35 0.37 0.35 0.37 0.36 0.37 0.35 0.36

E 0.35 0.38 0.33 0.41 0.32 0.43 0.34 0.41 0.33 0.39

F 0.44 0.39 0.44 0.39 0.43 0.39 0.43 0.40 0.43 0.40

G 0.44 0.44 0.43 0.44 0.43 0.46 0.43 0.45 0.42 0.46

Table 5.35: RMSE of several FFNN models for the AR(1) model Xt = 0.5Xt +

N(0, 0.19). σF is RMSE of the training data and σP is RMSE of the test data.

95

a) φ = −0.9 b) φ = −0.6

0 20 40 60 80 100

-2
-1

0
1

2

Observed

Forecast

0 20 40 60 80 100

-2
0

2

Observed

Forecast

c) φ = −0.3 d) φ = 0.3

0 20 40 60 80 100

-2
-1

0
1

2
3

Observed

Forecast

0 20 40 60 80 100

-2
-1

0
1

2
Observed

Forecast

e) φ = 0.6 f) φ = 0.9

0 20 40 60 80 100

-2
-1

0
1

2

Observed

Forecast

0 20 40 60 80 100

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0 Observed

Forecast

Figure 42: AR(1) time series data. Dividing scheme is E. Solid line is observed data

and points are fitted values by the FFNN models for the test data.

96

a) φ = −0.9 b) φ = −0.6

-2

-1

0

1

2

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

-3

-2

-1

0

1

2

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

c) φ = −0.3 d) φ = 0.3

-2

-1

0

1

2

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

-2

-1

0

1

2

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

e) φ = 0.6 f) φ = 0.9

-1

0

1

2

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

-1.5

-1.0

-0.5

0.0

0.5

1.0

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

Figure 43: Residual fitted value spread plots for test data of the AR(1) time series

data sets.

97

a) φ = −0.9 b) φ = −0.6

-2 -1 0 1 2

-0
.5

0.
0

0.
5

1.
0

-3 -2 -1 0 1 2

-2
-1

0
1

2

c) φ = −0.3 d) φ = 0.3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2
-1

0
1

2

-1.0 -0.5 0.0 0.5 1.0

-2
-1

0
1

2

c) φ = 0.6 d) φ = 0.9

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
0

1
2

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

Figure 44: Tukey mean difference plots for test data of the AR(1) time series data

sets.

98

5.3 Tent Map Series

Freedman, Navidi & Peters (1988) pointed out that the following map will generate

a white noise like sequence, zt = f(zt−1), where

f(x) = 2x if x < 1/2

= 2(1− x) if x ≥ 1/2.

This function when plotted looks like an upside-down V or a tent.

Tent map data is a chaotic series and consists of only signal. Therefore, if the

formula for this series is given, it is possible to predict future values perfectly.

A series of length 501 was generated with Mathematica starting with an initial

value of z0 = 0.177221. If exact arithmetic is not used, the function degenerates

quickly to 0 due to rounding error. A time series plot of the data is shown in Figure

??.

Figure ?? shows autocorrelation function of the tent map data. It does not

show any large correlation between any lags, which tells us that the series is quite

chaotic. Figure ?? shows Bartlett’s cumulative periodogram test of the tent map

data. It shows that the whiteness of data is quite large. From the autocorrelation

and cumulative periodogram, it is clear that linear time series methods will be of no

avail in modelling this data. In this section, it will be examined if the FFNN model

can handle this kind of chaotic data.

Before FFNN models are applied to this data, the number of the training data

and the number of test data should be decided. The length of the training set greatly

affects the forecast accuracy and the estimation of the weights. From the previous

sections, it appears that when the training sets are small, the differences in the

FFNN models is emphasized. Therefore we examine two scenarios using small and

large training sets.

99

0.0

0.6

0 20 40 60 80 100

0.0

0.6

100 120 140 160 180 200

0.0

0.6

200 220 240 260 280 300

0.0

0.6

300 320 340 360 380 400

0.0

0.6

400 420 440 460 480 500

Obs. No.

Figure 45: Time series plot of the tent time series.

100

Lag

A
C

F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : tent

Figure 46: Autocorrelation function of some data generated by the tent map.

ooooo
oooooo

ooooo
ooooo

oooooo
ooooo

ooooooo
oooo
ooo
oooooooo

ooooo
ooooooo

oooooooo
oooooo

ooooooo
oooo
oooooo

oooooo
oooooo

oooo
ooooooooo

oooo
ooo
oooooo

oooooo
oooo
oooo
ooooo

oooo
oooooooo

ooo
ooooooo

oooooooo
oooo
oooooo

ooooo
oooooooo

ooooooo
ooooooo

ooooo
oooooooo

ooooooooo
ooooo

ooooo

Bartlett’s Test For Whiteness

Significance Limits at 25%, 10%, 5% and 1%
frequency

cu
m

ul
at

iv
e

pe
rio

do
gr

am

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 47: Bartlett’s test for Tent map data.

