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Ch. 19. Lévy-Driven Time Series Models for Financial Data 543
Peter Brockwell and Alexander Lindner

1. Introduction 543
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Preface to Handbook Volume – 30

Nearly 25 years ago, two volumes on time series (volume 3 in 1983 and volume 5
in 1985) were published as a part of the Handbook of Statistics series. Volume 3 is on
“Time Series in the Frequency domain” edited by D. R. Brillinger and P. R. Krishnaiah,
which contains papers related to spectral methods of time series (mainly linear times
and to a lesser extent nonlinear time series). Volume 5 is on “Time Series in the
Time Domain” edited by E. J. Hannan, P. R. Krishnaiah, and M. M. Rao, which com-
prises of papers on statistical inference of linear ARMA models, nonstationary spectral
representations, various order selection procedures, etc.

Since the above publications, there has been an explosion of developments in time
series, for example, Bootstrap methods for time-dependent data, nonlinear models
for time series, analysis of high-frequency time series, quantile regression, time and
frequency domain methods for the analysis of data from biological, environmental
sciences, and so on. The main aim of the present volume is to survey these recent devel-
opments. This volume is divided into 10 parts, covering some of the areas mentioned
above, our object here is to make each part as homogeneous as possible.

It seems appropriate to start the volume by covering topics that were in their infancy
25 years ago. Part I of the volume covers bootstrap methods and tests for linearity of a
time series. Kreiss and Lahiri review bootstrap methods for dependent data satisfying
various linear time series models, nonlinear models and processes with long memory
properties. In Chapter 2, Berg, McMurry, and Politis consider some bootstrap meth-
ods for studying the asymptotic properties of linearity tests based on the higher order
spectra. There is further discussion on tests for linearity in Chapter 3 by Giannerini.

In the case that we reject the null in a test for linearity, it then becomes necessary
to consider methods of modeling nonlinear time series, and this is the focus of Part II
of the volume. In Chapter 4, Tjøstheim gives an overview of modeling methods for
nonlinear, nonstationary time series. Two important examples of nonlinear times series
commonly used in financial time series are Markov switching models and ARCH-type
models, which are considered in the next two chapters. In Chapter 5, Franke considers
both the probabilistic properties of various Markov switching models and also inference
of such models, including estimation and model selection. In Chapter 6, Mukherjee
considers robust estimation of parameters for heteroscedastic models including ARCH
and GARCH models.

Part III consists of papers related to functional data and high-dimensional time
series, two areas that are currently receiving a lot of attention in the wider statistical
community. Hörmann and Kokoszka, in Chapter 7, provide a functional time series

xiii
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approach to periodically stationary continuous time series. In Chapter 8, Wu and Xiao
consider the estimation of covariance matrices of both low- and high-dimensional time
series and study their asymptotic sampling properties under the assumption of physical
dependence.

Part IV comprises of just one paper by Zijie Xiao, in which he gives an overview of
time series quantile regression methods. He starts by reviewing conditional quantiles
for classical time series models, for example, linear and nonlinear time series and dis-
cusses how quantiles can be used to expand on current time series models, for example,
quantile autoregressive models.

Part V contains papers where applications to biological and neurological sciences
are considered (both time and frequency domain approaches are used). In Chapter 10,
Stoffer gives an overview of the spectral envelope for the harmonic analysis and scaling
of categorical-valued time series and demonstrates how this methodology can be used
to search for diagnostic patterns in DNA sequences. Ozaki, in Chapter 11, considers
fMRI data (functional magnetic resonance imaging) using spatial time series models
and the Kalman-Bucy filtering algorithm. Dependent count data arise in many biologi-
cal applications, and in Chapter 12, Fokianos considers various time series models for
such data, including both Poisson regression models and integer-valued processes.

Part VI covers nonstationary time series. The main focus will be on time series
whose structure evolves slowly over time and are considered “locally stationary pro-
cesses”. A term that is precisely defined in the comprehensive overview on locally
stationary processes, for both linear and nonlinear time series, given by Dahlhaus in
Chapter 13. The following two papers consider representations of a nonstationary time
series. Ombao, in Chapter 14, starts by defining the windowed Fourier basis, which is
a flexible basis for time–frequency localization of a signal. He then uses this basis to
search for a parsimonious representation of the time-varying spectral density function.
These methods are applied to the analysis of electroencephalograms (EEGs) data. In
Chapter 15, Subba Rao considers the stochastic coefficient regression (SCR) model, a
variant of the classical multiple regression model that takes into account the influence
regressors may have on the variance of the response variable. She shows that locally
stationary processes can be represented as a SCR model and considers inference based
on the Fourier transform of the observations.

Part VII contains papers on spatio-temporal models. Although there exists a vast
literature on spatial processes, only recently has more attention been given to spatio-
temporal processes, in view of the extra temporal dimension. In Chapter 16, Sahu
discusses a hierarchical autoregressive Bayesian model for space–time air pollution
data and also considers ways of monitoring ozone pollution. Fontanella and Ippoliti,
in Chapter 17, discuss the Karhunen–Loeve expansion of spatio-temporal processes
and consider how this expansion can be applied in the climatological series. In
Chapter 18, Subba Rao and Terdik start by reviewing the literature on the statistical
analysis of spatial processes and then define measures of dependence and propose
alternative methods based on the discrete Fourier transform for the estimation of
spatio-temporal models.

All the previous chapters have addressed issues related to discrete time series, how-
ever continuous time series also arise in several applications and this will be the focus
of part VIII. An important application of continuous time series is in financial time
series, where until recently most continuous time series models considered were driven
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by a Wiener process that restricts the sample paths to be continuous. This can be a
restrictive assumption, therefore recently the more general Levy-driven continuous
time series models have received much attention. These processes are reviewed by
Brockwell and Lindner, who consider their theoretical properties and show how they
can be used to model financial time series. Many discrete time series are samples from a
continuous-time process, therefore it is important to understand how the two time series
are related. In Chapter 20, Turkman considers the relationship between the supremum
of a stationary continuous time and the maximum over the discretized version of the
time series.

Part IX considers spectral and wavelet methods for the analysis of signals. Quinn
considers the Fourier analysis of time series for the estimation of frequencies in a signal
in Chapter 21. In Chapter 22, Percival and Mondall consider wavelet methods for the
analysis of variance in time series.

A sign of the times is that many of the methodologies described above are eas-
ily available as software packages written in R (the statistical software used by many
statisticians). Therefore, it seems timely to include a chapter on R. Part X comprises
of one chapter by McLeod, Yu, and Mahdi, who give an introduction to time series
analysis in R.

In editing this volume, we received help from the contributors who voluntarily
reviewed the papers (sometimes more than once), and we wish to thank all of them.
We are also grateful to Professor C. W. Anderson, Sheffield University, Professor
M. B. Priestley, University of Manchester, and Professor M. Pourahamadi, Texas A&M
University who reviewed some of the papers.

T. Subba Rao
S. Subba Rao

C. R. Rao
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Part I: Bootstrap and Tests for Linearity
of a Time Series
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Abstract

The chapter gives a review of the literature on bootstrap methods for time series
data. It describes various possibilities on how the bootstrap method, initially intro-
duced for independent random variables, can be extended to a wide range of
dependent variables in discrete time, including parametric or nonparametric time
series models, autoregressive and Markov processes, long range dependent time
series and nonlinear time series, among others. Relevant bootstrap approaches,
namely the intuitive residual bootstrap and Markovian bootstrap methods, the
prominent block bootstrap methods as well as frequency domain resampling
procedures, are described.

Further, conditions for consistent approximations of distributions of parameters
of interest by these methods are presented. The presentation is deliberately kept
non-technical in order to allow for an easy understanding of the topic, indicating
which bootstrap scheme is advantageous under a specific dependence situation
and for a given class of parameters of interest. Moreover, the chapter contains an
extensive list of relevant references for bootstrap methods for time series.

Keywords: bootstrap methods, discrete Fourier transform, linear and nonlinear
time series, long range dependence, Markov chains, resampling, second order
correctness, stochastic processes.

1. Introduction

The bootstrap method, initially introduced by Efron (1979) for independent variables
and later extended to deal with more complex dependent variables by several authors,
is a class of nonparametric methods that allow the statistician to carry out statistical

3
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inference on a wide range of problems without imposing much structural assump-
tions on the underlying data-generating random process. By now, there exist several
books and monographs, e.g., Hall (1992), Efron and Tibshirani (1993), Shao and
Tu (1995), Davison and Hinkley (1997), and Lahiri (2003a), among others, which
describe different aspects of the bootstrap methodology at varying levels of sophistica-
tion and generality. Moreover, several papers in the literature give overviews of various
aspects of bootstrapping time series. Among them are Berkowitz and Kilian (2000),
Bose and Politis (1995), Bühlmann (2002), Carey (2005), Härdle et al. (2003), Li and
Maddala (1996), and Politis (2003). These papers consider bootstrap and resampling
methods for general stochastic processes and time series models. The review papers
by Paparoditis and Politis (2009) and by Ruiz and Pascual (2002) especially focus on
financial time series, while McMurry and Politis considers resampling methodology for
functional data. In this article, we aim to provide an easy-to-read description of some
of the key ideas and issues and present latest results on a set of selected topics in the
context of time series data showing temporal dependence.

The basic idea behind the bootstrap methods is very simple, and it can be described
in general terms as follows. Let X1, . . . , Xn be a stretch of a time series with joint distri-
bution Pn . For estimating a population parameter θ , suppose that we have constructed
an estimator θ̂n (e.g., using the generalized method of moments) based on X1, . . . , Xn .
A common problem that the statistician must deal with is to assess the accuracy of θ̂n ,
for example, by using an estimate of its mean squared error (MSE) or an interval esti-
mate of a given confidence level. However, any such measure of accuracy depends on
the sampling distribution of θ̂n − θ , which is typically unknown in practice and often
very complicated. Bootstrap methods provide a general recipe for estimating the dis-
tribution of θ̂n and its functionals without restrictive model assumptions on the time
series.

We now give a general description of the basic principle underlying the bootstrap
methods. As before, suppose that the data are generated by a part of a time series
{X1, . . . , Xn} ≡ Xn with joint distribution Pn . Given Xn , first construct an estimate P̂n

of Pn . Next, generate random variables {X∗1 , . . . , X∗n} ≡ X∗n from P̂n . If P̂n is a reason-
ably “good” estimator of Pn , then the relation between {X1, . . . , Xn} and Pn is closely
reproduced (in the bootstrap world) by {X∗1 , . . . , X∗n} and P̂n . Define the bootstrap ver-
sion θ̂∗n of θ̂n by replacing X1, . . . , Xn with X∗1 , . . . , X∗n , and similarly, define θ∗ by
replacing Pn in θ = θ(Pn) by P̂n . Then, the conditional distribution (function) Ĝn or
G∗n (say) of θ̂∗n − θ

∗ (given Xn) gives the bootstrap estimator of the distribution (func-
tion) Gn (say) of θ̂n − θ . Here, θ∗ is some properly chosen parameter, which in many
applications can be computed from P̂n along the same lines as θ is computed from Pn .
In almost all applications, the bootstrap is used to approximate distributions of the type
cn (θ̂n − θ), where the to infinity increasing sequence (cn) of non-negative real num-
bers is chosen such that the sequence of distributions converges to a nondegenerate
limit.

To define the bootstrap estimators of a functional of the distribution of θ̂n − θ , such
as the variance or the quantiles of θ̂n − θ , we may simply use the “plug-in” principle
and employ the corresponding functional to the conditional distribution of θ̂∗n − θ

∗.
Thus, the bootstrap estimator of the variance σ 2

n of θ̂n − θ is given by the conditional
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variance σ̂ 2
n of θ̂∗n − θ

∗, i.e., by

σ̂ 2
n = the bootstrap estimator of σ 2

n

= Var(θ̂∗n − θ
∗
|Xn)

=

∫
x2dĜn(x)−

[∫
xdĜn(x)

]2

.

Similarly, if qα,n denotes the α ∈ (0, 1) quantile of (the distribution of ) θ̂n − θ , then its
bootstrap estimator is given by

q̂α,n = Ĝ−1
n (α), the α quantile of the conditional distribution of θ̂∗n − θ

∗.

In general, having chosen a particular bootstrap method for a specific application,
it is very difficult (and often, impractical) to derive closed-form analytical expressions
for the bootstrap estimators of various population quantities. This is where the com-
puter plays an indispensable role. Bootstrap estimators of the distribution of θ̂n − θ

can be computed numerically using Monte-Carlo simulation. First, a large number
(usually in hundreds) of independent copies {θ̂∗kn : k = 1, . . . , K } of θ̂∗n are constructed
by repeated resampling. The empirical distribution of these bootstrap replicates gives
the desired Monte-Carlo approximation to the true bootstrap distribution of θ̂∗n − θ

∗

and to its functionals. Specifically, for the variance parameter σ 2
n = Var(θ̂n − θ), the

Monte-Carlo approximation to the bootstrap estimator σ̂ 2
n is given by

[σ̂mc
n ]2

≡ (K − 1)−1
K∑

k=1

θ̂∗kn − K−1
K∑

j=1

θ̂∗ j
n

2

,

the sample variance of the replicates {θ̂∗kn − θ
∗ : k = 1, . . . , K }. Similarly, the Monte-

Carlo approximation to the bootstrap estimator q̂α,n is given by

q̂mc
n,α ≡ θ̂

∗(bKαc)
n − θ∗,

the bKαc order statistic of the replicates {θ̂∗kn − θ
∗ : k = 1, . . . , K }, where for any real

number x , bxc denotes the largest integer not exceeding x . From this point of view,
the introduction of the bootstrap has been very timely; almost none of the interesting
applications of the bootstrap would have been possible without the computing power
of present day computers.

The rest of the paper is organized as follows. Section 2 presents and discusses resid-
ual bootstrap methods for parametric and nonparametric models. The proposals mainly
apply the classical bootstrap approach of drawing with replacement to residuals of a
fitted model to the data. As a special case, Section 3 considers in detail an approach
by fitting autoregressions of increasing order to the observed data. A rather relevant
model class of dependent observations to which bootstrap procedures successfully can
be applied are Markov chains (cf. Section 4).
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Section 5 discusses in detail the prominent block bootstrap methods for time series.
So far, all discussed bootstrap methods are in time domain. Of course, frequency
domain bootstrap methods exist and are presented in Section 6. Mixtures of both fre-
quency and time domain bootstrap methods are described in Section 7. A final Section 8
concentrates on bootstrap methods for time series with long-range dependence.

2. Residual bootstrap for parametric and nonparametric models

Since the original bootstrap idea of Efron (1979) for i.i.d. random variables of drawing
with replacement cannot be applied directly to dependent observations, because by
obvious reasons, it suggests itself to apply the classical bootstrap principle to residuals
of an (optimal) predictor of the X ′t s.

Suppose for the following that we are given observations X1, . . . , Xn . For some
fixed p ∈ N denote by m̂n(X t−1, . . . , X t−p), a parametric or nonparametric estimator
of the conditional expectation E[X t |X t−1, . . . , X t−p]. This estimator leads to residuals

êt := X t − m̂n(X t−1, . . . , X t−p), t = p + 1, . . . , n, (1)

and in a next step to a bootstrap time series

X∗t = m̂n(X
∗

t−1, . . . , X∗t−p)+ e∗t , t = 1, . . . , n. (2)

The bootstrap innovations e∗1 , . . . , e∗n follow a Laplace distribution over the set
{̂ec

p+1, . . . , êc
n} of centered estimated residuals êp+1, . . . , ên .

Here, we presumed that all residuals more or less share the same variance. In a
heteroscedastic situation, one might think of some kind of a localized selection of boot-
strap residuals or a wild bootstrap approach. The latter means that bootstrap innovations
are generated according to

e∗t := êt · η
∗

t , t = p + 1, . . . , n, (3)

where the (bootstrap) random variables (η∗t ) possess zero mean and unit variance, only.
Typically, it is not necessary to specify some distribution for the η∗t ’s. If a distributional
assumption is made, this ranges from rather simple discrete (even two-point) distribu-
tions to standard normal distribution. For reasons of better higher order performance
for properly studentized statistics, one additionally should ensure E∗ (η∗t )

3
= 1. The

simple discrete distribution taking values z1 = (1+
√

5)/2 and z2 = (1−
√

5)/2 with
probabilities p1 = (

√
5− 1)/(2

√
5) and p2 = (

√
5+ 1)/(2

√
5), respectively, satisfies

the assumption of zero mean and unit second and third moments.
If we decide to use a fully nonparametric estimator in (1), the probabilistic prop-

erties of the bootstrap time series (2) could be rather delicate to investigate, because
we, in principle, could not control the behavior of nonparametric estimators in regions
far away from the origin, because we do not have many underlying observations in
such regions. This typically leads to not very reliable estimators in that regions, and
therefore, the stability of the bootstrap process cannot easily be guaranteed (recall that
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models of type (2) typically need some quite restrictive growth conditions on the behav-
ior of the function m̂n(xt−1, . . . , xt−p)). But in order to establish asymptotic consistency
of this bootstrap proposal, we need at least some stability and typically moreover some
mixing or weak dependence properties for the triangular array of dependent observa-
tions in the bootstrap world. Such conditions would be rather helpful in order to prove
asymptotic results for the bootstrap process.

One way out of this problem is to define instead of (2), a regression model in the
bootstrap world, i.e., to generate bootstrap observations according to

X∗t = m̂n(X t−1, . . . , X t−p)+ e∗t , t = 1, . . . , n. (4)

Along this proposal, we do not obtain a time series in the bootstrap world any longer,
but an advantage of this proposal over (2) is that the design variables (which are lagged
original observations themselves) now indeed mimic the p-dimensional marginal
distribution of the underlying data by construction.

The investigation of a residual bootstrap procedure is much simpler; hence, we
decide to use a fully parametric estimator in (1). For example, an optimal linear
approximation of the conditional expectation, i.e., an autoregressive fit of order p
to the underlying data. The estimator m̂n in this case simplifies to m̂n(x1, . . . , x p) =∑p

k=1 âk xt−k . Using Yule-Walker parameter estimates âk in such a simple situation
always leads to a stable and causal process in the bootstrap world (cf. Kreiss and
Neuhaus (2006), Satz 8.7 and Bemerkung 8.8). But, of course, one can apply the
idea of a parametric fit to the conditional expectation to other models including
moving-average and ARMA models.

The question of main interest is in which situations and to what extent the described
bootstrap proposals asymptotically work.

In order to ensure that a fitted parametric model generates according to (2) bootstrap
data that are able to mimic all dependence properties of the underlying observations,
one has to assume that the data-generating process itself belongs to the parametric class,
i.e., possess a representation of the form

X t = mθ (X t−1, . . . , X t−p)+ et , t ∈ Z, (5)

with i.i.d. innovations and parametric conditional mean function mθ , which of course is
quite restrictive. However, it can be stated that the parametric residual bootstrap consis-
tently mimics the process (5). An obvious extension of the residual bootstrap (including
an estimator of the conditional deviation (volatility)) leads to a residual bootstrap which
consistently mimics the following slight deviation of model (5)

X t = mθ (X t−1, . . . , X t−p)+ sθ (X t−1, . . . X t−q) · et , t ∈ Z. (6)

In case, the data-generating process does not belong to class (5) or (6), a residual
bootstrap making use of such a model fit asymptotically can only work if the asymp-
totic distribution of the parameter of interest does not vary if switching from the true
underlying process to a process of type (5) or (6), respectively.

The simplest situation in this context one might think of is a causal (linear) autore-
gressive model of fixed and known order p and with i.i.d. innovations (et ) (having zero
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mean and at least finite second-order moments) for the data-generating process, i.e.,

X t =

p∑
k=1

ak X t−k + et−k , t ∈ Z. (7)

Of course in such a situation, it suffices to consider an autoregressive process of the
same order p with consistently estimated parameters âk (e.g., Yule-Walker estimates)
and consistently estimated distribution of the innovations in the bootstrap world. If the
statistic of interest is the centered autocovariance or centered autocorrelation function
evaluated at some lags, then it is known that the asymptotic distribution for these quan-
tities is not the same for linear AR(p) processes of type (7) and, for example, general
mixing processes. This means that the residual bootstrap based on an autoregressive fit
in general does not lead to consistent results.

As long as one is interested in the distribution of the coefficients of the (linear)
autoregressive fit itself and as long as the underlying model follows (7), even the wild
bootstrap proposal (4) leads to valid approximation results. The bootstrap estimators in
such a situation just are the coefficients of a linear regression of X∗t on X t−1, . . . , X t−p.
The reason is that the asymptotic distributions of Yule-Walker and least-squares estima-
tors for the coefficients in linear autoregression and linear regression with i.i.d. errors
coincide. For more general statistics, it is of course not true that the wild bootstrap pro-
posal (4) leads to asymptotically valid results, because in the bootstrap world, we even
do not generate a stochastic process.

The application of a residual resampling scheme (2) in principle is of course not
limited to causal (linear) autoregressive processes but easily can be extended to a broad
class of further parametric models (including ARMA, threshold, ARCH, and GARCH
models). Relevant references for ARMA models are Bose (1988), Bose (1990), and
Franke and Kreiss (1992). The multivariate ARMA situation is considered in Papar-
oditis and Streitberg (1991). Basawa et al. (1991), Datta (1996), and Heimann and
Kreiss (1996) dealt with the situation of general AR(1) models in which the parameter
value is not restricted to the stationary case. For first-order autoregressions with posi-
tive innovations, Datta and McCormick (1995a) considered a bootstrap proposal for an
estimator specific to the considered situation. Finally, Franke et al. (2006) considered
the application of the bootstrap to order selection in autoregression, and Paparoditis and
Politis (2005) considered bootstrap methods for unit root testing in autoregressions. It
is worth mentioning that the assumption of i.i.d. innovations is rather essential for the
asymptotic validity of the described bootstrap proposals for most statistics of interest.
For a bootstrap test for a unit root in autoregressions with weakly dependent errors, see
Psaradakis (2001).

Finally, let us come back to the fully nonparametric situation. If the data-generating
process follows a nonparametric model equation of the form

X t = m(X t−1, . . . , X t−p)+ s(X t−1, . . . , X t−q) · et , t ∈ Z, (8)

again with i.i.d. innovations (et ) (having zero mean and unit variance) and known
orders p, q, in order to define a bootstrap process according to (2) or (4), we have to
apply nonparametric estimators of the underlying functional parameters m : Rp

→ R
and s : Rq

→ [0,∞], which are conditional mean and conditional volatility function of
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the process. For smooth mean functions m and smooth volatility functions v, kernel-
based estimators successfully could be applied, while for more general situations,
wavelet-based estimators may be used. It can be expected that for almost all statisti-
cal quantities, a residual bootstrap based on a nonparametric model fit for (8) will lead
to a consistent resampling procedure.

As far as nonparametric estimators are of interest, one can take advantage of the
so-called whitening by windowing effect, which in many situations of interest implies
that the dependence structure of the underlying process does not show up in asymp-
totic distributions of nonparametric estimates. Because of this, one might also take
regression-type standard as well as wild residual bootstrap procedures like (4) into
consideration, which are often much easier to implement because they completely
ignore the underlying dependence structure. We refer to Franke et al. (2002a) and
Franke et al. (2002b) for nonparametric kernel-based-bootstrap methods. Neumann and
Kreiss (1998) and Kreiss (2000) considered to what extent the nonparametric regres-
sion type bootstrap procedures successfully can be applied to situations (8) as long
as nonparametric estimators and tests for conditional mean and/or volatility functions
in nonparametric autoregressions are considered. A local bootstrap approach to kernel
estimation for dependent observations is suggested and investigated in Paparoditis and
Politis (2000).

Nonparametric bootstrap applications to goodness-of-fit testing problems for mean
and volatilty functions in models of the form (8) are derived and discussed in Kreiss
and Neumann (1999) and Kreiss et al. (2008). Paparoditis and Politis (2003) applied
the concept of block bootstrap (cf. Section 5) to residuals in order to deal with rather
relevant unit root testing problems.

3. Autoregressive-sieve bootstrap

The main idea of autoregressive (AR)-sieve bootstrap follows the lines of residual boot-
strap described in Section 2. Instead of applying the drawing with replacement idea to
residuals of an in some sense optimal predictor, we restrict for the AR-sieve bootstrap to
(optimal) linear predictors, given an increasing number of past values of the underlying
process itself.

If we again assume that the underlying process is stationary and, moreover, has
positive variance γ (0) > 0 and asymptotically (as h →∞) vanishing autocovari-
ances γ (h), then we obtain from Brockwell and Davis (1991), Prop. 5.1.1, that the
matrix 0 p = (γ (i − j))i , j=1,2,...,p is positive definite, and therefore, immediately the
best (in mean square sense) linear predictor of X j+1 given p past values X j ,p =

(X j , . . . , X j−p+1) exists, which is unique and is given by X̂ j+1 =
∑p

j=1 a j (p)X t− j .
The coefficients (a j (p) j = 1, 2, . . . , p) efficiently can be calculated from

(a1(p), a2(p), . . . , ap(p))
T
= 0−1

p (γ (1), γ (2), . . . , γ (p))
T .

Now, one way to generate bootstrap pseudo-time series is to select a set of p start-
ing values X∗1 , X∗2 , . . . , X∗p and, given the past X∗1 , X∗2 , . . . , X∗j , j ≥ p, to generate
the next observation X∗j+1 using an estimated version of the best linear predictor

X̂ j+1 =
∑p

s=1 as(p)X∗j+1−s plus an error term which is selected randomly from the

set of centered estimated prediction errors X t+1 − X̂ t+1 = X t+1 −
∑p

s=1 as(p)X t+1−s .
This idea together with the order p converging to infinity as sample size n increases
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lead to the so-called AR-sieve bootstrap procedure, which can be summarized in the
following steps.

Step 1: Select an order p = p(n) ∈ N, p � n, and fit a pth order autoregres-
sive model to X1, X2, . . . , Xn . Denote by â(p) = (̂a j (p), j = 1, 2, . . . , p), the
Yule-Walker autoregressive parameter estimators, that is â(p) = 0̂(p)−1γ̂p,
where for 0 ≤ h ≤ p,

γ̂X (h) =
1

n

n−|h|∑
t=1

(X t − Xn)(X t+|h| − Xn),

Xn =
1
n

∑n
t=1 X t , 0̂(p)= (γ̂X (r − s))r ,s=1,2,...,p and γ̂p = (γ̂X (1), . . . , γ̂X (p))′.

Step 2: Let ε̃t (p) = X t −
∑p

j=1 â j (p)X t− j t = p + 1, p + 2, . . . , n, be the residuals

of the autoregressive fit and denote by F̂n the empirical distribution function of
the centered residuals ε̂t (p) = ε̃t (p)− ε, where ε = (n − p)−1∑n

t=p+1 ε̃t (p)
Let (X∗1 , X∗2 , . . . , X∗n) be a set of observations from the time series X∗ =

{X∗t : t ∈ Z}, where X∗t =
∑p

t=1 â j (p)X∗t− j + e∗t and the e∗t ’s are independent

random variables having identical distribution F̂n .
Step 3: Let T ∗n = Tn(X∗1 , X∗2 , . . . , X∗n) be the same estimator as the estimator Tn of

interest based on the pseudo-time series X∗1 , X∗2 , . . . , X∗n , and ϑ∗ the analogue
of ϑ associated with the bootstrap process X∗. The AR-sieve bootstrap approx-
imation of Ln = L(cn(θ̂n − θ)) is then given by L∗n = L∗(cn (T ∗n − ϑ

∗)).

Using Yule-Walker estimators in Step 1 of the AR-sieve bootstrap is rather con-
venient. Besides simple, stable, and fast computation (using the Durbin–Levinson
algorithm), it ensures that the complex polynomial Âp(z) = 1−

∑p
j=1 â j (p)z j has no

roots on or within the unit disc {z ∈ C : |z| ≤ 1}, i.e., the bootstrap process X∗ is always
a stationary and causal autoregressive process (cf. Kreiss and Neuhaus (2006), Satz 8.7
and Bemerkung 8.8).

The described AR-sieve bootstrap has been introduced by Kreiss (1988) and has
been investigated from several points of view in Paparoditis and Streitberg (1991),
Kreiss (1992), Paparoditis (1996), Bühlmann (1997), Kreiss (1997), Bühlmann (1998),
Choi and Hall (2000), Gonçalves and Kilian (2007), Poskitt (2008), and recently in
Kreiss et al. (2011). Park (2002) gives an invariance principle for the sieve bootstrap
and Bose (1988) worked out the edgeworth correction of bootstrap in autoregressions.
Kapetanios (2010) applied the idea of sieve bootstrap to long-memory processes.

The question of course is under what assumptions on the underlying stochastic pro-
cess (X t : t ∈ Z) and for what kind of statistics Tn(X1, . . . , Xn) can we successfully
approximate the distribution Ln by that of L∗n? In almost all papers concerning AR-
sieve bootstrap, it is assumed that (X t ) is a linear autoregression of possibly infinite
order, i.e.,

X t =

∞∑
j=1

a j X t− j + et , (9)

with (et ) an i.i.d. sequence and absolutely summable coefficients a j , which moreover
typically are assumed to decrease polynomially or even exponentially fast. An excep-
tion is the sample mean Xn =

1
n

∑n
t=1 X t , where Bühlmann (1997) showed that for this
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specific statistic, the assumption of i.i.d. innovations (et ) can be relaxed to martingale
differences.

Kreiss et al. (2011) used the fact that every purely nondeterministic, zero mean
stationary process possessing a strictly positive and continuous spectral density has
a unique Wold-type autoregressive representation of the form

X t =

∞∑
j=1

a j X t− j + εt , (10)

with absolutely summable coefficients ak and a white noise process (εt ) consisting
of zero mean, uncorrelated random variables. The representation (10) does by far not
mean that the underlying process is a linear, causal AR(∞) process driven by i.i.d.
innovations!

Kreiss et al. (2011) have shown that under rather mild regularity assumptions, the
AR-sieve bootstrap asymptotically correctly mimics the behavior of the following so-
called companion autoregressive process (X̃ t : t ∈ Z) defined according to

X̃ t =

∞∑
j=1

a j X̃ t− j + ε̃t , (11)

where the innovation process (̃εt ) consists of i.i.d. random variables whose marginal
distribution coincides with that of (εt ), i.e., L(εt ) = L(̃εt ) and the coefficients are
those of the Wold-type autoregressive representation (10). Note that the first- and
second-order properties of the two stochastic processes (X̃ t ) and (X t ) are the same,
i.e., autocovariances and the spectral density coincide. However, all probability char-
acteristics beyond second-order quantities are not necessarily the same and, in general,
will substantially differ. Kreiss et al. (2011) showed for a rather general class of statis-
tics that the AR-sieve bootstrap asymptotically works if the asymptotic distribution of
the statistics of interest is the same for the underlying process (X t ) and the compan-
ion autoregressive process (X̃ t ). This rather plausible check criterion for the AR-sieve
bootstrap to work leads, for example, for the arithmetic mean under very mild assump-
tions (much weaker than martingale differences for the innovations) to consistency
of the AR-sieve proposal. For autocorrelations, this check criterion shows that AR-
sieve bootstrap works if the underlying process possesses any linear representation
with i.i.d. errors not depending on whether this representation can be inverted to an
AR(∞)–representation with i.i.d. errors or not. For further details, we refer to Kreiss
et al. (2011).

4. Bootstrap for Markov chains

Extension of the Bootstrap methods from i.i.d. random variables to Markov chains was
initiated by Kulperger and Prakasa Rao (1989) for the finite state space case. Suppose
that {Xn}n≥0 be a stationary Markov chain with a finite state space S = {s1, . . . , s`},
where ` ∈ N and where N ≡ {1, 2, . . .} denotes the set of all natural integers. Let the `×
` transition probability matrix of the chain be given by P = ((pi j )) and the stationary
distribution by π = (π1, . . . ,π`). Thus, for any 1 ≤ i , j ≤ `, pi j = P(X1= s j |X)= si )
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and πi = P(X0 = si ). The joint distribution of the chain is completely determined by
the finitely many unknown parameters, given by the components of π and P. Given a
sample X0, . . . , X(n−1) of size n from the Markov chain, we can estimate the population
parameters πi ’s and pi j ’s as

π̂i = n−1
n−1∑
k=0

11(Xk = si ) p̂i j = n−1
n−2∑
k=0

11(Xk = si , Xk+1 = s j )/π̂i , (12)

1 ≤ i , j ≤ `. The bootstrap observations X∗0 , . . . , X∗n−1 can now be generated using the
estimated transition matrix and the marginal distribution. Specifically, first generate a
random variable X∗0 from the discrete distribution on {1, . . . , `} that assigns mass π̂i to
si , 1 ≤ i ≤ `. Next, having generated X∗0 , . . . , X∗k−1 for some 1 ≤ k < n − 1, generate
X∗k from the discrete distribution on {1, . . . , `} that assigns mass p̂i j to j , 1 ≤ j ≤ `,
where si is the value of X∗k−1. The bootstrap version of a given random variable Tn =

tn(Xn; θ) based on (X0, . . . , Xn−1) and a parameter θ of interest is now defined as

T ∗n = tn(X
∗

0 , . . . , X∗n−1; θ̂n)

where θ̂n is an estimator of θ based on X0, . . . , Xn−1. For example, for Tn = n1/2(X̄n −

µ), where X̄n = n−1∑n−1
k=0 X i and µ = E X0, we set T ∗n = n1/2(X̄∗n − µ̂n), where X̄∗n is

the average of the n bootstrap variables X∗k ’s and where µ̂n =
∑`

i=1 π̂i X i , the (condi-
tional) expectation of X∗0 given Xn . This approach has been extended to the countable
case by Athreya and Fuh (1992).

More recently, different versions of the Bootstrap method for Markov processes
based on estimated transition probability functions have been extended to the case,
where the state space is Euclidean. In this case, one can use the nonparametric func-
tion estimation methodology to estimate the marginal distribution and the transition
probability function. For consistency of the method, see Rajarshi (1990), and for the
second-order properties of the method, see Horowitz (2003). A “local” version of the
method (called the Local Markov Bootstrap or MLB, in short) has been put forward
by Paparoditis and Politis (2001b). The idea here is to construct the bootstrap chain by
sequential drawing – having selected a set of bootstrap observations, the next observa-
tion is randomly selected from a “neighborhood of close values” of the observation(s) in
the immediate past. Paparoditis and Politis (2001b) showed that the resulting bootstrap
chain was stationary and Markov and also that it enjoyed some robustness with regard
to the Markovian assumption. For more on the properties of the MLB, see Paparoditis
and Politis (2001b).

A completely different approach to bootstrapping Markov chains was introduced by
Athreya and Fuh (1992). Instead of using estimated transition probabilities, they for-
mulate a resampling scheme based on the idea of regeneration. A well-known result
(Athreya and Ney, 1978) on Markov chains literature says that for a large class of
Markov chains satisfying the so-called Harris recurrence condition, successive returns
to a recurrent state gives a decomposition of the chain into i.i.d. cycles (of random
lengths). The regeneration-based bootstrap resamples these i.i.d. cycles to generate the
bootstrap observations. Here, we describe it for a Markov Chain {Xn}n≥0 with values
in a general state space S, equipped with a countably generated σ -field S . Let P(x , dy)
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denote the transition probability function, and let π(·) denote the stationary distribu-
tion of the Markov chain. Suppose that {Xn}n≥0 is positive recurrent with a known
“accessible atom” A ∈ S; Here, a set A ∈ S is called an “accessible atom” if it satisfies

π(A) > 0 and P(x , ·) = P(y, ·) for all x , y ∈ A.

For a Harris recurrent Markov chain with a countable state space, this condition holds
trivially. Define the successive return times to A by

τ1 = inf{m ≥ 1 : Xm ∈ A} and

τk+1 = inf{m ≥ τk : Xm ∈ A}, k ≥ 1.

Then, by strong Markov property, the blocks Bk = {X i : τk + 1 ≤ i ≤ τk+1}, k ≥ 1 are
i.i.d. variables with values in the taurus ∪k≥1Sk . The regeneration-based bootstrap
resamples the collection of blocks{

Bk : Bk ⊂ {X0, . . . , Xn−1}

}
with replacement to generate the bootstrap observations. Validity of the method for
the sample mean in the countable state space case is established by Athreya and Fuh
(1992). For second-order properties of the regeneration-based bootstrap, see Datta and
McCormick (1995b), and its refinements in Bertail and Clemencon (2006). Bertail and
Clemencon (2006) show that the regeneration-based bootstrap, with a proper definition
of the bootstrap version, achieves almost the same level of accuracy as in the case of
i.i.d. random variables for linear statistics. As a result, for Markov chains satisfying the
requisite regularity conditions, one should use the regeneration-based bootstrap (with
blocks of random lengths) instead of the block bootstrap methods described below
which are applicable to more general processes but are not as accurate.

5. Block bootstrap methods

For time series that are not assumed to have a specific structural form, Künsch (1989)
formulated a general bootstrap method, currently known as the moving block boot-
strap or MBB, in short. Quite early in the bootstrap literature, Singh (1981) showed
that resampling single observations, as considered by Efron (1979) for independent
data, failed to produce valid approximations in presence of dependence. As a rem-
edy for the limitation of the single-data-value resampling scheme for dependent time
series data, Künsch (1989) advocated the idea of resampling blocks of observations at
a time (see also Bühlmann and Künsch (1995)). By retaining the neighboring obser-
vations together within the blocks, the dependence structure of the random variables
at short lag distances is preserved. As a result, resampling blocks allows one to carry
this information over to the bootstrap variables. The same resampling plan was also
independently suggested by Liu and Singh (1992), who coined the term “moving block
bootstrap.”

We now briefly describe the MBB. Suppose that {X t }t∈N is a stationary weakly
dependent time series and that {X1, . . . , Xn} ≡ Xn are observed. Let ` be an integer
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satisfying 1 ≤ ` < n. Define the overlapping blocks B1, . . . , BN of length ` contained
in Xn as

B1 = (X1, X2, . . . , X`),

B2 = (X2, . . . , X`, X`+1),

. . . . . .

BN= (Xn−`+1, . . . , Xn),

where N = n − `+ 1. For simplicity, suppose that ` divides n. Let b = n/`. To gen-
erate the MBB samples, we select b blocks at random with replacement from the
collection {B1, . . . , BN }. Since each resampled block has ` elements, concatenating
the elements of the b resampled blocks serially yields b · ` bootstrap observations
X∗1 , . . . , X∗n . Note that if we set ` = 1, then the MBB reduces to the ordinary boot-
strap method of Efron (1979) for i.i.d. data. However, for a valid approximation in the
dependent case, it is typically required that

`−1
+ n−1` = o(1) as n→∞. (13)

Some typical choices of ` are ` = Cn1/k for k = 3, 4, where C ∈ R is a constant. Next,
suppose that the random variable of interest is of the form Tn = tn(Xn; θ(Pn)), where
Pn = L(Xn) denotes the joint probability distribution of Xn . The MBB version of Tn

based on blocks of size ` is defined as

T ∗n = tn(X
∗

1 , . . . , X∗n ; θ(P̂n)),

where P̂n = L(X∗1 , . . . , X∗n |Xn), the conditional joint probability distribution of
X∗1 , . . . , X∗n , given Xn , and where we suppress the dependence on ` to ease the notation.
In the general case, where n is not a multiple of `, one may resample b = b0 blocks,
where b0 = min{k ≥ 1 : k` ≥ n} and retain the first n resampled data-values to define
the bootstrap replicate of Tn .

To illustrate the construction of T ∗n in a specific example, suppose that Tn is the
centered and scaled sample mean T 1/2

n (X̄n − µ). Then, the MBB version of Tn is given
by T ∗n = n1/2(X̄∗n − µ̃n), where X̄∗n is the sample mean of the bootstrap observations
and where µ̃n = E∗(X̄∗n). It is easy to check that

µ̃n = N−1
N∑

i=1

(
X i + · · · + X i+`−1

)
/`

= N−1

[
N∑

i=`

X i +

`−1∑
i=1

i

`

(
X i + Xn−i+1

)]
, (14)

which is different from X̄n for ` > 1. Lahiri (1991) established second-order correct-
ness of the MBB approximation for the normalized sample mean, where the bootstrap
sample mean is centered at µ̃n . The “naive” centering of X̄∗n at X̄n is not appropriate as
it leads to a loss of accuracy of the MBB approximation (Lahiri, 1992). Second-order
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correctness of the MBB approximation for studentized statistics has been established
independently by Götze and Künsch (1996) for stationary processes and by Lahiri
(1996) in multiple linear regression models with dependent errors.

Several variants of the block bootstrap method exist in the literature. One of the
early versions of the block bootstrap, implicit in the work of Carlstein (1986), restricts
attention to the collection of nonoverlapping blocks in the data, and resamples from this
smaller collection to generate the bootstrap observations. This is known as the nonover-
lapping block bootstrap (NBB). To describe it briefly, suppose that ` is an integer in
(1, n) satisfying (13). Also, for simplicity, suppose that ` divides n and set b = n/`.
The NBB samples are generated by selecting b blocks at random with replacement
from the collection {B̃1, . . . , B̃b}, where

B̃1= (X1, . . . , X`),

B̃2= (X`+1, . . . , X2`),

. . . . . .

B̃b= (X(b−1)`+1, . . . , Xn).

Because the blocks in the NBB construction do not overlap, it is easier to analyze
theoretical properties of NBB estimators than those of MBB estimators of a population
parameter. However, the NBB estimators typically have higher MSEs at any block size
` compared to their MBB counterparts (cf. Lahiri (1999)).

Other variants of the block bootstrap include the circular block bootstrap (CBB)
and the stationary bootstrap (SB) of Politis and Romano (1992, 1994), the matched
block bootstrap (MaBB) of Carlstein et al. (1998), the tapered block bootstrap (TBB)
of Paparoditis and Politis (2001a), among others. The CBB and the SB are primar-
ily motivated by the need to remove the uneven weighting of the observations at the
beginning and at the end in the MBB (cf. (14)) and are based on the idea of periodic
extension of the observed segment of the time series. Further, while most block boot-
strap methods are based on blocks of a deterministic length `, the SB is based on blocks
of random lengths that have a Geometric distribution with expected length ` satisfying
(13). The biases of the variance estimators generated by the MBB, NBB, CBB, and
SB are of the order O(`−1), while the variances are of the order O(n−1`), where `
denotes the block size and n the sample size. It turns out that the MBB and the CBB
have asymptotically equivalent performance and are also the most accurate of these
four methods. For relative merits of these four methods, see Lahiri (1999), Politis and
White (2004), and Nordman (2009). The MaBB uses a stochastic mechanism to reduce
the edge effects from joining independent blocks in the MBB, while the TBB shrinks
the boundary values in a block towards a common value, like the sample mean, to
achieve the same. Although somewhat more complex than the MBB or the CBB, both
the MaBB and the TBB yield more accurate variance estimators, with biases of the
order O(`−2) and variances of the order O(n−1`). In this sense, both MaBB and TBB
are considered second-generation block bootstrap methods.

Performance of the block bootstrap methods crucially depends on the choice of the
block size and on the dependent structure of the process. Explicit formulas for MSE-
optimal block sizes for estimating the variances of smooth functions of sample means
are known for the MBB, CBB, NBB, and SB (Hall et al., 1995; Lahiri, 1999). Thus,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 05-ch01-001-026-9780444538581 2012/4/24 0:40 Page 16 #16

16 J.-P. Kreiss and S. N. Lahiri

one can use these expressions to formulate plug-in estimators of the optimal block
sizes (Patton et al., 2009; Politis and White, 2004). For the variance estimation prob-
lem, Bühlmann and Künsch (1999) formulated a method based on linearization of an
estimator using its influence function, which is somewhat more general than the direct
plug-in approach. But perhaps the most widely used method in this context is given by
Hall et al. (1995) who develop a general empirical method for estimating the optimal
block sizes for estimating both the variance and the distribution function. The Hall et al.
(1995) method uses the subsampling method to construct an estimator of the MSE as
a function of the block size, and then minimize it to produce the estimator of the opti-
mal block size. An alternative method based on the Jackknife-after-bootstrap method
(Efron, 1992; Lahiri, 2002) has been recently proposed by Lahiri et al. (2007). They
call it a nonparametric plug-in (NPPI) method, as it works like a plug-in method, but
at the same time, it does not require the user to find an exact expression for the opti-
mal block size analytically. The key construction of the NPPI method combines more
than one resampling method suitably and, thereby, implicitly estimates the population
parameters that appear in the formulas for the optimal block sizes. Further, the NPPI
method is applicable to block bootstrap estimation problems involving the variance,
the distribution function, and the quantiles. However, it is a computationally intensive
method as it uses a combination of bootstrap and Jackknife methods.