101

5.3.1 N1 = 25, N2 = 476

The result when the combination of 25 training data and 476 training data is chosen,

which holds comparatively smaller training data, is given in Table ??.

From Table ??, the best model which produces least RMSE value is NN(1; 3)

and putting too many hidden nodes does not improve the results. Fitted values of

NN(1; 3) model for the tent map data with 25 training data and first 100 test data

are plotted in Figure ??. It illustrates that the Fitted values for the test data are

almost tracing the original data, but some points miss tracing the original data.

Residual Fitted value spread plot for the test data is given in Figure ?? and Tukey

mean difference plot for the test data is given in Figure ??. It is shown that almost

all the variability is accounted by NN(1; 3) and mean difference is spread around

0. However, Tukey mean difference plot shows that there is some pattern left by

NN(1 : 3) model. This indicates that the tent map data is systematic data although

it looks chaotic.

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observed

Fittedtraining test

Figure 48: Fitted values of the NN(1; 3) model for the tent map data. 25 training

data and first 100 test data is shown with a solid line.

102

Model σF σP

NN(1 : 1) 1.2× 10−1 2.7× 10−1

NN(1, 2; 1) 1.0× 10−2 2.7× 10−1

NN(1, 2, 3; 1) 1.2× 10−1 2.7× 10−1

NN(1; 2) 1.0× 10−2 8.3× 10−2

NN(1, 2; 2) 9.3× 10−3 8.2× 10−2

NN(1, 2, 3; 2) 8.1× 10−3 6.1× 10−2

NN(1− 4; 2) 8.3× 10−3 6.1× 10−2

NN(1− 5; 2) 7.1× 10−3 5.6× 10−2

NN(1− 6; 2) 7.1× 10−3 5.8× 10−2

NN(1− 12; 2) 2.8× 10−3 4.3× 10−1

NN(1; 3) 2.1× 10−3 3.2× 10−2

NN(1, 2; 3) 2.1× 10−3 3.7× 10−2

NN(1, 2, 3; 3) 2.8× 10−3 5.3× 10−2

NN(1, 2, 3, 4; 3) 2.1× 10−3 2.0× 10−1

NN(1; 10) 2.0× 10−3 3.4× 10−2

Table 5.36: RMSEs of 25 training data set and 476 test data set for the tent map

data by several FFNN models. σF is RMSE for the training data and σP is RMSE

for the test data.

-0.4

-0.2

0.0

0.2

0.4

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1:3)

Figure 49: Residual fitted value spread plot of 100 tent map test data by NN(1; 3).

The NN(1; 3) is trained with 25 data.

103

NN(1;3)

0.2 0.4 0.6 0.8

-0
.1

0
-0

.0
5

0.
0

0.
05

Figure 50: Residual fitted value spread plot of 100 tent map test data by NN(1; 3).

The NN(1; 3) is trained with 25 data.

104

5.3.2 N1 = 100, N2 = 401

Next, we divide the data into 100 training data set and 401 test data and apply

several NN(1; x) models to it. The result is shown in Table ??. As the number of

hidden nodes gets larger, RMSE for the test data gets smaller. RMSE only for the

test data is shown in Figure ??. Amazingly, the predicted values trace perfectly

the original data. This is because there is enough training data and the tent map

data does not have any noise. Residual Fitted value spread plot and Tukey mean

difference plot for the test data are given in figure ??. Residual fitted values spread

plot shows that almost all the variability is accounted by the fitted values. Tukey

mean difference plot shows that there is still some pattern left by NN(1 : 10) model.

We conclude that FFNN model does a quite good job for the data, which is

chaotic but of which noise is 0 as long as enough training data length is given.

Model σF σP

NN(1 : 1) 2.3× 10−1 2.4× 10−1

NN(1; 2) 2.6× 10−2 2.5× 10−2

NN(1; 3) 1.4× 10−2 1.2× 10−2

NN(1; 4) 4.8× 10−3 5.0× 10−3

NN(1; 5) 3.1× 10−3 3.3× 10−3

NN(1; 6) 2.4× 10−3 2.5× 10−3

NN(1; 10) 1.5× 10−3 1.6× 10−3

Table 5.37: RMSEs of 100 training data set and 401 test data set for the tent map

data. σF is RMSE for the training data and σP is RMSE for the test data.

105

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observed

Fitted

Figure 51: Fitted values of the NN(1; 3) model for the tent map test data. First 100

test data is shown with a solid line. The NN(1; 3) is trained with 25 data.

106

-0.4

-0.2

0.0

0.2

0.4

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1:10)

NN(1;10)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.0

05
0.

0
0.

00
5

0.
01

0

Figure 52: Residual fitted value spread plot and Tukey mean difference plot of 100

tent map test data by NN(1; 10). The NN(1; 10) is trained with 100 data.

107

5.4 Pseudo-Random Number Generator

An old favorite simple congruential pseudo-random number generator was developed

by Lewis, Goodman & Miller (1969) based on the iteration,

Xi = 75Xi−1 mod 231 − 1. (5.7)

The output is then rescaled, Ui = Xi/2
31 to produce a sequence on (0, 1). Note that

this generator exhibits Markov type dependence.

A sequence of 5000 rescaled data values was generated by eqn. ?? starting with

X0 = 229 + 1. and will be referred to as the Lewis data. The first 300 values in the

sequence of the Lewis data are plotted in Figure ??.

Figure ?? shows autocorrelation function of Lewis data. It does not show any

large correlation between any lags, which tells us that the series is quite chaotic.

Figure ?? shows Bartlett’s test of Lewis data. It shows that the whiteness of data is

quite large. Because each data point has quite large value and NNET can give only

some constant fitted values for the raw data, the data divided by 231 to make the

value smaller is rather used. 5000 data points are used here and first 500 is used as

a training data. The results are given in Table ??. All the model produce almost

same amount of RMSE values.

Figure ?? illustrates last 50 fitted values of training data and first 50 fitted

values of test data. As might be expected the FFNN model is unable to cope with

adequately modeling this type of Markovian dependence.

Model σF σP

NN(1; 1) 0.29 0.29

NN(1; 2) 0.29 0.29

NN(1; 3) 0.28 0.29

Table 5.38: RMSE of several FFNN models for the Lewis data divided by 231. The

number of training data is 500 and the number of test data is 4500. σF is RMSE for

the training data and σP is RMSE for the test data.

108

0 50 100 150 200 250 300

0
5*

10
^8

10
^9

1.
5*

10
^9

2*
10

^9

Figure 53: The Lewis data.

Lag

A
C

F

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : lewis

Figure 54: Autocorrelation function of Lewis data.

109

oo
oo

oo
oo

oo
oo

oo
ooo

ooo
ooo
ooo

oo
ooo

ooo
oo

ooo
oo
ooo

oo
ooo

ooo
oo

oo
ooo

ooo
oo
oo
ooo

ooo
oo

ooo
oo

oo
ooo
ooo

ooo
oo

oo
ooo

ooo
oo

ooo
oo
oo

ooo
oo
ooo

ooo
ooo

ooo
ooo

Bartlett’s Test For Whiteness

Significance Limits at 25%, 10%, 5% and 1%
frequency

cu
m

ul
at

iv
e

pe
rio

do
gr

am

0.0 0.1 0.2 0.3 0.4 0.5

0.
20

00
0

0.
40

00
0

0.
60

00
0

0.
80

00
0

1.
00

00
0

Figure 55: Bartlett’s test for Lewis data.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observed

Forecast training test

Figure 56: Last 50 fitted values of training data and first 50 fitted values of test data

by NN(1; 1) model.

110

6 Lynx Data

6.1 Introduction

The data which is used this section give annual number of lynx trappings in the

Mackenzie River District of North-West Canada for the period 1821 to 1934. It is

assumed by ecologists that this data indicates the relative magnitude of the lynx

population and is therefore of great interest to ecological researchers. This data is

plotted in Figure ??. Taking logarithms makes the data more symmetrically dis-

tributed as shown in Figures ?? and ??. Ecologists believe that cycles in population

such as observed with the lynx series occur when there is a strong predator-prey

relationship. The predator causes the prey to decline and this is followed by a de-

cline in the predator population. The prey population recovers and this causes an

increase in the predator population and so the cycle continues.

This lynx data is one of the most frequently used time series. It is actually part of

a much larger collection of time series derived originally from Hudson Bay Company

archives and first published by Elton (1927) and analyzed by Elton and Nicholson

(1942). The first modern time series analysis was carried out by Moran (1953) who

fit an AR(2) to the logged data. Almost every family nonlinear time series models

have been shown to produce a better fit than the AR(2). An extensive review

by Tong (1990, §7.2) discusses the numerous nonlinear models that have been tried.

Tong (1990, §7.2) favours the self-exciting threshold autoregression (SETAR) models.

Tong (1983) used the SETAR model for some out-of-sample forecast comparisons

with other nonlinear models.

In this chapter it is shown that the FFNN is just as good or better than the

SETAR models of Tong (1983) for one-step out-of-sample forecasting. The FFNN is

also compared with the AR(2).

111

1820 1840 1860 1880 1900 1920

0
20

00
40

00
60

00

Figure 57: Lynx data

0 2000 4000 6000

0
10

20
30

40
50

60

lynx

1.5 2.0 2.5 3.0 3.5 4.0

0
10

20
30

log(lynx, base = 10)

Figure 58: histograms of the lynx data and the logged lynx data.

112

1820 1840 1860 1880 1900 1920

2.
0

2.
5

3.
0

3.
5

Figure 59: Logged Lynx data

6.2 Application of NN models to Lynx data

We divide lynx data into two data sets as before. One is a training data set and

the other is a test data set. Because we know the data length affects the forecasting

accuracy from the previous section, three different training and test data lengths

will be examined. We use training lengths 74, 94 and 100 with respective test data

lengths 40, 20 and 14. We compare the last case with the results reported by Tong

(1983).