For further discussion of the block length selection rules for block bootstrap
methods, see Lahiri (2003a, Chapter 7) and the references therein.

6. Frequency domain bootstrap methods

An alternative bootstrap method that completely avoids the difficult problem of block
length selection is given by the Frequency Domain Bootstrap (FDB).

One can apply the FDB for inference on population parameters of a second-order
stationary process that can be expressed as a functional of its spectral density. Here,
we give a short description of the FDB (see Paparoditis (2002) for an overview on
frequency domain bootstrap methods). Given the data Xn , define its Fourier transform

Yn(w) = n−1/2
n∑

t=1

X t exp(−ιwt), w ∈ (−π ,π ]. (15)

The formulation of the FDB is based on the following well-known results:

(i) the Fourier transforms Yn(λ1), . . . , Yn(λk) are asymptotically independent for
any set of distinct ordinates −π < λ1 < · · · < λk ≤ π (cf. Brockwell and Davis
(1991), Lahiri (2003b));

(ii) The original observations Xn admit a representation in terms of the transformed
values Yn = {Yn(w j ) : j ∈ In} as (cf. Brockwell and Davis (1991)),

X t = n−1/2
∑
j∈In

Yn(w j ) exp(ιtw j ), t = 1, . . . , n (16)

where ι =
√
−1, w j = 2π j/n, and In = {−b(n − 1)c/2, . . . , b(n − 1)c/2}.
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Thus, one can express a given variable Rn = rn(Xn; θ) also in terms of the transformed
values Yn and resample from the Y -values to define the FDB version of Rn . Variants
of the FDB method have been proposed and studied by Hurvich and Zeger (1987)
and Franke and Härdle (1992). Under some regularity conditions, Dahlhaus and Janas
(1996) established second-order correctness of the FDB for a class of estimators called
the “ratio statistics.” Ratio statistics are defined as the ratio of two “spectral mean” esti-
mators of the form

∫ π
0 g(w)In(w)dw, where g : [0,π)→ R is an integrable function

and where In(w) = |Y (w)|2 is the periodogram of Xn . A common example of a ratio
estimator is the lag-k sample autocorrelation coefficient, k ≥ 1, given by

ρ̂n(k) = rn(k)/rn(0),

where, for any m ≥ 0, rn(m) = n−1∑n−m
i=1 X i X i+m is a (mean-uncorrected) version

of the sample autocovariance function at lag m. It is easy to check that rn(m) =
2
∫ π

0 cos(mw)In(w)dw, and therefore, ρ̂n(k) is a ratio-statistic estimating the popu-
lation kth order lag autocorrelation coefficient ρ(k) = E X1 X1+k/E X2

1 , when {Xn} is a
zero-mean second-order stationary process.

Although the FDB avoids the problem of block length selection, second-order
accuracy of the FDB distributional approximations is available only under restrictive
regularity conditions (cf. Dahlhaus and Janas (1996)). Further, it is known (cf. Lahiri
(2003a, Section 9.2)) that accuracy of the FDB for spectral means and ratio estima-
tors is rather sensitive to deviations from the model assumptions. Frequency domain
bootstrap methods can also be applied to testing problems, cf. Dette and Paparoditis
(2009).

Paparoditis and Politis (1999) applied the idea of a localized bootstrap approach to
periodogram statistics, while a more general version of the FDB is proposed by Kreiss
and Paparoditis (2003), which adds an intermediate autoregressive model fitting step in
an attempt to capture higher order cross-cumulants of the DFTs. Kreiss and Paparoditis
(2003) show that the modified version of the FDB provides a valid approximation for
a wider class of spectral mean estimators that includes the class of ratio estimators
covered by the FDB. We elaborate on this in the next section.

7. Mixture of two bootstrap methods

So far, we discussed several bootstrap proposals which are either defined in time
domain (like block-, residual, AR-sieve and Markovian bootstrap) or defined in
frequency domain (like periodogram-bootstrap). In this section, we briefly discuss mix-
tures of two bootstrap proposals (so-called hybrid bootstrap procedures). The rational
behind such proposals is to bring together advantages of resampling approaches from
both fields.

The hybrid bootstrap procedure proposed in Kreiss and Paparoditis (2003) can be
understood as an extension of AR-sieve bootstrap as well as an extension of frequency
domain bootstrap. As described in Section 3, AR-sieve bootstrap uses an autoregres-
sive fit in order to obtain residuals of this fit. It can be argued that these residuals
under reasonably assumptions on the data-generating process can be regarded to behave
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approximately like i.i.d. random variables. Since such an i.i.d. property for the residu-
als does (if at all) at most holds approximately, it might be advisable to add a further
nonparametric step to the AR-sieve bootstrap which is able to correct for data features
which cannot or are not represented by the autoregressive fit.

On the other hand, frequency domain bootstrap as described above mainly uses
the fact that periodogram ordinates asymptotically behave like i.i.d. random variables.
But neglecting the existing and only asymptotically vanishing dependence structure
between contiguous periodogram ordinates leads to drawbacks of frequency domain
bootstrap. Therefore, an additional step of fitting a parametric model (e.g., an autore-
gressive model) to the data and applying – in the spirit of Tukey’s pre-whitening – a
frequency domain bootstrap approach to the residuals of the fit partly is able to remove
this remedy. If, for example, the true underlying spectral density has some dominant
peaks, then pre-whitening leads to a considerable improvement of nonparametric spec-
tral density estimators. An autoregressive fit really is able to catch the peaks of the
spectral density rather well and the curve In(λ)/ f̂AR(λ), cf. Step 5 below, is much
smoother than In(λ), thus much easier to estimate nonparametrically.

Based on this motivation, an autoregressive-aided frequency domain hybrid boot-
strap can be described along the following five steps. It is worth mentioning that fitting
an autoregression should be understood as a (convenient) example. Of course, fitting
other parametric models may be regarded as a pre-stage of frequency domain bootstrap.

Step 1: Given the observations X1, . . . , Xn , we fit an autoregressive process of order
p, where p may depend on the particular sample at hand.

This leads to estimated parameters â1(p), . . . , âp(p) and σ̂ (p), which are
obtained from the common Yule-Walker equations. Consider the estimated
residuals

ε̂t = X t −

p∑
ν=1

âν(p)X t−ν , t = p + 1, . . . , n,

and denote by F̂n the empirical distribution of the standardized quantities
ε̂p+1, . . . , ε̂n , i.e., F̂n has mean zero and unit variance.

Step 2: Generate bootstrap observations X+1 , X+2 , . . . , X+n , according to the following
autoregressive model of order p

X+t =
p∑
ν=1

âν(p)X
+

t−ν + σ̂ (p) · ε
+

t ,

where (ε+t ) constitutes a sequence of i.i.d. random variables with cumulative
distribution function F̂n (conditionally on the given observations X1, . . . , Xn).

The bootstrap process X+ = (X+t : t ∈ Z) possesses the following spectral
density:

f̂AR(λ) =
σ̂ 2(p)

2π

∣∣∣∣∣1−
p∑
ν=1

âν(p)e
−iνλ

∣∣∣∣∣
−2

, λ ∈ [0,π ].

Note that because we make use of the Yule-Walker parameter estimators in
Step 1, it is always ensured that f̂AR is well-defined, i.e., the polynomial
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1−
∑p

ν=1 âν(p)zν has no complex roots with magnitude less than or equal
to one. Moreover, the bootstrap autocovariances γ+(h) = E+X+1 X+1+h , h =
0, 1, . . . , p coincide with the empirical autocovariances γ̂n(h) of the underly-
ing observations. It should be noted that it is convenient, but not necessary
to work with Yule-Walker parameter estimates. Any

√
n-consistent parameter

estimates would suffice.
Step 3: Compute the periodogram of the bootstrap observations, i.e.,

I+n (λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

X+t e−iλt

∣∣∣∣∣
2

, λ ∈ [0,π ].

Step 4: Define the following nonparametric estimator q̂

q̂(λ) =
1

n

N∑
j=−N

Kh

(
λ− λ j

) In(λ j )

f̂AR(λ j )
, for λ ∈ [0,π),

while for λ = π , q̂(π) is defined as twice the quantity on the right-hand
side of the above equation taking into account that no Fourier frequencies
greater than π exist. Here and above, the λ j ’s denote the Fourier frequen-
cies, K : [−π ,π ]→ [0,∞) denotes a probability density (kernel), Kh(·) =

h−1 K (·/h), and h > 0 is the so-called bandwidth.
Step 5: Finally, the bootstrap periodogram I ∗n is defined as follows:

I ∗n (λ) = q̂(λ)I+n (λ), λ ∈ [0,π ].

Under some standard assumptions, the validity of this hybrid bootstrap was shown
in Kreiss and Paparoditis (2003) for spectral means (e.g., sample autocovariance and
spectral distribution function)

π∫
0

ϕ(ω)In(ω)dω, (17)

where it is necessary to fit (at least asymptotically) the correct model and for ratio
statistics (e.g., sample autocorrelation)

π∫
0

ϕ(ω)In(ω)dω/

π∫
0

In(ω)dω (18)

and kernel spectral estimators, where it is not necessary to fit the correct model.
As can be seen from Kreiss and Paparoditis (2003), the described hybrid bootstrap

procedure works well, and indeed the effect that on one hand the nonparametric cor-
rection step in frequency domain corrects for features which cannot be represented
by the autoregressive model and that on the other hand the superior properties of the
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autoregressive bootstrap procedure show up can be observed. Especially, it is observed
that the frequency domain part of the described hybrid bootstrap leads to a much less
dependence of the hybrid bootstrap on the selected autoregressive order p than for the
parametric autoregressive bootstrap itself.

The so far described hybrid bootstrap procedure is applicable to statistics, which
can be written as functions of the periodogram only. But of course, relevant statistics
in time series analysis do not share this property as, for example, the simple sample
mean of the observations. Therefore, one is interested in a resampling procedure which
still uses some computational parts in frequency domain but which are able to produce
bootstrap observations X∗1 , . . . , X∗n in time domain. When we switch to the frequency
domain, as is, for example, suggested in Step 3 above, then we have to take into account
the fact that the periodogram I+n does not contain all information about the bootstrap
process X+ that is contained in the bootstrap observations X+1 , . . . , X+n . But, we can
write I+n (ω) = |J

+
n (ω)|

2, where

J+n (ω) =
1
√

2πn

n∑
s=1

X+s exp−isω (19)

denotes the discrete Fourier-transform (DFT). And of course, there is a one-to-one cor-
respondence between the n observations of a time series and the DFT evaluated at the
Fourier frequencies ω j = 2π j

n (cf. (16)). The solution now is to apply a nonparametric
correction in the frequency domain to the DFT instead of the periodogram and then use
the one-to-one correspondence to get back to the time domain. The modified hybrid
bootstrap procedure reads as follows:

Step 1: Fit an AR(p) model to the data, compute the estimated residuals ε̂t = X t −∑p
ν=1 âν(p)X t−ν , t = p + 1, . . . , n.

Step 2: Generate bootstrap observations X+1 , . . . , X+n according to X+t =
∑p

ν=1
âν(p)X

+

t−ν + σ̂ (p)ε
+
t , ε+t i.i.d. with empirical distribution of standardized

residuals.
Step 3: Compute the DFT J+n (ω) and the nonparametric correction term q̃(ω) =

q̂1/2(ω) at the fourier frequencies ω j = 2π j
n , j = 1, . . . , n.

Step 4: Compute the inverse DFT of the corrected DFT q̃(ω1)J+n (ω1), . . . ,
q̃(ωn)J+n (ωn) to obtain bootstrap observations X∗1 , . . . , X∗n according to

X∗t =

√
2π

n

n∑
j=1

q̃(ω j )J
+

n (ω j )e
i tω j , t = 1, . . . , n. (20)

This modified hybrid bootstrap proposal works for spectral means and ratio statis-
tics as the not modified hybrid bootstrap procedure of Kreiss and Paparoditis (2003)
does. Instead of using representations of statistics in frequency domain, we now sim-
ply can compute statistics in the time domain. The paper Jentsch and Kreiss (2010), to
which we refer for details, discusses the modified hybrid bootstrap procedure for the
multivariate case which in many respects is different.

So far, we only have considered autoregressions as parametric models to which we
apply nonparametric corrections in frequency domain. It is of course not necessary
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that the underlying model follows an autoregressive scheme of finite or infinite order,
because of the additional nonparametric correction step. Moreover, it is not necessary to
stay with autoregressive models; this has been done for simplicity only. So concerning
a hybrid bootstrap procedure, one may think of any parametric model fit in a first step
and a nonparametric correction as has been described in a second step. In the univariate
situation, the resulting hybrid bootstrap procedure will result in asymptotically correct
approximation results for statistics of observations from linear processes, which can
be written as functions of autocorrelations or of the standardized (having integral one)
spectral density as well as typically for the sample mean. The main reason for that
is that asymptotic distributions of such statistics only depend on second-order terms
of the underlying stochastic process, and these quantities are correctly mimicked by a
hybrid bootstrap proposals. In the multivariate case, the mentioned result concerning
the dependence of asymptotic distribution on second-order terms of linear time series
does not hold any more, and therefore, the multivariate situation is much more involved
(cf. Jentsch and Kreiss (2010)). A related method that allows resampling in frequency
domain to obtain bootstrap replicates in time domain is considered in Kirch and Politis
(2011). The papers Sergides and Paparoditis (2008) and Kreiss and Paparoditis (2011)
considered an autoregressive-aided frequency domain hybrid bootstrap procedure and
the modified hybrid bootstrap procedure along the lines described in this section for
locally stationary time series.

8. Bootstrap under long-range dependence

Let {X t }t∈N be a stationary process with EX2
1 ∈ (0,∞), autocovariance function r(·),

and spectral density function f (·). We say that the process {X t }t∈N is long-range depen-
dent (LRD) if

∑
∞

k=1 |r(k)| = ∞ or if f (λ)→∞ as λ→ 0. Otherwise, {X t }t∈N is said
to be short-range dependent (SRD). We also use the acronym LRD (SRD) for long-
(respectively, short) range dependence. Limit behaviors of many common statistics
and tests under LRD are different from their behaviors under SRD. For example, the
sample mean of n observations from a LRD process may converge to the population
mean at a rate slower than Op(n−1/2), and similarly, with proper centering and scaling,
the sample mean may have a non-normal limit distribution even when the population
variance is finite. More specifically, we consider the following result on the sample
mean under LRD. Let {Z t }t∈N be a zero mean unit variance Gaussian process with an
autocovariance function r1(·) satisfying

r1(k) ∼ Ck−α as k →∞, (21)

for some α ∈ (0, 1), where for any two sequences {sn}n≥1 in R and {tn}n≥1 in (0,∞),
we write sn ∼ tn if sn/tn → 1 as n→∞. Note that here

∑
∞

k=1 |r1(k)| = ∞, and hence,
the process {Z t } is LRD. Next suppose that the X t process derives from the Z t process
through the transformation

X t = Hq(Z t ), t ∈ N, (22)
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for some integer q ≥ 1, where Hq(x) is the qth Hermite polynomial, i.e., for x ∈ R,
Hq(x) = (−1)q

(
exp(x2/2)

)
dq

dxq

(
exp(−x2/2)

)
. Results in Taqqu (1975, 1979) and

Dobrushin and Major (1979) imply the following result on the sample mean:

Theorem 1. Suppose that {X t }t∈N admits the representation (22) for some q ≥ 1. If
α ∈ (0, q−1), then

nqα/2(X̄n − µ)→
d Wq (23)

where µ = EX1 and where Wq is defined in terms of a multiple Wiener-Ito integral with
respect to the random spectral measure W of the Gaussian white noise process as

Wq = A−q/2
∫

exp(ι(x1 + · · · + xq))− 1

ι(x1 + · · · + xq)

q∏
k=1

|xk |
(α−1)/2dW (x1) . . . dWq(xq) (24)

with A = 20(α) cos(απ/2).

For q = 1, Wq has a normal distribution with mean zero and variance 2/[(1− α)
(2− α)]. However, for q ≥ 2, Wq has a non-normal distribution. Although the boot-
strap methods described in the earlier sections are successful in a variety of problems
under SRD, they need not provide a valid answer under LRD. The following result
gives the behavior of the MBB approximation under LRD:

Theorem 2. Let X̄∗n denote the MBB sample mean based on blocks of size ` and resam-
ple size n. Suppose that the conditions of Theorem 1 hold and that nδ`−1

+ `n1−δ
=

o(1) as n→∞ for some δ ∈ (0, 1). Then,

sup
x∈R

∣∣∣P∗(cn(X̄
∗

n − µ̂) ≤ x
)
− P

(
nqα/2(X̄n − µ) ≤ x

)∣∣∣ = o(1) as n→∞ (25)

for some sequence {cn}n≥1 ∈ (0,∞) if and only if q = 1.

Theorem 2 is a consequence of the results in Lahiri (1993). It shows that for any
choice of the scaling sequence, the MBB method fails to capture the distribution of the
sample mean whenever the limit distribution of X̄n is non-normal. With minor modi-
fications of the arguments in Lahiri (1993), it can be shown that the same conclusion
also holds for the NBB and the CBB. Intuitively, this may not be very surprising. The
heuristic arguments behind the construction of these block bootstrap methods show (cf.
Section 5) that all three methods attempt to estimate the initial approximation P∞` to the
joint distribution P of {X t }t∈N, but P∞` itself gives an inadequate approximation to P
under LRD. Indeed, for the same reason, the MBB approximation fails even for q = 1
with the natural choice of the scaling sequence cn = nqα/2. In this case, the (limit) dis-
tribution can be captured by using the MBB only with specially constructed scaling
sequences {cn}n≥1, where cn ∼ [n/`1+qα]1/2 as n→∞. For the sample mean of an
LRD linear process with a normal limit, Kim and Nordman (2011) recently established
the validity of MBB. Formulation of a suitable bootstrap method that works for both
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normal and non-normal cases is still an open problem. For related results on subsam-
pling and empirical likelihood methods under LRD, see Hall et al. (1998), Nordman
et al. (2007), and the references therein.
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Abstract

We review the notion of time series linearity and describe recent advances
in linearity and Gaussianity testing via data resampling methodologies. Many
advances have been made since the first published tests of linearity and Gaussian-
ity by Subba Rao and Gabr in 1980, including several resampling-based proposals.
This chapter is intended to be instructive in explaining and motivating linearity
testing. Recent results on the validity of the AR-sieve bootstrap for linearity test-
ing are reviewed. In addition, a subsampling-based linearity and Gaussianity test
is proposed where asymptotic consistency of the testing procedure is justified.

Keywords: AR-sieve, asymptotic consistency, bootstrap, gaussianity testing,
linearity testing, literature review, subsampling, time series.

1. Introduction

Ever since the fundamental recognition of the potential role of the computer in mod-
ern statistics (Efron, 1979a,b), the bootstrap and other resampling methods have been
extensively developed for inference in independent data settings; see, e.g., the works
done by Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1997), Shao
and Tu (1995). Such methods are even more important in the context of dependent data
where the distribution theory for estimators and test statistics may be difficult to obtain
even asymptotically.
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In the time series context, different resampling and subsampling methods have
been proposed, and are currently receiving the attention of the statistical community.
Reviews of the impact of bootstrap methods on time series analysis may be found in
books (Lahiri, 2003; Politis et al., 1999), papers (Bühlmann, 2002; Politis, 2003), and
the review by J.-P. Kreiss and S. N. Lahiri in this volume of the Handbook.

In the paper at hand, we revisit the problem of assessing whether a given time series
is linear versus nonlinear, or Gaussian versus non-Gaussian. In practice, a Gaussian
classification would indicate an Autoregressive Moving Average (ARMA) model with
Gaussian innovations is appropriate, whereas a linear classification would indicate that
an ARMA model with independent but possibly non-Gaussian innovations can still
be considered. However, the rejection of linearity typically requires the practitioner to
carefully select an appropriate nonlinear model for the underlying time series, or even
to proceed in a model-free, nonparametric manner.

We review the traditional linearity and Gaussianity tests that are based on the
normalized bispectrum. The critical regions of these tests have been traditionally deter-
mined via asymptotic methods. As an alternative, we describe how these critical regions
can be determined via resampling (e.g., the AR-sieve bootstrap) and/or subsampling.
One of the advantages of subsampling methodology is the generality under which it is
valid. There are a number of examples where subsampling yields consistent estimation
but the bootstrap fails (Politis et al., 1999). Although subsampling is more widely appli-
cable, it is noted that when the bootstrap is indeed valid it may possess second-order
asymptotic properties (Hall, 1997) giving the bootstrap an advantage.

The literature on linearity and Gaussianity tests is reviewed in the next section. The
concept of time series linearity is thoroughly described in Section 3. Sections 4 and 5
focus on the AR-sieve bootstrap and subsampling tests, respectively.

2. A brief survey of linearity and Gaussianity tests

Several parametric and semiparametric tests of linearity designed with a specific non-
linear model as an alternative hypothesis have been proposed, including the works of
An et al. (2000), Ashley and Patterson (2009), Chan (1990), Chan and Tong (1986,
1990), Hansen (1999), Harvey and Leybourne (2007), Keenan (1985), Luukkonen et al.
(1988), Petruccelli (1990), Petruccelli and Davies (1986), Terasvirta (1994), Terasvirta
et al. (1993) and, Tsay (1986). Some tests have model-based assumptions on the null
hypothesis (e.g., assuming the null to be AR(p) where p may or may not be assumed
known) and some tests induce model-based assumptions on the alternative hypothesis
(e.g., assuming the specific GARCH nonlinear alternative hypothesis). Such model-
based assumptions may help to increase the power of the various tests, but only when
the respective assumptions are satisfied.

Many nonparametric or model-free tests, including the first published linearity test
done by Subba Rao and Gabr (1980), are based on nonparametric estimates of the nor-
malized bispectrum, and thus involve much less restrictive assumptions under the null
and alternative hypothesis; the normalized bispectrum will be defined and discussed in
Section 3. Further bispectrum-based tests include the tests done by Ashley et al. (1986),
Birkelund and Hanssen (2009), Brockett et al. (1988), Hinich (1982), Jahan and Harvill



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 06-ch02-027-042-9780444538581 2012/4/24 0:40 Page 29 #3

Testing Time Series Linearity: Traditional and Bootstrap Methods 29

(2008), Subba Rao and Gabr (1984), and Yuan (2000). Tests based on the normalized
bispectrum are frequently used in practice when data are available in abundance, for
example, when analyzing financial time series; see, e.g., the works done by Abhyankar
et al. (1995, 1997), Hinich and Patterson (1985, 1989), and Hsieh (1989) . Note that
there are other nonparametric or model-free tests of linearity that are not based on the
normalized bispectrum; see, e.g., the works done by Hong-Zhi and Bing (1991), Ter-
dik and Math (1998), and Theiler et al. (1992). An overview of some of these tests is
provided in the works of Corduas (1994). In this volume, Giannerini (2011) provides
an overview of several linearity testing approaches.

Because of the nonparametric nature of the bispectrum-based tests, their critical
regions have traditionally been determined via asymptotic approximations. However,
considerably large sample sizes can be necessary in order to accurately estimate the
two-dimensional bispectral density. As such, a number of resampling-based methods
have been proposed in the recent literature to overcome this limitation in a finite sample
size setting.

There are many published reports, especially in recent years, that utilize some
form of resampled data in linearity testing (Berg et al., 2010; Birkelund and Hanssen,
2009; Hinich et al., 2005; Hjellvik and Tjostheim, 1995; Kugiumtzis, 2008). Many
of these methods involve bootstrapping residuals obtained from fitting a parametric
model which is equivalent to resampling the data obtained after a prewhitening step
that has removed (to large extent) the presence of autocorrelation. If the prewhiten-
ing is performed by fitting an autoregressive [AR(p)] model to the data, then typically
practitioners would choose the order p in a data-dependent manner, say by minimizing
an information criterion such as AIC, BIC, etc. In practice, it is extremely rare that a
finite-order AR(p) would explain the data perfectly; more often than not, the practi-
tioner would use an order p that would be an increasing function of the sample size n,
thereby creating an approximating sieve of AR models. This is the essence of the AR-
sieve bootstrap that is reviewed in detail in the chapter by J.-P. Kreiss and S. N. Lahiri
in this volume of the Handbook; the application of the AR-sieve bootstrap to linearity
testing is discussed in Section 4.

Another popular approach for linearity testing is the surrogate data approach of
Theiler et al. (1992). The idea of the surrogate data1method is to apply the bootstrap on
the phases of the Discrete Fourier Transform (DFT) of the data while keeping the mag-
nitudes of the DFT unchanged. With an inverse DFT, bootstrap pseudo-series can then
be created. It is immediate that these pseudo-series have identical second-order struc-
ture as the original series, since the second-order structure is coded in the periodogram
which remains unchanged in this process.

Alternative uses of the bootstrap in the literature of linearity and Gaussianity testing
include a phase scrambling bootstrap (Barnett and Wolff, 2005), the use of boot-
strapped residuals to obtain the correct false alarm rate (Hinich et al., 2005; Birkelund
and Hanssen, 2009), and the Time Frequency Toggle (TFT)-bootstrap (Kirch and
Politis, 2011). The TFT-bootstrap can actually be seen as a generalization of the

1 In this chapter, we reserve the term surrogate data for the method of Theiler et al. (1992); however,
the reader should be warned that other authors use the term as a generic way of referring to bootstrap data
including even the AR-sieve bootstrap (Hinich et al., 2005; Theiler and Prichard, 1997).
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surrogate data method since it involves resampling of both the phases and the mag-
nitudes of the Fourier coefficients. Several surrogate and bootstrap tests for linearity in
time series were compared by Kugiumtzis (2008). Finally, a different test has recently
been proposed that combines an entropy measure of (non)linearity with bootstrap
critical regions (Giannerini et al., 2011).

In this chapter, we chose to highlight two resampling-based tests for time series lin-
earity and Gaussianity. The first is the aforementioned AR-sieve method that bootstraps
the residuals obtained from an appropriate AR(p) fit. The AR-sieve methodology has
been popular for quite some time but its validity for testing Gaussianity or linearity has
only recently been proven (Berg et al., 2010); it is discussed in Section 4. In Section 5,
we also describe in detail a novel subsampling-based approach to Gaussianity and lin-
earity testing. The next section defines and discusses the notion of linearity in time
series.

3. Linear and nonlinear time series

Consider data X1, . . . , Xn arising from a strictly stationary time series {X t } that – for
ease of notation – is assumed to have mean zero.2 The most basic tool for quantifying
the inherent strength of dependence is given by the autocovariance function γ (k) =
E X t X t+k and the corresponding Fourier series f (w) = (2π)−1∑∞

k=−∞ γ (k)e
−iwk ;

the latter function is termed the spectral density, and is well defined (and continu-
ous) when

∑
k |γ (k)| <∞. We can also define the autocorrelation function (ACF) as

ρ(k) = γ (k)/γ (0). If ρ(k) = 0 for all k > 0, then the series {X t } is said to be a white
noise, i.e., an uncorrelated sequence; the reason for the term ‘white’ is the constancy of
the associated spectral density function.

The function γ (k) represents the second-order moments of the time series
{X t }; more technically, it represents the second-order cumulants (Brillinger, 2001;
Rosenblatt, 1985). The third-order cumulants are encapsulated by the function
0( j , k) = E X t X t+ j X t+k and the resulting two-dimensional Fourier series

f (w1,w2) = (2π)
−2

∞∑
j=−∞

∞∑
k=−∞

0( j , k)e−iw1 j−iw2k

is termed the bispectral density. For reasons to be apparent soon, we also define the
normalized bispectrum as

K (w1,w2) =
| f (w1,w2)|

2

f (w1) f (w2) f (w1 + w2)
.

We can similarly define the cumulants of higher order whose corresponding multi-
dimensional Fourier series are termed higher order spectral densities or polyspectra;
see Section 5 for details. The set of cumulant functions of all orders, or equiva-
lently the set of all higher order spectral density functions, is a complete description

2 Centering the data at their sample mean (instead of the true mean) is perfectly acceptable for the
subsequent discussion as the resulting error is negligible.
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of the dependence structure of the general time series {X t }. Of course, working with
an infinity of functions is intractable; a welcome shortcut is offered by the notion of
linearity.

A time series {X t } is called linear if it satisfies an equation of the type:

X t =

∞∑
k=−∞

βk Z t−k, (1)

where the coefficients βk are (at least) square-summable, and the series {Z t } is indepen-
dent, identically distributed (i.i.d.) with mean zero and variance σ 2 > 0. To avoid the
confounding of the β’s with the scale parameter σ , it is helpful to assume that β0 = 1.

A linear time series {X t } is called causal if βk = 0 for k < 0, i.e., if

X t =

∞∑
k=0

βk Z t−k . (2)

Equation (2) should not be confused with the Wold decomposition that all purely
nondeterministic time series possess (Hannan and Deistler, 1988). In the Wold decom-
position, the “error” series {Z t } is only assumed to be a white noise and not i.i.d.; the
latter assumption is much stronger. The causality assumption has been used success-
fully in the context of nonlinear time series as well; see, e.g., the works of Gourieroux
and Jasiak (2005) and Wu (2005).

Linear time series are easy objects to work with since their dependence structure
is perfectly captured by the sequence of coefficients {βk}. To elaborate, if {X t } sat-
isfies Eq. (1), then its autocovariance and spectral density functions are given by
γ (k) = σ 2∑∞

s=−∞ βsβs+k and f (w) = (2π)−1σ 2
|β(w)|2, respectively; here β(w) is

the Fourier series of the βk coefficients, i.e., β(w) =
∑
∞

k=−∞ βkeiwk . In addition, the
bispectral density is simply given by

f (w1,w2) = (2π)
−2µ3 β(−w1)β(−w2)β(w1 + w2), (3)

where µ3 = E Z3
t is the third moment of the errors. Similarly, all higher order spectra

can be calculated in terms of β(w).
It is now apparent that the normalized bispectrum K (w1,w2) satisfies:

K (w1,w2) =
| f (w1,w2)|

2

f (w1) f (w2) f (w1 + w2)

linearity
=

(µ3)
2

(2π)2σ 6

Gaussianity
= 0.

As indicated by the right-hand side of the above equation, when the time series is in
fact linear, the normalized bispectrum will be constant. Furthermore, if the time series
is Gaussian (and therefore also linear), the normalized bispectrum will be constantly
equal to zero. These two observations form the basis for a host of test of linearity and/or
Gaussianity starting with the original paper of Subba Rao and Gabr (1980). Note, how-
ever, that although linearity implies the normalized bispectrum is constant, the converse
is not necessarily true. Thus there is the implicit, though presumably unlikely, lim-
itation in producing a falsely negative result in the presence of certain nonlinear or
non-Gaussian processes.
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A prime example of a linear time series is given by the autoregressive (AR) family in
which the time series {X t } satisfies a linear relationship with respect to its own lagged
values, namely

X t =

p∑
k=1

θk X t−k + Z t (4)

with the error process {Z t } being i.i.d. (0, σ 2) as in Eq. (1). AR modeling lends itself
ideally to the problem of predicting future values of the time series; this is particularly
true if the AR model is causal. Causality of an AR model is ensured if all roots of the
characteristic polynomial 1−

∑p
k=1 θk zk have modulus greater than one; see, e.g., the

works of Brockwell and Davis (2009).
For example, let X̂n+1 denote the predictor of Xn+1 on the basis of the observed

data X1, . . . , Xn . It is well known (Billingsley, 1995) that the optimal predictor
with respect to Mean Squared Error is given by the conditional expectation, i.e.,
X̂n+1 = E(Xn+1|X1, . . . , Xn). Thus, X̂n+1 = gn(X1, . . . , Xn) where gn(·) is a (gener-
ally nonlinear) function of the data X1, . . . , Xn . In the case of a causal AR model,
however, it is easy to show that the function gn(·) is actually linear , and that X̂n+1 =∑p

k=1 θk Xn+1−k . Note also the property of “finite memory” in that the prediction func-
tion gn(·) is only sensitive to its last p arguments. Although the finite memory property
is specific to finite-order causal AR (and Markov) models, the linearity of the optimal
prediction function gn(·) is a property shared by all causal linear time series satisfy-
ing Eq. (2); this broad class includes all causal and invertible, i.e., “minimum-phase”
(Rosenblatt, 2000), ARMA models with i.i.d. innovations.

However, the property of linearity of the optimal prediction function gn(·) is shared
by a larger class of processes. To define this class, consider a weaker form of (2) that
amounts to relaxing the i.i.d. assumption on the errors to the assumption of a martingale
difference, i.e., to assume that

X t =

∞∑
i=0

βiνt−i , (5)

where {νt } is a stationary martingale difference adapted to Ft , the σ -field generated by
{Xs , s ≤ t}, i.e., that

E[νt |Ft−1] = 0 and E[ν2
t |Ft−1] = 1 for all t . (6)

As in the study by Kokoszka and Politis (2011), we will use the term weakly linear
for a time series {X t } that satisfies Eqs. (5) and (6). As it turns out, the linearity of
the optimal prediction function gn(·) is shared by all members of the family of weakly
linear time series;3 see, e.g., Theorem 1.4.2 of Hannan and Deistler (1988).

3 Nonetheless, the class of time series for which the best predictor is linear is larger than the family of
weakly linear series. A prime example of a nonweakly linear time series that actually admits a linear optimal
predictor can be given by a series of squared financial returns, i.e.,when the series {X t } satisfies X t = r2

t for
all t , and {rt } is modeled by an ARCH/GARCH model; see the works done by Kokoszka and Politis (2011)
for details.
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The family of Gaussian sequences is an interesting subset of the class of linear time
series. Gaussian series occur when the series {Z t } of Eq. (1) is i.i.d. N (0, 1), and they
too exhibit the useful linearity of the optimal prediction function gn(·). To see this,
recall that the conditional expectation E(Xn+1|X1, . . . , Xn) turns out to be a linear func-
tion of X1, . . . , Xn when the variables X1, . . . , Xn+1 are jointly normal (Brockwell and
Davis, 2009).

Furthermore, in the Gaussian case all spectra of order higher than two are identically
zero. It follows that all dependence information is concentrated in the spectral density
f (w). Thus, the investigation of the dependence structure of a Gaussian series can
focus on the simple study of second-order properties, namely the ACF ρ(k) and/or the
spectral density f (w). For example, an uncorrelated Gaussian series, i.e., one satisfying
ρ(k) = 0 for all k, necessarily consists of independent random variables. Note that to
check/test whether an estimated ACF, denoted by ρ̂(k), is significantly different from
zero, the Bartlett confidence limits are typically used. Bartlett’s formula, however, is
only valid for linear or weakly linear time series (Francq and Zakoı̈an, 2009; Hannan
and Deistler, 1988; Romano and Thombs, 1996). In the (potentially) nonlinear case,
even testing the simple null hypothesis ρ(1) = 0 becomes highly nontrivial, and is
greatly facilitated by a computer intensive methods such as resampling or subsampling
(Politis, 2003, Romano and Thombs, 1996).

4. AR-sieve bootstrap tests of linearity

The popular AR-sieve bootstrap method has also been recently shown to be an effec-
tive and robust method for Gaussianity and linearity testing. The following gives the
general AR-sieve bootstrap algorithm, including separate procedures for Gaussianity
and linearity testing as well as third possibility that sits between Gaussianity and lin-
earity – a linear process with symmetric (though possibly non-Gaussian) innovations.
The proof of asymptotic consistency of this procedure – under both the null and the
alternative hypotheses – can be found in the study by Berg et al. (2010) along with
simulations demonstrating its finite sample effectiveness.

AR-sieve bootstrap Algorithm

Step 0: According to some criterion (AIC, BIC, etc.), choose the order p of the AR(p)
model to fit to the data X = {X1, X2, . . . , Xn}.

Step 1: Fit an AR(p) model to {X t } with estimated coefficients θ̂ p = (θ̂1,p, θ̂2,p,. . .,
θ̂p,p); i.e., θ̂ p is an estimator for θ p where

θ p = (θ1,p, θ2,p, . . . , θp,p) = arg min
(c1,...,cp)

E


X t −

p∑
j=1

c j X t− j

2
 .

Step 2: Let X∗ = {X∗1 , X∗2 , . . . , X∗n} be a series of n pseudo-observations generated by

X∗t =
p∑

j=1

θ̂ j ,p X∗t− j + u∗t (t = −b,−b + 1, . . . , 0, 1, . . . , n) (7)
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where X∗t := 0 for t < −b; the positive number b denotes the so-called ‘burn-
in’ period to ensure (approximate) stationarity of the bootstrap series.

In (7), the u∗t ’s are iid random variables having mean zero and distribution
function Fn which is selected based on the purpose of the analysis. One of
three distribution functions can be selected depending on the null hypothesis
under consideration:

Linear null (H (1)
0 ): If the null hypothesis states the time series is linear, then

set Fn = F (1)
n to be the empirical distribution function of the centered

residuals ût − un , where

ût = X t −

p∑
j=1

θ̂ j ,p X t− j (t = p, p + 1, . . . , n)

and

un =
1

n − p

n∑
t=p+1

ût .

Linear symmetric null (H (2)
0 ): If the null hypothesis states the time series is

linear with a symmetric distribution of errors, then set Fn = F (2)
n to be

a symmetrized version of F (1)
n obtained by setting u∗t = St u+t with St

iid
∼

unif{−1, 1} (the discrete uniform distribution on−1 and 1) and u+t ∼ F (1)
n .

Gaussian null (H (3)
0 ): If the null hypothesis states the time series is linear

with Gaussian errors, then set Fn = F (3)
n = N (0, σ̂ 2

p), where

σ̂ 2
p =

1

n − p

n∑
t=p+1

(̂ut − un)
2.

Step 3: Compute T (X∗) from the bootstrap series X∗ where T (·) is the chosen statis-
tic for the null hypothesis of interest. In the next section, examples of such
statistics are provided for testing Gaussianity and linearity.

Repeat: Steps 2 and 3 are repeated a large number (say B) of times. The
empirical distribution of the B bootstrap pseudo-statistics can then be used
to approximate the true distribution of T (X) under the null hypothesis thus
making the test feasible.

For example, consider the aforementioned tests based on nonparametric estimates
of the normalized bispectrum. In testing for linearity, the normalized bispectral estima-
tor is evaluated over a grid of points and the variability of the estimates are quantified
by the interquartile range. If the time series is in fact nonlinear, then the normalized
bispectrum should exhibit great variability yielding an interquartile range larger than
what would have been expected under linearity. Therefore, linearity is rejected for large
values of the estimated interquartile range; see Section 5.2 for more details. Tradition-
ally, the threshold of such a test has been determined from the asymptotic distribution
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of the test statistic under the null; the AR-sieve bootstrap offers us a nonasymptotic
alternative critical value – see the works done by Berg et al., 2010 for details.

In closing, note that a new bootstrap method for time series, the Linear Process
Bootstrap (LPB), has been recently introduced (McMurry and Politis, 2010). The LPB
generates linear time series in the bootstrap world whether the true model is linear
or not, i.e., under the null of linearity but also under the alternative. As in the AR-
sieve bootstrap case, this property makes the LPB bootstrap a promising alternative in
connection with bootstrapping the test of linearity.

5. Subsampling tests of linearity

The general subsampling methodology for time series approximates the distribution of
a statistic by evaluating the statistic on subsampled blocks or contiguous subsets of the
original time series. As with any resampling procedure, there are certain assumptions
required on the data and the statistic to guarantee convergence; however, the assump-
tions needed to achieve consistency of subsampling are generally weaker or easier to
verify than the assumptions required for bootstrap procedures (Politis et al., 1999).

To fix ideas, we consider in detail two statistics: a linearity test statistic, t L
n , and

a Gaussianity test statistic, tG
n . These test statistics are derived from estimates of the

normalized bispectrum, and they are based on the statistics originally proposed by
Hinich (1982). Whereas Hinich utilized asymptotic theory to determine the distribu-
tion of the statistics under their respective null hypotheses, the approach described here
uses subsampling to approximate the distributions of the statistics.

The test statistics t L
n and tG

n are described and the asymptotic conditions needed to
justify the subsampling tests based on these statistics are provided. These test statis-
tics are based on estimates of the spectral density and the bispectrum. Therefore, we
first present some theory for polyspectral inference followed by the bispectrum-based
method of linearity and Gaussianity testing.

5.1. Kernel-based polyspectral estimation

The assumption of sth-order stationarity is required to define the sth-order polyspec-
trum. It requires that all moments of order m ≤ s to exist and be lag-invariant, i.e.,

E
[
Xτ1 Xτ2 · · · Xτm

]
= E

[
Xτ1+t Xτ2+t · · · Xτm+t

]
for any set of integers τ1, . . . , τm and t . This assumption lies between the weaker
assumption of covariance-stationarity (same as second-order stationarity and wide
sense stationarity) and the stronger assumption of strict stationarity (also known as
strong stationarity).

Let X1, X2, . . . , Xn be a realization of an sth-order stationary time series with
(possibly nonzero) mean µ. The sth-order joint cumulant is defined as

C(τ1, . . . , τs−1) =
∑

(ν1,...,νp)

(−1)p−1(p − 1) µν1 · · ·µνp , (8)
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where the sum is over all partitions (ν1, . . . , νp) of {0, . . . , τs−1} and µν j =

E
[∏

τi∈ν j
Xτi

]
; refer to the works done by Jammalamadaka et al. (2006) for another

expression of the joint cumulant. The sth-order spectral density is defined as

f (ω) =
1

(2π)s−1

∑
τ∈Zs−1

C(τ )e−iτ ·ω, (9)

where the bold-face notation ω denotes an (s − 1)-dimensional, vector argument, i.e.,
ω = (ω1, . . . ,ωs−1). We adopt the usual assumption on C(τ ) that it be absolutely
summable, thus guaranteeing the existence and continuity of the spectral density.
A natural estimator of C(τ ) is given by

Ĉ(τ1, . . . , τs−1) =
∑

(ν1,...,νp)

(−1)p−1(p − 1)! µ̂ν1 · · · µ̂νp , (10)

where the sum is overall partitions of (ν1, . . . , νp) of {0, . . . , τs−1} and

µ̂ν j =
1

n −max(ν j )+min(ν j )

n−max(ν j )∑
k=−min(ν j )

∏
t∈ν j

X t+k .

The previously discussed second- and third-order cumulant functions, as given by
s = 2 and s = 3 in (8), simplify to the following centered expectations:

C(τ1) = E
[
(X t − µ)(X t+τ1 − µ)

]
C(τ1, τ2) = E

[
(X t − µ)(X t+τ1 − µ)(X t+τ2 − µ)

]
.

In these cases, the corresponding estimator in (10) simplifies to

Ĉ(τ ) =
1

n

n−γ∑
t=1

s∏
j=1

(X t−α+τ j − X̄), (11)

where α = min(0, τ1, . . . , τs−1) and γ = max(0, τ1, . . . , τs−1)− α, and X̄ represents
the sample mean of the data. We extend the domain of Ĉ to all of Zs by defining
Ĉ(τ ) = 0 when the sum in (10) or (11) is empty.

Consistent estimation of the polyspectra (9) is obtained by taking the Fourier trans-
form of the sample cumulant function, Ĉ(τ ), multiplied by a smoothing kernel κm with
bandwidth m = m(n) that grows asymptotically with n but with m/n→ 0; in other
words, let

f̂ (ω) =
1

(2π)s−1

∑
‖τ‖<n

κm(τ )Ĉ(τ )e
−iτ ·ω. (12)

Typically, the kernel κm is obtained by “dilation” of a fixed underlying kernel κ , i.e.,
letting κm(τ ) = κ(τ/m). Several different shapes for κ have been proposed in the
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literature, particularly for second-order spectral density estimation; cf. the study by
Priestley (1983). In particular, utilizing a “flat-top” lag-window function, such as the
trapezoidal function (Politis and Romano, 1995) or the conical frustum (Politis, 2011),
will yield a (poly)spectral density estimate with optimal mean square error properties.

Asymptotic theory of the kernel-based polyspectral density estimators (12) is
detailed in the works done by Berg and Politis (2009), Brillinger and Rosenblatt (1967),
and Rosenblatt (1985). Two assumptions are generally required:

Assumption 1. The cumulant function C(τ1, . . . , τs−1) satisfies∑
(t1,...,ts−1)∈Zs−1

t j C(t1, . . . , ts−1) for each j = 1, . . . , s − 1.

This assumption implies the existence of a continuously differentiable polyspectral
density.

Assumption 2. The kernel κ(τ ) is continuously differentiable and satisfies

max

(
|τ jκ(τ )|,

∣∣∣∣ ∂∂τ j
κ(τ )

∣∣∣∣) ≤ M(1+ ‖τ‖)−(s−1)−ε for each j = 1, . . . , s − 1,

where ‖τ‖ =
(∑s−1

j=1 τ
2
j

)1/2
, M > 0, and ε > 0.

If {X t } is a strictly stationary process, Assumptions 1 and 2 can be used to show that

√
n/ms−1

(
f̂ (ω)− E

[
f̂ (ω)

])
−→d N

(
0, σ 2

)
(13)

when n→∞ but n/ms−1
→∞; here σ 2 is a complex-valued functional of f and κ .

Remark 1. If the bias of f̂ (ω) is of smaller order than
√

n/ms−1, then E[ f̂ (ω)] in (13)
can be replaced with f (ω). This minimal bias property can be achieved in two ways:
(1) by selecting a bandwidth m that is (slightly) bigger than the optimal one resulting in
a certain undersmoothing, or (2) by using an infinite-order kernel κ , which possesses
reduced bias properties (Politis, 2011). Selecting an optimal bandwidth in finite samples
is an unavoidable issue in nonparametric function estimation; a practical and effective
method for selecting an appropriate bandwith for polyspectral estimation is given in
the study by Berg and Politis (2009). 2

5.2. The test statistics tG
n and t L

n

Due to the symmetries inherent to polyspectra (Berg, 2008), the normalized bispectrum,
K (ω1,ω2) is uniquely defined by its values on � given by

� := {(ω1,ω2):0 < ω1 < π , 0 < ω2 < min(ω1, 2(π − ω1)}.
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Utilizing estimates of the polyspectra in (12) yields K̂ (ω1,ω2), the estimator of the
normalized bispectrum. The Subba Rao and Gabr (1984) Gaussianity test statistic is
then defined as

tG
n =

k∑
j=1

K̂ (ω1
j ,ω

2
j ), (14)

where (ω1
j ,ω

2
j ) ( j = 1, . . . , k) constitutes a grid of k points inside �; the number of

points k increases with n to ensure consistency of the test. The null hypothesis of
Gaussianity is rejected if tG

n is too large.
Hinich (1982) proposed an improved and more robust version of the original

bispectrum-based linearity test proposed by Subba Rao and Gabr. The Hinich linearity
test statistic is given as

t L
n = I Q R

{[
K̂ (ω1

j ,ω
2
j )
]k

j=1

}
, (15)

where I Q R stands for the interquartile range. The null hypothesis of linearity is
rejected if t L

n is too large.
In either case, tG

n or t L
n , the practitioner must determine the threshold of the critical

region, i.e., decide what constitutes “too large” a value of the test statistic. This has
been traditionally accomplished via asymptotic arguments (Hinich, 1982, Subba Rao
and Gabr, 1984). However, as discussed in Section 4, we can alternatively determine the
threshold by a resampling approximation offered by the AR-sieve bootstrap. The fol-
lowing Section describes how to obtain a subsampling approximation to such a critical
region.

5.3. Subsampling for tG
n and t L

n

In order to establish the consistency of subsampling for the test statistics tG
n and t L

n ,
it must be shown that their sampling distribution converges to a continuous limit law
under their respective null hypothesis. The asymptotics of the tG

n and t L
n have been

established in the literature as presented below.
If the time series is Gaussian, then (Subba Rao and Gabr, 1980, 1984)(

n

m2
·

2π

ζ2

)
tG
n −→d χ

2
2k , (16)

where m = m(n) is the bandwidth used for the estimator (12) and ζ2 =
∫
∞

−∞

∫
∞

−∞

κ2(τ1, τ2) dτ1 dτ2.
If the time series is linear, then (Berg et al., 2010, Hinich, 1982)(

n

m2
·

2π

ζ2

)
t L
n −→d N

[
ξ3/4 − ξ1/4,

1

16k

(
3

g2(ξ1/4)
+

3

g2(ξ3/4)

−
2

g2(ξ1/4)g2(ξ3/4)

)]
,

(17)
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where ξ· and g(·) are the quantile and density functions, respectively, of the χ2
2k

distribution.
Let tn denote either tG

n or t L
n as appropriate. It is easy to see that tn satisfies the prop-

erty tn → 0 under its respective null and tn → t > 0 under the alternative; convergence
of tn under the alternative is investigated in the works done by Hinich (1982). Define
tn,b,t to be the statistic defined by (14) or (15), whichever appropriate, calculated using
only the subsample {X t , X t+1, . . . , X t+b−1} for t ∈ {1, 2, . . . , n − b + 1}.

We now consider two candidate subsampling distributions for subsampling the
hypothesis test of Gaussianity or linearity. First we define the uncentered subsampling
distribution as presented in the study by Politis et al. (1999),

SU
n,b(x) :=

1

n − b + 1

n−b+1∑
t=1

1{τbtn,b,t ≤ x}, (18)

where4 τb = b/m(b)2.
Alternatively, a centered version of the above subsampling distribution has been

shown to possess improved power in many contexts (Berg et al., 2010). The centered
subsampling distribution is given by

SC
n,b(x) :=

1

n − b + 1

n−b+1∑
t=1

1{τb(tn,b,t − tn) ≤ x}. (19)

It follows from (16) and (17) that the sampling distribution of τntn converges, under
the respective null hypothesis, to a continuous limit law with cumulative distribution
function denoted by H(x).The consistency of the subsampling method as applied to
linearity and Gaussianity testing is now stated; the following theorem follows directly
from Theorem 3.5.1 in Politis et al. (1999).

Theorem 1 (Validity of subsampling for tG
n and t L

n ). Let Hn,b(x) denote either SU
n,b(x)

or SC
n,b(x). Assume either (16) or (17) according to whether Tn denotes tG

n or t L
n .

Assume b→∞, b/n→ 0 and τb/τn → 0 as n→∞. Assume the bandwidth m for
the polyspectra estimates used in the construction of the test statistics obeys the under-
smoothing condition outlined in Remark 1. Further assume the time series {X t } is
strictly stationary, and strong mixing. For α ∈ (0, 1), define the two quantities

hn,b(1− α) = inf{x : Hn,b(x) ≥ 1− α}

h(1− α) = inf{x : H(x) ≥ 1− α}

Then under the null hypothesis

i. hn,b(1− α) −→ g(1− α) in probability;
ii. Prob{τntn > hn,b(1− α)} −→ α as n→∞.

4 Recall that m = m(n); for example, if m(n) = nδ for some δ ∈ (0, 1/2), then τb = b/[bδ]2
= b1−2δ .
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And under the alternative hypothesis,

iii. Prob{τntn > hn,b(1− α)} −→ 1 as n→∞.

The above theorem shows that both subsampling distributions SU
n,b(x) or SC

n,b(x)
yield consistent α-level tests. However, by analogy to other simpler examples (Berg
et al., 2010), we expect that the test based on the centered subsampling distribution
SC

n,b(x)would be more powerful than the one based on SU
n,b(x), i.e., that the convergence

in part (iii) of the Theorem would be faster when Hn,b(x) = SC
n,b(x). By the same token,

the convergence in part (ii) of the Theorem is expected to be faster when Hn,b(x) =
SU

n,b(x), i.e., the level of the test would be more accurately achieved with the uncentered
subsampling distribution SU

n,b(x).
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Abstract

In this chapter, we review the problem of testing for nonlinearity in time series.
First, we discuss the definition and the properties of linear processes and the impli-
cations that such properties have on the operational strand. Then, we present and
review a tentative classification of the various tests that can be found both in the
time series and in the nonlinear dynamics literature. Two main factors contributed
to the production of a plethora of alternatives for assessing nonlinearity in time
series: the first factor is the intrinsic asymmetry between the linear and the nonlin-
ear realm. In fact, there can be departures from linearity in various directions as
nonlinear phenomena possess a virtually infinite richness of features. Among such
features we can mention irreversibility, nonuniform predictability, noise amplifi-
cation/suppression, phase synchronization, noise-induced phenomena, sensitivity
to initial conditions, and so on. The second factor is the multidisciplinary nature of
the problem. Indeed, the problem of characterizing the various aspects of nonlinear
processes is shared among different disciplines, such as Statistics, Economet-
rics, Nonlinear Dynamics, Biology, and Engineering. The review is by no means
exhaustive and reflects the personal inclinations of the author.

Keywords: test, nonlinearity, linear prediction, chaos, higher order moments,
bispectrum, initial value sensitivity, surrogate data, nonparametric tests, specifi-
cation tests.

1. Introduction

The linear (Gaussian) paradigm (Box and Jenkins, 1970) provides powerful tools
and a simple mathematical framework for analyzing time series data and interpreting
phenomena. In many instances, though, its application is either not recommended or
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fails to capture essential aspects of the process under study. For instance, it is well
known that the business cycle exhibits peculiar asymmetries (Milas et al., 2006); also,
volatility, heavy tails, microstructure noise, and irreversibility are the features often
associated to financial series. Again, nonuniform predictability, initial value sensitiv-
ity, threshold effects, jump phenomena, and multimodality can be found in many fields
such as Hydrology, Physics, Biology, Medicine, and so on. Most of the important early
work on nonlinearity can be associated to dynamical system theory where complex
phenomena are described in terms of deterministic models. It was Henri Poincaré,
with his pioneering work on planetary dynamics at the end of the nineteenth century,
who first identified the phenomenon of sensitivity to initial conditions. Since then, a
number of researchers of different disciplines contributed to the discovery of peculiar
features of nonlinear phenomena. For instance, the article on atmospheric dynamics
by Lorenz (1963) is usually indicated as the work that popularized the notion of chaos.
Other important contributions include the works that laid the foundations of catastrophe
theory (Thom, 1989) and fractal geometry (Mandelbrot, 1982).

On the time series analysis strand, Moran (1953) is indicated as one of the first
authors who highlighted the limitations of linear models. In his analysis of the Canadian
lynx series, Moran observed an “anomaly” in the residuals of a fitted linear model. Such
feature was a byproduct of the regime effect of the population dynamics; the endeavours
to model it contributed to the introduction of the so-called threshold models; see Tong
(1990, 2011) and references therein. Again, the need of going beyond second-order
moments led to the introduction of bilinear models and higher order spectra (Granger
and Andersen, 1978, and Subba Rao and Gabr, 1984). In the study by Subba Rao and
Gabr (1984), the authors also observed that the fit and the prediction performance of
nonlinear models varied consistently across different choices of initial values of the fit.
Also, the efforts of modeling the so-called volatility observed in financial time series led
to the developments of the autoregressive conditional heteroscedastic model (ARCH)
and its variants; for an account, see Tsay (2005) and references therein. Moreover, the
introduction of long memory processes (Granger and Joyeux, 1980) were motivated by
the need of describing the persistent correlation observed in many real phenomena.
Lastly, recent development in nonparametric and semiparametric regression meth-
ods gave the possibility of modeling nonlinear phenomena with less assumptions on
the data generating process; see Fan and Yao (2003), Gao (2007), and references
therein.

The need for a different approach to time series analysis has been advocated by
many authors, but prior to entertain the difficult task of nonlinear modeling it is sensi-
ble to make sure that a linear representation is not appropriate. This problem motivates
the introduction of tests for assessing the presence of nonlinearity. In this chapter, we
present a review on the literature of testing for nonlinearity in time series. The problem
can be described as follows: We are given a finite time series x = (x1, . . . , xn) real-
ization of a (strictly) stationary stochastic process {X t }t∈Z. Now, on the basis of x we
would like to assess with a certain confidence whether the process {X t }t∈Z that has
generated the data is linear.

The statement can be rewritten in terms of hypothesis testing:{
H0 : {X t }t∈Z is a linear process

H1 : {X t }t∈Z is not a linear process
(1)
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In order to test this hypothesis, we need to define precisely the class of linear pro-
cesses from a mathematical point of view. Also, we need to specify in some sense
the meaning of H1, that is, we need to describe the class of processes that cannot be
represented in terms of H0. Since there can be departures from linearity in many direc-
tions, testing the hypothesis (1) often becomes a test on a specific nonlinear feature.
Such features have been found in phenomena from different disciplines and this has
determined a fruitful cross-fertilization. For instance, some of the peculiar notions of
nonlinear dynamics and chaos theory have motivated the introduction of new tools for
time series analysis. In other situations, the nonlinearity can be seen as the inability of
a linear model to describe the serial dependence observed in the data. Thus, the prob-
lem reduces to either a diagnostic test (often performed on the residuals of a linear
model) or a specification test between models. On the basis of the above considera-
tions, we have tried a classification of the various tests proposed in the vast literature
that spreads across different disciplines. Of course, the borders between the various
classes are blurred and a different schematization is possible.

The chapter is structured as follows. Section 2 is devoted to the definition of a
linear process; we examine the practical implications of the mathematical represen-
tations and discuss the departures from linearity under the perspective of prediction.
Section 3 presents the various tests classified into: tests based on the bispectrum and
higher order moments (Section 3.1), diagnostic tests (Section 3.2), specification tests
and Lagrange Multiplier tests (Section 3.3), nonparametric tests (Section 3.4), tests
based on chaos theory (Section 3.5), tests based on surrogate data (Section 3.6). The
last section presents a brief discussion and the conclusions.

2. Defining a linear process

A linear stationary process {X t }t∈Z is usually defined as

X t =

∞∑
j=1

ψ jεt− j + εt , (2)

where {εt } is an i.i.d. process, E[εt ] = 0, Var[εt ] = σ 2 <∞ and
∑
∞

j=0 ψ
2
j <∞.

Hence a linear process admits a moving average (MA(∞)) representation. Also, if the
MA transfer function 9(z) =

∑
∞

j=0 ψ j z j exists and has no zeros in |z| ≤ 1 (z ∈ C)
then such processes admit an autoregressive (AR(∞)) representation:

X t =

∞∑
j=1

φ j X t− j + εt , (3)

where the coefficients (φ j ) j∈N are given by 1/9(z) = 1−
∑
∞

j=0 φ j z j .
Now, given these representations, can we hope to test efficiently the hypothesis (1)?

The answer is not so clear cut as pointed out in Bickel and Bühlmann (1996, 1997). In
fact, the authors define a topology over the set of stochastic processes by using different
metrics and prove that both the set of MA processes and that of invertible AR processes
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are not closed. Indeed, the closure of such two sets is quite large and comprises three
kinds of processes: (i) the set of zero mean stationary Gaussian processes; (ii) the set
of MA processes as defined in (2); (iii) a set of nonergodic processes that are Poisson
sums of i.i.d. copies of a stationary process. Now, given any (even infinitely long)
realization of a stationary process (ξt )t∈Z, define the process {X t }t∈Z, a member of class
(iii) defined above: X t =

∑N
j=1 ξt ; j , (t ∈ Z) with N ∼ Poisson (1) and where ξt ; j are

i .i .d . copies of ξt for j = 1, 2, . . . . Now, it can be shown that {X t }t∈Z is a member of
the MA closure. Since P[N = 1] = e−1 > 0.36, we have that P[X t = ξt ,∀t] > 0.36,
almost surely. This leads to the following interesting fact:

Fact 1. Suppose we want to test the hypothesis H0 that the observed series is a real-
ization of a process of the class MA(∞) (2). Then, there is no test with asymptotic
significance level α < 0.36 that has limiting power one as n→∞.

In other words, even with infinite time series, it is impossible to distinguish perfectly
between linear and nonlinear processes or, put it in another way, given a finite series, it
is always possible to find a good description for it by means of a linear model, possibly
of sufficiently high order. Incidentally, these results are at the basis of the sieve boot-
strap methodology (Bühlmann, 1997). Of course, this does not mean that we should
give up our endeavours. In fact, there exist subsets of the MA and AR classes that
are closed and for which we can hope to build powerful tests. These subsets are suffi-
ciently large as to include the linear models used in practice. For instance, it is often
assumed that the data generating process under H0 is a minimum phase finite order
ARMA model of the kind:

X t = φ1 X t−1 + · · · + φp X t−p + θ1εt−1 + · · · + θqεt−q + εt , (4)

where {εt } is an i.i.d. process, E[εt ] = 0, Var[εt ] = σ 2 <∞. By minimum phase it is
meant that AR and MA polynomials associated to the above model have their zeros out-
side the closed unit circle in the complex plane. This implies that the stationary solution
X t is causal and invertible. Also, it is long known that, in some cases, one can use a
linear model of high order for modeling nonlinear processes, so that what is the advan-
tage of looking for nonlinear models instead? The key is dimension reduction. Indeed,
nonlinear models are able to encompass complex features with few degrees of free-
dom. This, in turn, reflects on our capability of finding a parsimonious representation
for a phenomenon. Moreover, some features cannot be adequately represented by linear
models, no matter their order. As we will show in the following sections the notion of
dimensionality of a process is at the basis of many tests for nonlinearity motivated by
chaos theory.

Other fundamental aspects of linear processes are related to prediction, Gaussianity,
and the notion of reversibility. A process is reversible if its joint probability structure is
the same if we consider it with time reversed. It is clear that Gaussian stationary pro-
cesses are reversible but many non-Gaussian processes are not. Much of the time series
literature is based on Gaussian models and methods motivated by their paradigm. How-
ever, even non-Gaussian linear stationary processes present richer and more complex
features than those typical of linear Gaussian processes. For this reason it seems rea-
sonable to test, among other things, whether we are dealing with either linear Gaussian
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processes or linear non-Gaussian processes. Assume that {X t }t∈Z is a minimum phase
stationary ARMA process as in Eq. (4). Consider the prediction problem in which one
approximates X t by a function of the past (X t−1, X t−2, . . . ). Then, the best predictor of
X t+m in the mean square sense is given by the conditional expectation

E[X t+m |Xs , s ≤ t] m ∈ N (5)

Now, it is known that the conditional expectation of Eq. (5) is a linear function of
{Xs , s < t} when {X t }t∈Z is Gaussian. Moreover, in the minimum phase case such pre-
dictor has the same linear form as in the Gaussian case, no matter the distribution of
εt . In the general case, however, if the distribution of εt is not Gaussian without addi-
tional constraints on the process, such conditional expectation is a nonlinear function
of lagged variables, see for instance Tong (1990, p. 13) and references therein. For
further details and discussions on linear non-Gaussian processes, see also Rosenblatt
(2000). The author also shows that given a stationary AR(1) process: (i) the best mean
square predictor forward in time is linear; (ii) the best mean square predictor backward
in time is linear if and only if εt follows a Gaussian distribution. Hence, the notion of
reversibility seems intimately related to linear Gaussian processes. Again, these find-
ings prompted studies on tests for reversibility as we will show in Section 3.5. For a
systematic treatment of the relationship between linear representations and prediction,
see Chapter 1 of Hannan and Deistler (1988), Chapter 5.5 of Pourahmadi (2001), and
also Chapter 5 of Brockwell and Davis (1991).

2.1. What is a nonlinear process?

The question comes immediately to our minds: can we define mathematically a non-
linear process in the same way we have defined a linear one? The answer is negative.
As pointed out above there is an intrinsic asymmetry between the two realms. Since
there can be departures from linearity in various directions, we can only define a non-
linear phenomenon through those features that cannot be exhibited by linear processes
and that have been observed in various disciplines. Among such features we can men-
tion asymmetry, regime effects, presence of limit cycles, irreversibility, nonuniform
predictability, noise amplification/suppression, phase synchronization, noise-induced
phenomena, and sensitivity to initial conditions. In most cases, the need for describing
these behaviors led to the introduction of new tests and models that paved the way for
major advances in our understanding of the nonlinear world. Extended accounts from
a time series analysis perspective can be found in the studies done by Chan and Tong
(2001), Tong (1990), Fan and Yao (2003), and Gao (2007), while from the point of
view of nonlinear dynamical system theory one can refer to the works done by Kantz
and Schreiber (2004), Abarbanel (1996), Broer and Takens (2011), Galka (2000), and
Diks (1999).

Now, we will pursue a bit further the discussion on the prediction problem in the
case of nonlinear processes and will show that the notions of sensitivity to initial con-
ditions and nonuniform noise amplification/predictability emerge naturally. As shown
in Yao and Tong (1994a,b), Chan and Tong (2001), and Fan and Yao (2003) the predic-
tion problem presented above changes if the process is nonlinear. Assume we want to
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predict X t+m based on the past d observations: Xt = (X t , . . . , X t−d+1). It is immediate
to see that the least square predictor for X t+m is

ft ,m(x) = E[X t+m |Xt = x], (6)

furthermore, the mean square prediction error is given by

E[(X t+m − ft ,m(x))2] = E[σ 2
t ,m(x)], (7)

where σ 2
t ,m(x) = Var[X t+m |Xt = x]. Such measure monitors the performance of the

prediction and is constant if the process is a linear AR(p). In the general case, however,
the goodness of the prediction depends on the initial state of the system. Furthermore,
Yao and Tong (1994b) discussed the notion of initial value sensitivity in a stochastic
environment and showed that, in case of a nonlinear system, a small uncertainty on the
initial condition can have an impact on the prediction error. Suppose we try to predict
X t+m by ft ,m(x) where X t = x. Now, assume we do not know x exactly but we are
subject to a small error δ such that X t = x+ δ. This assumption is natural since, in
practice, we never know exactly the state of the system. Now, Yao and Tong (1994b)
proved the following decomposition theorem:

E[(X t+m − ft ,m(x))2|Xt = x+ δ] = σ 2
t ,m(x+ δ)+ {δ′ ḟt ,m(x)}2 + o(||δ||2).

(8)

This result shows that the prediction performance depends on (i) the conditional
variance σ 2

t ,m(x) that measures the amount of randomness, and (ii) the uncertainty in the
initial condition δ through ḟt ,m(x), the gradient vector of ft ,m(x). This nonuniform noise
amplification is related to initial value sensitivity and is a peculiar feature of nonlinear
processes. This results has an important consequence on multistep prediction. In the
linear case, ḟt ,m(x) is constant and the remainder of the right hand side of Eq. (8) is
zero. Also, σ 2

t ,m(x) does not depend on x and the mean square predictive error increases
monotonically with m. This is not always the case with nonlinear prediction so that we
might be able to predict m + 1 steps ahead better than m steps ahead. This phenomenon
has been shown empirically in the study by Subba Rao and Gabr (1984), where the
authors computed the prediction error variance for different nonlinear models of the
time series of the Canadian Lynx and of the Sunspot index. For further discussions, see
Fan and Yao (2003) and Chan and Tong (2001).

3. Testing for nonlinearity

Needless to say, the plethora of tests for nonlinearity, or nonlinear serial dependence,
in time series is vast. In this section we will try to discuss the various proposals and
make a tentative classification. As also pointed out in the works of Barnett et al. (1997)
many of the available tests have different hypotheses, both null and alternative, so that
there is little point in comparing them. Rather, some of them can be used jointly as the
hypotheses tested are completely different.
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3.1. Tests based on the bispectrum and higher order moments

The first account on a test for nonlinearity in the time series literature is probably that
of Subba Rao and Gabr (1980). The proposal is based upon the properties of the bis-
pectrum. In practice, such approach tries to assess the linearity and the Gaussianity of a
series by looking at third-order moments. The procedure can also be interpreted as test-
ing for the significance of the coefficients associated to the linear terms of the Wiener
expansion of the solution of the process (a stochastic version of the Volterra series rep-
resentation). The tests can be applied both to the original series and to the residuals
of a fitted model. Assume that {X t }t∈Z is a sixth-order stationary process with zero
mean, covariance function γk = E[X t X t+k], k ∈ Z and spectral density function f (ω),
|ω| ≤ π . The third-order cumulants can be written as γm,n = E[X t , X t+m , X t+n]. Now,
γm,n is called the bicovariance function, whereas the bispectrum function f (ω1,ω2) is
defined as the double Fourier transform of the bicovariance:

f (ω1,ω2) =
1

(2π)2

+∞∑
m=−∞

+∞∑
m=−∞

γm,ne−i2π(ω1m+ω2n), −π ≤ ω1,ω2 ≤ π .

In the same way f (ω) is a Fourier decomposition of E[X2
t ], f (ω1,ω2) is a frequency

decomposition of the third moment E[X3
t ] of the process {X t }t∈Z. Now, in case of a

linear process that admits a MA(∞) representation as that of Eq. (2), we have

X i j =
| f (ωi ,ω j )|

2

f (ωi ) f (ω j ) f (ωi + ω j )
=
(E[ε3

t ])2

2πE[ε2
t ]
∀i , j . (9)

The approach of Subba Rao and Gabr (1980) is based on the following two facts:
(i) if {X t }t∈Z is a linear Gaussian process then f (ω1,ω2) = X i j = 0, for all i , j and
E[ε3

t ] = 0; (ii) if {X t }t∈Z is a linear non-Gaussian processes X i j is constant for all the
frequencies i , j . These facts lead to the definition of two statistical tests of Gaussian-
ity and linearity that are mainly based on the following statistic: S = 2

∑
m,n |X̂m,n|

2,

where X̂m,n is an estimator of Xm,n of Eq. (9). The asymptotic distribution of such
statistic is a central χ2 under the hypothesis of Gaussianity and a noncentral χ2 distri-
bution under the hypothesis of linearity. Now, for the latter case, Subba Rao and Gabr
(1980) propose an F test for constant means of 2|Xm,n|

2. As an alternative, Hinich
(1982) proposes using the sample interquartile range of 2|Xm,n|

2 (see also Brockett
et al. (1988)). This latter proposal appears to have better properties than the original
test in a number of situations; still, it is bounded to the choice of a smoothing parame-
ter. See also Berg et al. (2010, 2012) for bootstrap versions of the test by Hinich (sieve
and subsampling, respectively) and for a review of other versions of the bispectral
tests. For further discussion on the properties of such test see also Ashley et al. (1986).
Another test based on the bispectrum is proposed in the works done by Terdik and
Math (1998). Here, the authors test the null hypothesis that the best predictor is linear
against the alternative that such predictor is quadratic. Finally, Rusticelli et al. (2009)
propose bispectral tests for linearity based on a maximization procedure as to elimi-
nate the arbitrariness concerning the smoothing parameter; the test statistic proposed is
derived by maximizing the classical Hinich statistic over a range of feasible values for
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the smoothing parameter. Such tests appear to have more power than classical Hinich’s
tests, in particular with respect to NLMA (nonlinear moving average), GARCH and
deterministic chaotic processes.

The time-domain counterpart of the bispectrum, namely, the bicovariance, can be
used to build tests of nonlinear dependence that are similar in spirit to those based upon
the bispectrum. See Barnett and Wolff (2005), Brooks and Hinich (2001), and refer-
ences therein for an account. Moreover, in the study by Subba Rao and Wong (1998)
multivariate measures of skewness and kurtosis are used for deriving tests for linear-
ity and Gaussianity in vector time series. Also, in the works of Subba Rao (1992), the
authors study possible applications of the bispectrum to non-Gaussian and chaotic time
series. In particular, they show how the estimated higher order spectra could be used to
distinguish between nonlinear deterministic stable systems and nonlinear deterministic
chaotic systems. The authors observed that, compared to a stable signal, the energy
of the estimated bispectrum of a chaotic signal is distributed over a broader range of
frequencies.

It is worth noting that tests based on third-order moments concentrate on symmetry
and cannot detect a nonlinearity that depends upon moments higher than the third. In
theory, in order to rule out the presence of nonlinearities, all the cumulants should
be tested. This is the motivation at the basis of tests that involve the complete joint
distribution and that will be presented in the following.

3.2. Diagnostic tests

Many of the tests proposed in literature can be thought as “diagnostic tests” since they
are applied on the residuals of a linear model such as that of Eq. (4). The idea is
to regress the residual of a linear model on specific functions of X t , chosen to cap-
ture essential features of possible nonlinearities; the null hypothesis is rejected if these
functions of X t are significantly correlated with the residuals. In this respect, in some
instances, testing for neglected nonlinearity is tantamount to testing for a null of inde-
pendence versus the alternative of serial dependence. The literature on tests of serial
dependence (against the null of independence) is vast and its review is outside the
scope of this chapter; rather we concentrate on specific proposals that have been used
for diagnostic checking of time series models. Some of the classical tests are described
in Chapters 5.3.2–5.3.3 of Tong (1990) and references therein. These include the Ljung-
Box test, the Mcleod and Li test, the Keenan test, and the Tsay test. Notice that in many
of such tests the alternative hypothesis is not clearly stated and Tong classifies them as
portmanteau tests. For a detailed account on both diagnostic and goodness-of-fit tests
for time series, see Li (2004).

Among the proposals we mention the BDS test (Brock et al., 1986), motivated by
chaos theory and based upon the asymptotic distribution of the sample correlation
integral. The correlation integral is defined as

Cd(ε) = P

d−1∏
j=0

I(|X t− j − Xs− j | < ε)

 , (10)
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whereas its sample version is

Ĉd(ε) =
2

n(n − 1)

n∑
t=d+1

t−1∑
s=d

d−1∏
j=0

I(|X t− j − Xs− j | < ε), (11)

where I is the indicator function, d is the embedding dimension (or order of the state
vector), and ε ∈ R+ is the radius of the hypersphere. The statistic Ĉd(ε) measures the
proportion of pairs of phase space points that lie within a radius ε.

The test has the following form:

BDS(d, ε) =
√

n
[
Ĉd(ε)− Ĉ1(ε)

d
]
/V̂ 1/2

d (12)

with V̂d being an estimator for the asymptotic variance. Under the null of independence
we have Cd(ε) = C1(ε)

d . Basically, the test it is aimed at detecting departures from
independence within a range of lags/embedding dimensions specified by the exper-
imenter. Notice that the results of this test depend sensibly from the choice of the
embedding dimension d and of the radius of the sphere ε. Also, the “nuisance parameter
free” condition claimed by the authors holds only under conditional mean models but
not under ARCH-type models. Moreover, serial independence implies Cd(ε) = C1(ε)

d

but the converse is not necessarily true.
Recent proposals involve tests on the joint pairwise distribution of a (strictly) sta-

tionary stochastic process {et }, which is supposed to represent the process behind the
standardized residuals of a fitted model. In particular, the idea of Hong (1999), Hong
and Lee (2003) is to consider the spectrum of the transformed series {eiuet }, where
u ∈ R. First, define the covariance function at lag j as σ j (u, v) = Cov(eiuet , eivet− j ),
with j ∈ Z and i =

√
−1. Clearly, σ j (u, v) = ϕ j (u, v)− ϕ j (u)ϕ j (v) where ϕ j (u, v)

and ϕ j (u) are the joint and marginal characteristic functions of (e j , et− j ). Hence,
σ j (u, v) = 0 if and only if e j and et− j are independent. Under mild conditions on {et }

we have that the Fourier transform of σ j (u, v) exists:

f (ω, u, v) =
1

2π

+∞∑
j=−∞

σ j (u, v)e−i jω, −π ≤ ω ≤ π .

f (ω, u, v) can capture any kind of pairwise dependence across various lags in et . For
instance, the negative partial derivative of f (ω, u, v) with respect to (u, v) at (0, 0)
yields the conventional spectral density. For such reasons the authors denote f (ω, u, v)
as a generalized spectral density. Now, it can be proven that under the null of a i .i .d.
process the generalized spectral density is flat: f0(ω, u, v) = 1

2π σ0(u, v). On this basis,
Hong and Lee (2003) derive a diagnostic test for neglected nonlinearity by using a
measure of L2 divergence between the sample version of f (ω, u, v) and f0(ω, u, v).
Interestingly, no moment condition on {et } is required and this is a desirable property
in many situations (i.e., high-frequency financial time series). Moreover, when applied
to the standardized residuals of a wide class of models, the test has an asymptotic
distribution that is free from nuisance parameters. In other words, the limit distribution
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under the null of the test statistic does not depend on the estimators of the parameters
of the fitted models, provided that such estimators are n1/2

−consistent.
Another class of diagnostic tests is based on nonparametric entropy measures of

dependence motivated by information theory. Ideally, such measures can be used as
nonlinear autocorrelation functions and overcome the known limitations of the lin-
ear correlation coefficient. For a review and a discussion on the relevant asymptotic
theory, see Tjøstheim (1996) and Hong and White (2005). Robinson (1991) uses the
Kullback–Leibler information divergence as a basis for one-sided testing of nested
hypotheses. Kernel density estimation is used to derive the test statistic and in order
to obtain a normal null limiting distribution, a form of weighting is introduced. In the
study of Granger and Lin (1994) the mutual information is used, whereas in the study
of Granger et al. (2004) a discussion on the axiomatic properties of an ideal measure of
dependence is put forward. The discussion leads to adopting the metric entropy measure
Sρ , a normalized version of the Bhattacharya–Hellinger–Matusita distance, defined as
follows:

Sρ(k) =
1

2

+∞∫
−∞

+∞∫
−∞

[√
f(X t ,X t+k )(x1, x2)−

√
fX t (x1) fX t+k (x2)

]2
dx1dx2, (13)

where fX t (·) and f(X t ,X t+k )(·, ·) denote the probability density function of X t and of
the vector (X t , X t+k), respectively. The measure is a symmetrized general “relative”
entropy, which includes as a special case nonmetric relative entropies such as the
Kullback–Leibler divergence. Sρ(k) satisfies many desirable properties, in particu-
lar, (i) it is a metric; (ii) it is normalized and takes the value 0 if X t and X t+k are
independent and 1 if there is a measurable exact relationship between continuous vari-
ables; (iii) it reduces to a function of the linear correlation coefficient in the case of
Gaussian variables. Notably, we have that {X t }t∈Z is an independent process if and
only if Sρ(k) = 0 for all k 6= 0. As in the works done by Granger and Lin (1994),
a kernel density implementation of Sρ has been adopted, leading to the following
estimator:

Ŝρ(k) =
1

2

∫ ∫ [√
f̂(X t ,X t+k )(x1, x2)−

√
f̂X t (x1) f̂X t+k (x2)

]2

w(x1, x2)dx1dx2,

(14)

where the densities are estimated through kernel regression and w(x1, x2) is a weight
function that is needed in order to derive the asymptotic distribution of the estimator. In
the study by Maasoumi and Racine (2009), the measure is used to build a test for asym-
metry both for discrete and continuous processes, whereas, in the study by Granger
et al. (2004), a permutation framework is used to test the null of independence; the
superiority of tests based on Sρ as compared to both the Ljung-Box and the BDS tests is
shown. Giannerini et al. (2007a) extend the results of Granger et al. (2004) and use the
entropy measure to build tests for nonlinearity based on different resampling schemes.
Lastly, Fernandes and Néri (2010) discuss various entropy measures to derive tests for
independence between stochastic processes.
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Finally, we mention a diagnostic test for linearity proposed by An and Cheng (1991).
The idea is to derive a Kolmogorov–Smirnov type test for linearity from the residuals
of a fitted AR model. Under a similar setup, Lobato (2003) defines Cramér–Von Mises
and Kolmogorov–Smirnov type statistics for deciding whether the conditional mean
of X t is a linear autoregression of finite order. The device proposed makes use of a
sequence of alternatives that tends to the null hypothesis at a rate n−1/2. The asymptotic
distribution of the test statistic is found by means of bootstrap methods.

3.3. Specification tests and lagrange multiplier tests

This section reviews briefly those tests that aim at assessing the null of linearity against
alternatives of specific nonlinear models. These tests are usually more mathematically
involved, but with respect to the specific alternatives they also give higher power
than pure significance tests. The task can be accomplished by means of either para-
metric or nonparametric methods. In the first case, typically, the following model is
hypothesized:

X t =

p∑
i=1

φi X t−i +

q∑
i=1

θiεt−i + f (β, X t−1 + · · · + X t−p, εt−1, . . . , εt−q)+ εt .

(15)

The model consists of a linear (ARMA) part and a nonlinear part f that depends upon
an unknown parameter vector β. Clearly, testing for linearity amounts to assessing
whether β = 0. This can be done by using a Lagrange multiplier (LM) approach as
put forward in the study by Luukkonen et al. (1988) and Saikkonen and Luukkonen
(1988). The general framework of the LM test can be used to test a linear model against
different parametric forms for f . These include, for instance, ARCH and GARCH mod-
els (Engle, 1982), Bilinear models, SETAR models, EXPAR models, see Tong (1990),
Chapter 5.3.5 and references therein. More recently, a neural network version of the LM
test has been proposed (Lee et al., 1993). The idea is to model the nonlinear function f
of Eq. (15) by means of a single hidden layer network of the kind

f (·) =
k∑

j=1

β0 j

{
ψ(w′j Xt )−

1

2

}
+ εt , (16)

where εt ∼ WN(0, σ 2), w j = (w0 j ,w1 j , . . . ,whj )
′, and Xt = (1, X t−1, . . . , X t−h)

′.
Hence, the null hypothesis of the neural network test against neglected nonlinearity is
H0: β01 = · · · = β0k = 0. Notice that, in general, the functional form of ψ is unknown
and the nonlinear model is only identified under the alternative; the problem has been
faced in the works of Teräsvirta et al. (1993), where they focus on the special case where
k = 1, that is, the net has 1 unit and w = (w0,w1, . . . ,wh)

′. The authors use a Taylor
expansion of ψ(w′Xt ) around w = 0. This leads to testing the following hypothesis
H0: w1 = · · · = wh = 0 that, in turn is equivalent to

H0: δi j = 0; δi jl = 0; i = 1, . . . , h; j = i , . . . , h; l = j , . . . , h.
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where

f (·) =
k∑

i=1

k∑
j=1

δi j X t−i X t− j +

k∑
i=1

k∑
j=1

k∑
l=1

δi jl X t−i X t− j X t−l + εt .

This version of the neural network test based on the Volterra series expansion is free
of unidentified nuisance parameters under the null and has better power properties than
that of the works done by Lee et al. (1993). For another battery of LM tests that avoids
the problem of unidentified nuisance parameters under the null, see Dahl and Gonzlez-
Rivera (2003). The proposal is based on random fields theory.

A great deal of attention has been placed on testing for linearity against threshold
models. Besides the above proposals based on LM tests the relevant theory and a dis-
cussion of such tests is presented in detail in the study by Tong (1990) and Li (2004),
and references therein.

3.4. Nonparametric tests

In this section, we present some nonparametric tests for nonlinearity that cannot be clas-
sified as diagnostic tests since they are applied directly on the original series. Also, such
approaches allow to identify the lags at which a nonlinear effect is expected so that they
might provide useful information for the subsequent specification of a nonlinear model.
The first two related proposals are those of Hjellvik and Tjøstheim (1995) and Hjellvik
et al. (1998). The main idea of Hjellvik and Tjøstheim (1995) relies on comparing the
linear and the nonlinear least square predictors for X t given X t−k . Given a zero mean
stationary process with finite fourth order moments and autocorrelation function at lag k
ρk the procedure is based on Mk(x) = E[X t |X t−k = x] and Vk(x) = V [X t |X t−k = x].
The test statistics are:

L(Mk) = E
[
{Mk(X t−k)− ρk X t−k}

2
]

(17)

L(Vk) = E
[
{Vk(X t−k)− (1− ρ

2
k )V (X t−k)}

2
]

(18)

Now, Mk(x) and Vk(x) are estimated through kernel (local constant) regression so that,
in practice, the tests compare nonparametric and parametric estimators. Clearly, under
the null of a linear Gaussian process L(Mk) = L(Vk) = 0 for all k. Since asymptotic
results require very long series to give meaningful results, the authors propose a sieve
bootstrap approach for deriving the rejection regions.

In the study by Hjellvik et al. (1998) similar arguments are put forward, this
time exploiting local polynomial estimators of Mk(x) and its derivatives. Moreover,
the authors do not assume that the noise process is i .i .d. so that the conditional
heteroscedastic case is accounted for. The null hypothesis tested is

{
H0 : Mk(x) is linear ∀k = 1, . . . , l

H1 : Mk(x) is nonlinear for at least one k
(19)
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where l is the maximum lag for which the test is performed. Notice that if the data
generating process is linear then

Mk(x) = ρk x ; M ′k(x) = ρk ; M ′′k (x) = 0 ∀x

furthermore:

Vk(x) = c; V ′k(x) = 0 ∀x ,

where c is a constant. These facts motivate the following test statistics:

L(Mk) = E
[
{Mk(X t−k)− ρk X t−k}

2
]

L(M ′k) = E
[
{M ′k(X t−k)− ρk}

2
]

L(M ′′k ) = E
[
{M ′′k (X t−k)}

2
]

L(Vk) = E
[
{Vk(êt−k)− 1)V (êt−k)}

2
]

L(V ′k) = E
[
{V ′k(êt−k)}

2
]

where êt are the residuals from fitting a linear model. As in the previous case, the
distribution of the statistics under the null hypothesis is derived by means of the sieve
bootstrap. Notice that in the above mentioned cases the alternative hypothesis is highly
composite so that it is not possible to formulate theoretical assumptions on the power
of the tests.

A third nonparametric test for nonlinearity is based on the entropy metric Sρ of
Eq. (13), as proposed in the work of Giannerini et al. (2011). The idea is somehow
similar to that of Hjellvik and Tjøstheim (1995), Hjellvik et al. (1998) in that the test
statistic is based on the divergence between a parametric (linear) and a nonparametric
(unrestricted) estimator of the same quantity. Here, the hypothesis tested is that of a
zero mean linear (Gaussian) process. The authors prove that under H0 Sρ(k) reduces to
a smooth bounded function of the autocorrelation coefficient at lag k as follows:

Sρ(k) = 1−
2
(
1− ρ2

k

)1/4√
4− ρ2

k

. (20)

Hence, the following test statistic is proposed:

T̂k =

[
Ŝu

k − Ŝ p
k

]2
. (21)

T̂k is the squared divergence between the unrestricted nonparametric estimator Ŝu
k (see

Eq. 14) and the parametric estimator of Sρ(k) under H0 based on Eq. (20) and denoted
by Ŝ p

k . The authors prove that under H0:

1. T̂k
p
−→ 0 (22)

2.
nT̂k

σ 2
a

d
−→ χ2

1 , (23)
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where σ 2
a is the asymptotic variance of

√
T̂ k . As in previous cases, since asymptotic

theory is not applicable in practice, the authors derive the distribution of T̂k under the
null in finite samples by means of both the sieve bootstrap and surrogate data. This
latter approach will be presented in the next sections.

3.5. Tests based on chaos theory

One of the peculiar features of chaotic systems is the well-known sensitive dependence
on initial conditions, i.e., infinitesimal perturbations on the initial state of the system
are exponentially amplified. This notion, introduced in the field of nonlinear dynamical
system, has gained attention in the Statistics community since it provides new tools
and concepts for characterizing nonlinear time series. In the following, we will review
the literature on testing for the presence of initial value sensitivity in a time series
context.