The lynx data is divided by 100 for convenience. Figure ?? compares histograms

of the lynx data and the logged lynx data. The histograms of the lynx data is skewed

to right and it is recommended to use the transformation ln(x + a), where a is a

constant (SPSS, 1998). In fact, Tong (1983) used log with base = 10, which makes

the lynx data more symmetric looking, see Figure ??. Figure ?? shows the time

series plot of the logged Lynx data. We will show the effect of the transformation

for the non-linear time series data.

All the results are given in Table ??, ??, and ??. Overall the best model would be

NN(1, 2; 2) with log transformation, which produces generally small RMSE values.

113

From these tables it is inferred that NN models produce better results than the

AR(2) models, and even the SETAR model. SETAR model which produces the

least RMSE value is singled out.

We have compared the out-of-sample forecasts with the observed data visually

using time series plots of data and forecast, the residual-fit spread plot and Tukey

mean difference plot. The plots offer more information that just reporting σP the

root-mean-square error of the out-of-sample predictions. The residual-fit spread

plots show that the NN(1, 2; 2) model accounts for more variability than AR(2) does

and draw our attention to outliers. In many applications, outlier detection is an

important goal and here again the FFNN seems to work better than the AR(2).

The Tukey-mean difference plots again show the FFNN produces generally smaller

forecast errors.

SETAR model is explained in Tong (1983) and it shows taking a long time to find

out the appropriate SETAR model. On the other hand, FFNN models do not take

that long time to find the appropriate model. Considering these facts, we conclude

that the lynx data is a case where FFNN models outperform statistical models.

It is also shown in this example that the log transformation is helpful.

114

Model Non-transformed Transformed

σF σP σF σP

NN(1 : 1) 11.13 8.95 17.27 9.19

NN(1; 2) 10.59 10.52 17.53 9.19

NN(1, 2; 1) 7.83 9.59 8.84 7.71

NN(1, 2; 2) 6.96 8.12 7.67 7.77

NN(1, 2, 3; 1) 7.67 10.28 8.74 7.74

NN(1, 2, 3; 2) 6.22 9.63 7.81 7.70

NN(1, 10; 1) 10.68 7.95 10.83 7.57

NN(1, 10; 2) 9.72 7.92 10.91 7.24

NN(1, 2, 10; 1) 7.87 9.45 8.44 7.43

NN(1, 2, 10; 2) 6.63 6.99 7.46 7.60

NN(1, 2, 10, 20; 2) 6.04 13.77 7.40 8.75

AR(2) 10.22 9.53 9.49 8.24

Table 6.39: Comparison of RMSEs between AR(2) model and several NN models for

the lynx data and the logged data with base = 10. The lynx data is divided by 100 and

RMSE for the logged data is given after back transforming. The number of training

data is 94 and the number of test data is 20. σF is RMSE of the training data and

σP is RMSE of the test data.

115

Model Non-transformed Transformed

σF σP σF σP

NN(1 : 1) 9.92 12.23 10.48 13.27

NN(1; 2) 9.13 12.89 10.53 13.49

NN(1, 2; 1) 6.96 9.93 8.43 9.11

NN(1, 2; 2) 6.03 11.26 7.06 9.08

NN(1, 2, 3; 1) 6.28 11.43 7.86 10.32

NN(1, 2, 3; 2) 5.16 12.89 6.58 9.93

NN(1, 10; 1) 9.16 12.20 9.35 13.39

NN(1, 10; 2) 7.44 14.86 9.35 14.19

NN(1, 2, 10; 1) 6.73 10.12 7.64 10.03

NN(1, 2, 10; 2) 5.27 10.76 6.15 10.13

NN(1, 2, 10, 20; 2) 4.60 14.89 6.13 10.89

AR(2) 9.32 11.37 8.92 9.87

Table 6.40: Comparison of RMSEs between AR(2) model and several NN models for

the lynx data and the logged data with base = 10. The lynx data is divided by 100 and

RMSE for the logged data is given after back transforming. The number of training

data is 74 and the number of test data is 40. σF is RMSE of the training data and

σP is RMSE of the test data.

116

Model σF σP

NN(1 : 1) 0.35 0.24

NN(1; 2) 0.35 0.24

NN(1, 2; 1) 0.23 0.14

NN(1, 2; 2) 0.21 0.10

NN(1, 2, 3; 1) 0.23 0.15

NN(1, 2, 3; 2) 0.20 0.092

NN(1, 10; 1) 0.33 0.22

NN(1, 10; 2) 0.32 0.22

NN(1, 2, 10; 1) 0.19 0.21

NN(1, 2, 10; 2) 0.20 0.14

NN(1, 2, 10, 20; 2) 0.19 0.21

AR(2) 0.31 0.19

SETAR(2;6,3) 0.12

Table 6.41: Comparison of RMSEs among AR(2) model, SETAR model and several

NN models for the logged lynx data with base = 10. RMSE for the logged data is

given without back transforming. The number of training data is 100 and the number

of test data is 14. σF is RMSE of the training data and σP is RMSE of the test data.