Assume that the data generating process is a stochastic difference equation of the
kind

Xt+1 = F(Xt )+ et+1, t ∈ Z+, (24)

where Xt = (X t , . . . , X t−d+1), F : Rd
→ Rd , and t is a i .i .d. d-dimensional random

process. Notice that the stochastic component is a part of the process and interacts with
the deterministic skeleton. Also, when the noise term is negligible we treat the system
as deterministic. Now, it is possible to show that Eq. (24) implies:

X t+1 = f (Xt )+ εt+1, t ∈ Z+, (25)

where εt is a noise process with E[εt |X t−k] = 0, σ 2
= Var(εt ) = Var(εt |X t−k) with

k > 0.
One of the measures of initial value sensitivity for deterministic systems is the max-

imal Lyapunov characteristic exponent (MLCE). The MLCE measures the average rate
of divergence of trajectories with nearby initial conditions. It is an important measure
of stability and one of the indicators of the presence of chaos. In fact, a positive MLCE
is a necessary condition for the presence of chaos. Denote with X0 and X′0 two close
initial conditions in the phase space and with Xn and X′n their value after n iterations,
respectively. Then, the MLCE can be defined as

λ = lim
n→∞

lim
δ→0

1

n
ln

(∥∥Xn − X′n
∥∥∥∥X0 − X′0
∥∥
)

(26)

where ‖·‖ is an appropriate norm and δ =
∥∥X0 − X′0

∥∥ is the perturbation in the initial
condition. This definition holds with probability one for almost all initial conditions.
Notice that if we denote with F (n)(x0) the n-th iteration of the system we obtain

Xn − X′n = F (n)(X0)− F (n)(X′0)

≈ DF (n)(X0)(X0 − X′0). (27)
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Hence, the growth of an infinitesimal perturbation in the initial condition is governed
by the Jacobian matrix of partial derivatives of the map F . If in Eq. (26) we do not
take the limit n→∞ but we consider only a finite number of steps ahead k, we obtain
the so called k-step ahead Local Lyapunov exponents (LLE), which can be used for
characterizing the predictability in different regions of the state space. Estimation of
Lyapunov exponents both for deterministic and stochastic systems are discussed in the
works done by Giannerini and Rosa (2004). Notice that estimation of the map F is
required. Formal tests for chaos where H0 : λ = 0 against H1 : λ > 0 can be found in
the works of Shintani and Linton (2004) (neural network approach), Whang and Linton
(1999) and Park and Whang (2012) (local polynomial regression approach). For a dif-
ferent approach valid for time continuous systems and based on spline interpolation,
see Giannerini and Rosa (2001) and Giannerini et al. (2007b).

The problem of assessing sensitivity to initial conditions in the stochastic case can
been faced by assuming that the state of the system is a random variable. Hence, instead
of speaking of average rate of divergence of nearby starting trajectories (the MLCE)
one can define divergence and initial value sensitivity of the conditional distribution of
the system. This is the approach entertained by Yao and Tong (1994a,b) where measures
of sensitivity of the conditional mean and conditional quantiles are derived. In the first
case, these reduce to the classical MLCE in the limit of vanishing noise and are based on
the gradient vector ḟt ,m(x) defined in Eq. (8). Measures based on the conditional density
are introduced in the study by Fan et al. (1996). Notice that formal tests test based on
such measures have not been proposed. Still, these have been used successfully for
characterizing nonlinear time series in the works done by Chan and Tong (2001) and
Giannerini and Rosa (2004).

Finally, it is worth of mention a test for reversibility motivated by chaos theory
and presented in the study by Diks (1999). The author also discusses the estimation
of invariant quantities for noisy dynamical systems, in particular he focuses on the
correlation integral presented in Section 3.2.

3.6. Tests based on surrogate data

The method of surrogate data was introduced in the field of nonlinear dynamics and
can be seen as a resampling approach for building tests for nonlinearity in time series.
The work of Theiler et al. (1992) is usually indicated as the seminal paper on the sub-
ject. The main idea at the basis of the method can be summarized as follows: (i) a null
hypothesis regarding the process that has generated the observed series (DGP) is for-
mulated; for instance, H0: the DGP is linear and Gaussian, (ii) a set of B resampled
series, called surrogate series, consistent with H0, are obtained through Monte Carlo
methods, (iii) a suitable test statistic, known to have discriminatory power against H0,
is computed on the surrogates obtaining the distribution of the test statistic under H0,
(iv) the significance level of the test is derived by comparing the value of the test
statistic computed both on the original series and on the surrogate distribution. Notice
that the basic principle behind surrogate data tests is closely related to the bootstrap
principle.

In the study by Theiler et al. (1992) and Theiler and Prichard (1996), a null
hypothesis of linearity is tested by generating surrogates having the same periodogram
and the same marginal distribution as the original series. In brief, surrogate series
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y = (y1, . . . , yn)
T are derived by randomizing the phases of the Fourier transform of

the original series x as to obtain

yt = x̄ +

√
2π

n

m∑
j=1

2
√

I (x,ω j ) cos(ωt j + θ j ), (28)

where x̄ is the sample mean, ω j =
2π j

n , j = 1, . . . , n are the angular frequencies,
I (x,ω) is the sample periodogram and θ1, . . . , θm , (m = (n − 1)/2) are i.i.d. phases
U [0, 2π ]. For further details on the derivation of Eq. (28) see Chan (1997). The sur-
rogate series will have the same sample mean and periodogram of the original series.
The rationale behind the method is that, given the sample mean the periodogram values
and the phases, one can always recover the original signal. Hence, by randomizing the
phases one creates a signal that preserves the original mean and periodogram but loses
all the remaining information.

The null hypotheses tested in this context are: (i): {X t }t∈Z is a linear process; (ii):
{X t }t∈Z is nonlinear monotone transform of a linear process. This latter hypothesis is
tested by imposing a further adjustment to phase randomized surrogates.

Since its first appearance, the method of surrogate data gained quite a lot of popu-
larity among applied scientists and several extensions have been proposed; in general,
these concern the introduction of either new test statistics or ad hoc algorithms for gen-
erating surrogates for testing specific (not necessarily linear) hypotheses. For instance,
Small and Judd (1998), Small et al. (2001) and Small (2005) propose a class of statis-
tics based on the correlation integral and prove their pivotalness with respect to the
above hypotheses. Then, they apply the method in order to study infant sleep apnea,
ECG dynamics and human vocalization patterns. In the works done by Galka (2000),
the method of surrogate data is applied to EEG time series, and in the work of Dolan
et al. (1999) a surrogate approach for finding unstable periodic orbits is proposed.
Finally, in the study by Kugiumtzis (2002, 2008) an alternative surrogate generation
scheme for testing hypothesis (ii) above is proposed and its performance assessed on
both simulated data and EEG series.

Despite the great interest arisen, there are open theoretical issues that have been
solved only partially or have not been considered at all. The first problem concerns the
performance of the method. As several authors point out (see Schreiber and Schmitz
(2000) and references therein), the phase randomization device usually leads to high
false positive rates. The problem has been discussed in several instances, see, e.g.,
Kugiumtzis (2001), Galka (2000), Schreiber and Schmitz (1996), and Theiler and
Prichard (1997). A proposal that partially overcomes this problems is that of Schreiber
(1998), also discussed in the work done by Giannerini et al. (2011). In practice, surro-
gate generation is seen as a constrained stochastic optimization problem solved through
simulated annealing. For an interesting review on the topic, see Schreiber and Schmitz
(2000) and references therein.

A second problem regards the validity of the method. The first rigorous results
in this direction are due to Chan (1997), which shows that the phase randomization
method described above is (i) exactly valid under the null hypothesis that the DGP is
a stationary Gaussian circular process; (ii) asymptotically valid for the null hypothesis
that the DGP is a stationary Gaussian process with fast-decaying autocorrelations. By
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valid, it is meant that tests have a Neyman structure (see also Chan and Tong (2001),
Chapter 4.4). Multivariate extension of such tests and further discussion can be found
in the works of Mammen and Nandi (2008) and references therein.

A recent proposal motivated by the method of surrogate data is the TFT-bootstrap of
Kirch and Politis (2011). The TFT-bootstrap extends the phase randomization technique
since it also resamples the magnitudes of Fourier coefficients and not just their phases.
As a result, the scheme is able to correctly capture the distribution of statistics that are
based on the periodogram. The authors prove the validity of the scheme in a number of
situations, not necessarily linked to testing for nonlinearity.

4. Conclusions

In this chapter, we have presented a selective review on the problem of testing for
nonlinearity in time series. Given the broad spectrum of disciplines involved in the
exercise some topics have been treated marginally, some have not been mentioned at
all. The exposition is informal but aimed at the statistically oriented reader.

The mathematical characterization of linear processes in terms of the Wold theorem
and recent results on the (somehow surprising) width of the class of processes implied
by such representation indicate that it is virtually impossible to discriminate perfectly
between a linear process that satisfies the Wold theorem and any other process.
Furthermore, on the side of prediction theory, the optimality of the linear predictor is
proved for the class of processes that include the minimum phase ARMA processes.
Hence, the linear (Gaussian) paradigm provides us with powerful tools for analyzing
time series data but in many instances it fails to capture essential aspects of the process
under scrutiny.

Clearly, it is not possible to provide a unified mathematical framework that encom-
passes all the aspects implied by nonlinearity in the various disciplines. Hence, it is
more convenient to test the presence of specific nonlinear features and this is the
approach followed in many situations. For instance, tests based on third-order moments
and the bispectrum can characterize the nonlinearity linked to the notion of asymmetry
and reversibility (see Section 3.1). Initial value sensitivity and nonuniform predictabil-
ity are assessed through the tests motivated by chaos theory presented in Section 3.5.
Also, nonlinearity in the conditional mean or variance can be studied by means of non-
parametric regression based tests (Section 3.4). Often, the nonlinearity is assessed in
the residuals of a fitted model. This is the approach at the basis of diagnostic tests
of Section 3.2. On the contrary, a great deal of literature is devoted to test for the
adequacy of a particular nonlinear model, leading to the so called specification tests
of Section 3.3. Finally, the surrogate data approach (Section 3.6), introduced in the
nonlinear dynamics literature, provides new interesting variations on the topic.

If we compare the problem of testing for nonlinearity in the last 20 years between the
fields of Nonlinear Dynamics and Statistics we see that the gap has somehow reduced.
In fact, physicists used to deal with very long, often continuous time series, sometimes
with low-noise levels and a complex deterministic skeleton. On the contrary, in Statis-
tics, the series are short, very noisy, discrete time and are often the result of aggregation
processes. But nowadays, for instance, both time series analysts and physicists can deal
with very long (financial) time series in continuous time. Also, some of the notions
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motivated by nonlinear dynamics have been adopted also in the time series community.
Statisticians, in turn, have provided the necessary mathematical tools for a rigorous
approach to data analysis based on such concepts. In this respect, the development of
nonparametric Statistics played a central role. The ever increasing availability of com-
puting power can make feasible the application in many Physics- and Engineering-
related fields (e.g. EEG or ECG series, meteorology, signal processing, DNA) of the
rigorous statistical approach which is very powerful but also time consuming.

It is the opinion of the author that many of the proposals that come from other disci-
plines, especially nonlinear dynamical system theory, might have a positive impact on
the time series community and motivate further research. Clear examples are threshold
models (Tong, 2011), tests based on chaos theory, surrogate data methods, and ini-
tial value sensitivity in a stochastic environment (Chan and Tong, 2001). Less known
examples include resampling methods and MCMC (see, e.g., Mignani and Rosa (2001)
for a discussion) and stochastic resonance (Gammaitoni et al., 1998). This latter topic
has been touched only marginally by statisticians but might reveal an interesting source
of inspiration. In order to be successful, our quest for nonlinearity has to spread across
disciplines.
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Abstract

An overview is given of the modelling of nonlinear and nonstationary time series.
The emphasis is on the theory for time series that are both nonlinear and non-
stationary. But to put that topic into perspective, brief outlines of the theory
for nonlinear and stationary and for linear and nonstationary models are also
given. Topics such as nonlinear integrated processes and nonlinear cointegrating
regression are included, and both parametric and nonparametric estimation are
considered.

Keywords: nonlinear time series, nonstationary time series, nullrecurrent Markov
chain, nonlinear integrated process, nonlinear cointegrating regression, nonpara-
metric estimation.

1. Introduction

The concepts of linearity and stationarity give rise to a pair of two way classifications
of time series models: linear or nonlinear and stationary or nonstationary. Most model
used in practice have been linear and stationary. However, in the last three or four
decades, there has been a lot of interest in linear models that have a particular, some-
what narrow, form of nonstationarity, the unit root processes. This has been followed
up for multivariate linear processes resulting in the important class of cointegrating
models (Engle and Granger, 1987; Johansen, 1995; Juselius, 2006). Parallel to this,
there has been a strong development in nonlinear stationary models (Fan and Yao,
2003; Tong, 1990), where, e.g., threshold models and smooth transition autoregressive
(STAR) models are now being extensively used. The final category, which is by far the
largest and is also the least studied, consists of nonlinear nonstationary processes. This
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class of processes will be the main object of interest in this survey, but to put matters
into perspective, we will start by looking at nonlinear stationary processes in Section 2
and at linear nonstationary processes in Section 3.

Our approach will be virtually entirely in time domain. There are nonlinear models
in frequency domain, but on the whole, time domain models have been much more
fruitful at least in applications to finance and economics. Actually, in these areas, it is
not uncommon to have time series that could be both nonstationary and nonlinear.

The extension of the estimation and specification theory to nonlinear and nonstation-
ary models involves hard mathematical challenges. In the linear stationary case, mixing
and martingale theory can be used to obtain distributional limit results. In the nonlinear
stationary situation, these tools can still be used, but the issue of actually determining
whether a given model is stationary becomes important and difficult. Markov chain
theory is an additional device for this purpose as well as for the asymptotic theory.
Still, in this situation, asymptotic normality of estimators is the rule. This changes
in the linear nonstationary case, where non-Gaussian distributions and functions of
Brownian motion play a far greater role. For models that are both nonlinear and non-
stationary, again new concepts are needed, such as local time and null recurrence of
Markov chains. These concepts can be expected to play a role in attempts to construct
a nonlinear cointegration theory. Existing results in these areas are few, and difficult
problems remain to be solved.

Both parametric and nonparametric estimation will be looked at in this survey. Para-
metric models are sometimes easier to treat theoretically, and the convergence rate is
typically faster, although not necessarily as fast as in the linear unit root case. A disad-
vantage is of course that a given parametric model may not be appropriate for the data at
hand. In this sense, a nonparametric approach is more flexible. The price paid for larger
flexibility is a slower convergence rate and, in some cases, a more complicated theory.
In the framework of nonlinearity and nonstationarity, parametric models are treated in
Sections 4.2–4.4, whereas the nonparametric approach will be reviewed in Section 4.5.
The type of nonstationarity that we will concentrate on will be the nonlinear random
walk type, where in the parametric case, the parameters are fixed in time. Another
possibility is to consider models (linear and nonlinear) with time-varying parameters
often in a state-space setting. This strand of the literature will be briefly mentioned in
Section 5. Much of our material is taken from Teräsvirta et al. (2010) to which we refer
for more details and related topics.

2. Nonlinear stationary models

For a process {yt } with t ≥ 0 or −∞ < t <∞, strict stationarity is defined by
requiring that the joint distribution of (yt1 , yt2 , . . . , ytk ) is the same as that of
(yt1+t , yt2+t , . . . , ytk+t ) for every t and every set of time points (t1, t2, . . . , tk) in the
domain of definition. It is much more difficult to find a precise definition of nonlin-
earity. This is illustrated by the following example where one starts with an obvious
example of a linear process, namely a moving-average, MA(q), process:

yt = εt +

q∑
j=1

θ jεt− j
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where {εt } ∼ i.i.d.(0, σ 2) (identically independently distributed with mean 0 and vari-
ance σ 2 and {θ j , j = 1, . . . , q} are any set of weights. It has been found that the closure
(that is, the set of MA(q) processes as q →∞ in the so-called Mallows topology) has
rather complicated properties and can include many processes that one would think
of as highly nonlinear; see Bickel and Bühlmann (2003). The result is interesting and
highly technical, but will not be discussed more here. Instead, we take a more pragmatic
point of view and mainly think of a nonlinear model as that defined by a nonlinear
possibly nonhomogenous autoregressive model given by

yt = g(yt−1, xt )+ h(yt−1, xt )εt , t ≥ t0 (1)

where g and h are functions, where yt−1 = (yt−1, . . . , yt−p)
′ consists of lags of yt , and

xt = (x1t , . . . , xkt )
′ is a vector of exogenous variables.

2.1. Stationarity of nonlinear models

Whereas the probability structure of linear Gaussian models is determined by second-
order moments, for nonlinear models, moments will not in general suffice. One needs
to look at the distribution and at conditional quantities such as the conditional mean
and the conditional variance. This means that strict sense stationarity rather than wide
sense stationarity is required. The definition given of stationarity in the beginning of
this section is in a sense too strict and in another sense too wide. It is too strict because
we need to allow for processes that are asymptotically stationary but can be started
with an arbitrary initial condition. It is too wide because stationarity in itself is usually
not enough to establish limit theorems. What is needed is some form of ergodicity, and
where the Markov property could be quite essential.

We illustrate this by the scalar recursively defined Markov model {yt , t ≥ 1}
modelled by,

yt = g(yt−1, θ)+ εt , y0 = y(0) (2)

where g can be taken as a known function, θ as an unknown parameter, and {εt } ∼

i.i.d.(0, σ 2) and εt independent of {ys , s < t}. The stationarity criteria to be treated
below furnish existence result in the sense that they guarantee the existence of an initial
distribution for y0 such that the system is stationary when started with this distribution.
If it is started with another distribution, the effect of this initial distribution will die out
eventually, so that the process is “asymptotically stationary” or “stable.” In addition,
these criteria also imply ergodicity, which is one tool that can be used for establishing
asymptotics.

A simple special case is the linear Gaussian autoregressive process

yt = φyt−1 + εt , y0 = y(0)

where, if |φ| < 1 and y(0) is normally distributed with zero mean and variance σ 2(1−
φ2)−1, the process {yt } is strictly stationary (and all moments exist). If it is started with
another distribution, e.g., y(0) could be a fixed number, then

yt = φ
t y(0)+

t−1∑
i=0

φiεt−i .
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The effect from the initial condition will die out since |φ| < 1, and {yt } will approach
the stationary process defined by

yt =

∞∑
i=0

φiεt−i .

with {εt ,−∞ < t <∞} ∼ i.i.d. N (0, σ 2). For a nonlinear system, a corresponding
condition is far more difficult to find, and appropriate assumptions is often best dis-
cussed for specific models. Suffice here to say is that if εt has a continuous distribution,
if the function g(y, θ) in (2) is bounded for y in a compact set, and if there exists a
non-negative test function V satisfying a Foster-Lyapunov drift criterion, i.e.,

E{V (yt )|yt−1 = y} = E{V (g(y, θ)+ εt )} < V (y)

for large values of |y|, then an initial distribution can be found such that {yt } is (strictly)
stationary. Taking V (y) = |y|2, a sufficient condition is that |g(y, θ)| < |y| for |y|
large, and if Eε2

t <∞, the existence of second-order moments is also assured. This
means that if the nonlinear dynamics is bounded far out by a stationary linear autore-
gressive process, then a stationary solution exists. Actually, such an approach often
yields a great deal more in that so-called geometric ergodicity is obtained, which is very
useful in proving central limit theorems in estimation. We refer to Meyn and Tweedie
(1993) for much more details and similar results.

In general, the problem of finding conditions for stationarity is difficult, especially
for the nonlinear higher-order AR case. Even for a second-order threshold AR process
a complete characterization does not seem to be known. The Foster-Lyapunov criterion
can also be used for ARCH/GARCH process. Recent publications in this area include
Carrasco and Chen (2002), Francq and Zakoı̈an (2006), Liebscher (2005), Ling and
McAleer (2002), Meitz and Saikkonen (2008), and Meitz and Saikkonen (2011). For all
types of Markov models, much effort has been spent on proving geometric ergodicity,
since this implies mixing, which in turn can be used for proving central limit theorems.

An alternative to the Markov chain approach is to view (2) as a stochastic recursive
equation and use a contraction principle to find conditions for existence of stationary
solutions. This way of attacking the problem has proved especially useful for nonlin-
ear conditional heteroskedastic models. We refer to Straumann (2005) and Aue et al.
(2006).

For some nonstationary time series, it may be possible to transform them to station-
arity to take advantage of the theory for stationary models. In the linear univariate case
such a transformation would typically consist in differencing the series. The class of
series for which differencing achieves stationarity is closely related to the class of I(1)
and I(2) (differencing twice) processes, or the unit root processes (cf. Section 3.1 and
Hamilton, 1994, Chapters 17 and 19). In the multivariate linear case, cointegration the-
ory can be used to find linear transformations to a system of jointly stationary processes
(cf. Section 3.2 and Hamilton, 1994, Chapter 19).

In the nonlinear nonstationary case, again all this becomes more difficult. As in
the linear case, restrictions on the type of nonstationarity allowed have to be intro-
duced. There are presently two possibilities, first, to use decomposition in terms of
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Brownian motion processes with local time, and, second, to apply recurrence theory of
Markov chains. Both approaches are highlighted in Section 4. This is a fairly new area
of research and one with a great deal of potential, at least for theoretical development.

In Karlsen and Tjøstheim (2001) and Karlsen et al. (2007), nonlinear unit root pro-
cesses and nonlinear cointegration type models are analyzed in terms of null recurrent
Markov chains, see Sections 4.1 and 4.5. It then becomes of interest to find conditions
on g(y, θ) which imply null recurrence. This work has just started, see Myklebust et al.
(2011) which is mostly about the linear vector case, though. As an example of the diffi-
culties involved, it is known that the threshold-like process with random walk behavior
far out,

yt = g(yt−1, θ)I (|yt−1| ≤ c)+ yt−1 I (|yt−1| > c)+ εt

where I (·) is the indicator function and is null recurrent if sup|y|≤c g(y, θ) <∞, but to
our knowledge, it is not known whether the exponential AR process

yt = (1+ ψe−γ y2
t−1)yt−1 + εt , γ > 0

is null recurrent. Intermediate cases between geometric ergodicity and null recurrence
have received attention as well (cf. Yao and Attali, 2000).

2.2. Some specific nonlinear models

In Section 2.1, we took linear autoregressive models as a prototype of linear models
to start from. One may wonder why not starting with moving-average models. In one
sense, the moving-average processes have the simplest mathematical structure, but little
progress has been made so far with nonlinear moving-average models. Moreover, the
apparently simpler mathematical structure of moving-average models could be decep-
tive. This is very effectively illustrated by Breidt et al. (2006) for the linear MA(1)
model. Explicit nonlinear extensions of the moving-average model do exist; see, for
example, de Gooijer (1998), Ling and Tong (2005), and Li et al. (2011) for a threshold
moving-average model, but the theory has not progressed very far. It seems that when
it comes to formulating nonlinear extensions that are useful in practice, starting with
a linear autoregressive model is far preferable, primarily because their recursive struc-
ture makes them easier to estimate and forecast. In this section, we shall mainly discuss
some specific extensions of linear autoregressive processes.

Virtually all of the important aspects of nonlinearity emerge in the first-order case,
and to begin with, we will therefore concentrate on generalizations of the linear AR(1)
model

yt = φyt−1 + εt , (3)

where φ is the autoregressive coefficient and {εt } ∼ i.i.d.(0, σ 2).
Aspects of the estimation theory for a parametric nonlinear AR process

yt = g(yt−1, θ)+ εt
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are already covered in Tjøstheim (1986), but there are many more recent contributions,
and the reader is referred to Fan and Yao (2003, Chapter 4) and Ling and McAleer
(2010).

Another generalization of (3) is to consider a model

yt = φyt−1 + h(yt−1)εt , (4)

where h may be unknown or known up to a parameter. Such a model can be modi-
fied and extended in many directions to obtain models of autoregressive conditional
heteroskedasticity that have been considered in Teräsvirta et al. (2010, Chapter 8). By
again replacing φyt−1 by g(yt−1) in (4), one obtains a model that is nonlinear both
in the conditional mean and the conditional variance but fairly difficult to specify and
estimate.

A rather different generalization of (3) is obtained by replacing φ by a random pro-
cess {θt }, where {θt } may itself be an autoregressive process. This can be taken as an
example of a state-space process, and it will be mentioned briefly in Section 5.

The classic nonlinear parametric time series models include the threshold autore-
gressive (TAR) model (Tong and Lim, 1980; Tong, 1990), the exponential autoregres-
sive model (Ozaki, 1982, 1985) and the bilinear model (Subba Rao, 1981; Subba Rao
and Gabr, 1984). It is probably fair to say that of these three models, the threshold
model has been found to be most useful in practice. In its simplest form, the linear
model (3) is replaced by a nonlinear mechanism such that for every t , yt is gener-
ated by one of two linear models. The value of yt−1, the threshold variable, determines
which model. More formally,

yt = φ1 yt−1 I (yt−1 ≤ c)+ φ2 yt−1 I (yt−1 > c)+ εt

where c is the threshold parameter. In general, the threshold variable could be chosen
to be another time lag, yt−d , say. There are numerous generalizations, not necessarily
restricted to the stationary case. For recent applications of the threshold model to non-
linear error correction models, see Hansen and Seo (2002), Hansen (2003), Bec and
Rahbek (2004), and Section 4.3. The asymptotic theory in the stationary case can be
found in Chan (1993) and in Li and Ling (2011). The maximum likelihood estimator
of the threshold parameter has a nonstandard asymptotic distribution and has a faster
convergence rate.

The TAR model has been criticized for its lack of smoothness in its transition
mechanism. The exponential autoregressive model given by

yt = (φ + ψe−γ y2
t−1)yt−1 + εt , γ > 0

was introduced partly as a response to this criticism. For large |yt−1|, the process essen-
tially moves according to an AR process with parameter φ, whereas for small |yt−1|,
the time-varying AR coefficient is roughly φ + ψ . This is an example of a smooth
transition model on which there is a rich literature, see e.g., Teräsvirta et al. (2010).

Many of the models treated above have trivial extensions to the higher-order case
and to vector models. As an example, we mention the vector threshold model and the
smooth transition vector autoregressive model.
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The vector threshold autoregressive model can be defined as Tsay (1998),

yt =

r∑
i=1


p∑

j=1

(µi +8i j yt− j + 0i j xt− j )+ εi t

 I (ci−1 < st ≤ ci ) (5)

where yt and εi t , i = 1, . . . , r , are stochastic m × 1 vectors and µi is an m × 1 vector
of intercepts, i = 1, . . . , r . Furthermore, 8i j are m × m coefficient matrices and 0i j

are m × k coefficient matrices, both for i = 1, . . . , r , and j = 1, . . . , p. The errors
εi t are serially uncorrelated with mean 0 and positive definite covariance matrices
6i , i = 1, . . . , r . A single stationary and continuous switch-variable st determines
the regime of the whole system, where xt is a time series of explanatory variables.
A modelling strategy for this family of models with applications is developed and
discussed in Tsay (1998).

The exponential AR model was mentioned as an example of a smooth transition
autoregressive model. The idea of a smooth transition may be generalized to the vector
case. A vector STAR model of order p may be defined as follows:

yt = µ0 +

p∑
j=1

8 j yt− j +G(γ , c; st )

µ1 +

p∑
j=1

9 j yt− j

+ εt

= µ0 +G(γ , c; st )µ1 +

p∑
j=1

{8 j +G(γ , c; st )9 j }yt− j + εt ,

where yt is an m × 1 vector, µ0 and µ1 are m × 1 intercept vectors, 8 j and 9 j ,
j = 1, . . . , p, are m × m parameter matrices, and

G(γ , c; st ) = diag{G1(γ1, c1, s1t ), . . . , Gm(γm , cm , smt )}

is the m × m diagonal matrix of transition functions. Furthermore, εt ∼ i.i.d. N (0,6),
where 6 is positive definite.The logistic vector STAR (LVSTAR) results if
G j (γ j , c j , s j t ), j = 1, . . . , m, are standard logistic functions; i.e,

G(γ , c, st ) =

(
1+ exp

{
−γ

K∏
k=1

(st − ck)

})−1

, γ > 0

where γ > 0 is an identifying restriction.
Much more about STAR models can be found in Teräsvirta et al. (2010).
In spite of the large flexibility of STAR models, we end this section by briefly men-

tioning two other model classes, one parametric, the artificial neural network (ANN)
models, and the other nonparametric, the additive models.

ANN models are worth mentioning because of the attention they have received both
in statistical and neural network literature and among practicians. In the simplest single-
equation case, which is the so-called “single hidden-layer” model, it has the form

yt = β
′

0zt +

q∑
j=1

β j G(γ
′

j zt )+ εt (6)
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where yt is the output series, zt = (1, yt−1, . . . , yt−p, x1t , . . . , xkt )
′ is the vector of

inputs, including the intercept and lagged values of the output, β ′0zt is a linear unit
with β0 = (β00,β01, . . . ,β0,p+k)

′. Furthermore, β j , j = 1, . . . , q , are parameters, called
“connection strengths” in the neural network literature. The function G(·) is a bounded,
asymptotically constant function called the “squashing function” and γ j , j = 1, . . . , q ,
are parameter vectors. Typical squashing functions are monotonically increasing ones
such as the logistic function and the hyperbolic tangent function. The errors εt are
often assumed i.i.d.(0,σ 2). The term “hidden layer” refers to the structure of (6).
While the output yt and the input vector zt are observable, the linear combination∑q

j=1 β j G(γ ′j zt ) is not. It thus forms a hidden layer between the “output layer” yt

and “input layer” zt .
The use of ANN in building time series models is discussed in Chapter 16 of

Teräsvirta et al. (2010).
ANN models are almost nonparametric in structure, and at this point, it is also useful

to mention a general type of higher-order model, the class of additive models that are
especially useful for nonparametric analysis. A general regression model commonly
assumed in economics is

yt = g(zt )+ h(zt )εt

where zt is a vector of explanatory variables, including lags of yt and where εt is
assumed to be independent of zt . With known forms for the functions g and h except
for certain parametric values, maximum likelihood methods can efficiently estimate
these parameters if the assumptions of the model are appropriate. A more realistic
situation is when g and h may be unknown functions. In a few simple cases, with
a low-dimensional zt , they can be estimated nonparametrically, but many interesting
models cannot be handled, primarily because of the curse of dimensionality when the
dimension of zt exceeds 3-4.

A useful approximation, in the high-dimensional case, is to consider a simple
additive model of the form

g(zt ) = g0 +

m∑
j=1

g j (z j t )

where there are m explanatory variables. As Sperlich et al. (2002) point out, such
models have a long and distinguished history in both economics and statistics.

However, one is often interested in interactions, for instance in economics, so
Sperlich et al. (2002) consider a wider class of models, where

g(zt ) = g0 +

m∑
j=1

g j (z j t )+
∑

1<i< j≤m

gi j (zi t , z j t )

so that the completely general function g is approximated by functions of single z j t ’s
and pairs of z j t ’s. In most “well behaved” circumstances, the approximation can be
thought of as likely to be an acceptable one.
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3. Linear nonstationarity

To put the models of the next section into perspective, we include a brief review of
linear processes which are nonstationary. The nonstationarity is of random walk type.
These models have been much used by econometricians.

3.1. Linear unit root models

A natural starting point for discussing nonstationary models is the unit root model
which takes the form

(1− L)yt = 1yt = xt (7)

where L is the backshift operator and {xt } is a stationary series with constant variance
σ 2

x . If the series begins at t = 0, the variance of yt is approximately tσ 2
x and, as this

variance changes with time, {yt } is nonstationary. Of course, such a process merely
represents a simple case of nonstationarity and is hardly a typical example of this cat-
egory, even though it is sometimes used as such. If {xt } has a nonzero mean, {yt } will
also have a linear trend in mean. An example of a unit root process is the simple random
walk

1yt = εt (8)

where {εt } ∼ i.i.d.(µ, σ 2). Then, yt has mean µt and variance σ 2t .
In the common notation used in this subject, a series is denoted as I(1) if it has to

be differenced once to achieve stationarity and I(2) if it has to be differenced twice
for that. One might think that a stationary process may be reasonably defined as I(0).
Unfortunately, this latter definition is not quite strict enough as the fractional ARMA
processes are denoted by I(d) and are stationary for 0 < d < 1/2. A better definition in
the linear framework is that an I(0) series is ARMA with spectrum bounded above and
away from zero at all frequencies. We will return to the problem of defining I(0) in the
nonlinear case in Section 4.1.

A rather complete theory of statistical inference is now available for linear unit
root models; see e.g., Phillips (1987), Phillips and Solo (1992), and Tanaka (1996).
It is worthwhile to go through the crucial steps of such an analysis to highlight the
contrasts with the nonlinear case to be treated in Section 4.4. The essential features of
the analysis already emerge in the simple random walk case. Consider the random walk
model (8). Its stationary counterpart is the AR(1) process

yt − φyt−1 = εt

with |φ| < 1. In the latter case, if Eyt = 0,

1
√

T

T∑
t=1

yt
d
→N (0, σ 2

y )
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and for the least squares estimator (which equals the maximum likelihood estimator
asymptotically)

φ̂ =

∑
yt yt−1∑

y2
t

of φ we have

√
T (φ̂ − φ) =

T−1/2∑ εt yt−1

T−1
∑

y2
t

.

Furthermore, a central limit theorem is obtained from the fact that

T−1
∑

y2
t

p
→σ 2

y and T−1/2
∑

εt yt−1
d
→N

(
0, σ 2

ε σ
2
y

)
.

where
p
→ and

d
→ denote convergence in probability and distribution, respectively.

When φ = 1 as in (8), everything changes dramatically. The limit distribution of φ̂
in this case can be derived using the so-called functional limit theorem (also called
the invariance principle) as is described in e.g., Tanaka (1996, Chapter 3). Because
of the comparison to the nonlinear case, we now give a brief heuristic derivation of
asymptotic results for {yt } in terms of the Wiener process. A standard Wiener process
(or Brownian motion) is a Gaussian stochastic process {wt } in continuous time with
independent increments such that w0 = 0, Ewt = 0, and corr(wt ,ws) = min(t , s).

Assume that {yt } is a random walk process as in (8). If σε = 1, we have from the
classic central limit theorem that

yT
√

T
=

1
√

T

T∑
s=1

εs
d
→w1 ∼ N (0, 1). (9)

Similarly, it can be shown that for 0 ≤ r ≤ 1,

y[rT ]
√

T
=

1
√

T

[rT ]∑
s=1

εs
d
→wr (10)

where [rT ] is the integer part of rT defined as the largest integer less than or equal to
rT . It follows heuristically from (10); see e.g., Tanaka (1996, Chapter 3) for easy but
rigorous proofs, that

1

T 2

T∑
t=1

y2
t =

T∑
t=1

( yt
√

T

)2
·

1

T
d
→

1∫
0

w2
r dr (11)

where 1/T plays the role of the differential dr when T gets large. Similarly,

1

T

∑
εt yt−1 =

T∑
t=1

yt−1
√

T
·

yt − yt−1
√

T

d
→

1∫
0

wr dwr (12)
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where the integral is interpreted as an Itô-integral. Note that in contrast to the station-
ary case, in (11) (and in (12)), one does not have convergence to a number but to a
stochastic variable.

The function h(y) =
∫ 1

0 y2
t dt is continuous on the space C of continuous functions

on [0,1], and the continuous mapping theorem is used to prove (11) and with some
modifications (12). Moreover, it can be used to prove (Tanaka, 1996, p. 75) that for
model (8) with φ̂ =

∑
yt yt−1/

∑
y2

t ,

T (φ̂ − 1) =
1
T

∑
εt yt−1

1
T 2

∑
y2

t

d
→

∫ 1
0 wr dwr∫ 1
0 w

2
r dr

which shows that φ̂ is super consistent as an estimator of φ = 1. This result is used as
a point of departure for unit root tests of Dickey-Fuller type.

It should be noted that the above results can be derived (cf. Tanaka 1996, Chapter 1)
without functional limit arguments and the Wiener process. However, the functional
limit theory yields a very powerful instrument for generalizing the results, so that they
cover (7) for quite general processes {xt }. Thus, for (8), the results can be generalized
(Phillips, 1987) to a situation where {εt } is replaced by a process {xt } which is a mar-
tingale process. A mixing process and even heteroskedasticity may be allowed. With

these generalizations, y[rT ]/
√

T
d
→wr still holds. The expression

∑
y2

t that appears in
the linear estimation problem already involves a nonlinear transformation of an I(1)
process. However, for nonlinear estimation theory of I(1) processes and other nonsta-
tionary processes, more complicated nonlinear transformations are required. We shall
return to this point in Section 4.1 but shall first present a few aspects of the theory for
linear vector models.

3.2. Vector autoregressive processes and linear cointegration

The full significance of the I(1) concept can first be realized in a joint description of
a vector time series. Such systems of time series are often modelled by a vector AR
(VAR) process

yt =

p∑
i=1

8i yt−i + εt =

p∑
i=1

8i L
i yt + εt (13)

where yt is m-dimensional and the matrices 8i are m × m. The vector time series {yt }

is stationary if the roots of the characteristic polynomial 8(z) = Im −
∑p

i=18i zi are
outside the unit circle, that is, if |8(z)| 6= 0 for |z| ≤ 1. Here, Im is the m-dimensional
identity matrix. If there are k unit roots, say, and m − k roots outside the unit circle,
{yt } is nonstationary and the components are I(1) or I(0). In the trivial and completely
uninteresting case of independence between the component processes there are exactly
k I(1) processes and m − k I(0) processes. In the case of dependence between the com-
ponent processes, the k unit roots correspond to k common stochastic trends, and the
m − k roots outside the unit circle lead to the existence of m − k linear combinations
(eigenvectors corresponding to these roots) of the components which are stationary I(0)
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even though the component processes are nonstationary I(1). This property is called
cointegration. The processes making up each of the m − k linear combinations move
together in the long run. The cointegration concept was introduced in Granger (1981)
and further developed in Engle and Granger (1987) and has spawned numerous papers.

There are two main representations of a cointegrated system, the error correction
representation and the triangular representation. Both of these have served as a basis
for nonlinear extensions. The error correction representation is obtained by subtracting
yt−1 from both sides of (13) and rearranging this equation as

1yt = Cyt−1 +

p−1∑
i=1

9 i1yt−i + εt (14)

where C = −Im +
∑p

i=18i = −8(1) and 9 i = −
∑p

j=i+18 j , i = 1, . . . , p − 1.
When there are k unit roots of the characteristic polynomial, the matrix C = −8(1)
has rank n = m − k. The row space of C is then spanned by a basis of n linearly inde-
pendent vectors, and we denote by α the m × n matrix whose columns form such a
basis. Every row of C can now be written as a linear combination of the rows of α′.
Thus, we can write C = δα′, where δ is an m × n matrix with full column rank, and
Eq. (14) can then be written

1yt = δα
′yt−1 +

p−1∑
i=1

9 i1yt−i + εt

or

1yt = δxt−1 +

p−1∑
i=1

9 i1yt−i + εt (15)

where xt−1 = α
′yt−1. One can solve for xt−1 obtaining

xt−1 = (δ
′δ)−1δ′

[
1yt −

p−1∑
i=1

9 i1yt−i − εt

]
(16)

so that xt is I(0). Thus, the linear combinations xt = α
′yt of nonstationary components

are stationary, and the columns of α are the cointegrating vectors. The term “error
correction” first appeared in Phillips (1957) and another pioneer was Sargan (1964).
The relationship α′yt = 0 can be interpreted as the “equilibrium” of the dynamical
system and xt as the vector of “equilibrium errors” and Eq. (16) then describes the
self correcting mechanism of the system. The error correction representation has been
further developed in several papers, see e.g., Johansen (1988, 1991, 1995). The basis
of these developments in the statistical literature is reduced rank regression.

The other representation of a cointegrated VAR system is based on a matrix poly-
nomial decomposition 8(z) = U(z)M(z)V(z). Here, U(z) and V(z) are m × m matrix
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polynomials with all their roots outside the unit circle, and M(z) is a m × m diagonal
matrix polynomial with roots on or outside the unit circle. In the case of a cointegrated
VAR, M(z) can be written as follows:

M(z) =

[
1k 0
0 In

]
where1k = (1− z)Ik . Hence all of the nonstationarity of the VAR is in the upper block
of M(z). Using this decomposition and a rearrangement of the components (cf. Watson,
1994, pp. 2872–4) of yt implies that yt can be written as yt = (y′1t , y′2t )

′, where y1t is
k-dimensional and y2t is n = (m − k)-dimensional with the triangular representation

1y1t = u1t

y2t − Dy1t = u2t .

Here, D = D(1) is an n × k matrix obtained by replacing L by 1 for some matrix poly-
nomial D(L) in the lag operator. Moreover, ut = (u′1t , u′2t )

′
= F(L)εt for some other

matrix polynomial F(L). Explicit definitions of D(L) and F(L) can be found in Watson
(1994, p. 2875). Hence, {ut } is a stationary moving-average process. In this representa-
tion, the elements y1t are the common trends and y2t − Dy1t are the I(0) stationary com-
binations of the data. The triangular representation has been particularly advocated by
Phillips (1991), and a number of strong theoretical results have been obtained using it.

The estimation and testing theory of linear cointegrating systems is now well devel-
oped. It makes systematic use of functional limit results and expansions in terms of
the multidimensional Wiener process akin to the introductory results for the scalar
I(1) process considered in the preceding sub-section. We have found the review of
Watson (1994) useful. It could also be mentioned that the cointegration theory has been
extended to systems containing I(2) series; see Johansen (1992). Empirical aspects of
linear cointegration are covered in Juselius (2006).

4. Nonlinear and nonstationary processes

This is meant to be the main focus of this survey. We start with the scalar case and
consider two extensions of the unit root model in Sections 4.1 and 4.2. The nonlinear
error correcting model is treated in Section 4.3 and a general nonlinear cointegrating
regression model in Sections 4.4 and 4.5 with estimation in the parametric and in the
nonparametric case, respectively.

4.1. Nonlinear I(1) processes

There are obvious difficulties in attempting to generalize the concepts discussed in the
preceding section to nonlinearity because so many components are basically linear.
The differencing operation is linear and so are consequently the definitions of I(1) and
I(2). Furthermore, the cointegrating relationships are linear combinations of nonstation-
ary variables. The various cointegrating systems including the error correction model
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and the triangular representation are linear as well. It may be added that even though
an I(1) process is invariant to linear transformations, it is not invariant to nonlinear
transformations.

There are many “ad hoc” answers to the question of whether or not a nonlinear
series can be I(1). A familiar example is to state that an interest rate series or any
bounded time series cannot be I(1) because it is bounded below, whereas a random
walk is unbounded. However, suppose that {εt } is a positive series, yt =

∑t
s=0 εs , then

certainly {yt } is a random walk. It is I(1) because its difference is stationary, 1yt = εt ,
but it is bounded below. The example may be thought to be objectionable because {yt }

will have a trend in mean, as well as in variance, and all changes are positive. One
could replace it by a more sophisticated model in which {yt } is a more standard random
walk, with zero mean, some negative changes but reverts to a Markov process with
a reflecting barrier as yt gets small enough. Its properties will still be dominated by
those of the random walk. Adding an upper boundary can be handled similarly. Nicolau
(2002) has a discussion of bounded “near random walks.”

Nevertheless, the concepts of I(1) and I(0) appropriate for nonlinear processes have
to be rather more subtle. In a sense, if one wants to keep I(1) as an accumulation of I(0),
the problem may be said to be not with I(1), but rather to find an appropriate nonlinear
definition of I(0).

A difficulty is that even in the linear case, there is no concensus on how I(0) should
be defined. Davidson (2009) lists five possible definitions, where the one mentioned
in Section 3.1 is essentially one of them. Not requiring {yt } to be generated by a lin-
ear model, Davidson (2009) (see also Davidson (2002)) defines {yt } to be (possibly
nonlinearly) I(0) if

σ−1
T

[rT ]∑
t=1

(yt − Eyt )
d
→ wr (17)

where σ 2
T = var(

∑T
t=1 yt ), and {wr , 0 ≤ r ≤ 1} denotes the Wiener process. Many of

the linear definitions of I(0) are sufficient to guarantee this convergence, but Davidson
prefers to state this directly as the defining property, thus loosening the bond to linearity.
Irrespective of the definition of I(0) used, it seems to be difficult to construct consistent
and asymptotically correctly sized tests for the I(0) hypothesis. In a sense, the problem
is ill-posed (cf. Leeb and Pötscher, 2001; Pötscher, 2002). For a full discussion and a
possible solution using simulation-based tests, we refer to Davidson (2009).