117

AR(2)

0 20 40 60 80 100

0
20

40
60

80

Observed

Fitted

training test

NN(1,2;2)

0 20 40 60 80 100

0
20

40
60

80

Observed

Fitted

training test

Figure 60: Fitted values for the log transformed lynx data by AR(2) model and by

NN(1, 2; 2). Lynx data is divided by 100 and fitted values are plotted after back

transformation. Observations are plotted with a solid line. The number of training

data is 94 and the number of test data is 20.

118

-20

-10

0

10

20

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

AR(2)

-20

-10

0

10

20

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1,2;2)

Figure 61: Residual fitted value spread plots of the 20 lynx test data by AR(2) and

by NN(1, 2; 2). The left panel in each display shows the plot of quantile plot of the

fits minus the mean. The right panels are the quantile plots of the residuals. We see

that the AR(2) model produced one large negative residual outlier and the FFNN

produced 2 positive and one negative outlier. For the bulk of the remaining data,

the FFNN produced smaller residuals.

119

AR(2)

0 10 20 30 40

-3
0

-2
0

-1
0

0
10

20

NN(1,2;2)

0 10 20 30 40

-3
0

-2
0

-1
0

0
10

20

Figure 62: Tukey mean difference plots of the 20 lynx test data by AR(2) and by

NN(1, 2; 2). The horizontal axis in each plot shows the (X + Y)/2 and the vertical

axis Y −X where X = observed and Y = one-step forecast.

120

AR(2)

0 20 40 60 80 100

0
20

40
60

80

Observed

Fitted

training test

NN(1,2;2)

0 20 40 60 80 100

0
20

40
60

80

Observed

Fitted

training test

Figure 63: Fitted values for the log transformed lynx data by AR(2) model and by

NN(1, 2; 2). Lynx data is divided by 100 and fitted values are plotted after back

transformation. Observations are plotted with a solid line. The number of training

data is 74 and the number of test data is 40

121

-20

0

20

40

60

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

AR(2)

-20

0

20

40

60

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1,2;2)

Figure 64: Residual fitted value spread plots of the 40 lynx test data by AR(2) and

by NN(1, 2; 2). The left panel in each display shows the plot of quantile plot of the

fits minus the mean. The right panels are the quantile plots of the residuals.

122

AR(2)

0 20 40 60

-2
0

-1
0

0
10

20

NN(1,2;2)

0 20 40 60

-2
0

-1
0

0
10

20

Figure 65: Tukey mean difference plots of the 40 lynx test data by AR(2) and by

NN(1, 2; 2). The horizontal axis in each plot shows the (X + Y)/2 and the vertical

axis Y −X where X = observed and Y = one-step forecast.

123

AR(2)

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00

Observed

Fitted

training test

NN(1,2;2)

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00

Observed

Fitted

training test

Figure 66: Fitted values for the log transformed lynx data by AR(2) model and by

NN(1, 2; 2). Fitted values are plotted after back transformation. Observations are

plotted with a solid line. The number of training data is 100 and the number of test

data is 14

124

-4000

-2000

0

2000

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

AR(2)

-4000

-2000

0

2000

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1,2;2)

Figure 67: Residual fitted value spread plots of the 14 lynx test data by AR(2) and

by NN(1, 2; 2). The left panel in each display shows the plot of quantile plot of the

fits minus the mean. The right panels are the quantile plots of the residuals.

125

AR(2)

0 1000 2000 3000 4000

-1
00

0
-5

00
0

50
0

NN(1,2;2)

0 1000 2000 3000 4000

-1
00

0
-5

00
0

50
0

Figure 68: Tukey mean difference plots of the 14 lynx test data by AR(2) and by

NN(1, 2; 2). The horizontal axis in each plot shows the (X + Y)/2 and the vertical

axis Y −X where X = observed and Y = one-step forecast.

126

7 Half-hourly Streamflow Forecasting

7.1 Introduction

The data set used in this chapter is discrete time streamflow data at half-hourly

interval if River Hirnant, Wales, U.K. from November to December, 1972. This data

consists of 2928 rain data and flow data which cover an area of 33.9 km2. Although

it is quite important for the flood control and river regulation to predict short term

run-off models, there has not been satisfactory model for this data set so far. It is

mentioned by Weiss, G.(1984) that fitting of models has so far been based mainly on

least squares techniques, which may not suitable to the point process structure of the

rain process. The half-hourly streamflow data is plotted in Figure ??. Considering

the difficulty of building the rain-flow relation model, we will use just streamflow

time series data and compare FFNN with AR model.

0 500 1000 1500 2000 2500 3000

0
5

10
15

20
25

Figure 69: The half hourly streamflow data from November to December, 1972.

127

7.2 Forecasting by NN models

Considering this non-linear looking data in Figure ??, it would be a good try to use

NN models this data. However, as Figure ?? shows, the data is quite skewed to the

right. Therefore, some transformation should be applied as is the case in the previous

chapter. In this case, we use simply natural logarithm and the histogram of the flow

data after log transformation is given in Figure ??. We see that this histogram is

more uniform looking than that in Figure ??. Then We apply NN models to the

logged flow data with 1500 training data and 1428 test data.

0 5 10 15 20 25

0
50

0
10

00
15

00

flow

Figure 70: Histograms of the flow data.

-2 -1 0 1 2 3

0
10

0
20

0
30

0
40

0
50

0

flow

Figure 71: Histograms of the log transformed flow data.

Before applying NN models, we have to choose an appropriate lags, PAC (Partial

Autocorrelation) of the logged flow data in Figure ?? suggests that AR(5) should be

used. The large partial autocorrelation at lag one suggests that perhaps first differ-

128

encing could be used. However since it is meaningful to think of average daily and

monthly flows, a model which is tied to a mean level seems suitable. If differencing

is taken then this would induce a wandering type of behaviour, found in the stock

market but not with riverflow series. Moreover the estimation procedure will consis-

tently estimate an AR(5) model with a root lying on the unit circle. Since the data

length is long, the precise form of the best fitting ARIMA model will not matter very

much so long as the model is not statistically inadequate due to autocorrelation in

the residuals. The AR(5) model seems to fit adequately in this respect. Hence, we

compare NN(1-5;a), where a is a number of hidden nodes, with the AR(5) model.

Lag

P
ar

tia
l A

C
F

0 5 10 15 20 25 30

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 72: Partial Autocorrelation of the 1500 logged test streamflow data.

129

Model Transformation σF σP

NN(1-5;1) Yes 0.901 0.202

NN(1-5;2) Yes 0.0780 0.206

NN(1-5;3) Yes 0.0755 0.214

NN(1-5;4) Yes 0.0754 0.233

NN(1-5;1) No 0.0797 1.345

NN(1-5;2) No 0.0705 1.352

AR(5) Yes 0.141 0.253

Table 7.42: Comparison of various NN models with AR(5) model for the half-

hourly streamflow data with log transformation and without log transformation. The

number of training data is 1500 and that of test data is 1428. σF is RMSE for

training data and σP is RMSE for test data.

Table ?? shows various NN models chosen to fit the data and their RMSEs for

the fitted values.

Figure ?? and ?? show that the prediction errors for the NN(1-5;2) is slightly

smaller. The difference is highly statistically significant, Pitman’s test r = 0.30, t̂ =

24.74 and achieved significance level of 2Pr(t > t̂) = 0. However, PMC = 0.508 with

achieved significance level of 0.56. In terms of PMC, there is hardly any difference.

130

-5

0

5

10

15

20

25

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

AR

-5

0

5

10

15

20

25

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

NN(1-5;2)

Figure 73: Residual-fit spread plots of the 1428 streamflow test data by AR(5) model

and NN(1 − 5; 2). The left panel in each display shows the plot of quantile plot of

the fits minus the mean. The right panels are the quantile plots of the residuals.

131

AR

0 5 10 15 20 25

-2
-1

0
1

2

NN(1-5;2)

0 5 10 15 20 25

-2
-1

0
1

2

Figure 74: Tukey mean difference plots of the 1428 streamflow test data by AR(5)

model and NN(1-5;2). The horizontal axis in each plot shows the (X +Y)/2 and the

vertical axis Y −X where X = one-step forecast and Y = observed.

132

8 Summary & Conclusion

We have examined possibility of FFNN and tried to find a appropriate way of apply-

ing them into time series data. Time series data sets with seasonality are analyzed

from Chapter 2 to Chapter 4 and nonlinear time series data sets are analyzed in

Chapter 6 and Chapter 7. In these chapters, performance of FFNN are compared

with corresponding statistical models not only by evaluating RMSE (root mean

square errors), but also by visualization techniques and statistical tests. We could

show that those methods are quite successful in this thesis.

In Chapter 2, we first criticized introducing AIC and BIC as a criterion for

choosing NN models, which is recommended by Faraway & Chatfield (1998). Instead,

we suggest in the whole thesis that choosing an appropriate NN models, or in other

words choosing a appropriate input lags should be done as if identifying the SARIMA

model. Even if the FFNN works in a black-box way, we have to be careful about lags

to input and the number of hidden nodes. Faraway & Chatfield (1998) concluded

that transformation and differencing of data does not improve the results. It is

partly true only for this airline data, but we pointed out their chosen input lags are

inappropriate and FFNN can do better than they thought if we choose an appropriate

lags to input. In other seasonal data sets, transformation and differencing helps

improving the accuracy of out-of-sample forecasts better.

Since the long-term forecast of a stationary time series is just the mean, we have

concentrated in this thesis on comparing the one-step forecasts. This may perhaps

be expected to give a more sensitive comparison between models.

The visual and statistical comparison of FFNN and SARIMA for Airline data,

showed FFNN outperforms the SARIMA.

On the other hand, in Chapter 3, SARIMA model outperforms FFNN for Sales

data, which is analyzed in this chapter. The possible reason comes out after plotting

the differenced and seasonally differenced power transformed data. The trend of

test data is apparently different from the trend of training data and FFNN could

not handle the data which is quite different from the old trend as well as SARIMA

133

model can do. However, we could see the transformation and difference helped the

forecast accuracy of FFNN very much.