Another proposal of defining I(0) similar to the relationship (17) is concerned with
α-mixing (Baghli, 2000; Escribano and Mira, 2002): A sequence {xt } is (possibly non-
linear) I(0) if it is an α-mixing sequence, whereas the series defined by yt =

∑t
s=1 xs

is not α-mixing. The series {yt } could then be said to be (possibly nonlinear) I(1).
If a process {xt } is α-mixing, then essentially

|Pr{xt ∈ A1, xt+τ ∈ A2} − Pr{xt ∈ A1}Pr{xt+τ ∈ A2}| → 0

as τ ↑ ∞ for all pairs of sets A1, A2, so xt , xt+τ becomes independent as τ gets large. If
{xt } is not mixing, then it displays “some persistence of memory.” Baghli (2000) states
that the α-mixing property can be indirectly inferred by ensuring that a series verifies
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Herrndorf’s functional central limit theorem. This can be done using several standard
tests including that based on the KPSS statistic (Kwiatkowski et al., 1992), see also
Dufrénot and Mignon (2002).

In an interesting recent publication, Rico and Gonzalo (2010) forward the concept
of summability: A stochastic process {yt } with positive variance is said to be summable
of order δ if there exists a nonrandom sequence {m t } such that

ST =
1

T
1
2+δ

L(T )
T∑

t=1

(yt − m t ) = Op(1)

as T →∞, where δ is the minimum real number that makes ST bounded in probability
and L(T ) is a slowly varying function. They show that this concept generalize the
concept of I(d) in the linear case and go on to establish the order of summability for a
number of nonlinear models.

A rather different approach is taken in Karlsen and Tjøstheim (2001). They consider
the I(1) processes rather than I(0). A generalized I(1) class containing both linear and
nonlinear models is associated with the class of null recurrent Markov chains. The start-
ing point is again the simple random walk (8). The two basic properties that Karlsen
and Tjøstheim try to extend to a larger class of nonlinear I(1) type processes are (i) the
persistence of the random walk (its nonstationarity); and (ii) the possibility of estab-
lishing central limit results such as the ones discussed in Davidson (2002) and Baghli
(2000), but not necessarily with convergence to the Wiener process.

The random walk is a linear process and a Markov chain. The Markov chain property
also holds for the nonlinear generalization

yt = g(yt−1)+ εt t ≥ 1 (18)

and such a process can be both stationary and nonstationary. If |g(x)| ≤ c |x | for some
c < 1 when |x | is large enough, then (Meyn and Tweedie, 1993) there exists an initial
distribution for y0, so that {yt } becomes stationary if started with this distribution, and
property (i) above is not fulfilled; see Section 2.1 for more details. On the other hand,
if g is such that {yt } is explosive, e.g., g(x) = x2, then property (ii) cannot be satisfied
in general; at least not in a nonparametric estimation context, because {yt } is then a
transient Markov chain. A crucial property for {yt } to have for condition (ii) to hold is
that it should be recurrent. This means that if ys = y for a certain time point s, then
the Markov chain {yt } is guaranteed to be in an arbitrary small neighborhood around y
with probability one at a future time point; the process recurs or regenerates. We refer
to Karlsen and Tjøstheim (2001) for a more precise statement.

Under relatively weak regularity conditions, Karlsen and Tjøstheim derive a central
limit theorem for sums of the type

∑T
s=1 h(ys) properly scaled, where h is a function

satisfying some moment conditions. The key to this derivation is to use the recurrence
property of the Markov chain to decompose the above sum as

T∑
s=1

h(ys) =

τ1∑
s=1

h(ys)+

τ2∑
s=τ1+1

h(ys)+ · · · +

T∑
s=τn+1

h(ys)
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corresponding to the recurrence times τ1, τ2, . . . , τn ≤ T ; i.e., the time points of the
regenerations of the chain. Clearly, n→∞ as T →∞, but at a slower rate. Due to
the Markov property, the components

∑τi+1

s=τi+1 h(ys), i = 1, . . . , n are independent and
identically distributed, and this can be used to prove a central limit result under the
additional assumption that the distribution of the recurrence time intervals Si = τi −

τi−1 should not have too heavy tails. More specifically, Pr{Si > s} is essentially of
the order s−β , 0 < β < 1, so that ESk

i <∞ for k < β. This property is named β-null
recurrence in Karlsen and Tjøstheim (2001). The random walk corresponds to β = 0.5,
as was established by Kallianpur and Robbins (1954).

Both parametric and nonparametric estimation can be handled by this technique,
but Karlsen and Tjøstheim have restricted themselves to nonparametric estimation of
a density function and the conditional mean function, covering the estimation of g in
(18) as a special case. A very different approach based on random walk-like processes
and local time of the Wiener process has been used by Park and Phillips (1999, 2001).
Their method is outlined in more detail in Section 4.4. See also Xia (1998).

The class of recurrent Markov chains is subdivided into positive and null recurrent
chains, depending on whether the expected recurrence time ESi is finite or not. The
positive recurrent case has ESi <∞ (β = 1 in the above) and corresponds to station-
arity, whereas the null recurrent case can be associated with a nonlinear extension of
I(1). As already mentioned, the random walk is null recurrent with β = 0.5. A unit root
AR(p) process can be cast as a p-dimensional Markov chain, and in Myklebust et al.
(2011), it is shown that it is β-null recurrent with β = 0.5 under weak assumptions.
This paper also contains a characterization of vector autoregressive time series as to
when they are β-null recurrent, recurrent but not β recurrent, and transient. But the
null recurrent class is not restricted to linear processes, and it has the useful invariance
property that if {yt } is null recurrent (β-null recurrent) then the transformed process
{h(yt )} is null recurrent (β-null recurrent) for an arbitrary one-to-one transformation h.
Such an invariance property does not hold for the “ordinary” I(1) class of processes.
The class of β-null recurrent processes satisfies both (i) and (ii) above, but this set-up
is restricted by the fact that it must be possible to embed {yt } in a Markov chain frame-
work, and only one unit root is allowed. One obvious class of examples, however, is
obtained by considering {h(yt )}, where h is one-to-one and {yt } is a simple random
walk or an AR(p) unit root process. A threshold process whose far out behavior is a
random walk would be another example of a null recurrent process and such threshold
unit root processes are treated in Gao et al. (to appear), where they are also compared
to other types of nonstationary threshold processes.

4.2. Stochastic unit root models

As an alternative to the nonlinear unit root type processes considered in the preceding
sub-section, one can replace a unit root with a stochastic unit root and the term 1− L in
(7) by (1− ρt L), where ρt is a stochastic process, but it is constrained to stay near one.
This is a time-varying parameter model rather than being strictly nonlinear. Granger and
Swanson (1997) and Leybourne et al. (1996) take ρt to be AR(1) with mean near one.
Thus, occasionally the process will be stationary; in other periods, it will be somewhat
explosive, but “on average” will be a unit root process. Standard tests, such as the
augmented Dickey-Fuller test, cannot distinguish between an exact unit root and these
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stochastic unit root (STUR) processes. Examples can be found where STUR models
have superior forecasting properties over alternative univariate models.

In the AR(1) case, the stochastic unit root process can be written as

yt = φt yt−1 + εt .

with φt close to 1 in some sense or another. Using the specification given in Bec et al.
(2008), they have been called autoregressive conditional root (or ACR) models. The
authors consider, for instance, the simple form where φt = ρ

st , ρ is a real number, st is
a binary variable, taking values zero or one, and {εt } ∼ i.i.d.(0, σ 2), possibly normally
distributed. Moreover, {st } will be a stochastic process, so that {yt } will be generated
as a random walk if st = 0 and as a stationary AR(1) if |ρ| < 1 and st = 1. Conditions
for stationarity are established and estimation is discussed. A related model has been
analyzed by Gouriéroux and Robert (2006).

4.3. Nonlinear error-correction models

In Section 3.2, it was seen that there are two main representations of a linearly coin-
tegrated system such that they could serve as a basis for nonlinear extensions. The
error-correction model seems to be the one that has most often been used as a starting
point, often with the nonlinear operation implemented only for the stationary process
xt in (15). We shall look at the nonlinear error correction (NLEC) model in this section.
The NLEC model contains differences 1yt = yt − yt−1 that can be considered a lin-
ear operation. In the next section, we look at the more general problem of establishing
nonlinear relationships directly on I(1) type variables.

Most nonlinear extensions of the error correction model have been concerned with
replacing the linear term Cyt−1 in (14) by a nonlinear generalization. However, Ripatti
and Saikkonen (2001) consider a model where the intercept is contained in the cointe-
gration space and is smoothly time-varying. This is obviously a form of nonlinearity,
and Ripatti and Saikkonen (2001) use their model to test for a smoothly changing
cointegration relationship.

We shall only consider the case of a bivariate process {yt } = {(y1t , y2t )} in (14).
If {y1t } and {y2t } are both I(1), then they are linearly cointegrated if there is a con-
stant vector α such that xt = α

′yt is I(0) (thinking of the linear I(0) class as in
Section 3.1). It is generally true that if {xt } is stationary, then {g(xt )} is also stationary;
assuming the mean and variance exist. A bivariate nonlinear error-correction (NLEC)
model extending (15) takes the form

1yt = δg(xt−1)+

p−1∑
i=1

9 i1yt−i + εt

where δ = (δ1, δ2)
′ is a two-dimensional vector and g is a function such that g(0) = 0

and Eg(xt ) exists. The function g can be estimated nonparametrically or by assuming a
particular parametric form. Escribano (1986, 2004) used a cubic function of xt in a UK
money demand equation and achieved a parsimonious model. Such a polynomial may
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be viewed as a Taylor series approximation of

β1xt + β2xt (1+ exp{−γ (xt − c)})−1

around γ = 0, which gives another form of NLEC.
An appealing form of NLEC models uses threshold error-corrections. This device

was originally introduced by Balke and Fomby (1997), and it forms an important spe-
cial case of the multivariate threshold model. Consider (5), but assume for simplicity
that 0i j = 0 for all i and j . Assume that r = 3 and rewrite (5) as follows:

1yt =

3∑
j=1

(
µ j +5 j yt−1 +

p−1∑
k=1

9
( j)
k 1yt−k + ε j t

)
I (c j−1 < st ≤ c j )

for p ≥ 2. When p = 1, the weighted sum of lagged first differences equals zero.
Note that this threshold model is conceptually different from the one in Gao et al.
(to appear). Assume that in each regime, yt is integrated of order one (1yt stationary in
the mean) and the m × m matrix 5 j can be written as 5 j = A j B′, j = 1, . . . , r , with
rank

(
A j
)
< m, and that st is continuous and stationary as before. If m = dim(yt ) = 2,

say, then A j = (α1 j ,α2 j )
′ and B = (1,β2), and the variables y1t and y2t are cointegrated

with cointegrating vector B. This model is called the threshold vector error correction
(TVEC) model. The strength of the attraction varies in the three regimes according to
A j . An interesting case in applications is the one in which r = 3 and A2 = 0. This
means that the model has three regimes and cointegration is present at high and low
values of the threshold variable st but not in the middle. At the same time, the intercept
is restricted in the cointegrating relationship, so that

1yt =

3∑
j=1

{
A j (B′yt−1 − µ j )+

p−1∑
k=1

9
( j)
k 1yt−k + ε j t

}
I (c j−1 < st ≤ c j ).

The simplest model of this sort is the bivariate band-TVEC model. It has a band
around the line x = 0, in which there is no cointegration, then upper and lower bands,
in which cointegration occurs, although possibly with different “strengths.”

The threshold error-correction model has been further developed by several authors.
Hansen and Seo (2002) provided a testing theory for the case where the cointegrating
vector is estimated, and they treat a general multivariate case. Saikkonen (2005) derived
stability results for the general NLEC.

More general switching mechanisms than the threshold one have been treated in
Bec and Rahbek (2004). Finally, there are a number of applications of NLEC models,
e.g., Bec et al. (2004), Baghli (2004), and Escribano (2004). There are still a number
of unsolved problems of statistical inference in these models.

4.4. Parametric nonlinear regression with a nonstationary regressor

For a stationary regressor xt , the parametric nonlinear regression model

yt = g(xt , θ)+ ut (19)
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where g is known, θ is an unknown parameter vector and ut is stationary, can be
analyzed using fairly standard methods. This is not the case in the nonlinear and
nonstationary cases.

For the linear nonstationary regression case, it was seen in Section 3.1 that the
asymptotics of sums of type

∑
y2

t and
∑
εt yt−1 need to be evaluated when {yt } is an

I(1) process. Properly scaled these sums converge to integrals over a Wiener process.
In this sub-section, which is based on Park and Phillips (1999, 2001), we shall

consider the rather general regression model (19), in which {ut } is a martingale incre-
ment process and {xt } an integrated process such that 1xt = vt . Here, {vt } could be a
moving-average process or more generally a process such that

vT (r) =
1
√

T

[rT ]∑
s=1

vs (20)

converges to a Wiener process wr . Again, [rT ] is the integer part of rT . Moreover, it
is assumed that

(uT (r), vT (r))
d
→ (w1r ,w2r ) (21)

where {(w1r ,w2r )} is a vector Wiener process, and

uT (r) =
1
√

T

[rT ]∑
s=1

us .

It should be noted that this set-up with {xt } being an I(1) type process excludes the
possibility of analyzing the model

yt = g(yt−1, θ)+ ut (22)

because the class of I(1) processes is not invariant under a general nonlinear trans-
formation g, and because {yt } enters on both sides of the equality (22), it cannot be
of I(1) type. Nonlinear and nonstationary AR models of type (22) will be estimated
nonparametrically in the next sub-section.

We will consider a least squares estimator θ̂T of θ in (19); that is, θ̂T is taken to
minimize

QT (θ) =

T∑
t=1

{yt − g(xt , θ)}
2. (23)

Let Q̇T = ∂QT /∂θ and Q̈T = ∂QT /∂θ∂θ
′. The asymptotic analysis of θ̂ t takes as its

starting point the Taylor expansion

Q̇T (̂θT ) = Q̇T (θ0)+ Q̈T (θT )(̂θT − θ0)
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where θ0 is the true value of θ , and θT is an intermediate value determined by the mean
value theorem. Using a scaling factor νT and the fact that Q̇(̂θT ) = 0, this implies

νT (̂θT − θ0) = [ν−1
T Q̈T (θ0)ν

−1
T ]−1νT Q̇T (θ0)+ op(1).

It is seen that this leads to the evaluation of sums of type
∑

t h1(xt , θ0) and∑
t h2(xt , ut , θ0) for some functions h1 and h2 depending on the function g and its

derivative. The evaluation of such sums is a crucial part of the analysis, and many of
its aspects are covered in Park and Phillips (1999). The heuristics of Section 3.1 can be
used for homogeneous functions with the property that h(λx) = λkh(x) for a scalar λ
and some k, for example h(x) = xk . Then,

1

T 1+k/2

T∑
t=1

xk
t =

T∑
t=1

( xt
√

T

)k
·

1

T
d
→

1∫
0

wk
2r dr . (24)

Here, {w2r } is the Wiener process appearing in (21) and {xt } plays the role of {yt } in
(10) and (11). In general, it can be shown (Park and Phillips, 1999) that for so-called
regular functions (including continuous and piecewise continuous functions)

1

T

∑
t

h
( xt
√

T

)
d
→

1∫
0

h(w2r )dr .

Park and Phillips (1999, 2001) consider altogether four classes of functions:

1. Integrable functions with the property that
∫
∞

−∞
h(x)dx exists and is finite, so

that h(x)→ 0 at a fast enough rate as x →±∞.
2. Asymptotic homogeneous functions, having the property

h(λx) = k(λ)H(x)+ R(x , λ) (25)

where H(x) is a homogeneous function so that H(λx) = k(λ)H(x) for some
k(λ), R(x , λ) is dominated by H(x) when |x | gets large.

3. Asymptotic exponential functions, where h grows to infinity with the speed of an
exponential function.

4. Super exponential functions, where h grows to infinity faster than the simple
exponential.

These classes of functions lead to rather different types of behavior for
∑

t h(xt ),
and unlike the linear and homogeneous case, integrals of functions of a Wiener pro-
cess do not suffice. One needs to introduce the concept of local time of the Wiener
process,

L(t , s) = lim
ε→0

1

2ε

t∫
0

I (|wr − s| < ε)dr
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where I is the indicator function. It may be noted that L(t , s) is a random process in
both t and s. It essentially measures the time that wr spends close to s in the time
interval [0, t]. It can be introduced in a much more general setting than the Wiener
process. It can be made meaningful both for Markov processes and semimartingales.
Much of its importance stems from the so-called occupation time formula. It states that
if h is locally integrable, then

t∫
0

h(wr )dr =

∞∫
−∞

h(s)L(t , s)ds. (26)

which again is valid in a much more general setting, see for instance Revuz and Yor
(1994).

It is interesting to note that the move from the analysis of stationary series to unit root
processes required the introduction of mathematical techniques based on the Wiener
process. Now moving further to the analysis of nonlinear transformations of unit root
processes involves further new mathematics, involving local time.

Park and Phillips (1999) prove under some regularity conditions that if h is inte-
grable and xt is an integrated process such that 1xt = vt with {vt } as in (20),
then

1
√

T

T∑
t=1

h(xt )
d
→

 ∞∫
−∞

h(s)ds

 L(1, 0) (27)

as T →∞.
This result means that

∑
t h(xt ) spreads out at a rate of (is balanced by a scaling fac-

tor)
√

T . Moreover, the integrability of h implies that h tends to zero far out, and only
observations at zero are exploited in the accompanying Wiener process as indicated by
the local time variable L(1, 0). The behavior is very different in the homogeneous case.
Indeed, again under some regularity conditions, if h is asymptotically homogeneous
satisfying the decomposition (25), then

1

T k(
√

T )

T∑
t=1

h(X t )
d
→

1∫
0

H(wr )dr =

∞∫
−∞

H(s)L(1, s)ds (28)

as T →∞. The last equality follows from the occupation time formula (26). More-
over, (24) is a special case of (28) with R(x , λ) = 0, h(x) = H(x) = xk and k(λ) = λk

in (25).
Park and Phillips (1999) also derive a theorem for the exponential case which again

leads to radically different behavior. We refer to their paper for details.
For an integrable g(x , θ) with a scalar parameter θ in (19), results such as in (27),

under regularity conditions stated in Park and Phillips (2001), lead to the following
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central limit theorem for θ̂T minimizing (23):

T 1/4(θ̂T − θ0)
d
→

L(1, 0)

∞∫
∞

ġ(s, θ0)
2ds

−1/2

w1

where ġ = ∂g/∂θ , and where w1, the Wiener process at time 1, is a standard normal
random variable. The convergence rate is seen to be slower than the standard parametric
convergence rate T−1/2 of the stationary case. It comes from the scaling factor of T 1/2

in (27) and from a corresponding scaling factor T 1/4 for sums of type
∑

h(xt )ut , with
ut defined in (19), for an integrable function h.

The analogous result for a homogeneous type g(x , θ) with a vector parameter θ in
(19) is given by (under a number of regularity conditions)

√
T k̇(
√

T )′(̂θT − θ0)
d
→

 1∫
0

Ḣ(w2r , θ0)Ḣ(w2r , θ0)
′dr

−1 1∫
0

Ḣ(w2r , θ0)dw1r . (29)

Here, H is the homogeneous part of g(x , θ) defined analogously to (25), Ḣ = ∂H/∂θ ,
k is the asymptotic order of g(x , θ) as in (25) (it may depend on θ ) and k̇ is defined as
the corresponding asymptotic order of ġ(x , θ), so that ġ(λx , θ) = k̇(λ)Ḣ(x , θ) asymp-
totically as x gets large. Finally, (w1r ,w2r ) is the pair of Wiener processes appearing
in (21). In the scalar linear case g(x , θ) = θx , ġ(x , θ) = x , such that k(λ) = k̇(λ) = λ.
This gives

√
T k̇(
√

T ) =
√

T
√

T = T leading to the convergence rate of T−1 as in
Section 3.1, faster than the standard stationary rate. It is also easy to check that the
formula in (29) reduces to the standard formula in the linear case.

There are a host of challenging problems in this field. For example, even though the
regression relationship (19) is sometimes called a nonlinear cointegrating relationship,
it does not really have the same symmetry in y and x as in the linear cointegrating case.
For that purpose transformations of both yt and xt may be required. Granger and Hall-
man (1991) have considered this problem A very recent contribution is Goldstein and
Stigum (to appear) considering joint transformations of (yt , xt ). Extending the analy-
sis beyond the bivariate case forms another difficulty. Such an extension is far from
trivial.

Saikkonen and Choi (2004) and Choi and Saikkonen (2004) consider estimation
and testing of the model (19), where g is a smooth transition function. They apply
another type of asymptotics, so-called triangular array asymptotics (cf. Andrews and
McDermott, 1995). In this kind of asymptotics, the actual sample size is fixed at T0,
say, and the model is embedded in a sequence of models depending on a sample size T
which tends to infinity. The embedding is obtained by replacing the I(1) regressor xt in
(19) by (T0/T )1/2xt . This change leads to a central limit theorem for the least squares
estimate θ̂ with rate T−1/2 under some regularity conditions including a three times
differentiability condition on the function g in (19). It is seen that the triangular array
asymptotics is rather different from that used in Park and Phillips (1999, 2001).
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4.5. Nonparametric estimation in a nonlinear cointegration type framework

Karlsen et al. (2007, 2010) consider nonparametric estimation in a nonlinear nonsta-
tionary environment which in some respects is wider than that of Park and Phillips but
in other respects more narrow. The class of models is defined by

yt = g(xt )+ ut (30)

where xt is nonstationary and β-null recurrent as defined in Section 4.1, ut is a sta-
tionary infinite-order moving-average process or a Markov chain. In contrast to the
set-up in Section 4.4, one can now allow xt = yt−1. Karlsen and Tjøstheim (2001)
in fact discuss estimation in this case. The function g is unknown, and the task is
to estimate it nonparametrically. Except for trivial choices of g (e.g., g = constant),
the process {yt } will be nonstationary, but it will not be β-null recurrent, as it is not
even a Markov chain. The analysis in Karlsen et al. (2007) is carried out in two cases:
the case in which {xt } and {ut } are independent, and the one in which dependence is
allowed between them. At its present state, the dependence modelling also requires a
boundedness condition for {ut }.

The function g(x) in (30) is estimated nonparametrically using the Nadaraya-
Watson estimator

ĝ(x) =
T∑

t=1

yt Kh(xt − x)/
T∑

t=1

Kh(xt − x)

where Kh(u) = h−1 K (h−1u) is the kernel with bandwidth h. Karlsen et al. (2007)
prove that

{
h

T∑
t=1

Kh(xt − x)

}1/2 {
ĝ(x)− g(x)− bias term

}
d
→N

(
0, σ 2

∫
K 2(s)ds

)
(31)

as T →∞. Here, σ 2
= var(ut ). The bias term tends to zero as T →∞, and it is

explicitly given in Karlsen et al. (2007). The convergence of ĝ(x) to g(x) is slower
than in the stationary case. This is easy to explain since the null recurrence of {xt }

means that it takes more time for the process to return to a neighborhood of the point
x , and it is the points in the neighborhood of x which are used in the nonparamet-
ric estimation. Roughly speaking, the sample size is in effect reduced from T to T β

with β = 1/2 if {xt } is a random walk. Then, the rate of convergence for ĝ(x) equals
T−1/4h−1/2. For a fixed h, this is seen to be the same rate as the parametric estima-
tion rate of θ̂ with an integrable function g(x , θ) in (19). The kernel function K plays
the role of the integrable function in the nonparametric case. It should also be noted
that in Karlsen et al. (2007), the so-called Mittag-Leffler process is the analogy of the
local time process L(t , 0). The relationship between these processes needs to be fur-
ther explored in the Markov case. A proper understanding of it would lead to more
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general and unified procedures. Wang and Phillips (2009a,b) use the local time as an
alternative to obtain an asymptotic theory of the nonparametric estimates treated in
Karlsen et al. (2007), but again this approach does not allow xt to be replaced by
yt−1 in (30). Finally, it should be noted that in contrast to the majority of limit the-
orems in this chapter the limit in (31) is Gaussian. This is due to the stochastic scaling
used.

In Karlsen et al. (2007), and Wang and Phillips (2009a,b), a fixed bandwidth h = hT

independent of x in (31) has been used in the estimation. Since in the nonstation-
ary case, the data points are widely scattered, using a variable bandwidth could be
advantageous. Actually, the early paper by Yakowitz (1993) uses nearest neighbor esti-
mation. A follow-up to this is Sancetta (2009), who attacks quite general conditional
nonparametric problems using nearest neighbors. Both papers are limited to prov-
ing consistency results. The recent paper by Bandi et al. (2011) considers automated
bandwidth choice in a nonstationary kernel estimation context.

An attempt to establish a theory for specification testing is contained in Gao et al.
(2009a) for the time series regression case and in Gao et al. (2009b) for the time series
autoregressive case. They consider the nonlinear AR model

xt = g(xt−1)+ εt (32)

and test the null hypothesis g(x) = x , a linear unit root process, against a stationary
alternative g(x) = x + g1(x) for some g1(x). They give nonlinear examples in which
their test has better power than the standard Dickey-Fuller test. Moreover, in a nonlinear
cointegration type situation with

yt = g(xt )+ ut (33)

they test whether the function g(x) equals g1(x , θ), a known parametric function. This
includes the case where g1(x , θ) is linear.

Rather restrictive assumptions of Gaussianity and i.i.d. are used for the error proces-
ses {ut } and {εt } in (32) and (33). They are also assumed to be independent processes.
In the time series regression case, a more general model and weakened assumptions
are considered in Wang and Phillips (2010) using local time arguments. As already
mentioned, Choi and Saikkonen (2004) have considered a parametric cointeg ration
test for linearity using the triangular array asymptotics.

5. Time-varying parameters and state-space models

5.1. Introduction

A very general model is

yt = g(zt , θ , εt )

where g is a known function, zt is a vector of explanatory variables possibly including
lagged values of yt , θ is an unknown parameter vector, and εt is an error term. The
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parameter θ contributes to describing the dynamics of the process. In this sense, for a
fixed θ , it represents the state of the system. Different values of θ , different states, may
lead to quite different dynamics.

Sometimes, it is assumed that θ = θ t varies in time, yielding a time-varying dynam-
ics, and then it becomes important to estimate θ t as a function of time, not least if one’s
objective is to make forecasts of future values of the series {yt }. Time dependence
can be introduced in two ways, deterministic or stochastic. The first option leads to
nonstationarity of {yt }. Unless relatively strict regularity conditions are imposed on
the time-variation of {θ t }, it is difficult to analyze in practice and to make forecasts.
For instance, one may assume that {θ t } is constant in time except for sudden changes
or breaks at (usually) unknown time points, or there may be a smooth parameterized
transition, or {θ t } may be slowly time-varying in some specified way, for instance
resulting in a slowly time-varying spectrum; see Priestley (1965), Dahlhaus (1997,
2001), Dahlhaus et al. (1999), and Dahlhaus and Subba Rao (2006).

In spite of the progress in this area, the other alternative of modelling {θ t } as a ran-
dom process has been more common. Letting {θ t } be stochastic still allows {yt } to be
stationary under some regularity conditions. Moreover, employing the structural prop-
erties of {θ t }, if it is estimated, it can be predicted, which in turn can be used to make
forecasts for {yt }. Using such a set-up leads to so-called state-space processes, see e.g.,
Durbin and Koopman (2001) for an introduction. State-space models are sometimes
divided into observation and parameter driven models using the terminology of Cox
(1981); see also Davis et al. (2003, 2005). In observation driven models, the process
{θ t } is generated by observations. One example is the conditional variance process {ht }

in a GARCH model, where {ht } is an unobserved component process driven by {yt },
although GARCH models are not usually thought of as being state-space models. In a
parameter driven model, the observations are not involved in the driving mechanism
for {θ t }. The class of stochastic volatility models (Shephard, 2005) would be a typical
example.

The case where the state space for {θ t } is continuous corresponds to smooth changes
of the dynamics for the {yt }-process. There is also a growing literature for the situation
where the state space of {θ t } is discrete, and then usually finite. These models are
usually called finite regime models or hidden Markov chain models, when a Markov
assumption is added.

5.2. Nonlinear state-space models

Although there seems to be no consensus precisely as to what constitutes a nonlinear
state-space model, several authors have considered models of the form

yt = a(θ t )+ b(zt )+ εt (34)

θ t = c(θ t−1)+ ηt (35)

where a, b, and c are vector functions. A model that combines the z-dependence and
the time-varying parameter aspect is the one in which the above observational Eq. (34)
is replaced by

yt = g(zt , θ t )+ εt (36)
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which, unlike (34), is nonadditive in zt and θ t . To our knowledge, such models have
not been much treated in the literature. A related example, though, is the observation
driven STAR model with a stochastically varying parameter, which has been analyzed
in Anderson and Low (2006).

The conventional nonlinear state-space model (34)–(35) has been treated essentially
by three approaches, the extended Kalman filter, the Kitagawa grid approximation, and
Monte Carlo methods. These approaches complement each other in that different model
assumptions are needed. A fourth method is based on Gaussian approximation using
linearization as in the extended Kalman filter combined with Monte Carlo techniques.

The idea of the extended Kalman filter is to linearize a(θ t ) and c(θ t ) around θ t |t−1

and θ t |t , respectively. Here θ t |s = E{θ t |F z
s ∨ F

y
s }, where F z

s and F y
s are the σ -algebras

generated by {zu , u ≤ s} and {yu , u ≤ s}, respectively. We then have

a(θ t ) = a(θ t |t−1)+
da
dθ
(θ t |t−1)(θ t − θ t |t−1)

where higher-order terms are neglected. Similarly,

c(θ t ) = c(θ t |t )+
dc
dθ
(θ t |t )(θ t − θ t |t ).

Inserting these in (34) and (35), we have

yt = a(θ t |t−1)+
da
dθ
(θ t |t−1)(θ t − θ t |t−1)+ b(zt)+ εt (37)

and

θ t+1 = c(θ t |t )+
dc
dθ
(θ t |t )(θ t − θ t |t )+ ηt+1. (38)

Now, using the definitions of θ t |t−1 and θ t |t , these are functions of variables observed
at time t − 1 and t , and it is seen that the above equations can be identified with a
linear time-varying parameter Kalman system with a time-varying intercept in the state
equation, and a Kalman algorithm can then be set up.

If there is strong nonlinearity in the series, the first-order extended Kalman filter will
not work too well. A useful alternative is the Kitagawa (1987) grid approximation. This
method has the extra advantage that no Gaussian assumption is needed for the generat-
ing processes {εt } and {ηt }. Such an assumption is crucial for the extended Kalman
algorithm, since its derivation is still based on the simple formulas for conditional
Gaussian distributions.

In the absence of a Gaussian assumption, the first two conditional moments no
longer describe the contemporaneous conditional structure of the model. Instead of
updating the first two conditional moments, the task is to update the entire density
function f (θ t |F y

t−1) to f (θ t+1|F y
t ). This is too ambitious, but, following Kitagawa, the

update will be made on a finite grid of points θ (0), . . . , θ (N ). This implies that the input
consists of the N + 1 values f (θ t = θ

(i)
|F y

t−1), i = 0, . . . , N , and the problem consists
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in producing the update f (θ t+1 = θ
(i)
|F y

t ), i = 0, . . . , N . Using the Kitagawa grid
approach, one can update the conditional density f (θ t |F y

t−1) to f (θ t+1|F y
t ) for a finite

(and fixed) set of grid points θ (0), . . . , θ (N ) using numerical integration. For complex
(and multivariate) problems, one may encounter numerical instabilities. A standard
way of evaluating integrals is via Monte Carlo simulation. It is, therefore, perhaps
not so surprising that recently a number of Monte Carlo methods have been developed
where numerical integration is avoided in updating the filter density f (θ t |F y

t−1). Typi-
cally, the filter is updated for a set of stochastic values of θ t (as opposed to a fixed set
of values in the Kitagawa method). This is often combined with importance sampling
techniques to obtain the so-called particle filters.

In Koopman et al. (2005), Koopman and Ooms (2006), and Menkveld et al. (2007),
the authors look at a nonlinear Gaussian system and use a Gaussian approximation to
obtain computationally efficient algorithms, which they then have applied on a number
of economic problems

All of the above is concerned with a continuous state space. There is also a large
branch of literature, see e.g., Cappé et al. (2005), on the discrete case, again dis-
tinguishing between observation and parameter driven models. The class of hidden
Markov chains belong to the latter category. The hidden Markov model represents a
mixture of regimes in that different AR or other parametric models result for each
value of θ t . Such a mixture can be obtained by various means and can be extended
to a mixture of other types of models. The modeling is typically made directly
on the conditional density of {yt } given past values of {yt } and possible explana-
tory variables. This kind of models are often called mixture models (cf. Wong and
Li, 2000). Estimation of parameters in nonlinear state-space models is still in its
infancy, and the nonstationary case has hardly been touched upon. Maximum likeli-
hood methods combined with importance sampling have been considered by Shephard
and Pitt (1997) and by Durbin and Koopman (2000) and by Davis and Rodrigues-
Yam (2005). Work on the central limit theorem, asymptotic distributions has been
done by Bickel et al. (1998), Jensen and Petersen (1999), and Douc et al. (2004). A
full overview of the statistical inference in hidden Markov chains can be found in
Cappé et al. (2005).
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Abstract

We give a review of time series with regime-switching, which look station-
ary over limited time intervals, but where the data-generating mechanism may
suddenly change sometimes. After briefly discussing observation driven switch-
ing, we focus on Markov switching where changes are controlled by a hidden
Markov chain. We illustrate the fundamental problems linked with such mod-
els, i.e., parameter estimation with only partly observable data and filtering, i.e.,
reconstruction of the hidden data, by looking at the simple, but nontrivial prob-
lem of Markov switching autoregressions in detail. In particular, we provide the
details of the EM algorithm and the Viterbi algorithm as feasible solutions of the
estimation and filtering problem. Additionally, we discuss references to more com-
plex models like Markov switching ARMA and GARCH processes and to related
continuous-time models from mathematical finance.

Keywords: regime switching, hidden Markov, filtering, autoregression, GARCH.

1. Introduction

This chapter is concerned with time series, which piecewise look like realizations from
well-known simple stationary processes. Sometimes, however, the visual appearance
of the data changes more or less abruptly to look again homogeneous, but differently,
afterward. In the econometrics literature, this phenomenon is called regime switching
(Franses and van Dijk, 2000; Lange and Rahbek, 2009). The main feature of regime-
switching models is the existence of a typically finite number of states or regimes,
represented by more or less simple data-generating mechanisms, between which the
system changes repeatedly. Switches between the regimes are sudden or occur over
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a very short period of time in contrast to data that are modeled by locally stationary
processes where changes are more gradual. This kind of behavior is similar to that of
time series with changepoints. In the latter case, however, usually it is assumed that the
data-generating mechanism changes once for all at the changepoint, whereas the time
series considered here will visit the various regimes over and over again.

Time series data exhibiting the described behavior can be found in many fields of
application. Krolzig (1997) discusses such models in business cycle analysis, where
the regimes correspond to various states of the economy. Guidolin and Timmermann
(2007) apply regime-switching models to asset allocation where the regimes corre-
spond to different states of the market like crash, slow growth, bull or recovery. Müller
et al. (1995) and Liehr et al. (1999a) have a look at biological signals, more precisely at
electroencephalograms recorded during sleep, which switch through different regimes
representing various degrees of deep sleep, light slumber or dream phases. Tadjuidje
et al. (2009) consider electroencephalograms in the presence of external stimuli to the
brain. Peng et al. (1996) discuss modeling of speech signals, and Pinson et al. (2008)
consider regime-switching models for wind time series.

There are various different ways to model a time series {X t } that switches through
a finite number of regimes. The change of states is controlled by a switching variable
Qt which is a time series itself assuming only finitely many values, say 1, . . . , K , cor-
responding to the regime numbers. In the univariate case, a rather general model is
given by

X t = F(X t−1, . . . , X t−m , Qt , εt ; θ), (1)

where the innovations εt are independent identically distributed (i.i.d.) with known
distribution and θ denotes the vector of model parameters. The distribution of X t given
the past of the process up to time t−1 is assumed to depend explicitly only on the last m
observations which includes general nonlinear autoregressive and ARCH schemes, but
not switching ARMA and GARCH models for which we give some references below.

Based on (1), there are two distinct approaches differing with respect to the depen-
dence between the switching variable and the data of interest. One large class of
models, which Lange and Rahbek (2009) call observation switching models, is based
on the assumption that, given the data, the switching variable Qt does not depend on
past Qs , s < t . More precisely, including the usual independence assumption for the
innovation:

P(Qt = k, εt ∈ B|Qt−1, . . . , Q0, X t−1, . . . , X0)

= P(Qt = k|X t−1, . . . , X0) P(εt ∈ B).

Observation switching models include the popular threshold models of Tong (1990).
The simple example of a self-exciting threshold autoregression (SETAR) of order 1
with only two regimes

X t =

{
α1 X t−1 + σεt if X t−1 ≤ c,
α2 X t−1 + σεt else,

is obviously of the form (1) with θ = (α1,α2, σ , c)T and Qt = 1 if X t−1 ≤ c and = 2
otherwise.
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More complicated observation switching models and in particular their application
to financial data are extensively discussed in the monograph of the works done by
Franses and van Dijk (2000). In this survey, however, we focus on the second large class
of time series with regime switching, the Markov switching models, which generalize
the hidden Markov models. Here, the switching variables Qt form a Markov chain with
finite state space, and the conditional distribution of Qt given the past up to time t − 1
depends only on Qt−1 and not on the data X t−1, . . . , X0. We give a precise formulation
of that crucial assumption below.

The terminology regarding models with Markovian switching variables is not
completely standardized in the literature. We follow Cappé et al. (2005) and call a
regime-switching time series a hidden Markov process if the temporal dependence of
the observations is completely induced by the Markovian structure of the switching
variables, i.e., the conditional distribution of X t given Qt , Qs , Xs , s< t , depends on
Qt only and, in particular, X t is independent of Xs , s< t , conditional on Qt . For the
special case of (1), a hidden Markov model is given by X t = F(Qt , εt ; θ).

Regime-switching models for time series have not only found a lot of interest in
statistics during the last two decades, but also in machine learning. There, such mod-
els are frequently called mixtures-of-experts (compare, e.g., Jiang and Tanner (1999)
and Liehr et al. (1999a)). In particular, Carvalho and Tanner (2005) give a detailed
analysis including asymptotics and a discussion of model selection for mixtures of
autoregressive processes, where the switching between regimes is driven by the obser-
vation. However, the terminology is not always consistent as some authors like Liehr
et al. (1999b) also call models with hidden switching variables mixtures-of-experts.

The literature on hidden Markov models and Markov switching time series models
is now quite extensive. Here, we only give an introduction to the main ideas by hav-
ing a detailed look at a simple, but nontrivial example in the following. We consider
Markov switching autoregressions of order 1 or MS-AR(1) with only two different
regimes. This example already exhibits the main features of Markov switching models,
but allows for a still easily accessible notation. We discuss the theoretical properties
and numerical calculation of estimates for the model parameters as well as solutions to
the filtering problem, i.e., the reconstruction of the hidden sequence Qt from the obser-
vations. For more details and applications, we refer to the excellent monographs of
MacDonald and Zucchini (1997), Cappé et al. (2005), and Frühwirth-Schnatter (2006).
We close with a short review of other popular Markov switching time series models
like Markov switching ARCH and GARCH and have a look at a corresponding class
of models for continuous-time data, mainly from finance.

2. Markov switching autoregressions

We start from a univariate time series {X t } that is influenced by a hidden Markov chain
{Qt } assuming only finitely many values 1, . . . , K . The current value Qt represents
the state or regime of the mechanism generating the data X t . For a concise notation, we
write Stk = 1 if Qt = k, and= 0 else. The sequence of unit vectors St = (St1, . . . , St K )

provides an equivalent representation of the state variables Qt .
We assume that the single regimes are all characterized by linear autoregressions

with varying orders mk , parameters αk,1, . . . ,αk,mk , and innovation variances σ 2
k . The
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whole process {X t } is, then, given by the following mixture of autoregressions and
usually called a Markov switching autoregression (MS-AR):

X t =

K∑
k=1

Stk

(
mk∑

s=1

αk,s X t−s + σk εt

)
. (2)

The innovations εt are assumed to be i.i.d. with mean 0 and variance 1. Here, we
only consider the case where εt has a density pε(u) > 0 for all u ∈ R.

The distribution of the hidden state process is given by the K × K transition
probability matrix A, i.e.,

A jk = P(Qt = k|Qt−1 = j),

and we denote the weights of the corresponding stationary distribution by π =

(π1, . . . ,πK ), i.e., in the stationary state we have πk = P(Qt = k). Mark that the latter
are determined by A via π A = π .

Markov switching autoregressions have been proposed by Hamilton (1989, 1990)
in econometrics and since then become quite popular. They build upon earlier work
on hidden Markov models like that of Baum and Petrie (1966) or Lindgren (1978),
and have been extended by Holst et al. (1994) and McCulloch and Tsay (1994). As
the Markovian as well as the autoregressive structure introduce temporal dependence
into the model, the autocorrelation structure is quite flexible. Timmermann (2000)
has given explicit formulas for the autocorrelations of stationary Markov switching
autoregressions.
To keep the notation as clear as possible, we simplify the model further by consid-
ering mainly the case of only two regimes (K = 2), both represented by first-order
autoregressions (m1 = m2 = 1):

X t =

{
α1 X t−1 + σ1εt if Qt = 1,

α2 X t−1 + σ2εt if Qt = 2.
(3)

For given pε , model (3) is characterized by the parameter vector

θ =
(
α1,α2, σ 2

1 , σ 2
2 , A11, A22

)T
.

The stationary regime probabilities are given by π1 = A12/(A12 + A21) and π2 = 1−
π1. Frequently, we consider the specific case where the innovations εt are standard
normal variables. In the following, ϕ(·;µ, σ 2) denotes the density of the normal law
with mean µ and variance σ 2. Then, the conditional distribution of X t given X t−1 and
Qt = k has the density ϕ(·;αk X t−1, σ 2

k ). Other distributions with positive densities may
be considered analogously.

Figure 1 shows a realization of a time series satisfying (3) with parameters α1 =

0.9,α2 = −0.9, σ 2
1 = 1, σ 2

2 = 0.25, A11 = 0.8, A22 = 0.9, and N = 200. Figure 2
shows the scatter plot (X t−1, X t ), t = 1, . . . , N . Such scatter plots are, in general, a
good exploratory tool for detecting regime switching, as they frequently differ in one
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Fig. 1. Markov switching autoregressions of order 1 with two regimes.
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Fig. 2. Scatter plot of the data shown in Fig. 1.

way or the other from the elliptic shape known from Gaussian or similar linear time
series. Of course, the parameter constellation of this example is rather extreme such
that the effect is rather pronounced.
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Model (3) also covers the case of an autoregression of order 1 with a single
changepoint in the classical sense. If we choose

A =

(
A11 1− A11

0 1

)
then the time series will never return to regime 1 once it has changed to regime 2 (com-
pare Bauwens and Rombouts (2010) for the case of multiple changepoints). In spite of
the formal similarity, there is an important difference between the setup of changepoint
analysis and a genuine Markov switching time series with finitely many regimes, which
is recurrent in the sense that it returns to every regime over and over again. Later on,
this feature will be guaranteed by assuming that A11, A22 are bounded away from 0 and
1. Then, for sample size N →∞, there will be an increasing number of observations
from every regime that allows for estimating all the parameters consistently. To get this
essential feature in the situation of a single changepoint, we have to let A11 → 1 with
N →∞ to have an increasing number of data before and after the changepoint, i.e.,
from both regimes.