In Chapter 4, to see the difference of performances between the FFNN and

SARIMA model more clearly, we used the water usage data which has 276 data

and a jump in the last 24 data set. In short, the trend of last 24 data set is different

from the trend of the first 252 data. In the first data dividing scheme which includes

half of last 24 data, FFNN could do at least as well as SARIMA model do. On the

other hand, in the second data dividing scheme which does not include any of last

24 data, FFNN performed worse than SARIMA model did.

In Chapter 5, we analyzed Markovian data sets. First we generate AR(1) model

with various signal-to-noise ratio and then applied FFNN to them. Stern(1996) ex-

erted the same simulation with AR(2) models, but all of his models suffered from

over-training. We pointed out that NN(1,2;h), with h = 2 is more suitable. Our

NN(1,2;h) worked much better than his models for AR(2) data. In the AR(1) simu-

lation, we showed that the length of training data and the signal-to-noise ratio affect

the forecast accuracy. Basically FFNN trained with shorter length of training data

can not perform as well as than FFNN with longer length of training data. Also

smaller signal-to-noise ratio cannot give a good out-of-sample forecast, which is con-

sistent with the AR(2) simulation in Stern (1996). Those results are consistent with

our intuition.

In Chapter 6, the Lynx data, is analyzed by FFNN. We showed that for the Lynx

Data it is the case that FFNN outperforms the best linear and nonlinear statistical

models. This is clearly shown with the help of RF-Spread plot.

In Chapter 7, half-hourly flow data is modelled. We compared FFNN with an

AR(5) model and Pitman’s test showed that the FFNN produces significantly better

forecast errors than AR(5) model does. To identify the lags to in the FFNN model,

PACF is used. However, different input lags and transformation should also be

tried and it would be interesting to build the relation model between rainfall and

streamflow by FFNN.

In summary, we demonstrated that the FFNN model can often do as well and

134

sometimes better than statistical models. This is especially true when the time series

is generated by a nonlinear and nonGaussian model and there is enough data.

135

Bibliography

ANDERSON, J.A. AND ROSENFELD, E. (1998), Talking Nets: An Oral History

of Neural Networks , Cambridge: MIT Press.

BOX, G.E.P. & JENKINS, G.M. (1973). Comments on “Box-Jenkins seasonal fore-

casting: Problems in a case-study” by C. Chatfield and D.L. Prothero, Journal

of the Royal Statistical Society A 136, 295–308.

BOX, G.E.P. & JENKINS, G.M. (1976), Time Series Analysis: Forecasting and

Control , (2nd edn), San Francisco: Holden-Day.

CHEN, B. & TITTERINGTON, D.M. (1994), Neural networks: A review from a

statistical perspective, Statistical Science 9, 2–54.

CASDAGLI, M. (1989), Nonlinear prediction of chaotic time series, Physica D35,

335–356.

CHATFIELD, C. & PROTHERO, D.L. (1973), Box-Jenkins seasonal forecasting:

Problems in a case-study, Journal of the Royal Statistical Society A 136, 295–308.

DEBOECK, G. & KOHONEN, T. (1998), Visual Explorations in Finance with Self-

Organizing Maps , New York: Springer-Verlag.

DE VEUX, R.D., SCHUMI, J., SCHWEINSBERG, J. & UNGAR, L.H. (1998),

Prediction intervals for neural networks via nonlinear regression, Technometrics

40, 273–282.

DYSON, G. (1997), Darwin Among the Machines: The Evolution of Global Intelli-

gence, Reading: Addison-Wesley

ELTON, C (1927), Animal Ecology , New York: MacMillan.

ELTON, C & NICHOLSON, M. (1942), The ten-year cycle in numbers of the lynx

in Canada, Journal of Animal Ecology 11, 215–244.

FARAWAY, J. & CHATFIELD, C. (1998), Time series forecasting with neural net-

works: a comparative study using the airline data, Applied Statistics 47, 231–250.

136

FARAWAY, J. (1998), http:

www.stat.lsa.umich.edu/ faraway.

FREEDMAN, D.A., NAVIDI, W. & PETERS, S.C. (1988), On the impact of vari-

able selection in fitting regression equations. In On Model Uncertainty and its

Statistical Implications: Proceedings of a Workshop Held in Groningen, ed. T.K.

Dijkstra, New York: Springer-Verlag

FREEMAN, J.A. (1994), Simulating Neural Networks with Mathematica, Reading:

Addison-Wesley

JOHNSON, R.C. & BROWN, C. (1988), Cognizers: Machines that Think , New

York: Wiley.

HERTZ, J., KROGH, A. & PALMER, R.G. (1991), Introduction to the Theory of

Neural Computation, Reading: Addison-Wesley.

HIPEL, K.W. & MCLEOD, A.I. (1994). Time Series Modelling of Water Resources

and Environmental Systems. Elsevier: Amsterdam.

HOWELL, T. (1983), Threshold Models in Non-linear Time Series Analysis , Lecture

Notes in Statistics, vol 21

HUTCHINSON, J.M. (1994), A Radial Basis Function Approach to Financial Time

Series Analysis , Ph.D. Disseration, Massachusetts Institute of Technology.

KASABOV, N.K. (1998), Foundations of Neural Networks, Fuzzy Systems and

Knowledge Engineering, Cambridge: MIT Press.

KURZWEIL, R. (1999), When machines think, Maclean’s , March 1, pages 54–57.

LEWIS, P.A.W., GOODMAN, A.L. & MILLER, J.M. (1969), A pseudo-random

number generator for the System 360. IBM Systems Journal 8, 136–146.

LISI, F. & Schiavo, R.A. (1999), A comparison between neural networks and chaotic

models for exchange rate prediction, Computational Statistics and Data Analysis

30, 87–102.

137

MOZER, M.C. (1993), Neural net architectures for temporal sequence processing.

In Forecasting the Future and Understanding the Past , eds. Andreas S. Weigend

& Neil A. Gershenfeld, Reading: Addison-Wesley.

MCLEOD, A.I., (1993), Parsimony, Model Adequacy and Periodic Correlation in

Forecasting Time Series, International Statistical Review 61, 387–393.

MCLEOD, A.I. & HIPEL, K.W. (1999), MHTS PC Package,

http://www.stats.uwo.ca/mcleod/epub/mhts.

MENROTRA, K., MOHAN, C.K. & RANKA, S. (1997) Elements of Artifical Neural

Nets, Cambridge: MIT Press.

MORAN, P.A.P. (1953), The statistical analysis of the Canadian lynx cycle, Aus-

tralian Journal of Zoology 1, 163-173.

MURTAGN, F. (1999), Neural networks and related massively parallel method for

statistics, International Statistical Review 62, 275–288.

PARK, Y.R., CHEN, C. & MURRAY, T.J. (1992), A study of neural network de-

sign and its application to statistical forecasting, in the Proceedsings of the 24th

Symposium on the Interface of Computer Science and Statistics, ed. H.J. Newton.

SPSS Inc. (1998), Neural Connection, Version 2.0, SPSS Inc./ Recognition System

Inc., Chicago.

STERN, H.S. (1996), Neural networks in applied statistics, Technometrics 38, 205–

220.

RIPLEY, B.D. (1996), Pattern Recognition and Neural Networks , Cambridge: Cam-

bridge University Press.

RIPLEY, B.D. (1999), http://www.stats.ox.ac.uk/pub/MASS2/.

TONG, H. (1983), Threshold Models in Nonlinear Time Series Analysis New York:

Springer-Verlag.

TONG, H. (1990), Nonlinear Time Series Oxford: Oxford University Press.

138

WARNER, B. AND MISRA, M. (1996), Understanding neural networks as statistical

tools, The American Statistician 50, 284–293.

VENABLES, W.N. & RIPLEY, B. (1997), Modern Applied Statistics with S-plus

(2nd ed), New York: Springer-Verlag

VON NEUMANN, J. (1956), The General and logical theory of automata, The

World of Mathematics, Volume 4 , ed. James R. Newman, New York: Simon and

Schuster

WAN, E. A. (1993), Time series prediction using a connectionist network with in-

ternal delay lines. In Forecasting the Future and Understanding the Past , eds.

Andreas S. Weigend & Neil A. Gershenfeld, Reading: Addison-Wesley.

WEISS, G. (1984), Half-hourly precipitation and streamflow, River Hirant, Wales,

U.K., November and December, 1972. In Data: A Collection of Problems

from Many Fields for the Student and Research Worker by D.F. Andrews &

A. Hertzberg, New York: Springer-Verlag

WILSON, G.T. (1973). Comments on “Box-Jenkins seasonal forecasting: Problems

in a case-study” by C. Chatfield and D.L. Prothero, Journal of the Royal Statis-

tical Society A 136, 295–308.

WINKLER, R. L. & MAKRIDAKIS, S. (1983). The combination of forecasts. J. R.

Statist. Soc. A 146, 150–157.

139

PERSONAL INFORMATION

Address: Department of Statistical and Actuarial Sciences,

University of Western Ontario,

London, Ontario N6A 5B7, CANADA

Date of Birth: July 12, 1974

Place of Birth: Japan

EDUCATION

B.Sc. (Civil Engineering), Department of Civil Engineering, Kyoto University, Ky-
oto, Japan, 1997.

THESIS

Graduation Thesis: Developement of the Criterion for Redundancy Feature of the
Urban Highway by Topological Index; The Department of Civil Engineering, Kyoto
University: March 1997.

CONFERENCE PRESENTATION

Visualization of Effects of Effluents ; Statistical Society of Canada Annual Meeting;
University of Sherbrooke, Sherbrooke; June 1998.

CONFERENCE PRESENTATION

Graduate Teaching Assistant: The Department of Statistical and Actuarial Sci-
ences, University of Western Ontario: January 1998 - April 1999.