In the next subsection, we discuss estimating the parameters of model (3). If we
could observe the state process Qt , this would be an easy exercise. The main difficulty
which is characteristic for Markov switching time series models arises from the fact
that this Markov chain is hidden. To illustrate those problems, we first have a look at an
even simpler special case that corresponds to the mixture autoregressive model of Wong
and Li (2000). Here, the Qt are i.i.d. with π1 = P(Qt = 1), P(Qt = 2) = π2 = 1− π1.
The transition matrix is given by

A =

(
π1 π2

π1 π2

)
.

The model parameters are now θ = (α1,α2, σ 2
1 , σ 2

2 ,π1)
T . We consider observations

X0, . . . , X N , whereas the state variables Qt are unknown. The conditional probability
density of a single observation X t at y given X t−1 = x is

pθ (y|x) =
2∑

k=1

πkϕ
(
y;αk x , σ 2

k

)
.

As usual for stationary time series with an autoregressive dependence (Brockwell and
Davis, 1991), we consider the conditional log-likelihood given the initial observation
X0. In the case of i.i.d. state variables Qt , this is given by

`(θ |X(N )) =

N∑
t=1

log pθ (X t |X t−1),

where X(N )
= (X0, . . . , X N )

T . If, on the other hand, the state variables Q(N )
=

(Q0, . . . , QN )
T would be observable, the so-called complete likelihood would be of
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a much simpler form, using that the state indicators Stk assume the values 0 and 1
only:

`c(θ |X(N ), Q(N )) =

N∑
t=1

2∑
k=1

Stk log
[
πkϕ

(
X t ;αk X t−1, σ 2

k

)]

=

N∑
t=1

2∑
k=1

Stk logπk + `
AR
c (θ |X(N ), Q(N )),

which consists of two parts, the first depending only on the state variable parameters,
and the second depending only on the autoregressive parameters. The latter is given by

`AR
c (θ |X(N ), Q(N )) = −

1

2

N∑
t=1

2∑
k=1

Stk

(
log σ 2

k +
(X t − αk X t−1)

2

σ 2
k

)
+ const.

(4)

`c may be maximized explicitly by setting the derivatives with respect to the parameters
to 0, and we get straightforwardly:

π̂1 =
1

N

N∑
t=1

St1 = 1− π̂2, α̂k =

∑N
t=1 Stk X t X t−1∑N−1

t=0 Stk X2
t

,

σ̂ 2
k =

1

N π̂k

N∑
t=1

Stk(X t − α̂k X t−1)
2.

(5)

`, however, has to be maximized numerically as pθ is not of exponential form. A pop-
ular algorithm with a statistical intuition is the EM algorithm (compare, e.g., Dempster
et al. (1977) and Wu (1983)). In the M-step, it replaces the hidden variables Stk in (5)
by their conditional expectations given X0, . . . , X N , and, in the E-Step, it calculates
those conditional expectations using the current estimates of the model parameters.
Then, both steps are iterated. For general nonlinear autoregressions, Franke et al. (2011)
have shown convergence of this algorithm and consistency of the resulting estimates
using kernel smoothers for estimating the autoregressive function. The details will be
discussed below in the more general context of Markov switching.

2.1. Maximum likelihood estimates

We now derive the log-likelihood function `(θ |X(N )) of model (3) for the general case
where, again, we always condition on the initial observation X0.

We denote by x(N ) = (x0, . . . , xN )
T , q(N ) = (q0, . . . , qN )

T possible values of X(N ),
Q(N ). We characterize the joint distribution of a part Y of X(N ) and a part Z of Q(N )

by its density pθ (y, z) with respect to the product measure λ⊗ ν, where λ denotes the
Lebesgue measure and ν denotes the counting measure on the set of possible values of
Z , i.e.,

P(Y ∈ B, Z ∈ C) =
∑
z∈C

∫
B

pθ (y, z)dy.
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Looking at a single observation Y = X t , a crucial feature of Markov switching first-
order autoregressions, obvious from (3), is given by

pθ
(
y | X(t−1)

= x(t−1), Q(t)
= q(t)

)
= pθ (y | X t−1 = xt−1, Qt = qt ), (6)

i.e., the current observation depends only on the current state Qt and on the previous
observation. In more complex Markov switching models, X t−1 is replaced by several
random variables from the past of the process up to time t − 1.

Another crucial feature of Markov switching models is the assumption that the
evolution of the Markov chain in time does not depend on the observations:

(A1) Let Fs = σ(X t , t ≤ s) denote the σ -algebra generated by the observations up
to time s, and let Bt−1 be any event in Ft−1. Then,

P(Qt = j |Qt−1 = i , Bt−1) = P(Qt = j |Qt−1 = i) for all i , j .

The joint density of X(N ), Q(N ) is given by

pθ
(
x(N ), q(N )

)
= pθ

(
x(N ) |Q(N )

= q(N )
)

pA
(
q(N )

)
,

where pA
(
q(N )

)
= P

(
Q(N )

= q(N )
)

does not depend on the autoregressive part of the
parameter vector θ , but only on the parameters A11, A22 of the transition matrix A. As
Qt is Markovian and if we start it with its stationary distribution at time 0, we have for
the latter

pA
(
q(N )

)
=

(
N∏

t=1

pA (qt |Qt−1 = qt−1)

)
P(Q0 = q0) = πq0

N∏
t=1

Aqt−1,qt .

From (A1) and (6), we get

pθ
(
x(N ), q(N )

)
= pθ

(
xN |X(N−1)

= x(N−1), Q(N )
= q(N )

)
× pθ

(
qN |X(N−1)

= x(N−1), Q(N−1)
= q(N−1)

)
× pθ

(
x(N−1), q(N−1)

)
= pθ (xN | X N−1= x , QN = qN )pθ (qN |QN−1= qN−1)

× pθ
(
x(N−1), q(N−1)

)
(7)

Iterating (7) we immediately get for the complete likelihood conditional on X0

Lc
(
θ |X(N ), Q(N )

)
= πQ0

N∏
t=1

AQt−1,Qt pθ (X t | X t−1, Qt )

and for the corresponding log-likelihood, assuming Gaussian innovations,

`c
(
θ |X(N ), Q(N )

)
= logπQ0 +

N∑
t=1

log AQt−1,Qt + `
AR
c

(
θ |X(N ), Q(N )

)
,
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where `AR
c is the same as in (4). As the state variables Qt are hidden, we have to

consider the incomplete likelihood that we get by summing over all possible paths of
the Markov chain starting at time t = 0:

L
(
θ |X(N )

)
=

2∑
q0,...,qN=1

πq0

N∏
t=1

Aqt−1,qt pθ (X t | X t−1, Qt = qt )

=

2∑
q0,...,qN=1

πq0

N∏
t=1

Aqt−1,qt

(
2∑

k=1

stkϕ
(
z;αk x , σ 2

k

)) (8)

with stk = 1 if qt = k, and = 0 else. To get the maximum likelihood estimate θ̂N of
the model parameter θ , we have to maximize `

(
θ |X(N )

)
= log L

(
θ |X(N )

)
numerically.

Before we consider suitable algorithms, we have a look at the asymptotic properties of
those estimates in the next sections.

2.2. Ergodicity and consistency

The key to inference about Markov switching time series models is the ergodicity of the
corresponding stochastic process. In addition to (A1) above, the following assumptions
about the hidden Markov chain and its dependence on the observed data are needed:

(A2) The process {Qt } is a strictly stationary, irreducible, and aperiodic Markov
chain.

(A3) The innovations εt are i.i.d. with mean 0 and variance 1 and have a continuous,
positive density.

(A4) εt is independent of Qt , X t−1, X t−2, . . .

Such assumptions are more or less generic. They may be relaxed to some extent but
appear in a similar form without regard to the particular time series models that rep-
resent the various regimes. Additionally, some assumptions about the structure of the
individual mixture components are needed. In the simple model (3), those assumptions
reduce to

(A5)
∑2

k=1 Alkα
2
k < 1 for l = 1, 2.

Theorem 1. Let {X t } follow (3), and let Qt , X t , εt satisfy assumptions (A1)–(A5). Then,
the joint process (St , X t )

T is geometrically ergodic.

This result is a special case of Theorem 2.1 of Franke et al. (2010), where mixtures of
general conditionally heteroscedastic autoregressions are considered. A similar result
for nonlinear Markov switching autoregressions has been shown by Yao and Attali
(2000) who also prove the existence of a stationary solution and a strong law of large
numbers.

If both regimes in (3) correspond to stationary AR(1)-processes, i.e., if
|αk | < 1, k = 1, 2, then, due to Al1 + Al2 = 1, condition (A5) will be automati-
cally satisfied. An interesting feature of Markov switching models is, however, that
not all component models have to satisfy stationarity conditions. Some of them may
correspond to explosive processes, provided that they show up rarely enough in the
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course of the combined process. For example, consider (3) with |α2| > 1 > |α1|. Then,
condition (A5) is equivalent to requiring

A11 >
α2

2 − 1

α2
2 − α

2
1

, A22 <
1− α2

1

α2
2 − α

2
1

.

For example, α2
1 = 0.5,α2

2 = 1.5, (A5) holds for A11 > 0.5 > A22 and a straightfor-
ward calculation shows π1 > 0.5. Therefore, a stationary solution of (3) may exist if the
first AR(1) component satisfies the usual stationarity condition |α1| < 1 and the second
one corresponds to an explosive regime. A necessary consequence is that the whole
process X t has to spend more time in the stationary regime than in the explosive one.

Francq and Roussignol (1998) consider general nonlinear autoregressive mixtures
of order 1 which, in line with our notation, may be written as

X t =

K∑
k=1

Stk{Fk(X t−1; θ)+ Gk(εt ; θ)}.

The data X t and the innovations εt may be multivariate such that this model also covers
higher order univariate autoregressions via their vector state-space representations.
They prove under appropriate assumptions the existence of an ergodic stationary
solution and, then, the strong consistency of the maximum likelihood estimator θ̂N

of θ . Mark that the transition probabilities Ai j = Ai j (θ) of the underlying Markov
chain depend on the general parameter θ . In the simple case of (3), θ consists of
the autoregressive parameters θ = (α1,α2, σ 2

1 , σ 2
2 , A11, A22)

T . For (3), Francq and
Roussignol (1998) have given a detailed analysis of the case where σ 2

1 = σ
2
2 = σ

2

does not depend on the regime. To remain within their framework, we consider only
the case of standard normal innovations. Additionally, we assume

(A6) α1 6= α2, 0 < A22 < A11 < 1,

where the latter also implies π1 > π2, i.e., regime 1 is the more frequently visited one.
Identifiability assumptions like (A6) are an inherent feature of inference for Markov
switching models. Without them, the model parameters are not uniquely determined by
the distribution. The possibility of permuting the regimes, i.e., of changing their enu-
meration, without changing the data-generating mechanism, is always present. In our
simple example, the parameters (α1,α2, σ 2

1 , σ 2
2 , A11, A22) and (α2,α1, σ 2

2 , σ 2
1 , A22, A11)

give rise to the same stochastic process. In more complicated models, more involved
identifiability conditions are needed, e.g., for the general case in the works done by
Francq and Roussignol (1998) or for nonlinear autoregressive-ARCH models based on
neural networks (Stockis et al., 2008).

Applying the same kind of argument as in Section 5 of the works done by Francq
and Roussignol (1998), using that for any compact subset of the parameter set σ 2

≤

σ 2
1 , σ 2

2 ≤ σ
2 for some σ 2

≥ σ 2 > 0, we get

Theorem 2. Let {X t } follow (3), let εt be standard normal, and let Qt , X t , εt sat-
isfy assumptions (A1)–(A4). Let θ0 denote the true model parameter, and assume that
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it satisfies (A5) and (A6). Then, for any compact subset 2∗ of the parameter set
containing θ0 in its interior,

θ̂N = arg max
θ∈2∗

L(θ |X(N )) −→ θ0 a.s.

2.3. Asymptotic normality

A detailed discussion of the asymptotic properties of maximum likelihood estimates
like θ̂N has been given by Douc et al. (2004). They consider models of the form

X t = F(X t−1, . . . , X t−m , Qt , εt ; θ), (9)

(compare also (1) above), where the hidden Markov chain Qt does not necessarily
assume only finitely many values, but may have an arbitrary compact range. Douc
et al. prove consistency of the maximum likelihood estimate θ̂N of θ conditional on Q0

and X0, . . . , X1−m , they show asymptotic negligibility of those initial values, and they
prove asymptotic normality of θ̂N under the usual kind of regularity assumptions which
are easily checked for the simple model (3) with Gaussian innovations. In addition to
our previous assumptions, we have to restrict our attention from the outset to a compact
parameter set 2∗ characterized by

(A7) |α1|, |α2| ≤ α
∗, σ 2
≤ σ 2

1 , σ 2
2 ≤ σ

2, δ ≤ A11, A22 ≤ 1− δ,

for some suitable constants α∗<∞, 0<σ 2
≤ σ 2<∞, 0<δ< 0.5. With I (θ) denot-

ing the Fisher information matrix, we get from Theorem 4 of Douc et al.

Theorem 3. Let the assumptions of Theorem 2 and, additionally, (A7) be satisfied. If
the true model parameter θ0 lies in the interior of 2∗ and if I (θ0) is positive definite,
then

√
N (θ̂N − θ0) −→d N (0, I−1(θ0)).

To get a representation of I (θ0), following Douc et al., we first consider the conditional
score of (Qt , X t ) given (Qt−1, X t−1)

ψ(θ , Qt , X t , Qt−1, X t−1) = ∇θ log
[
AQt−1,Qt pθ (X t |X t−1, Qt−1)

]
,

where ∇θ denotes the gradient with respect to θ = (α1,α2, σ 2
1 , σ 2

2 , A11, A22)
T and

pθ (y|x , k) =
1√

2πσ 2
k

exp

[
−
(y − αk x)2

2σ 2
k

]

is the conditional density of X t given X t−1 = x , Qt = k. Recalling A12 = 1− A11,
A21 = 1− A22, it is a straightforward exercise to calculate ψ . With F s

−∞
denoting the
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σ -algebra generated by the data Xs , Xs−1, . . ., we set

1t (θ0) = Eθ0

{
ψ(θ0, Qt , X t , Qt−1, X t−1)|F t

−∞

}
+

t−1∑
s=−∞

[
Eθ0

{
ψ(θ0, Qs , Xs , Qs−1, Xs−1)|F t

−∞

}
− Eθ0

{
ψ(θ0, Qs , Xs , Qs−1, Xs−1)|F t−1

−∞

} ]
,

and finally we have

I (θ0) = Eθ0

[
10(θ0)1

T
0 (θ0)

]
.

Theorem 3 of Douc et al. together with the consistency of the maximum likelihood
estimate θ̂N also provides a consistent estimate of I (θ0).

2.4. Model selection

A crucial problem in the application of Markov switching models to time series data is
the choice of the number K of regimes. Rydén (1995) applies classical order selection
criteria like AIC and BIC to the selection of regimes in hidden Markov models. In the
same spirit, MacKay (2002) considers alternative penalized minimum distance proce-
dures for selecting K . A detailed survey including a theoretical analysis of penalized
maximum likelihood order selection is given in Chapter 15 of Cappé et al. (2005). They
also discuss the relation to general likelihood ratio testing, for which regime-switching
models are a particular challenge as the parameters of a regime become immediately
nonidentifiable under the hypothesis that this regime is not necessary for modeling the
data. That issue is discussed in some detail in Section 4 of Lange and Rahbek (2009).
Chopin (2007) considers modified hidden Markov models, where the regimes are num-
bered in order of their appearance in the time series sample. This allows for a sequential
Monte Carlo algorithm solving the problem of selecting the number of regimes and
estimating the parameters simultaneously.

In general Markov switching models, the model selection problem becomes even
more complicated as, in addition to the number of regimes, the complexity of the sin-
gle regime models has to be determined, e.g., the autoregressive orders m1, . . . , mK

in model (2). For such Markov switching autoregressions, Psaradakis and Spagnolo
(2003, 2006) present Monte Carlo studies for illustrating successive and simultaneous
choices of the number of regimes and the autoregressive orders. Zhang and Stine (2001)
show how to use the sample autocovariances of hidden Markov models and Markov
switching autoregressions to get lower bounds on the number of regimes. Frühwirth-
Schnatter (2004) discusses the importance of selecting the number of regimes and the
orders of autoregressions simultaneously, as, otherwise, there may be a tendency to
choose too few regimes and too large orders.
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2.5. The EM algorithm

As we have seen in Section 2.1, even in simple Markov switching models like (3)
we have to determine the maximum likelihood estimates of the parameters numeri-
cally. A popular algorithm with an appealing statistical intuition is the expectation–
maximization (EM) algorithm of Dempster et al. (1977), which has been further
investigated by Wu (1983). It has already been applied to hidden Markov models by
Baum et al. (1970) without using that name. For Markov switching autoregressions,
EM algorithms have been proposed and investigated by Hamilton (1990) and Holst
et al. (1994). We restrict the following discussion to the application of the EM algo-
rithm to calculate the maximum likelihood estimates of Markov switching parameters.
There are, however, other numerical procedures for handling this task. Of course, one
could apply any decent optimization routine to maximizing the likelihood (8), and, for
small sample sizes, that works reasonably well. However, special statistically moti-
vated approaches show a more stable performance. Apart from the class of EM-like
algorithms, Markov chain Monte Carlo algorithms are popular tools for parameter esti-
mation in Markov switching models, compare, e.g., the study by Frühwirth-Schnatter
(2001) or the monograph of Frühwirth-Schnatter (2006). Rydén (2008) presents a
comparative study of both types of algorithms for a selection of regime-switching
models.

The principle of the EM algorithm for Markov switching time series is an alternation
between estimating the hidden variables Qt given the model parameters, and estimat-
ing the model parameters given the hidden variables. The second or M-step exploits
the simpler form of the complete likelihood Lc(θ |X(N ), Q(N )) compared to the more
complex incomplete likelihood L(θ |X(N )). For the first or E-step, we have to solve
the filtering problem that consists in reconstructing the hidden variables Qt from the
data.

2.5.1. Forward–backward procedure or E-step
In this subsection, we assume that the data X0, . . . , X N are generated by (3) with a
stationary Markov chain, i.e., in particular, we have P(Qt = i) = πi , i = 1, 2, t ≥ 0.
Moreover, we assume that the autoregressive parameters α1,α2, σ 2

1 , σ 2
2 as well as the

transition matrix A are known. i.e., θ = (α1,α2, σ 2
1 , σ 2

2 , A11, A22)
T is given. As above,

pθ denotes the density of the observed variables with respect to Lebesgue measure or
the joint density of observed and hidden variables with respect to the Lebesgue measure
and the counting measure. To stress which of the hidden variables is considered, we
write, e.g., p(x(N ), Qt = i) for the joint density of the whole observed sample X(N ) and
the single hidden variable Qt evaluated at (x(N ), i) ∈ RN+1

× {1, 2}.

2.5.1.1. Forward procedure
Let

vt
i = pθ (X0, . . . , X t , Qt = i) = pθ (X0, . . . , X t |Qt = i)πi ,

where pθ (x(t)|Qt = i) is the conditional density of X(t) given Qt = i . Based on
the assumptions (A1) and (A2) above, we get the following recursive scheme for
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calculating vt
i :

vt+1
j = pθ (X0, . . . , X t , X t+1, Qt+1 = j)

= pθ (X t+1|X(t), Qt+1 = j)
2∑

i=1

P(Qt+1 = j |X(t), Qt = i) pθ (X(t), Qt = i)

(10)
= pθ (X t+1|X t , Qt+1 = j)

2∑
i=1

P(Qt+1 = j |Qt = i) pθ (X(t), Qt = i )

= bt+1
j

[
2∑

i=1

Ai jv
t
i

]

for t = 1, . . . , N − 1, where, using that the innovations εt are standard normal vari-
ables,

bt
j = p(X t |X t−1, Qt = j) = ϕ(X t ;α j X t−1, σ 2

j ). (11)

As we always condition in X0 and assume it to be given, and as Q1 follows the
stationary distribution π of the Markov chain, we get the initial condition for the
recursion

v1
j = pθ (X0, X1, Q1 = j) = π j b

1
j .

This recursive calculation is called the forward procedure. Mark that, by summation
over the states at the end t = N , we get the density of the whole sequence of observa-
tions pθ (x(N )) = vN

1 + v
N
2 which, using the forward procedure, can be calculated in a

number of steps increasing linearly with N . This is a pleasant surprise as a look at, e.g.,
the likelihood (8) with its summation over all possible paths of Q0, . . . , QN would have
rather led us to expect a factor 2N in the number of computations, i.e., an exponential
increase in computational complexity.

2.5.1.2. Backward procedure
Analogously, we define the backward variable wt

i as the conditional density of observ-
ing the future Xs , s = t + 1, . . . , N , given the present state i and the observation X t at
time t

wt
i = pθ (X t+1, . . . , X N |X t , Qt = i).

Using again (A1) and (A2), we get the recursion called the backward procedure

wt
i =

2∑
j=1

pθ (X t+1, . . . , X N , Qt+1 = j |X t , Qt = i)
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=

2∑
j=1

pθ (X t+2, . . . , X N |X t+1, Qt+1 = j)

× pθ (X t+1|X t , Qt+1 = j)P(Qt+1 = j |Qt = i)

=

2∑
j=1

Ai j b
t+1
j wt+1

j ,

(12)

for t = N − 1, N − 2, . . . , 1, starting with wN
i = 1. An immediate relation between

forward and backward variables is given by pθ (X(N ), Qt = i) = vt
iw

t
i .

2.5.1.3. Posterior regime probabilities
Using the forward and backward variables, we may calculate the posterior probability
γ t

i = P(Qt = i |X(N )) of being in state i at time t given the entire sequence X0, . . . , X N

of observations.

γ t
i =

pθ (X(N ), Qt = i)

pθ (X(N ))
=

pθ (X(N ), Qt = i)∑2
k=1 pθ (X(N ), Qt = k)

=
vt

iw
t
i∑2

k=1 v
t
kw

t
k

. (13)

Mark that γ t
i is the conditional expectation of St ,i given the data X(N ) as the coordinates

of the state vector St are 0-1-variables, i.e.,

E{St ,i |X(N )
} = P(St ,i = 1|X(N )) = γ t

i . (14)

We also need the joint posterior probability ξ t ,t+1
i j = P(Qt = i , Qt+1 = j |X(N )) of the

switching variables at time t and t + 1 for which we have

ξ
t ,t+1
i j =

pθ (X(N ), Qt = i , Qt+1 = j)

pθ (X(N ))
=

Ai , jv
t
i b

t+1
j wt+1

j∑2
k=1 v

t
kw

t
k

, (15)

since, using (A1), (A2),

pθ (X(N ), Qt = i , Qt+1 = j)

= pθ (X t+2, . . . , X N |X(t+1), Qt = i , Qt+1 = j)pθ (X(t+1), Qt = i , Qt+1 = j)

= pθ (X t+2, . . . , X N |X t+1, Qt+1 = j)pθ (X(t+1), Qt = i , Qt+1 = j)

= wt+1
j p(X t+1|X(t), Qt = i , Qt+1 = j)pθ (X(t), Qt = i , Qt+1 = j)

= wt+1
j pθ (X t+1|X t , Qt+1 = j)P(Qt+1 = j |Qt = i , X(t))pθ (X(t), Qt = i)

= Ai , j v
t
i bt+1

j wt+1
j .

In an online setting, it is sometimes more interesting, in particular for forecasting pur-
poses, to get the conditional distribution of the switching variable Qt at time t given the
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observations up to time t − 1 only instead of the whole sample. By similar arguments,
we have, e.g., instead of (14)

E{St ,i |X(t−1)
} = P(Qt = i |X(t−1)) =

∑2
i=1 v

t−1
i Ai ,k∑2

j=1

∑2
i=1 v

t−1
i Ai , j

.

2.5.2. Maximization or M-step
In this section, we consider the state variables Qt or, equivalently, St ,i , i = 1, 2, to be
known. Moreover, we set

Z t ,t+1
i j = St ,i St+1, j = 1 iff Qt = i , Qt+1 = j .

In the final iteration scheme, St ,i , Z t ,t+1
i j will be replaced by estimates of their condi-

tional expectations given the data, calculated during the E-step. We use our supposed
knowledge of the hidden Markov chain to get estimates of the transition matrix
A and the autoregressive parameters of the regimes by maximizing the complete
log-likelihood

`c
(
θ |X(N ), Q(N )

)
= logπQ0 +

N∑
t=1

log AQt−1,Qt + `
AR
c

(
θ |X(N ), Q(N )

)
.

Neglecting the terms involving Q0, which does not make a big difference for large
enough N , we get from setting the derivative of `c with respect to Ai i to 0 and recalling
Ai1+ Ai2 = 1

Âi i =

1
N−1

∑N−1
t=1 Z t ,t+1

i i

1
N

∑N
t=1 St ,i

, i = 1, 2, (16)

i.e., the ratio of the relative frequency of transitions from state i to state i and the relative
frequency of visits in state i. Correspondingly, we estimate the stationary probabilities
πi = P(Qt = i) of the Markov chain by

π̂i =
1

N

N∑
t=1

St ,i , (17)

i.e., the relative number of visits in regime i .
To maximize `AR

c (θ |X(N ), Q(N )) with respect to α1,α2, σ 2
1 , σ 2

2 , we have to minimize,
compare (4),

G(θ) =
1

2

N∑
t=1

2∑
k=1

Stk

(
log σ 2

k +
(X t − αk X t−1)

2

σ 2
k

)
. (18)

Mark that G(θ) does not depend on A11, A22. From solving ∂
∂αk

G(θ) = 0 , we get

α̂k =

∑N
t=1 St ,k X t−1 X t∑N

t=1 St ,k X2
t−1

, (19)
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i.e., the first sample autocorrelation of the kth regime. Similarly, solving ∂

∂σ 2
k

G(θ) = 0

results in

σ̂ 2
k =

∑N
t=1 St ,k(X t − α̂k X t−1)

2∑N
t=1 St ,k

, (20)

i.e., the usual residual variance estimate of the kth regime.
Mark that it is a special feature of Markov switching autoregressions that we get

explicit formulas for the estimates of the regime parameters α1,α2, σ 2
1 , σ 2

2 . For more
complex, e.g., nonlinear autoregressive, models, those estimates have to be calculated
numerically.

2.5.3. The combined algorithm
The forward–backward procedure and the maximization of the likelihood are now iter-
atively combined to form the final EM algorithm. We start with some initial value
θ̂ (0) = (α̂1(0), α̂2(0), σ̂ 2

1 (0), σ̂
2
2 (0), Â11(0), Â22(0))T for the parameter θ , and we set

the iteration index n = 0. Then, we iterate between the E-step of Section 2.5.1, where
the unknown parameters are replaced by their current estimates, and the M-step of
Section 2.5.2, where the hidden switching variables are replaced by their conditional
expectations given the data:

2.5.3.1. E-step
Assume that the model parameters are given by θ̂ (n). Compute for t = 1, . . . , N , the
forward variables vt

k(n) and the backward variables wt
k(n) from (10), (12). Calculate

the auxiliary variables γ t
i (n) and ξ t ,t+1

i j (n) from (13), (15).

2.5.3.2. M-step
Calculate the updated estimate Â(n + 1), π̂(n + 1) from (16), (17) replacing
St ,i , Z t ,t+1

i j by γ t
i (n), ξ

t ,t+1
i j (n) from the E-step.

Calculate the autoregressive parameters α̂1(n + 1), α̂2(n + 1), σ̂ 2
1 (n + 1), σ̂ 2

2 (n + 1)
from (19), (20), where, again, the St ,k are replaced by the current estimates γ t

k (n) of
their conditional expectations given the data.

Combine the new estimates α̂i (n + 1), σ̂ 2
i (n + 1), Âi i (n + 1), i = 1, 2, to get the

updated parameter vector estimate θ̂ (n + 1).
The iteration is continued for m = 0, 1, 2, . . . until a stopping criterion is satisfied.
For the simulated data of Fig. 1 with

α1 = 0.9,α2 = −0.9, σ1 = 1, σ2 = 0.5, A11 = 0.8, A22 = 0.9,

the EM algorithm stabilized rather soon. Already 10 iterations resulted in the following
estimates that did not change further up to the fourth decimal by continuing the iteration
further:

α̂1 = 0.9550, α̂2 = −0.8872, σ̂1 = 1.0018,

σ̂2 = 0.4297, Â11 = 0.8352, Â22 = 0.9393.

The initial values in θ̂ (0) have been chosen by a random number generator.
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2.6. The Viterbi algorithm

The EM algorithm does not only provide a numerical method for calculating the max-
imum likelihood estimates of the model parameters, but simultaneously results in
estimates γ t

i (n) of the posterior state probabilities P(Qt = i |X(N )) given the data. In
the case of independent switching variables Qt discussed by Wong and Li (2000) or
Franke et al. (2011), those immediately provide a MAP estimate for the regime at time
t :

Q̂t = 1, if γ t
1 (n) > γ t

2 (n), Q̂t = 2, otherwise.

In general, however, one has to take into account the dependencies between the Qt and
to look simultaneously for the whole most plausible sequence Q̂1, . . . , Q̂N of regimes
given the data. The Viterbi algorithm, compare, e.g., Rabiner and Jiang (1986), provides
a solution to that problem. We assume again that the model parameter θ is given; in
practice, it has to be replaced by its estimate from the EM algorithm. We define

δt
i = max

q1,...,qt−1

log pθ (X(t), q1, q2, . . . , qt−1, Qt = i),

i.e., δt
i is the highest complete log-likelihood along a single path of the Markov chain

up to time t , which ends in state Qt = i . As from (A1), (A2)

pθ (X(t+1), q1, q2, . . . , qt , Qt+1 = j)

= P(Qt+1 = j |Qt = qt )pθ (X t+1|X t , Qt+1 = j)pθ (X(t), q1, . . . , qt ),

we get the recursion

δt+1
j = max

i
(δt

i + log Ai j )+ log bt+1
j ,

compare (11). We also need the auxiliary variables I t
j that correspond to that index i

for which the maximum in the previous relation is attained. Using the initial values

δ1
j = logπ j b

1
j , I 1

j = 0, j = 1, 2,

the recursion can be written in the form

I t
j = arg max

i=1,2

(
δt−1

i + log Ai j
)

, 2 ≤ t ≤ N , j = 1, 2,

δt
j = δ

t−1
I t

j
+ log AI t

j , j + log bt
j , 2 ≤ t ≤ N , j = 1, 2.

We finally get the most plausible terminal state

Q̂N = arg max
i=1,2

(
δN

i

)
To retrieve the whole state sequence, we have to backtrack the most plausible single
regimes from time N to time 1:

Q̂t = I t+1
Q̂t+1

, t = N − 1, N − 2, . . . , 1.
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Fig. 3. Data X t from Fig. 1 together with the hidden Markov chain Qt .

For the data of Fig. 1, the Viterbi algorithm resulted in an almost perfect reconstruction
of the hidden sequence Qt . We have Q̂t = Qt for 193 out of 200 observations. Figure 3
shows the data (solid line) and the hidden Markov chain Qt (dotted line). The seven
time instants where the estimated states did not coincide with the true ones are marked
with an asterisks at the bottom of the figure.

3. Other Markov switching time series models

Most of the literature mentioned above allows for multivariate versions of the Markov
switching autoregressive model (2). Such regime-switching vector autoregressions
and their applications in economics are discussed in particular in the monograph
by Krolzig (1997). Francq and Zakoian (2001) have investigated Markov switch-
ing ARMA models and their properties like the existence of stationarity realizations.
Markov switching autoregressions have been also extended to include exogenous
observable time series variables. Such Markov switching ARX processes are discussed
in Section 12.3 of Frühwirth-Schnatter (2006), where they are called Markov switching
dynamic regression models.

Yao and Attali (2000) investigate the structure of general nonparametric Markov
switching autoregressions, corresponding to (9) with an arbitrary function F that is not
characterized by a finite-dimensional parameter θ . Franke et al. (2011) discuss nonpara-
metric estimates for the autoregressive function based on smoothing kernels combined
with an EM algorithm. Franke et al. (2010) have extended this setup to nonparametric
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Markov switching AR–ARCH models which they call conditionally heteroscedastic
mixtures of experts (CHARME). In the case of autoregressive and ARCH components
of order 1, this model assumes the form

X t =

K∑
k=1

Stk (αk(X t−1)+ σk(X t−1)εt ) .

Tadjuidje et al. (2005) investigate nonparametric estimates for the autoregressive and
volatility functions αk(x), σk(x), k = 1, . . . , K , based on fitting feed-forward neural
networks and applies them to a portfolio management problem. The identifiability prob-
lem for that particular type of nonlinear Markov switching autoregressions is treated by
Stockis et al. (2008).

Parametric Markov switching models of the ARCH/GARCH type have been exten-
sively discussed in the literature. A simple example is the Markov switching ARCH
(MS-ARCH) process of order 1 with K regimes which is used as a model for asset
returns X t ,

X t = σtεt ; σ 2
t+1 =

K∑
t=1

Stk
(
ωk + αk X2

t

)
.

This kind of model and extensions to higher order ARCH and to Markov switch-
ing GARCH processes have been considered by Cai (1994), Hamilton and Susmel
(1994), Wong and Li (2001), Francq et al. (2001), Kaufmann and Frühwirth-Schnatter
(2002), and Francq and Zakoian (2005). Maximum likelihood estimation in the case
of the straightforward generalization to Markov switching GARCH processes encoun-
ters inherent difficulties as the dependency on the path of the hidden Markov chain
leads to a number of terms in the likelihood function which increases exponentially
with sample size. To handle this problem, Haas et al. (2004) and Lanne and Saikkonen
(2003) have proposed modified approaches to Markov switching GARCH allowing for
feasible parameter estimates as well as volatility forecasts.

An interesting direction for future research is the study of models like that of
Tadjuidje et al. (2009), which combine the ideas of Markov switching and observation-
based switching. Here, a Markov switching time series model is considered, where the
actual transition probabilities of the Markov chain from time t to time t + 1 depend
on the observed data up to time t . In the notation of section 2, the transition matrix A
would be a parametric function of past values Xs , s ≤ t .

4. Markov switching in continuous time

Hidden Markov and Markov switching models have recently become popular in math-
ematical finance where mainly stochastic processes in continuous time are of interest.
Rydén et al. (1998) have pointed out early that discrete-time hidden Markov models
can reproduce the stylized facts of asset prices (listed, e.g., in Section 1.2 of Franses
and van Dijk (2000)), and may therefore be used for modeling financial data. If we start
from the classical Black–Scholes model, we may introduce regime switching by letting
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the drift and volatility parameters µ, σ depend on the state of a hidden Markov process.
We get for the price process Yt and the returns Rt

dYt = Yt d Rt , d Rt = µQt + σQt dWt , t ≥ 0, (21)

where {Wt } is a standard Wiener process with respect to a filtration F = {Ft , t ≥ 0},
and Qt is a F-adapted Markov process in continuous time assuming only finitely many
values 1, . . . , K . The distribution of {Qt } is determined by a generator matrix G repre-
senting the rates and the transition probabilities for leaving the current regime. Elliott
and Wu (2005) have considered the extension of (21) to jump-diffusion processes. Xi
(2008) has investigated the more general model

dYt = µQt (Yt )dt + σQt (Yt )dWt , t ≥ 0,

with arbitrary functions µk , σk and given conditions for geometric ergodicity.
There is a specific difference between (21) and the analogous hidden Markov model

X t = µQt + σQt εt in discrete time. If σ is not constant, then, in continuous time the
Markov process Qt can be reconstructed theoretically from the observations Rt as σ 2

Qt

is known from the derivative of the quadratic variation of Rt . Therefore, this model is
usually called a Markov switching instead of a hidden Markov model in the literature
in contrast to our terminology in the discrete-time case.

The main ideas for developing estimation and filtering algorithms in continuous
time are similar to those described above for discrete time. Hahn et al. (2009b) give
a review of the recent literature. The interplay between discretized filters based on
continuous-time models and the corresponding filters for discrete-time data is discussed
by James et al. (1996). If, as frequently is the case in practice, only discrete observations
of a continuous-time process are available, specific problems show up, e.g., there is
not necessarily a corresponding generator matrix of a continuous-time Markov process
given an arbitrary transition matrix of a discrete-time Markov chain. If we estimate
the latter based on discrete data, then it is not clear how to get an estimate of the
distribution of the underlying continuous-time process. To fill this gap, Hahn et al.
(2009a,b) and Hahn and Sass (2009) develop appropriate numerical algorithms based
on Markov chain Monte Carlo ideas that, however, are computationally quite expensive
and require a considerable amount of data.

Erlwein et al. apply such continuous-time hidden Markov models to a variety of
financial data like electricity spot prices (Erlwein et al., 2010) or short term interest
rates (Erlwein et al., 2009). Applications to portfolio management problems haven been
discussed recently by Bäuerle and Rieder (2004), Erlwein et al. (2009), Hahn et al.
(2007), and Sass and Haussmann (2004).
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Abstract

In this chapter, we discuss estimation of parameters for heteroscedastic models.
In particular, we discuss the class of M-estimators for the parameters of the
symmetric as well as asymmetric heteroscedasticity and the classes of rank and
M-estimators of the parameters associated with the conditional mean function of
the autoregressive models. We investigated robustness properties of the proposed
estimators through extensive simulation and financial data analysis.
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1. Introduction

Observed financial series frequently appear uncorrelated, yet they exhibit volatility
clustering. Volatility clustering is the tendency of observations relatively large (small)
in absolute values to be followed by other large (small) observations. Nonlinear mod-
els with time-dependent conditional variance are often used to describe time series
with this feature. Engle (1982) introduced the autoregressive conditional heteroscedas-
tic (ARCH) model to describe the inflation rate. ARCH models are used to represent the
volatility, i.e., the strong dependence of the instantaneous variability of a time series on
its own past. Since its introduction, there have been huge developments on the theory
and application of this model and its various generalizations to economics and finan-
cial data sets. In this chapter, we discuss various estimation procedures associated with
such models and their applications.

A popular method for estimating the unknown parameters in such models is to use
the Gaussian likelihood of the innovations and the resulting estimator is called the
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quasi maximum likelihood estimator (QMLE). The QMLE is consistent and asymp-
totically normal when the innovation distribution has finite fourth moment. However,
such stringent moment condition may not hold in many situations; an example is inno-
vations with student-t distribution where the degrees of freedom is at most 4. To deal
with such situations, we discuss robust estimation procedures for these models. See,
for example, Koul and Mukherjee (2002), Peng and Yao (2003), Berkes and Horvath
(2004), Mukherjee (2006, 2007, 2008), Iqbal and Mukherjee (2010), among others for
previous study in this direction.

In the first part of this chapter, we discuss M-estimation methods associated with
the conditional variance parameters of both symmetric and asymmetric heteroscedas-
tic models. In particular, we consider the generalized ARCH (GARCH) model of
Bollerslev (1986), which is useful for modeling symmetric volatility. Another impor-
tant consideration in volatility modeling is that unexpected changes in the return have
different effects on the conditional variance; an unexpected increase (good news) con-
tributes less to the conditional variance in the model than an unforeseen fall (bad news).
Glosten et al. (1993) proposed an asymmetric model, popularly known as the GJR
model for this purpose, and we discuss the M-estimation methods for the GJR model
as well.

Value-at-Risk (VaR) is a commonly used statistic for measuring potential risk in
financial market. VaR is the conditional quantile of the return distribution; see the work
done by Jorion (2000) for a general introduction and exposition of VaR. One of the
important steps in the estimation of VaR involves obtaining an estimate of the instanta-
neous variability or the volatility of a financial time series. We consider robust measures
of VaR using M-estimators of the GARCH and GJR parameters. The performance of
the proposed VaR estimates is extensively studied for three important financial data
sets (S&P500, FTSE100, NIKKEI225). Both in-sample and out-of-sample VaR esti-
mates are evaluated. The accuracy of the proposed one-day-ahead VaR estimates is
discussed using a number of M-test statistics of this chapter. The robustness of these
VaR estimates to the functional forms of the assumed models is also addressed. See the
work done by Iqbal and Mukherjee (in press) also for a recent study on this.

Although most of the existing methodological literature have focused on develop-
ing estimation procedures for the parameters associated with the conditional variability,
the development of the estimation methods associated with the conditional mean com-
ponent of a heteroscedastic problem is also important from the application point of
view and this has been largely overlooked. For this, in the second part of this chapter,
we discuss M-estimation and a rank-based robust procedure for estimating the mean
parameter of a nonlinear autoregressive model with conditional heteroscedastic errors.

The results reviewed in this chapter are important from a number of different angles.
Since QMLE is a member of the class of M-estimators, in many senses, the M-methods
discussed here are applicable to most of the previous analysis using the QMLE. More-
over, since we use nonparametric setup for the error distributions and some of the robust
estimators of the mean and the heteroscedastic parameters used for the VaR evaluation
are consistent and asymptotically normal under minimal moment assumption such as
merely finite second moment of the innovations, some M-estimators are expected to
perform well for those financial data for which the use of the QMLE cannot be justified
due to lack of fourth moment. In fact, our empirical study indicates that in most cases
M-estimators such as Cauchy and B-estimator predict the VaR more accurately than the
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frequently used QMLE. The robustness of the VaR estimates to the model misspecifi-
cation is a desirable property for practitioners. Thus, this review strengthens the point
of using robust estimators for fitting the heteroscedastic models and predicting VaR.

2. GARCH ( p, q) and GJR (1, 1) models

In the GARCH (p, q) model, where p, q ≥ 1 are known integers, the following
representation of the series {X t ; t ∈ Z} is assumed:

X t = σtεt , (1)

where {εt ; t ∈ Z} are unobservable i.i.d. errors symmetric about zero and

σ 2
t = ω0 +

p∑
i=1

α0i X2
t−i +

q∑
j=1

β0 jσ
2
t− j , t ∈ Z , (2)

with ω0, α0i , β0 j > 0, ∀ i , j . Bougerol and Picard (1992) discussed necessary and suf-
ficient conditions for the existence of stationary solution to (1) and (2). Here, we are
concerned with the problem of robust M-estimation of some function of the model
parameter

θ0 = [ω0,α01, . . . ,α0p,β01, . . . ,β0q ]′ (3)

belonging to the parameter space2 based on the observations {X t ; 1 ≤ t ≤ n} and their
applications.

Likelihood based on standardized normal distribution of {εt } is routinely used to
estimate the parameters and the resulting estimator is called the QMLE. The asymptotic
normality of the QMLE was established under the existence of unconditional error
moments of order at least 4. Berkes et al. (2003) (abbreviated as BHK) derived many
nice technical results on the GARCH model (1) and (2) and used them to derive the
asymptotic normality of the QMLE.

Several studies on financial data however have suggested that the existence of fourth
moment needed for the asymptotic normality of the QMLE is not tenable quite often in
practice. Peng and Yao (2003) considered least absolute deviation (LAD)-type estima-
tors of three different varieties and Berkes and Horvath (2004) and Mukherjee (2006)
considered the pseudo-maximum likelihood estimator (PMLE) for the GARCH (p, q)
model and ARCH (p) model. Berkes and Horvath (2004) derived asymptotic normal-
ity of some of the PMLEs under the existence of a fractional unconditional moment of
the error distribution when the score function is three times differentiable over (0,∞).
Their class of estimators include both LAD and QMLE as well as some other important
score functions. However, the identifiability condition of the parameters to be estimated
stipulates known value for the unconditional error (or function of error) moment such
as E(ε2) = 1 or E(|ε|) = 1 or E{|ε|/(1+ |ε|)} is known; see the general condition
(1.16) and displays (2.1)–(2.3) of specific examples in the study by Berkes and Horvath
(2004). Clearly, such conditions are impossible to verify and hence are very undesir-
able. In this chapter, we discuss the asymptotics and applications of the PMLE, or more
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generally, of the M-estimators, without making such assumptions. In particular, we note
that in the GARCH model, an M-estimator based on a score function H consistently
estimates

θ0H = [cHω0, cHα01, . . . , cHα0p,β01, . . . ,β0q ]′, (4)

where cH is a constant defined in (20) below, which depends on the score function H
through the error distribution. In particular, an M-estimator can estimate θ0 if and only
if cH = 1. Hence, using the QMLE, we can estimate θ0 if and only if the error variance
is unity, which is a standard assumption in the literature. See also the study by Fan et al.
(2010) for similar findings.

In the GJR (1, 1) model, the following representation of the return series {X t ; t ∈ Z}
is assumed.

X t = σtεt , (5)

where {εt ; t ∈ Z} are unobservable i.i.d. errors symmetric about zero,

σ 2
t = ω0 + α0 X2

t−1 + β0σ
2
t−1 + γ0 Dt−1 X2

t−1, Dt−1 = I (X t−1 < 0) (6)

and the unknown parameter is

θ0 = [ω0,α0, γ0,β0]′. (7)

Note that positive return contributes to the volatility through the factor α0, whereas
negative return increases the volatility through the factor α0 + γ0. Here γ0 is called the
asymmetric parameter.

We assume that θ0 is in the parameter space

2 = {θ = [ω,α, γ ,β]′;ω,α,β > 0,α + γ ≥ 0,α + β + (γ /2) < 1}.

Under these parameter constraints, model defined by (5) and (6) is strictly stationary.
Although the QMLE based on Gaussian likelihood is frequently used to estimate

the parameters of the GJR model, it does not perform well unless finiteness of the
fourth moment holds. Hence similar to the GARCH, we propose the class of robust
M-estimators for the GJR model. We note that in the GJR model, an M-estimator based
on a score function H consistently estimates

θ0H = [cHω0, cHα0, cHγ0,β0]′, (8)

where, as before, cH is a constant defined in (20).

2.1. M-estimators

In the sequel, for a function g, ġ and g̈ will denote the first and second derivatives,
respectively, whenever they exist and ε will denote a random variable having same
distribution as {εt ,∈ Z}.
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Let ψ : IR→ IR be an odd function that is differentiable in all but finite number
of points. Let D ⊂ IR denote the set of points where ψ is differentiable and let D̄
denote its complement. Let H(x) := xψ(x), x ∈ IR. Note that H(−x) = H(x), ∀x .
The function H will be called the “score function” for the M-estimation in the scale
model. Examples are as follows.

Example 1. Least absolute deviation (LAD) score: Let ψ(x) = sign (x). Then
Dc
= {0} and H(x) = |x |.

Example 2. Huber’s k-score: Let ψ(x) = x I (|x | ≤ k)+ k sign (x)I (|x | > k),
where k > 0 is a known constant. Then Dc

= {−k, k} and H(x) = x2 I (|x | ≤ k)+
k|x |I (|x | > k).

Example 3. QMLE: Let ψ(x) = x . Then H(x) = x2.

Example 4. Score function for the maximum likelihood estimation (MLE): Let
ψ(x) = − ḟ0(x)/ f0(x), where f0 is the true density of ε, assumed to be known. Then
H(x) = x{− ḟ0(x)/ f0(x)}.

Example 5. B-estimator: Let ψ(x) = B sign(x)/(1+ |x |), where B > 1 is a
known constant. Then Dc

= {0} and H(x) = B|x |/(1+ |x |).

Example 6. Cauchy estimator: Let ψ(x) = 2x/(1+ x2). Then H(x) = 2x2/

(1+ x2).

Example 7. Score function for the exponential pseudo-maximum likelihood esti-
mation (EPMLE): Let ψ(x) = a|x |b−1sign(x), where a > 0 and 1 < b ≤ 2 are
known constants. Such score can be motivated from the class of densities consid-
ered by Nelson (1991) and Robinson and Zaffaroni (2006) to model the innovations
of the exponential GARCH model. Here Dc

= {0} and H(x) = a|x |b.

Next we define M-estimators. Recall that in the location model, an M-estimator
is defined as solution to certain system of equations involving residual functions and
we follow the same approach. Since εt = X t/σt , to define residual functions, we first
discuss the concept of variance function related to the denominator of the residual as
follows. We discuss this for the GARCH and GJR seperately.

For the GARCH model, assume that for some κ > 0,

E[|ε|κ ] <∞. (9)

Then from Lemma 2.3 and Theorem 1 of BHK, σ 2
t of (2) has the following unique

almost sure representation:

σ 2
t = c0 +

∞∑
j=1

c j X2
t− j , t ∈ Z , (10)

where {c j ; j ≥ 0} are defined in (7) through (9) of BHK and in (12) below.
Define the variance function on the parameter space 2 by

vt (θ) = c0(θ)+

∞∑
j=1

c j (θ)X
2
t− j , θ ∈ 2, t ∈ Z , (11)
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where the coefficients {c j (θ); j ≥ 0} are given in BHK (Section 3 and display (3.1))
with the property

c j (θ0) = c j , ∀ j ≥ 0.

Hence, from (10), the variance functions satisfy

σt = v
1/2
t (θ0), t ∈ Z .

An example of (11) for the GARCH (1, 1) model with θ = (ω,α,β)′ is

c0(ω,α,β) = ω/(1− β), c j (ω,α,β) = αβ j−1, j ≥ 1. (12)

For the GJR model, by recursive substitution from (6),

σ 2
t = ω0 + α0 X2

t−1 + γ0 Dt−1 X2
t−1

+ β0{ω0 + α0 X2
t−2 + γ0 Dt−2 X2

t−2 + β0σ
2
t−2}

= ω0(1+ β0)+ α0(X
2
t−1 + β0 X2

t−2)+ γ0(Dt−1 X2
t−1 + β0 Dt−2 X2

t−2)

+ β2
0 {ω0 + α0 X2

t−3 + γ0 Dt−3 X2
t−3 + β0σ

2
t−3}

= ω0(1+ β0 + β
2
0 )+ α0(X

2
t−1 + β0 X2

t−2 + β
2
0 X2

t−3)

+ γ0(Dt−1 X2
t−1 + β0 Dt−2 X2

t−2 + β
2
0 Dt−3 X2

t−3)+ β
3
0σ

2
t−3

=
ω0

(1− β0)
+ α0

∞∑
j=1

β
j−1

0 X2
t− j + γ0

∞∑
j=1

β
j−1

0 Dt− j X2
t− j . (13)

Hence, for θ ∈ 2, define the variance function

vt (θ) =
ω

(1− β)
+ α

∞∑
j=1

β j−1 X2
t− j + γ

∞∑
j=1

Dt− jβ
j−1 X2

t− j (14)

and note that

σt = v
1/2
t (θ0), t ∈ Z .

Therefore, (1) and (5) can be rewritten as

X t = {vt (θ0)}
1/2εt , 1 ≤ t ≤ n. (15)

Next consider observable approximations {v̂t (θ)} of the processes {vt (θ)} of (11) and
(14) defined by

v̂t (θ) = c0(θ)+ I (2 ≤ t)
t−1∑
j=1

c j (θ)X
2
t− j , θ ∈ 2, 1 ≤ t ≤ n,
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and

v̂t (θ) =
ω

(1− β)
+ α

t−1∑
j=1

β j−1 X2
t− j + γ

t−1∑
j=1

Dt− jβ
j−1 X2

t− j , θ ∈ 2 1 ≤ t ≤ n,

for the GARCH and GJR models, respectively. Therefore, from (15), we define the
residual functions as

X t/{̂vt (θ)}
1/2, 1 ≤ t ≤ n. (16)

In (15), if f denotes the error density, then the conditional density of X t given past
will be v−1/2

t (θ0) f {v−1/2
t (θ0)X t }, 1 ≤ t ≤ n. Hence, motivated by the conditional like-

lihood, one can define a random quantity as a minimizer of the negative log-likelihood
function (1/n)

∑n
t=1[(1/2) log vt (θ)− log f {X t/v

1/2
t (θ)}], θ ∈ 2, or as a solution of

its derivative function

n∑
t=1

(1/2)[1− H∗{X t/v
1/2
t (θ)}]{v̇t (θ)/vt (θ)} = 0,

where H∗(x) := x{− ḟ (x)/ f (x)}.
More generally, with a score function H(x) := xψ(x), we can then define θn in (15)

as a solution to the equation

n∑
i=1

(1/2)

{
1− H{X t/v

1/2
t (θ)}

}
{v̇t (θ)/vt (θ)} = 0. (17)

Note, however, that θns are noncomputable since vt (θ)s are nonobservable. Hence,
replacing vt () by v̂t (θ) in (17), an M-estimator θ̂n for the respective model based on a
score H is defined as a solution to

n∑
i=1

(1/2)

{
1− H{X t /̂v

1/2
t (θ)}

}
{ ˙̂vt (θ)/̂vt (θ)} = 0. (18)

For H(x) = x2 of Example 3, θ̂n is the celebrated QMLE, whereas for H(x) = |x | of
Example 1, θ̂n can be called the LAD estimator.

Based on an M-estimator, from (16), the residuals are defined as

ε̂t = X t/{̂vt (θ̂n)}
1/2, 1 ≤ t ≤ n. (19)

2.2. Asymptotic distribution of θ̂n

Asymptotic distributions are derived under the following assumptions.

Model assumptions: Either (1) and (2) or (5) and (6) are valid. The parameter space 2
is a compact set and its interior20 contains both θ0 and θ0H of either (3) and (4) or (7)
and (8), respectively. Moreover, (15) hold and {X t } is stationary and ergodic.
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Conditions on the score function
Identifiability condition: Corresponding to the score function H , there exists a unique
number cH > 0 satisfying

E[H(ε/c1/2
H )] = 1. (20)

Moment conditions:

E[H(ε/c1/2
H )]2 <∞ and 0 < E{(ε/c1/2

H )Ḣ(ε/c1/2
H )} <∞. (21)

Smoothness conditions:
One can assume smoothness conditions of varying degree that are applicable to dif-
ferent score functions. One such (strong) assumption is that the score function is
three times differentiable with bounded third derivative. It is possible to have weak
smoothness conditions on H that are satisfied by all score functions of Examples 1–7.

To state the main result on θ̂n of (18), define the score function factor

σ 2(H) := 4 var{H(ε/c1/2
H )}/[E{(ε/c1/2

H )Ḣ(ε/c1/2
H )}]2,

where var{H(ε/c1/2
H )} is assumed to be positive in the moment condition (21). Also,

define

G := E{v̇1(θ0H )v̇
′

1(θ0H )/v
2
1(θ0H )}.

Theorem 1. Suppose that the model assumptions, identifiability condition, moment
conditions, and the smoothness conditions hold. Then

n1/2(θ̂n − θ0H )→ N [0, σ 2(H)G−1]. (22)

Remark 1. The above result states that using the score function H , we can consis-
tently estimate θ0H . With H(x) = x2, cH = E(ε2), and hence, using the QMLE, we
can consistently estimate [E(ε2)ω0, E(ε2)α01, . . . , E(ε2)α0p,β01, . . . ,β0q ]′. Note that
E(ε2) = 1 is a standard assumption in the literature, except in the study by Berkes and
Horvath (2004) (for the GARCH), where known value of cH is assumed for different
H . Hence, when the error variance is unity, we can estimate θ using the QMLE. We can
estimate θ using any other score function H whenever cH = 1 for the corresponding
error distribution. 2

Remark 2. Note that Theorem 1 is derived under weak moment assumptions on the
error distribution. We imposed conditions on the score function H , which in most of
the examples are translated to very mild moment assumptions on the error distribution.
Also, the variance expressions (10) and (13) are crucial to define the variance functions.
In particular, for Examples 5 and 6, only (9) is enough to have the variance expression
for the GARCH, and hence, the asymptotic normality of the estimators where κ can be
a fraction and need not even be of known value. 2
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The usefulness of the above estimators can be further demonstrated by considering
a family of t density with ν > 0 degrees of freedom where the density of the error
random variable ε is proportional to

(1+ x2/ν)−(ν+1)/2. (23)

Note that E |ε|µ <∞ for all 0 < µ < ν, E(ε) = 0 for ν > 1, and Var(ε) = ν/(ν − 2)
for ν > 2.

When (2 < ν ≤ 4), for any b such that 2 < 2b < ν, E |ε|2b <∞ but Eε4
= ∞.

Therefore, the EPMLE satisfies (22), whereas the asymptotic normality of the QMLE
does not hold.

The above class of estimators is useful for error distributions for which κ in (9) is
possibly a fraction and even unknown. For illustration, suppose that the error density
satisfies (23) for some unknown ν with 0 < ν < 4. Since (9) holds with κ = ν/2, the
estimator based on any known λ > 1 satisfies (22), whereas the asymptotic normality
of the QMLE does not hold.

3. Data analysis for the GARCH and GJR models

We verify the asymptotic distributional result of Section 2 and compare relative per-
formance of M-estimators based on different score functions using a simulation study.
For comparison, we define the mean squared errors (MSEs) of an estimator for the GJR
(1, 1) model as

E[{(ω̂ + γ̂ )/α̂ + β̂} − {(ω0 + γ0)/α0 + β0)}]
2.

From (22) and the definition of θ0H , the ratio of ω̂ + γ̂ and α̂ is consistent to a quan-
tity that is free from the underlying score function H used for the M-estimation,
and hence, the above definition of MSE compares the relative performance of dif-
ferent M-estimators. When specialized to the GARCH (1, 1) model with γ0 = 0, the
corresponding MSE is defined as

E[{(ω̂/α̂)+ β̂} − {(ω0/α0)+ β0)}]
2.

We use simulations to estimate these quantities. Then we considered two data sets,
namely, (a) The monthly log returns of IBM stock from 1926 to 1999 (888 observations
with first value 1:0434 and last value 4:5633) and (b) The monthly excess returns of
S&P 500 from 1926 to 1991 (792 observations with the first value 0.0225 and the last
value 0.1116). These data sets were analyzed by Tsay (2010) who fitted various types
of conditional heteroscedastic models to them. The data can be found in

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/

We have computed various types of M-estimators for the GARCH and GJR models
fitted to these data sets. All computations reported here, except those in Table 3, are
carried out using the software R.

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/
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3.1. Simulation study

We consider R = 1000 replicates each of sample size n = 500 from the models (2)
and (6) with errors generated from four different distributions, namely, standard nor-
mal, scale mixture of normal distributions (1− c∗)8(x)+ c∗8(x/σ) with c∗ = 0.05
and σ 2

= 9, and standardized student-t distributions with 3 and 4 degrees of freedom.
For each sample, we computed five different M-estimators, namely, QMLE, LAD,
Huber with k = 1.5× 1.483 median|ε̂M

t |, B-estimator with B = 2.5, and Cauchy; here
the pseudo-residuals {ε̂M

t } in the Huber’s estimates are defined as in (19) based on
MATLAB-prescribed initial estimates α̂M

0 = 0.05, β̂M
0 = 0.85, γ̂ M

0 = 0, and ω̂M
0 =

(1− α̂M
0 − β̂

M
0 )× v̂(X) where v̂(X) is the sample variance of the observed series

{X1, . . . , Xn}.
Since the MSEs depend on the underlying true parameter θ0, we describe a general

scenario of relative comparison by reporting a representative result simulated with the
values of the true parameters ω0 = 0.005, α0 = 0.2, and β0 = 0.75 for the GARCH
(1, 1) model in Table 1. The choice is guided by the estimates of GARCH parameters
computed using MATLAB and reported in Table 3 for the S&P 500 data based on
QMLE where estimate of ω is very small and those of α and β are moderate with sum
close to but less than 1. We report a representative result for a stationary GJR (1, 1)
model in Table 2 simulated from ω0 = 0.5, α0 = 0.3, β0 = 0.4, and γ0 = 0.25 which
are all moderately large and the underlying model is stationary; results corresponding
to the other parameter combinations are available from the author upon request.

Tables 1 and 2 show the estimated MSE for each score functions with their standard
errors in parentheses computed over R replications; entries in bold represents the least
value of MSE for each row. As expected, the QMLE performs well under normal error
distribution, but it is not a good choice with other heavy-tailed error densities. Peng and
Yao (2003) suggested that when {εt } follows a heavy-tailed distribution, least absolute
deviations estimators (LAD) should be used. Our study reveals that there are score

Table 1
Mean squared error of M-estimators for GARCH (1, 1) model

n = 500 QMLE LAD Hubers B-Estimator Cauchy

MSE Normal Distribution

0.0202 0.0677 0.0272 0.0441 0.0812
(0.0631) (0.1468) (0.0758) (0.1094) (0.1428)

MSE Scale Mixture of Normal Distributions

0.0720 0.0440 0.0434 0.0408 0.0909
(0.1106) (0.0883) (0.0879) (0.0839) (0.1450)

MSE Student-t Distribution (3)

0.0302 0.0163 0.0119 0.0133 0.0204
(0.0745) (0.0595) (0.0392) (0.0488) (0.0604)

MSE Student-t Distribution (4)

0.0241 0.0153 0.0145 0.0153 0.0351
(0.0535) (0.0448) (0.0430) (0.0398) (0.0925)
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Table 2
Mean squared error of M-estimators for GJR (1, 1) model

n = 500 QMLE LAD Hubers B-Estimator Cauchy

MSE Normal Distribution

0.0727 0.0304 0.0303 0.0373 0.0371
(0.0555) (0.0178) (0.0187) (0.0337) (0.0268)

MSE Scale Mixture of Normal Distributions

0.1081 0.0601 0.0593 0.0454 0.0566
(0.0925) (0.0782) (0.0811) (0.0175) (0.0177)

MSE Student-t Distribution (3)

0.0786 0.0400 0.0503 0.0294 0.0322
(0.0625) (0.0378) (0.0853) (0.0154) (0.0160)

MSE Student-t Distribution (4)

0.0815 0.0598 0.0600 0.0547 0.0597
(0.0430) (0.0315) (0.0132) (0.0316) (0.0727)

functions such as Huber’s estimator and B-estimator that can perform even better than
the LAD; this comes without imposing any extra restriction such as median(ε2

t ) = 1.
These results indicate that B-estimator is an excellent choice in terms of the MSE crite-
rion for estimating parameters of GJR and GARCH models when data have heavy tails
or there is evidence of outliers. Additional simulations reveal that as the sample size
increases, B-estimator performs even better compared to all its competitors in terms of
even smaller MSE. Simulation study suggests that B = 2.5 works well.

3.2. Financial data

In this section, we compute M-estimates of the parameters by fitting GARCH (1, 1)
and GJR (1, 1) models for the centered IBM stock and the centered S & P 500 index,
denoted by {X t = rt − r̄ ; 1 ≤ t ≤ n}, where {rt ; 1 ≤ t ≤ n} is the original stock or
index data. Table 4 shows estimated parameters of GARCH (1, 1) model for the IBM
data using five different M-estimators and their standard errors (SEs). The Ljung-Box
statistics {Q(k)} at lag k for the squared residuals {ε̂t

2
} are also computed to check

the model adequacy. For each estimator, similar and high p-values of the Ljung-Box
statistics at lag k = 10 suggest that GARCH (1, 1) model is adequate for the data at 5%
significance level. As mentioned earlier an M-estimator based on a score function H
consistently estimates θ0H = (cHω0, cHα0,β0)

′. Note that all M-estimates of β0 should
have similar value free from cH , and this is reflected in Table 4.

Next, the parameters of the GJR (1, 1) model are estimated for the IBM data, and
the M-estimators are reported in Table 5. Standard errors for these estimated parameters
are also computed along with the Ljung-Box statistics for ε̂t

2. Based on each estima-
tor, high p-values of the Ljung-Box statistics for lag 10 suggest that GJR (1, 1) model
is also adequate for this data set. Moreover, except for the case of Huber’s estima-
tor, all other M-estimators do not reject the hypothesis γ = 0 (that is the GARCH is
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Table 3
QMLE of GARCH (1, 1) and GJR (1, 1) parameters for real data sets using MATLAB;
SEs are in parantheses

Data Set IBM Stock S & P 500 Index

GARCH (1,1) GJR (1,1) G ARC H(1, 1) G J R(1, 1)

ω 2.9987 3.3579 0.00008 0.00009
(0.9415) (0.9810) (0.00002) (0.00002)

α 0.0953 0.0667 0.1211 0.0727
(0.0201) (0.0238) (0.0199) (0.0210)

γ – 0.0558 – 0.0822
– (0.0256) – (0.0283)

β 0.8376 0.8293 0.8556 0.8543
(0.0365) (0.0380) (0.0190) (0.0185)

Table 4
M-estimates of GARCH (1, 1) parameters and the corresponding Ljung-Box statistic of squared residuals for
the IBM data

Parameters QMLE LAD Hubers B-Estimator Cauchy

cHω 3.0045 1.6319 1.9419 2.0021 0.8984
(1.4277) (0.7314) (0.8795) (1.0151) (0.4722)

cHα 0.0950 0.0542 0.0680 0.0717 0.0297
(0.0307) (0.0162) (0.0201) (0.0236) (0.0105)

β 0.8378 0.8475 0.8557 0.8502 0.8473
(0.0535) (0.0465) (0.0435) (0.0502) (0.0547)

Q(10) 2.8528 3.0512 3.2429 3.1591 3.0479
p-value 0.9847 0.9802 0.9751 0.9774 0.9803

adequate) correctly. M-estimators for GJR (1, 1) based on a score function H consis-
tently estimates θ0H = (cHω0, cHα0, cHγ0,β0)

′. Again it is evident from Table 5 that
the estimates of β0 using different score functions are close to each other.

4. Value at risk and M-tests

Next, we consider the prediction of VaR based on M-estimates. A (1− p)100% VaR
is the pth conditional quantile of the distribution of the returns, where p is known and
close to zero. Hence, for the returns {X t ; 1 ≤ t ≤ n} of a portfolio, the VaR at time
t > 1, denoted by qt = qt (p), is defined by

qt = inf {x ; p ≤ Pt−1(X t ≤ x)},

where Pt−1 is the conditional distribution of X t given the information available up to
time t − 1. From (15), we get

qt = v
1/2
t (θ0)F

−1(p),
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Table 5
M-estimates of GJR (1, 1) parameters and the corresponding Ljung-Box statistic of squared residuals for the
IBM data

Parameters QMLE LAD Hubers B-Estimator Cauchy

cHω 3.4542 1.7702 2.2448 2.2262 0.9251
(1.5490) (0.7512) (0.3227) (1.0468) (0.4538)

cHα 0.0676 0.0377 0.0471 0.0490 0.0187
(0.0333) (0.0173) (0.0074) (0.0249) (0.0105)

cHγ 0.0570 0.0373 0.0489 0.0552 0.0255
(0.0429) (0.0232) (0.0100) (0.0346) (0.0153)

β 0.8257 0.8383 0.8431 0.8381 0.8412
(0.0569) (0.0477) (0.0156) (0.0514) (0.0528)

Q(10) 2.8068 3.0582 3.1182 3.2097 3.2548
p-value 0.9856 0.9800 0.9785 0.9761 0.9748

where F−1 is the quantile function of the innovations {εt }. From (12) and (14), notice
that

vt (θ0H ) = cHvt (θ0).

Hence

qt = c1/2
H v

1/2
t (θ0)F

−1(p)/c1/2
H = v

1/2
t (θ0H )F

−1
∗
(p), (24)

where notice that F−1
∗
(p) is the pth quantile of the scaled errors {εt/c

1/2
H }. Esti-

mating v
1/2
t (θ0H ) by v̂

1/2
t (θ̂n) and F−1

∗
(p) by the pth quantile of the residuals

{X t/{̂vt (θ̂n)}
1/2; 1 ≤ t ≤ T }, we obtain from (24) the VaR estimate q̂t of qt as

q̂t = v̂
1/2
t (θ̂n)×

(
[np]+ 1

)
th order statistics of {X t/{̂vt (θ̂n)}

1/2
}, 2 ≤ t ≤ n. (25)

Clearly q̂t depends on the underlying M-estimates.
Let

n∗ =
n∑

t=2

It with It = I (X t ≤ q̂t )

denote the total number of observed violations. The closeness of the empirical rejection
probability

p̂ = n∗/n (26)

to “p” can be used to assess the overall predictive performance of the underlying con-
ditional heteroscedastic model and the M-estimates used for computing q̂t . We describe
below two statistical tests for the null hypothesis E(n∗/n) = p against its negation, as
they are related to the model validity.
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4.1. M-tests

Define the unconditional likelihood ratio test statistic by

LRuc = 2
[
ln
{
(1− p̂)n−n∗ p̂n∗

}
− ln

{
(1− p)n−n∗ pn∗

}]
.

Kupiec (1995) proposed this statistics when the QMLE is used as θ̂n and the test
statistics are asymptotically χ2

(1).
Note, however, that in a reasonable model of VaR, the previous history of violations

should not convey any information about whether or not an additional VaR violations
may occur in future. Toward that, using the QMLE as θ̂n , Christoffersen (1998) defined
the independence coverage test statistic, denoted by LRind, which characterizes the
ways in which these violations occur as follows.

For i , j = 0, 1, let ni j be the number of time points {t ; 2 ≤ t ≤ n} for which It = i
is followed by It+1 = j . Let

π̂i j = ni j/(ni0 + ni1), π̂ = (n01 + n11)/n.

Then

LRind = 2
[
ln
(
(1− π̂01)

n00 π̂
n01
01 (1− π̂11)

n10 π̂
n11
11

)
− ln

(
(1− π̂)(n00+n10)π̂ (n01+n11)

)]
.

Since both the unconditional coverage and the independence properties should be
satisfied for an accurate VaR model, Christoffersen (1998) proposed the statistic

LRcc = LRuc + LRind

which is asymptotically χ2
(2). We consider the same test statistics when {q̂t }s are

evaluated using M-estimates.

4.1.1. Dynamic quantile M-test
Since the LRcc test only checks the first-order dependence in the risk estimates, Engle
and Manganelli (2004) proposed this test to check the high-order dependence among
{It }s when the QMLE is used as θ̂n . To describe it, let the t th response ht , 2 ≤ t ≤ n,
be defined by

ht =

{
1− p if X t ≤ q̂t ,
−p if X t > q̂t

and h1 = −p. Now consider a linear regression model with response Y = [h1, . . . , hn]′

and a n × k design matrix X = [xt , j ] with k = 7 and all ones in the first column. For the
(t , j)th term with 2 ≤ j ≤ 6, xt , j = ht− j if j < t and xt , j = 0 if j ≥ t and xt ,7 = q̂t .
The dynamic quantile test statistics are defined as

DQ =
β̂
′

X ′Xβ̂
p(1− p)

,

where β̂ = (X
′

X)−1 X
′

Y is the ordinary least square (OLS) estimator. The DQ test
has an asymptotic chi-square distribution with k = 7 degrees of freedom under
independence.
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4.2. Comparisons among competing M-estimators

After assessing model validity using above tests based on different M-estimators, we
can make pairwise comparisons of only the competing M-estimators based on VaR in
terms of the following two criteria namely the mean relative bias and quadratic loss.

4.2.1. Mean relative bias (MRB)
Suppose there are c number of competing VaR estimates {q̂ j t ; 1 ≤ t ≤ n, 1 ≤ j ≤ c}.
Hendricks (1996) defined the mean relative bias (MRB) of the j th estimator (1 ≤
j ≤ c) as

MRB j =
1

n

n∑
t=1

q̂ j t − q̄t

q̄t
, where q̄t =

1

c

c∑
j=1

q̂ j t .

4.2.2. Average quadratic loss (AQL)
The statistic n∗ based on a particular estimator or method counts merely the number
of violations and does not consider the magnitude of losses. To take into account this,
Lopez (1999) defined the overall quadratic loss of a VaR estimate by

∑n
t=1 L t/n where

L t =

{
1+ (q̂t − X t )

2 if X t ≤ q̂t ,
0 if X t > q̂t .

We can use the loss corresponding to different estimates to compare their performance.

5. Data analysis based on VaR

In this section, we exhibit the robustness and better performance of the above
M-estimators by demonstrating that irrespective of the form GARCH or more general
GJR assumed, the VaR estimates based on different M-estimators are accurate subject
to sampling variations. Moreover, minimum AQL is incurred when Huber, B-estimator,
or the Cauchy estimator is used. The data sets used in the empirical application are the
daily closing indices {Pt } of three major stocks of the United States, Europe, and Asia,
namely, S&P500 Index, FTSE100 Index, and NIKKEI225 Index, respectively. The data
sets are obtained for the period of January 1990 to December 2005 from the website
http://www.finance.yahoo.com. Note that S&P500 and FTSE100 indices consist of total
T = 4042 values whereas the NIKKEI225 Index consists of T = 3938 observations.
For each of the three indices, the return at time t is defined as

rt = (lnPt − lnPt−1)× 100%, t = 1, 2, . . . , n.

Next using {X t = rt − r̄ ; 1 ≤ t ≤ n} (with r̄ =
∑n

t=1 rt/n) as our observations, each
data series is divided into two parts; the estimation or in-sample part of initial K values
and the validation or out-of-sample part of N = n − K values. For this study, we fix
N = 2000 for each data set.

We fitted both GJR and GARCH models to all three data sets; note that GARCH is
a special case of GJR model. For evaluating the accuracy of VaR estimates, we present
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below the results of some continual statistical testing (backtesting) on the estimation
sample. Backtesting helps to identify the validity of each model and is also required by
the regulatory bodies such as the Basel Committee on Banking Supervision (1996).

5.1. In-sample VaR evaluation and comparison

In this subsection, we assume that the sample size is merely K . Note that the K -values
for the S&P500, FTSE100, and NIKKEI225 are 2042, 2042, and 1938, respectively.
We compute K − 1 numbers of in-sample VaR estimates with p = 10% using (25).
Subsequently, we compute all statistics of Section 6.

Tables 6 and 7 report the results of in-sample VaR estimates. For brevity, we report
results corresponding to p = 10% only though more simulation results corresponding
to other values of p are available in the study by Iqbal (2010). The first row for each
data set shows that the { p̂}’s are quite close to p for all M-estimators for both models
indicating that both GJR and its special case GARCH fit these real data sets well; thus,
the VaR estimates are robust to the model specification for symmetry. Next we explore
performance of various M-test statistics to check model validity and at the same time we
analyze their ability to detect model misspecification. None of the coverage statistics
LRuc and LRcc is statistically significant, which indicates that the expected and the
actual proportion of observations falling below the VaR threshold remain statistically
same for both models. However, for the FTSE100 and NIKKEI225 returns, although
all M-estimators pass the conditional coverage statistics at both p = 5% and 10%, they
fail to accept the null based on the dynamic quantile test at these rejection probabilities
when GARCH model is used alone showing the existence of high-order dependence.
However, with the use of more general GJR, it is no longer significant pointing toward
the need of using asymmetric model.

After noting that all estimators have passed the coverage tests for both models,
we present comparisons of the competing estimators. The AQL for each estimator is
reported in Tables 8 and 9. It turns out that AQL is a robust measure with respect to
the choice of models. For both models and for all three data sets, the least AQLs are
related to the use of Huber, Cauchy, and B-estimator. For example, B-estimator pro-
duced the least AQL for NIKKEI225 Index for both models. Moreover, the signs of
MRB are consistent with both models for all three data sets. Thus, our analysis reveals
the existence of alternative estimators that perform better than the QMLE in the VaR
evaluation and whose performance is robust with respect to the choice of symmetric or
asymmetric models.

5.2. Out-of-sample VaR evaluation and comparison

Next, we look at the performance of M-estimators in producing one-step-ahead VaR
estimates; here we report results corresponding to p = 10%. In this setup, we allow the
set of observations of size K to change over time using moving window of length K
and producing altogether N number of VaR estimates. This is what is implemented in
the “real-life” situation where the out-of-sample VaR forecasts are delivered based on
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Table 6
In-sample M-statistics for the VaR evaluation and model validity (GARCH)

QMLE LAD Huber B-Estimator Cauchy

90% VaR Confidence Level

S&P500 Index
p̂ 0.0950 0.0955 0.0955 0.0970 0.0945
LRuc 0.5747 0.4668 0.4668 0.2111 0.6940
LRcc 5.1378 4.8136 4.8136 4.8616 4.5303
DQ 10.4852 9.9082 11.2013 10.9010 10.2724

FTSE100 Index
p̂ 0.0955 0.0955 0.0940 0.0945 0.0926
LRuc 0.4668 0.4668 0.8247 0.6940 1.2860
LRcc 1.1401 0.6940 1.0225 0.8968 1.4974
DQ 16.1487∗ 20.4942∗∗ 23.0526∗∗ 26.9402∗∗ 28.3048∗∗

NIKKEI225 Index
p̂ 0.1042 0.1022 0.1022 0.1017 0.1017
LRuc 0.3808 0.1005 0.1005 0.0584 0.0584
LRcc 0.5987 3.7972 3.7972 3.9585 3.9585
DQ 19.0729∗∗ 23.4811∗∗ 23.3008∗∗ 24.3819∗∗ 24.4052∗∗

Note: The DQ test statistic is asymptotically χ2(7), and * and ** denote significance at the 5% and 1%
level, respectively.

Table 7
In-sample M-statistics for the VaR evaluation and model validity (GJR)

QMLE LAD Huber B-Estimator Cauchy

90% VaR Confidence Level

S&P500 Index
p̂ 0.0965 0.0975 0.0955 0.0989 0.0960
LRuc 0.2851 0.1483 0.4668 0.0264 0.3703
LRcc 1.9906 3.6884 2.4323 2.3053 2.2031
DQ 8.6549 10.6801 11.4062 12.3916 10.1888

FTSE100 Index
p̂ 0.0960 0.0960 0.0950 0.0955 0.0960
LRuc 0.3703 0.3703 0.5747 0.4668 0.3703
LRcc 1.1124 0.7939 0.7873 3.8900 4.4786
DQ 9.6957 9.1298 11.8438 10.6586 13.7654

NIKKEI225 Index
p̂ 0.1037 0.1037 0.1032 0.1027 0.1042
LRuc 0.2940 0.2940 0.2183 0.1538 0.3808
LRcc 2.6928 1.5418 2.1247 1.1521 1.1304
DQ 9.8554 8.4766 9.5726 6.4889 6.7659

Note: The DQ test statistic is asymptotically χ2(7), and * and ** denote significance at the 5% and 1%
level, respectively.
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Table 8
Comparison among competing M-estimators for the in-sample VaR evaluation (GARCH)

QMLE LAD Huber B-Estimator Cauchy

90% VaR Confidence Level

S&P500 Index
MRB 0.0063 0.0046 –0.0033 –0.0082 0.0006
AQL 0.1069 0.1073 0.1074 0.1089 0.1062

FTSE100 Index
MRB 0.0140 –0.0049 –0.0026 –0.0064 –0.0001
AQL 0.1019 0.1021 0.1007 0.1012 0.0992

NIKKEI225 Index
MRB –0.0007 0.0014 –0.0031 0.0023 0.0001
AQL 0.1311 0.1286 0.1291 0.1280 0.1282

Note: The smallest AQL for each data set is bold faced to highlight the best performance.

Table 9
Comparison among competing M-estimators for the in-sample VaR evaluation (GJR)

QMLE LAD Huber B-Estimator Cauchy

90% VaR Confidence Level

S&P500 Index
MRB 0.0036 0.0079 –0.0035 –0.0090 0.0011
AQL 0.1083 0.1089 0.1072 0.1108 0.1076

FTSE100 Index
MRB 0.0010 –0.0026 –0.0051 –0.0019 –0.0096
AQL 0.1024 0.1025 0.1016 0.1023 0.1031

NIKKEI225 Index
MRB 0.0109 0.0001 –0.0003 –0.0025 –0.0082
AQL 0.1272 0.1275 0.1266 0.1259 0.1279

Note: The smallest AQL for each data set is bold faced to highlight the best performance.

the estimated parameters of the daily updated observations. In other words, for each
of 1 ≤ w ≤ N , we produce one-step-ahead VaR estimate q̂ow based on {X t ;w ≤ t ≤
w + K − 1} using (25).

Tables 10 and 11 provide results related to the out-of-sample VaR estimates. The
empirical rejection probability of (26) for the out-of-sample VaR estimates is defined as

p̂o = (1/N )
N∑
w=1

I (Xw+K ≤ q̂ow).

For all data sets and M-estimators, p̂o is close to p = 0.10 for both models indi-
cating robustness of the VaR estimates with respect to the models used. Neither of the
likelihood ratio statistics, LRuc and LRcc, is significant at 10% and 5% levels showing
that the proportion of violations produced by M-estimators is statistically same as the
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Table 10
Out-of-sample M-statistics for the VaR evaluation and model validity (GARCH)

QMLE LAD Huber B-Estimator Cauchy

90% VaR Confidence Level

S&P500 Index
p̂o 0.1120 0.1120 0.1110 0.1140 0.1090
LRuc 3.0927 3.0927 2.6058 4.1867 1.7541
LRcc 3.7433 4.0705 4.2349 4.6202 3.3588
DQ 16.2397∗ 21.7491∗∗ 22.6867∗∗ 18.4834∗∗ 14.7659∗

FTSE100 Index
p̂o 0.1055 0.1050 0.1055 0.1045 0.1060
LRuc 0.6616 0.5475 0.6616 0.4441 0.7862
LRcc 4.7973 4.0543 3.9799 4.1451 3.9221
DQ 19.1367∗∗ 19.1286∗∗ 20.1013∗∗ 19.8089∗∗ 18.5360∗∗

NIKKEI225 Index
p̂o 0.1005 0.1005 0.0995 0.0995 0.0990
LRuc 0.0055 0.0055 0.0056 0.0056 0.0223
LRcc 0.2202 0.2552 0.2175 0.2566 0.3497
DQ 7.3476 5.3039 5.6436 5.4985 4.2406

Note: The DQ test statistic is asymptotically χ2(7), and * and ** denote significance at the 5% and 1%
level, respectively.

Table 11
Out-of-sample M-statistics for the VaR evaluation and model validity (GJR)

QMLE LAD Huber B-Estimator Cauchy

90% VaR Confidence Level

S&P500 Index
p̂o 0.1100 0.1105 0.1110 0.1110 0.1130
LRuc 2.1595 2.3776 2.6058 2.6058 3.6197
LRcc 2.5563 2.7369 3.1171 3.1171 3.9627
DQ 9.3568 11.9913 13.8734 13.3806 14.9990∗

FTSE100 Index
p̂o 0.1060 0.1090 0.1070 0.1055 0.1070
LRuc 0.7862 1.7541 1.0671 0.6616 1.0671
LRcc 3.9221 2.8918 3.8556 3.2526 3.8556
DQ 19.7151∗∗ 11.0671 14.9138∗ 14.2534∗ 11.9589

NIKKEI225 Index
p̂o 0.0995 0.1005 0.0980 0.0985 0.0995
LRuc 0.0056 0.0055 0.0894 0.0502 0.0056
LRcc 0.7268 0.8766 0.9901 1.0344 0.4027
DQ 7.4248 6.4519 5.6769 5.4136 4.8600

Note: The DQ test statistic is asymptotically χ2(7), and * and ** denote significance at the 5% and 1%
level, respectively.

expected proportion p. However, at p = 10%, the DQ statistics for all estimators fail to
accept the null hypothesis of no higher order dependence in VaR violations in S&P500
when the GARCH model is fitted. This disappears when more general GJR is fitted.
From these tables, similar to the in-sample VaR, for the the FTSE100 and NIKKEI225



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 10-ch06-123-154-9780444538581 2012/4/24 0:38 Page 142 #20

142 K. Mukherjee

indices, the AQL is least in connection with Huber, Cauchy, and B-estimator for both
models. However, for S&P500, the AQL is unexpectedly least when QMLE is used for
GJR model.

6. Nonlinear AR–ARCH model

Autoregressive models with heteroscedastic errors appear quite often in practice.
Consider, for example, observations {X i ; 0 ≤ i ≤ n} satisfying

X i = αX i−1 + {β0 + β1 X2
i−1}

1/2 ηi , 1 ≤ i ≤ n, (27)

where α ∈ IR, β = (β0,β1)
′
∈ (0,∞)2, and {ηi }s are i.i.d. with zero mean and unit

variance. This is called an AR(1)–ARCH(1) model. Another interesting model is

X i = αX i−1 + {β1 X i−1 I (X i−1 > 0)− β2 X i−1 I (X i−1 ≤ 0)} ηi , 1 ≤ i ≤ n, (28)

where α ∈ IR, β = (β0,β1)
′
∈ (0,∞)2, and {ηi }s are i.i.d. with zero mean and unit

variance. This can be used to model asymmetric feature of volatility where the effect
of a positive news is β1, whereas that of a negative news is β2. In this section, we
are primarily interested in the estimation of the mean parameter α as opposed to the
previous sections where we considered the estimation of the variance parameters.

To motivate the estimator of α in (27), first note that

E[{β0 + β1 X2
i−1}

1/2 ηi ] = E[{β0 + β1 X2
i−1}

1/2]E[ηi ] = 0,

and hence, ignoring the heteroscedasticity, one can estimate the mean parameter α using
simple least squares by

α̂p =

[
n∑

i=1

X2
i−1

]−1 n∑
i=1

X i X i−1.

This estimator is consistent but clearly inefficient. However, using M-estimators dis-
cussed in previous sections with observations {X i − α̂p X i−1; 1 ≤ i ≤ n}, one can
obtain estimators β̂1 and β̂2 of the heteroscedastic parameters. Using these estimators,
an approximation of the model (27) is

X i

{β̂0 + β̂1 X2
i−1}

1/2
≈ α

X i−1

{β̂0 + β̂1 X2
i−1}

1/2
+ ηi ,

which has homoscedastic errors. Now using standard robust estimation methods
for homoscedastic linear regression and autoregression, one can obtain improved
estimators of α.

To explain this procedure in the general context, note that both models (27) and
(28) can be cast into the following general framework of the nonlinear autoregressive
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model with autoregressive conditional heteroscedastic errors. Suppose that s, p, r1, and
r2 are known integers and {X i , 1− s ≤ i ≤ n} is an observable time series. For 1 ≤ i ≤
n, set W i−1 := (X i−1, X i−2, . . . , X i−s)

′, the vector of lagged observations. To achieve
bit more generality, let Y i−1 = c(W i−1), where c: IRs

→ IR p is a known function;
for most applications, s = p and c is the identity function. Let � j , j = 1, 2, be open
subsets of IRr1 and IRr2 , respectively; they are the parameter spaces. Let µ and σ be
known functions, respectively, from IR p

×�1 to IR and IR p
×�2 to IR+ := (0,∞),

which are differentiable in their second argument. Consider a model where for some
α ∈ �1, β ∈ �2,

ηi = {X i − µ(Y i−1,α)}/σ(Y i−1,β) 1 ≤ i ≤ n

are i.i.d. with mean zero, variance 1 and independent of W 0 := (X0, X−1, · · · , X1−s)
′.

In other words, the observations satisfy

X i = µ(Y i−1,α)+ σ(Y i−1,β) ηi , i ≥ 1, (29)

where the errors {ηi , i ≥ 1} are independent of Y0, and i.i.d. standard random variables
having a distribution function G and the density function g.

In the following, we cite some examples of (29).

Example 8 (Engle’s ARCH Model). In the ARCH model introduced by Engle
(1982), one observes {Z i , 1− s ≤ i ≤ n} such that

Z i = (α0 + α1 Z 2
i−1 + . . .+ αs Z 2

i−s)
1/2εi , 1 ≤ i ≤ n, (30)

where α = ( α0,α1, . . . ,αs)
′
∈ IR+(s+1) := (0,∞)(s+1) is the unknown parameter and

{εi ; 1 ≤ i ≤ n} are unobservable i.i.d. with mean zero, variance 1 and finite fourth
moment.

Squaring both sides of (30) and writing ηi := ε2
i − 1, X i = Z 2

i , W i−1 =

[X i−1, . . . , X i−s]′ = [Z 2
i−1, . . . , Z 2

i−s]′, and Y ′i−1 = [1, W ′

i−1], model (30) can be
recast as

X i = Y ′i−1α + (Y
′

i−1α) ηi , 1 ≤ i ≤ n. (31)

(31) is an example of the model (29) with α = β, c(w) = [1,w]′, w ∈ [0,∞)s , p =
s + 1, r1 = r2 = s + 1, and

µ( y, a) = y′a, σ( y, b) = y′b.

Example 9 (Autoregressive Linear Square Conditional Heteroscedastic Model
– ARLSCH). Consider the first-order autoregressive model with heteroscedastic
errors where one observes {X i ; 0 ≤ i ≤ n} such that the conditional variance of the
i th observation X i depends linearly on the squares of past as follows:

X i = αX i−1 + {β0 + β1 X 2
i−1}

1/2 ηi , 1 ≤ i ≤ n, (32)
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where α ∈ IR, β = (β0,β1)
′
∈ (0,∞)2, and {ηi }s are i.i.d. with zero mean and unit

variance. With the identification s = 1 = p, c(w) = w, r1 = 1, r2 = 2, and

µ(y, a) = ya, σ(y, b) = (b0 + b1 y2)1/2, y ∈ IR,

model (32) can be seen as an example of (29).
The assumption needed on the parameters under which the process {X i ; i ≥ 0} of

(32) is strictly stationary and ergodic is as follows:

|α| + E |η1|max{β1/2
0 ,β1/2

1 } < 1.

This follows by using Lemma 1 of Härdle and Tsybakov (1997, p. 227) with C1 =

|α| and C2 = max{β1/2
0 ,β1/2

1 } = sup{(β0 + β1x2)1/2/(1+ |x |); x ∈ IR}.

Example 10 (Autoregressive Threshold Conditional Heteroscedastic Model –
ARTCH). Consider an sth order autoregressive model with self-exciting thresh-
old heteroscedastic errors, where the conditional standard deviation of the i th
observation X i is piecewise linear on the past as follows:

X i = (α1 X i−1 + . . . αs X i−s)+

{
β1 X i−1 I (X i−1 > 0)− β2 X i−1 I (X i−1 ≤ 0) · · ·

+ β2s−1 X i−s I (X i−s > 0)− β2s X i−s I (X i−s ≤ 0)

}
ηi , 1 ≤ i ≤ n, (33)

where all β j s are positive and {ηi }s are i.i.d. with zero mean and unit variance. For
applications and many probabilistic properties of this model including conditions
for the stationarity and ergodicity of {X i }, see the work done by Rabemananjara and
Zakoian (1993). For a discussion on the difficulties associated with the asymptotics
of the robust estimation in this model, due to the lack of differentiability caused by
threshold, see the study by Rabemananjara and Zakoian, 1993, p. 38.

With the identification p = s, c(w) = w, r1 = s, r2 = 2s, and

µ( y, a) = y′a, σ( y, b) =
s∑

j=1

b2 j−1 y j I (y j > 0)+
s∑

j=1

b2 j (−y j )I (y j ≤ 0),

y ∈ IRs , t ∈ (0,∞)2s ,

the model (33) can be seen as an example of (29).

6.1. M- and R-estimators

Let τ = (a, b) denote a generic value in the parameter space �1 ×�2 and let
θ = (α,β) be the true parameter. To estimate α, we proceed in three steps. Using
E{σ(Yi−1,β) ηi } = 0 in (29), we first propose a preliminary estimator α̂ p; note that
the proposal does not take into account the heteroscedasticity of the model, and hence,
it gives a consistent but inefficient estimator. Next, we use α̂ p to construct an esti-
mator β̂ of the parameter β. Finally, substituting α̂ p and β̂ in (29), the heteroscedastic
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model is transformed to an approximate nonlinear homoscedastic autoregressive model
(36), and we use standard robust estimation procedures of the homoscedastic models to
propose improved estimator of α.

In the sequel, µ̇ and σ̇ denote the derivatives of the functions µ and σ , respec-
tively, with respect to their second arguments. Also for a vector y, its j th coordinator
is denoted as y j .

Step 1: Define

H(a) := n−1/2
n∑

i=1

µ̇(Y i−1, a){X i − µ(Y i−1, a)}.

Since E[H(α)] = 0, we define a preliminary estimator α̂ p of α by the relation

α̂ p := argmin


r1∑

j=1

|H j (a)|; a ∈ �1

 , (34)

where H j (a) is the j th coordinate of the vector H(a), 1 ≤ j ≤ r1.
In particular, when µ( y, a) = y′a,

α̂ p =

[
n∑

i=1

Y i−1Y ′i−1

]−1 [ n∑
i=1

X i Y i−1

]
.

Step 2: Let

ηi (τ ) := {X i − µ(Y i−1, a)}/σ(Y i−1, b), 1 ≤ i ≤ n,

denote the i th residual. Let κ be a nondecreasing right continuous function
on IR such that E{η1κ(η1)} = 1. This is automatically satisfied, for example,
when κ is the identity function (κ(x) ≡ x). Consider the statistic

Ms(τ ) := n−1/2
n∑

i=1

σ̇ (Y i−1, b)
σ (Y i−1, b)

[
ηi (τ )κ(ηi (τ ))− 1

]
.

Since E[Ms(α,β)] = 0, an estimator of the scale parameter β is defined by
the relation

β̂ := argmin


r2∑

j=1

|Ms j (̂α p, b)|; b ∈ �2

 .

Note that (29) can be written as

X i/σ(Y i−1,β) = µ(Y i−1,α)/σ (Y i−1,β)+ ηi . (35)
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This in turn can be approximated by

X i/σ(Y i−1, β̂) ≈ µ(Y i−1,α)/σ (Y i−1, β̂)+ ηi , (36)

which is a nonlinear autoregressive model with homoscedastic errors.
Now using the standard definition for homoscedastic nonlinear model (35),

the class of M-estimators and R-estimators based on appropriate score func-
tions ψ and ϕ, respectively, can be defined as follows; see the study by Bose
and Mukherjee (2003) for a similar two-step idea.

Step 3: Let ψ be nondecreasing and bounded function on IR such that E{ψ(η1)} =

0. An example is the function ψ(x) = sign(x) when {ηi }s are symmetrically
distributed around 0.

Let ϕ : [0, 1]→ IR belong to the class

F = {ϕ;ϕ: [0, 1]→ IR is right continuous, nondecreasing, with

ϕ(1)− ϕ(0) = 1}.

An example of the function belonging to this class is ϕ(u) = u − 1/2; it is
called the Wilcoxon rank score function. Define the M-statistics

Mψ (τ ) = n−1/2
n∑

i=1

µ̇(Y i−1, a)
σ (Y i−1, b)

ψ{ηi (τ )}.

Since E[Mψ (α,β)] = 0, from (35), an M estimator of α corresponding to the
score function ψ is defined as

α̂M := argmin


r1∑

j=1

|Mψ j (a, β̂)|; a ∈ �1

 .

Define the rank statistic as

Sϕ(τ ) = n−1/2
n∑

i=1

[
µ̇(Y i−1, a)
σ (Y i−1, b)

− n−1

×

n∑
j=1

{
µ̇(Y j−1, a)
σ (Y j−1, b)

}]
ϕ

(
Riτ

n + 1

)
, τ ∈ �,

where Riτ =
∑n

j=1 I {η j (τ ) ≤ ηi (τ )}, the rank of ηi (τ ) among {η j (τ ); 1 ≤
j ≤ n}. Hence, E[Sϕ(α,β)] = 0 and so a generalized R-estimator of α
corresponding to the score function ϕ is defined as

α̂R = argmin{


r1∑

j=1

|Sϕ j (a, β̂)|; a ∈ �1

 .
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6.2. Asymptotic distribution

Define the normalized derivatives

µ̇i =
µ̇(Y i−1,α)

σ (Y i−1,β)
and σ̇i =

σ̇ (Y i−1,α)

σ (Y i−1,β)
.

We assume the existence of positive definite matrices 3(θ), 3c(θ) G(θ), and Gc(θ)

such that

n−1
n∑

i=1

µ̇i µ̇
′

i = 3(θ)+ op(1), n−1
n∑

i=1

µ̇i σ̇
′

i = G(θ)+ op(1), (37)

and

n−1
n∑

i=1

(
µ̇i − n−1

n∑
i=1

µ̇i

)
µ̇′i = 3c(θ)+ op(1),

n−1
n∑

i=1

(
µ̇i − n−1

n∑
i=1

µ̇i

)
σ̇ ′i = Gc(θ)+ op(1). (38)

When {X i } is stationary and ergodic, such matrices exist under the finiteness of
moments of appropriate order with the following expressions

3(θ) = E
[{ µ̇(Y 0,α)

σ (Y 0,β)

}{ µ̇(Y 0,α)

σ (Y 0,β)

}′]
, G(θ) = E

[{ µ̇(Y 0,α)

σ (Y 0,β)

}{ σ̇ (Y 0,α)

σ (Y 0,β)

}′]
,

3c(θ) = 3(θ)− E
{ µ̇(Y 0,α)

σ (Y 0,β)

}
E
{ µ̇(Y 0,α)

σ (Y 0,β)

}′
,

and

Gc(θ) = G(θ)− E
{ µ̇(Y 0,α)

σ (Y 0,β)

}
E
{ σ̇ (Y 0,α)

σ (Y 0,β)

}′
. (39)

Theorem 2.

(i) If (37) holds,
∫
|x |g(x)dψ <∞ and

∫
gdψ > 0, then∫

gdψ n1/2(̂αM − α) = −3
−1(θ)

[
Mψ (θ)+ G(θ)n1/2(β̂ − β)

×

∫
xg(x)dψ(x)

]
+ op(1).

(ii) Moreover, if either
∫

xg(x)dψ(x) = 0 or G(θ) = 0, then

n1/2(̂αM − α)⇒ Nr1

[
0,3−1(θ)JM(ψ , G)

]
, (40)

where JM(ψ , G) =
∫
ψ2(x)g(x)dx
(
∫

gdψ)2 .
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A sufficient condition for
∫

xg(x)dψ(x) = 0 is that g is an even and ψ is an odd
function.

Theorem 3.

(i) If (38) holds,
∫
|x |g(x)ϕ(G(dx)) <∞ and

∫
g(x)ϕ(G(dx)) > 0, then∫

g(x)ϕ(G(dx)) n1/2(̂αR − α) = −3
−1
c (θ))

[
Sϕ(θ)+ Gc(θ)n

1/2(β̂ − β)

×

∫
xg(x)ϕ(G(dx))

]
+ op(1).

(ii) Moreover, if either
∫

xg(x)ϕ(G(dx)) = 0 or Gc(θ) = 0, then

n
1
2 (̂αR − α)⇒ Nr1

[
0,3−1

c (θ)JR(ϕ, G)
]
, (41)

where JR(ϕ, G) =
∫
ϕ2(u)du−(

∫
ϕ(u)du)2

[
∫

g(x)ϕ(G(dx))]2 .

A sufficient condition for
∫

xg(x)ϕ(G(dx)) = 0 is that g is even and ϕ is skew sym-
metric, i.e., ϕ(u) = −ϕ(1− u), ∀u ∈ [0, 1]. Therefore, in practice, the use of a skew
symmetric ϕ is recommended to ensure that Theorem 2(ii) holds when the innova-
tions are symmetrically distributed. For some models, e.g., in ARLSCH of Example 2,
Gc(θ) = 0 when X0 is symmetrically distributed around zero. However, for Example 1
(Engle’s ARCH) and Example 3 (ARTCH), Gc(θ) 6= 0 and the use of a skew symmetric
score function is essential.

Remark 3. The conditions of Theorems 2(ii) and 3(ii) ensure that the preliminary esti-
mator and the scale estimator have no effect on the asymptotics of the final estimator.
Using these Theorems, the asymptotic distributions of α̂M and α̂R are same as those of
M- and R-estimator of α for the model (35)

X i

σ(Y i−1,β)
=
µ(Y i−1,α)

σ (Y i−1,β)
+ ηi ,

with β known. 2

Remark 4. The quasi maximum likelihood estimator α̂QMLE of α can be defined as a
minimizer of

n∑
i=1

[X i/σ(Y i−1, β̂)− {µ(Y i−1, a)/σ (Y i−1, β̂)}]2

with respect to a. Using standard techniques, its asymptotic distribution can be
obtained as

n
1
2 (̂αQMLE − α)⇒ Nr1

[
0,3−1(θ)

]
. (42)
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When 3c(θ) = 3(θ), we can use (41) and (42) to define the asymptotic relative
efficiency (ARE) of an R-estimator based on ϕ, with respect to the QMLE as
1/JR(ϕ, G).

When ϕ(u) = u − 1/2, the ARE of the Wilcoxon R-estimator with respect to the
QMLE is 12(

∫
g2(x)dx)2, which is at least 0.864 for a large class of symmetric stan-

dardized error densities g; see, for example, the work done by Lehmann 1983, Section
5.6 for similar result under the location model. In particular, for the standardized nor-
mal, logistic, and the double-exponential g, ARE equals 3/π(0.955), π2/9(1.10), and
1.50, respectively. In a similar fashion, the ARE of the R-estimator based on signed
score with respect to the QMLE is 4g2(0), which is at least 1/3 for symmetric uni-
modal error densities g (with variance 1); see, for example, Lehmann 1983, Section
5.3 for similar result under the location model. In particular, for the standardized nor-
mal, logistic, and double-exponential g, ARE equals 2/π(0.637), π2/12(0.82), and 2,
respectively. 2

Example 11 (ARCH Model). In this case with Y ′0 = [1, Z 2
0 , . . . , Z 2

1−s],

3(θ) = G(θ) = E
Y 0Y ′0
(Y ′0α)2

and

3c(θ) = Gc(θ) = 3(θ)−
[

E
Y 0

Y ′0α

][
E

Y 0

Y ′0α

]′
.

Clearly, G(θ) and Gc(θ) are nonzero. Hence, from (40), if
∫

xg(x)dψ(x) = 0, then

n1/2(̂αM − α)⇒ Ns+1

[
0,3−1(θ)JM (ψ , G)

]
.

From (41), if
∫

xg(x)ϕ(G(dx)) = 0, then

n1/2(̂αR − α)⇒ Ns+1

[
0,3−1

c (θ)JR(ϕ, G)
]
.

When E(ε4
1) <∞ in (30), the asymptotic distribution of the widely used quasi

maximum likelihood estimator (QMLE) α̂QMLE is as follows.

n1/2(̂αQM L E − α)⇒ Ns+1

[
0,3−1(θ)V ar(ε2

1)
]
.

Thus, it follows that the asymptotic relative efficiency of an M-estimator α̂M , rel-
ative to the QMLE in Engle’s ARCH model is similar to that of the M-estimator
relative to the least squared estimator in the one sample location model or in the
linear regression model.
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Example 12 (ARLSCH Model). In this case with Z0 = [1, X 2
0]′,

3(θ) = E

[
X 2

0

β ′Z0

]
,

G(θ) = E

[
X0 Z′0

2(β ′Z0)3/2

]
,

3c(θ) = 3(θ)−
[

E
{ X0

(β ′Z0)1/2

}]2
,

and

Gc(θ) = G(θ)− E
[ X0

(β ′Z0)1/2

]
E
[ Z ′0

2(β ′Z0)

]
.

Note that if X0 is symmetrically distributed around zero, G(θ) = Gc(θ) = 0.
Therefore, under the existence of moments of appropriate order,

n1/2(̂αM − α)⇒ N
[
0,3−1(θ)JM (ψ , G)

]
and

n1/2(̂αR − α)⇒ N
[
0,3−1

c (θ)JR(ϕ, G)
]
.

Again, it follows that the asymptotic relative efficiency of the M-estimator corre-
sponding to the score function ψ , relative to the least square estimator, in the above
model is similar to that for the one sample location or for the linear regression and
autoregressive models; same comment about R-estimator is applicable.

Example 13 (ARTCH Model). In this model, both the mean and the standard
deviation are linear in parameters and the expressions for different matrices can be
found very easily from (39). We omit details.

Again, a relative efficiency statement similar to the one in the previous two
examples holds here as well.

7. Data analysis for the AR–ARCH model

In this section, we first report simulation study verifying the asymptotic distributional
results of Section 6.2 and compare the Wilcoxon R-estimator (̂αW ), the R-estimator
based on the signed score (̂αS), and the QMLE (̂αQMLE) at three error densities in
terms of their average squared deviations from the true parameter or the estimated mean
squared error (MSE). Consequently, the performance of some optimal R-estimators at
certain error densities are compared with the Gaussian likelihood–based MLE. Next we
consider the monthly log returns of IBM stock from Section 3 and study the robustness
of Wilcoxon R-estimator against misspecified form of the heteroscedasticity for this
data in comparison with α̂QMLE.
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7.1. Simulation study

Among many different models, we choose the ARTCH model with p = s = 1 and
the ARLSCH model with p = s = 1, r = 2 when the errors are simulated from the
standardized (i) normal (N), (ii) logistic (L), and (iii) double-exponential (D) distri-
bution with specified value of the underlying true parameter θ . To estimate the scale
parameters, we use the score function κ(u) = u. The computations become relatively
simpler under such choice of the score function with even closed-form expressions
for the scale estimators in the ARTCH model. For each model, we use r = 100
replications. For each of the kth replication (1 ≤ k ≤ r ), we generate a sample of
size n = 100 with parameters α = 0.1,β1 = 0.2,β2 = 0.3 for the ARTCH model and
α = 0.1,β0 = 0.2,β1 = 0.3 for the ARLSCH model and compute (i) the preliminary
estimator α̂p, (ii) the MLE based on the normal distribution α̂QMLE, (iii) the Wilcoxon
R-estimator α̂W based on the score function ϕ(u) = u − (1/2), and (iv) the R-estimator
α̂S based on the signed-score function ϕ(u) = sign {u − (1/2)}. For each estimator
(denoted generically by α̂(k)), we also compute r−1∑r

k=1(̂α(k)− α)
2 that is the aver-

age (over all replications) squared deviation of the estimate from the true parameter
value α, and this is an estimate of mean squared error (MSE) of α̂.

Simulation results and analysis. These are reported in columns (2)–(5) in Table 12
and Table 13. Columns (6) and (8) are obtained from dividing column (5) by columns
(3) and (4), respectively, and represent the estimated ARE of α̂W and α̂S with respect
to α̂QMLE (denoted by E(̂αW ) etc.); entries in the bold represent the maximum estimated
ARE over different error distributions. Columns (7) and (9) represent the corresponding
theoretical ARE of α̂W and α̂S as explained in Remark 2.2 (denoted by T(̂αW ) etc.). For
each scenario (corresponding to a particular row in the tables), we have run simulations
five times under identical setup and have reported the result of that simulation that
has best estimated ARE (in the sense that it is either more than or the closest to the
theoretical ARE).

Simulation results as well as several histograms conform with our theoretical finding
on the asymptotic normality of the different estimators. In many other simulations not

Table 12
Estimated MSEs and AREs of the different estimators of α (ARTCH model)

g MSE(̂αp) MSE(̂αW ) MSE(̂αS) MSE(̂αQM L E ) E(̂αW ) T(̂αW ) E(̂αS) T(̂αS)

N 0.0545 0.0005 0.0006 0.0005 0.983 0.96 0.940 0.64
L 0.0459 0.0007 0.0007 0.0008 1.181 1.1 1.209 0.82
D 0.0416 0.0004 0.0004 0.0007 1.558 1.5 1.670 2

Table 13
Estimated MSEs and AREs of the different estimators of α (ARLSCH model)

g MSE(̂αp) MSE(̂αW ) MSE(̂αS) MSE(̂αQMLE) E(̂αW ) T(̂αW ) E(̂αS) T(̂αS)

N 0.0183 0.0208 0.0291 0.0188 0.903 0.96 0.645 0.64
L 0.0232 0.0136 0.0214 0.0154 1.139 1.1 0.721 0.82
D 0.0217 0.0128 0.0133 0.0173 1.354 1.5 1.300 2
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reported here with different combinations of the underlying parameters, it was observed
that the ARE results for α̂W and α̂S approximately hold even when the models are
nonstationary. In general, to a practitioner, we recommend the use of α̂W as a good
alternative to the QMLE that has high ARE for a wide number of distributions with a
“small sacrifice” at the normal distribution. Hence, in the real data examples below, we
use only α̂W and α̂QMLE for our analysis.

7.2. Financial data

Our main goal is to demonstrate the robustness of the proposed R-estimator α̂R against
the form of the conditional heteroscedasticity of the model. For illustration, we con-
sider the Wilcoxon R-estimator α̂W and demonstrate its robustness by showing that its
values corresponding to symmetric AR(1)–ARLSCH and asymmetric AR(1)–TARCH
models are close to each other. In fact, they are close to the QMLE estimates of α
computed in Tsay (2010) for the symmetric AR(1)–GARCH and asymmetric AR(1)–
EGARCH models. At the same time, we further exhibit the extreme sensitivity of the
QMLE to the model specification of the conditional heteroscedasticity by noticing that
the QMLE estimates for the mean parameter are very different for the AR(1)–ARLSCH
and AR(1)–TARCH models. To exhibit the robustness of α̂W more convincingly, we
need to demonstrate that the R-estimates are close to each other for the symmet-
ric AR(1)–GARCH and asymmetric AR(1)–EGARCH models, but this is beyond the
scope of the model (29) and will be taken up in future research.

Tsay (2010, Example 3.4) fitted an AR(1) model with GARCH error to the IBM
data to obtain the estimate of the autoregressive parameter as 0.099 with SE 0.037 and
the model seemed to be adequate. We use the ARLSCH model to get the preliminary
estimate α̂p = 0.10601551 and the R-estimate α̂W = 0.10864080 with SE 0.01903097.
Therefore, the intercept parameter is close to Tsay’s estimate and is significant in accor-
dance with Tsay’s result. However, the QMLE for the ARLSCH model is α̂QMLE =

0.31733076 with SE 0.09571206 and is very different than the estimate obtained by
Tsay using the QMLE of AR(1)–GARCH model. This shows that α̂W is more robust
to the specification between the ARCH or GARCH heteroscedasticity than α̂QMLE.
Moreover, the estimated ARE of the R-estimator with respect to the QMLE for the
ARLSCH model is as high as 25.29363788.

Let Q∗(k) denote the Ljung-Box statistic with lag k for the portmanteau test of
the randomness of the residuals {ε̂t } from the ARLSCH model. Using the R-estimate
for residuals, the Ljung-Box statistics turn out to be Q∗(10) = 6.8387 and Q∗(20) =
15.0339, whereas using the QMLE for residuals, Q∗(10) = 6.9607 and Q∗(20) =
14.7694. Since the Ljung-Box statistics have high p-values, the ARLSCH model seems
to be adequate using both the R-estimator and the QMLE.

Next we appeal to the asymmetric feature of this data. Tsay (2010) fitted an AR(1)–
EGARCH model to this data to obtain the estimate of the autoregressive parameter
as 0.092. Fitting an ARTCH model to this data, we obtain the preliminary esti-
mate 0.10601551 and α̂W = 0.09289947 with SE 0.14118706. However, the QMLE
is very different from this R-estimate and Tsay’s comparable estimate with value
α̂QMLE = 0.41444369 and SE 0.26747658. Note that the intercept parameter appears
to be not significant using both estimates. Next we consider the Ljung-Box statis-
tics for the ARTCH model. With residuals from rank-estimate Q∗(10) = 7.0857 and
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Q∗(20) = 31.7230 while with the QMLE, Q∗(10) = 7.4309 and Q∗(20) = 31.3810
and the ARTCH model seems to be adequate. This demonstrates, as before, that the
R-estimator performs better with model misspecification between the ARTCH and the
EGARCH models. Moreover, the estimated ARE of the R-estimator is 3.58906858.

8. Conclusions

In this chapter, we reviewed robust estimation methods of the parameters of the condi-
tional heteroscedastic models such as nonlinear ARCH and GARCH or more generally
GJR models. We applied them to financial data sets and used backtesting methods to
assess the in-sample and the out-of-sample VaR performance of M-estimators.

From our empirical analysis, it turns out that the VaR estimates are robust against
the choice of the functional form of the heteroscedasticity of the model especially on
the ground of symmetry and the R-estimates are robust against the misspecified form
of the conditional heteroscedasticity. For the GARCH and GJR models, the AQL of
the Cauchy and B-estimator was the least among the five M-estimators considered for
the cited data sets. The MRB of the QMLE was also found to be higher than other
estimators in most of the cases, indicating that the risk estimate of the QMLE was
slightly larger than the average of other risk estimates. These findings confirmed the
superiority of the Cauchy and B-estimator over the QMLE.

In fact, in many occasions, the QMLE is routinely used without paying attention
to the fact that the finite fourth moment assumption is not tenable for that data. In
those cases, alternatives to QMLE for which a well-developed asymptotic theory exists
provide strong justification for their use.

A number of interesting extensions and questions emerge naturally from this
research that need further investigation. For example, it will be of interest to investigate
the robustness of R- and M-estimators against the misspecified form of the conditional
heteroscedasticity when the mean functional is truly nonlinear in the parameters. As
mentioned in Section 7, symmetric AR(p)–GARCH and asymmetric AR(p)–EGARCH
models are useful in various data analysis, and it will be interesting to investigate the
theoretical and empirical properties of various robust estimators in these setup.
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Abstract

This chapter is an account of the recent research that deals with curves observed
consecutively over time. The curves are viewed in the framework of functional
data analysis, that is, each of them is considered as a whole statistical object. We
describe the Hilbert space framework within which the mathematical foundations
are developed. We then introduce the most popular model for such data, the func-
tional autoregressive process, and discuss its properties. This is followed by the
introduction of a general framework that quantifies the temporal dependence of
curves. Within this framework, we discuss analogs of central concepts of time
series analysis of scalar data, including the definition and the estimation of an
analog of the long-run variance.

Keywords: autoregressive process, functional data, prediction, principal compo-
nents, time series.

1. Introduction

Functional data often arise from measurements obtained by separating an almost con-
tinuous time record into natural consecutive intervals, for example, days. Examples
include daily curves of financial transaction data and daily patterns of geophysical
and environmental data. The functions thus obtained form a time series {Xk , k ∈ Z},
where each Xk is a (random) function Xk(t), t ∈ [a, b]. We refer to such data struc-
tures as functional time series; examples are given in Section 1.1. A central issue
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in the analysis of such data is to take into account the temporal dependence of the
observations, i.e., the dependence between events determined by {Xk , k ≤ m} and
{Xk , k ≥ m + h}. Although the literature on scalar and vector time series is huge,
there are relatively few contributions dealing with functional time series. The focus
of functional data analysis has been mostly on i.i.d. functional observations. There-
fore, it is hoped that the present survey will provide an informative account of a
useful approach that merges the ideas of time series analysis and functional data
analysis.

The monograph of Bosq (2000) studies the theory of linear functional time series,
both in Hilbert and Banach spaces, focusing on the functional autoregressive model.
For many functional time series, it is, however, not clear what specific model they
follow, and for many statistical procedures, it is not necessary to assume a specific
model. In such cases, it is important to know what the effect of the dependence on a
given procedure is. Is it robust to temporal dependence, or does this type of depen-
dence introduce a serious bias? To answer the questions of this type, it is essential to
quantify the notion of temporal dependence. Again, for scalar and vector time series,
this question has been approached from many angles, but, except for the linear model
of Bosq (2000), for functional time series, no general framework has been available.
We present a moment-based notion of weak dependence proposed by Hörmann and
Kokoszka (2010).

To make this account as much self-contained as possible, we set in Section 2 the
mathematical framework required for this contribution and also report some results for
i.i.d. data, to allow for a comparison between results for serially dependent and inde-
pendent functional data. Next, in Section 3, we introduce the autoregressive model of
Bosq (2000) and discuss its applications. In Section 4, we outline the notion of depen-
dence proposed by Hörmann and Kokoszka (2010) and show how it can be applied to
the analysis of functional time series. References to related topics are briefly discussed
in Section 5.

1.1. Examples of functional time series

The data that motivated the research presented here are of the form Xk(t), t ∈ [a, b].
The interval [a, b] is typically normalized to be a unit interval [0, 1]. The treatment
of the endpoints depends on the way the data are collected. For intradaily financial
transactions data, a is the opening time and b is the closing time of an exchange, for
example, the NYSE, so both endpoints are included. Geophysical data are typically of
the form X (u), where u is measured at a very fine time grid. After normalizing to the
unit interval, the curves are defined as Xk(t) = X (k + t), 0 ≤ t < 1. In both cases, an
observation is thus a curve.

Figure 1 shows a reading of a magnetometer over a period of 1 week. A magne-
tometer is an instrument that measures the three components of the magnetic field at a
location where it is placed. There are over 100 magnetic observatories located on the
surface of the Earth, and most of them have digital magnetometers. These magnetome-
ters record the strength and direction of the field every 5 seconds, but the magnetic
field exists at any moment of time, so it is natural to think of a magnetogram as an
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Fig. 1. The horizontal component of the magnetic field measured in 1 min resolution at Honolulu magnetic
observatory from January 1, 2001 00:00 UT to January 7, 2001 24:00 UT.

approximation to a continuous record. The raw magnetometer data are cleaned and
reported as averages over 1 min intervals. Such averages were used to produce Fig. 1.
Thus, 7× 24× 60 = 10,080 values (of one component of the field) were used to draw
Fig. 1. The vertical lines separate days in Universal Time (UT). It is natural to view a
curve defined over one UT day as a single observation because one of the main sources
influencing the shape of the record is the daily rotation of the Earth. When an obser-
vatory faces the Sun, it records the magnetic field generated by wind currents flowing
in the ionosphere, which are driven mostly by solar heating. Fig. 1, thus, shows seven
consecutive observations of a functional time series.

Examples of data that can be naturally treated as functional also come from financial
records. Figure 2 shows 2 consecutive weeks of Microsoft stock prices in 1 min resolu-
tion. A great deal of financial research has been done using the closing daily price, i.e.,
the price in the last transaction of a trading day. However, many assets are traded so
frequently that one can practically think of a price curve that is defined at any moment
of time. The Microsoft stock is traded several hundred times per minute. The values
used to draw the graph in Fig. 2 are the closing prices in 1 min intervals. It is natural
to choose one trading day as the underlying time interval. If we do so, Fig. 2 shows 10
consecutive functional observations. In contrast to magnetometer data, the price in the
last minute of day k does not have to be close to the price in the first minute of day
k + 1.

However, we would like to emphasize that functional time series need not arise
through the mechanism described above. For example, the Eurodollar curves studied by
Kargin and Onatski (2008) and Horváth et al. (2012) are not of this form. A functional
time series is a sequence of curves.
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Fig. 2. Microsoft stock prices in 1 min resolution, May 1–5, 8–12, 2006.

2. The Hilbert space model for functional data

It is typically assumed that the observations Xk are elements of a separable Hilbert
space H (i.e., a Hilbert space with a countable basis {ek , k ∈ Z}) with inner product
〈·, ·〉, which generates norm ‖ · ‖. This is what we assume in the following. An impor-
tant example is the Hilbert space L2

= L2([0, 1]) introduced in Section 2.2. Although
we formally allow for a general Hilbert space, we call our H–valued data functional
observations. All random functions are defined on some common probability space
(�,A, P). We say that X is integrable if E‖X‖ <∞, and we say it is square integrable
if E‖X‖2 <∞. If E‖X‖p <∞, p > 0, we write X ∈ L p

H = L p
H (�,A, P). Conver-

gence of {Xn} to X in L p
H means E‖Xn − X‖p

→ 0, whereas ‖Xn − X‖ → 0 almost
surely (a.s.) is referred to as almost sure convergence.

In this section, we follow closely the exposition of Bosq (2000). Good references
on Hilbert spaces are Riesz and Sz.-Nagy (1990), Akhiezier and Glazman (1993), and
Debnath and Mikusinski (2005). An in-depth theory of operators in a Hilbert space is
developed by Gohberg et al. (1990).

2.1. Operators

Let 〈 ·, ·〉 be the inner product in H , which generates the norm ‖ · ‖ and denote by L
the space of bounded (continuous) linear operators on H with the norm

‖9‖L = sup{‖9(x)‖ : ‖x‖ ≤ 1}.

An operator 9 ∈ L is said to be compact if there exist two orthonormal bases {v j }

and { f j }, and a real sequence {λ j } converging to zero, such that

9(x) =
∞∑
j=1

λ j
〈
x , v j

〉
f j , x ∈ H . (1)
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The λ j are assumed positive because one can replace f j by − f j , if needed. Represen-
tation (1) is called the singular value decomposition. Compact operators are also called
completely continuous operators.

A compact operator admitting representation (1) is said to be a Hilbert–Schmidt
operator if

∑
∞

j=1 λ
2
j <∞. The space S of Hilbert–Schmidt operators is a separable

Hilbert space with the scalar product

〈91,92〉S =

∞∑
i=1

〈91(ei ),92(ei )〉, (2)

where {ei } is an arbitrary orthonormal basis, the value of (2) does not depend on it. One
can show that ‖9‖2

S =
∑

j≥1 λ
2
j and

‖9‖L ≤ ‖9‖S . (3)

An operator 9 ∈ L is said to be symmetric if

〈9(x), y〉 = 〈x ,9(y)〉, x , y ∈ H ,

and positive definite if

〈9(x), x〉 ≥ 0, x ∈ H .

(An operator with the last property is sometimes called positive semidefinite, and the
term positive definite is used when 〈9(x), x〉 > 0 for x 6= 0.)

A symmetric positive definite Hilbert–Schmidt operator 9 admits the decom-
position

9(x) =
∞∑
j=1

λ j
〈
x , v j

〉
v j , x ∈ H , (4)

with orthonormal v j , which are the eigenfunctions of 9, i.e., 9(v j ) = λ jv j . The v j

can be extended to a basis by adding a complete orthonormal system in the orthogonal
complement of the subspace spanned by the original v j . The v j in (4) can thus be
assumed to form a basis, but some λ j may be zero.

2.2. The space L2

The space L2 is the set of measurable real-valued functions x defined on [0, 1]
satisfying

∫ 1
0 x2(t)dt <∞. It is a separable Hilbert space with the inner product

〈x , y〉 =
∫

x(t)y(t)dt .

An integral sign without the limits of integration is meant to denote the integral over
the whole interval [0, 1]. If x , y ∈ L2, the equality x = y always means

∫
[x(t)−

y(t)]2dt = 0.
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An important class of operators in L2 are the integral operators defined by

9(x)(t) =
∫
ψ(t , s)x(s)ds, x ∈ L2, (5)

with the real kernel ψ(·, ·). Such operators are Hilbert–Schmidt if and only if∫∫
ψ2(t , s)dtds <∞, in which case

‖9‖2
S =

∫∫
ψ2(t , s)dtds. (6)

If ψ(s, t) = ψ(t , s) and
∫∫
ψ(t , s)x(t)x(s)dtds ≥ 0, the integral operator 9 is

symmetric and positive definite, and it follows from (4) that

ψ(t , s) =
∞∑
j=1

λ jv j (t)v j (s) in L2([0, 1]× [0, 1]). (7)

If ψ is continuous, the above expansions holds for all s, t ∈ [0, 1], and the series
converges uniformly. This result is known as Mercer’s theorem, see e.g., Riesz and
Sz.-Nagy (1990).

2.3. Functional mean and the covariance operator

Let X , X1, X2, . . . be H–valued random functions. We call X weakly integrable if there
is a µ ∈ H , such that E 〈X , y〉 = 〈µ, y〉 for all y ∈ H . In this case, µ is called the
expectation of X , short E X . Some elementary results are (a) E X is unique, (b) inte-
grability implies weak integrability, and (c) ‖E X‖ ≤ E‖X‖. In the special case where
H = L2, one can show that {(E X)(t), t ∈ [0, 1]} = {E(X (t)), t ∈ [0, 1]}, i.e., one can
obtain the mean function by pointwise evaluation. The expectation commutes with
bounded operators, i.e., if 9 ∈ L and X is integrable, then E9(X) = 9(E X).

For X ∈ L2
H , the covariance operator of X is defined by

C(y) = E[〈X − E X , y〉 (X − E X)], y ∈ H .

The covariance operator C is symmetric and positive definite, with eigenvalues λi

satisfying

∞∑
i=1

λi = E‖X − E X‖2 <∞. (8)

Hence C is a symmetric positive definite Hilbert–Schmidt operator admitting represen-
tation (4).

The sample mean and the sample covariance operator of X1, . . . , X N are defined as
follows:

µ̂N =
1

N

N∑
k=1

Xk and ĈN (y) =
1

N

N∑
k=1

〈
Xk − µ̂N, y

〉
(Xk − µ̂N ), y ∈ H .
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The following result implies the consistency of the just defined estimators for i.i.d.
samples.

Theorem 1. Let {Xk} be an H-valued i.i.d. sequence with E X = µ.

(a) If X1 ∈ L2
H then E‖µ̂N − µ‖

2
= O(N−1).

(b) If X1 ∈ L4
H then E‖Ĉ‖2

S <∞ and E‖C − Ĉ‖2
S = O(N−1).

In Section 4, we will prove Theorem 1 in a more general framework, namely for a
stationary, weakly dependent sequence.

It is easy to see that for H = L2,

C(y)(t) =
∫

c(t , s)y(s)ds, where c(t , s) = Cov(X (t), X (s)).

The covariance kernel c(t , s) is estimated by

ĉ(t , s) =
1

N

N∑
k=1

(
Xk(t)− µ̂N (t)

) (
Xk(s)− µ̂N (s)

)
.

2.4. Empirical functional principal components

Suppose we observe functions x1, x2, . . . , xN . In this section, it is not necessary to view
these functions as random, but we can think of them as the observed realizations of
random functions in some separable Hilbert space H . We assume that the data have
been centered, i.e.,

∑N
i=1 xi = 0. Fix an integer p < N . We think of p as being much

smaller than N , typically a single digit number. We want to find an orthonormal basis
u1, u2, . . . , u p, such that

Ŝ2
=

N∑
i=1

∥∥∥∥∥xi −

p∑
k=1

〈xi , uk〉 uk

∥∥∥∥∥
2

is minimized. Once such a basis is found,
∑p

k=1 〈xi , uk〉 uk is an approximation to xi .
For the p we have chosen, this approximation is uniformly optimal, in the sense of min-
imizing Ŝ2. This means that instead of working with infinitely dimensional curves xi ,
we can work with p-dimensional vectors

xi =
[
〈xi , u1〉, 〈xi , u2〉, . . . ,

〈
xi , u p

〉]T
.

This is a central idea of functional data analysis, as to perform any practical calcula-
tions, we must reduce the dimension from infinity to a finite number. The functions u j

are collectively called the optimal empirical orthonormal basis or natural orthonormal
components, the words “empirical” and “natural” emphasizing that they are computed
directly from the functional data.

The functions u1, u2, . . . , u p minimizing Ŝ2 are equal (up to a sign) to
the normalized eigenfunctions, v̂1, v̂2, . . . , v̂p, of the sample covariance operator,
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i.e. Ĉ(ui ) = λ̂i ui , where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. The eigenfunctions v̂i are called the
empirical functional principal components (EFPCs) of the data x1, x2, . . . , xN . Thus, the
v̂i are the natural orthonormal components and form the optimal empirical orthonormal
basis.

2.5. Population functional principal components

Suppose X1, X2, . . . , X N are zero mean functional observations in H having the same
distribution as X . Parallel to Section 2.4, we can ask which orthonormal elements
v1, . . . , vp in H minimize

E

∥∥∥∥∥X −
p∑

i=1

〈X , vi 〉 vi

∥∥∥∥∥
2

,

and the answer is not surprising in the view of Section 2.5. The eigenfunctions vi of the
covariance operator C allow for the “optimal” representation of X . The functional prin-
cipal components (FPCs) are defined as the eigenfunctions of the covariance operator
C of X . The representation

X =
∞∑

i=1

〈X , vi 〉 vi

is called the Karhunen-Loéve expansion.
The inner product

〈
X i , v j

〉
=
∫

X i (t)v j (t)dt is called the j th score of X i . It can be
interpreted as the weight of the contribution of the FPC v j to the curve X i .

We often estimate the eigenvalues and eigenfunctions of C , but the interpretation of
these quantities as parameters, and their estimation, must be approached with care. The
eigenvalues must be identifiable, so we must assume that λ1 > λ2 > . . .. In practice,
we can estimate only the p largest eigenvalues and assume that λ1 > λ2 > . . . > λp >

λp+1, which implies that the first p eigenvalues are nonzero. The eigenfunctions v j are
defined by C(v j ) = λ jv j , so if v j is an eigenfunction, then so is av j , for any nonzero
scalar a (by definition, eigenfunctions are nonzero). The v j are typically normalized,
so that ||v j || = 1, but this does not determine the sign of v j . Thus, if v̂ j is an estimate
computed from the data, we can only hope that ĉ j v̂ j is close to v j , where

ĉ j = sign
(〈
v̂ j , v j

〉)
.

Note that ĉ j cannot be computed form the data, so it must be ensured that the statistics
we want to work with do not depend on the ĉ j .

With these preliminaries in mind, we define the estimated eigenelements by

ĈN (v̂ j ) = λ̂ j v̂ j , j = 1, 2, . . . N . (9)

The following result, established in the study by Dauxois et al. (1982) and Bosq
(2000), is used very often to develop asymptotic arguments.
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Theorem 2. Assume that the observations X1, X2, . . . , X N are i.i.d. in H and have the
same distribution as X, which is assumed to be in L4

H with E X = 0. Suppose that

λ1 > λ2 > . . . > λd > λd+1. (10)

Then, for each 1 ≤ j ≤ d,

E
[
‖ĉ j v̂ j − v j‖

2
]
= O(N−1), E

[
|λ j − λ̂ j |

2
]
= O(N−1). (11)

Theorem 2 implies that, under regularity conditions, the population eigenfunctions
can be consistently estimated by the empirical eigenfunctions. If the assumptions do
not hold, the direction of the v̂k may not be close to the vk . Examples of this type,
with many references, are discussed in the study by Johnstone and Lu (2009). These
examples show that if the i.i.d. curves are noisy, then (11) fails. Another setting in which
(11) may fail is when the curves are sufficiently regular, but the dependence between
them is too strong. Such examples are discussed in Hörmann and Kokoszka (2012).

The proof of Theorem 2 is immediate from part (b) of Theorem 1, and Lemmas 1
and 2, which we will also use in Section 4. These two Lemmas appear, in a slightly
more specialized form, as Lemmas 4.2 and 4.3 of Bosq (2000). Lemma 1 is proven
in Section 6.1 of Gohberg et al. (1990), see their Corollary 1.6 on p. 99, whereas
Lemma 2 is established in the study by Horváth and Kokoszka (2012). To formulate
Lemmas 1 and 2, we consider two compact operators C , K ∈ L with singular value
decompositions

C(x) =
∞∑
j=1

λ j
〈
x , v j

〉
f j , K (x) =

∞∑
j=1

γ j
〈
x , u j

〉
g j . (12)

Lemma 1. Suppose C , K ∈ L are two compact operators with singular value decom-
positions (12). Then, for each j ≥ 1, |γ j − λ j | ≤ ‖K − C‖L.

We now define

v′j = c jv j , c j = sign
(〈

u j , v j
〉)

.

Lemma 2. Suppose C , K ∈ L are two compact operators with singular value decom-
positions (12). If C is symmetric, f j = v j in (12), and its eigenvalues satisfy (10),
then

‖u j − v
′

j‖ ≤
2
√

2

α j
‖K − C‖L, 1 ≤ j ≤ d ,

where α1 = λ1 − λ2 and α j = min(λ j−1 − λ j , λ j − λ j+1), 2 ≤ j ≤ d .

We note that if C is a covariance operator, then it satisfies the conditions imposed on
C in Lemma 2. The v j are then the eigenfunctions of C . Because these eigenfunctions
are determined only up to a sign, it is necessary to introduce the functions v′j .
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This section has merely set out the fundamental definitions and properties. Inter-
pretation and estimation of the functional principal components has been a subject of
extensive research, in which concepts of smoothing and regularization play a major
role, see Chapters 8, 9, 10 of the study by Ramsay and Silverman (2005).

3. Functional autoregressive model

The theory of autoregressive and more general linear processes in Hilbert and Banach
spaces is developed in the monograph of Bosq (2000), on which Sections 3.1 and 3.2
are based and on which we also refer to for the proofs. We present only a few selected
results that provide an introduction to the central ideas. Section 3.3 is devoted to predic-
tion by means of the functional autoregressive (FAR) process. To lighten the notation,
we set in this chapter, ‖ · ‖L = ‖ · ‖.

3.1. Existence

We say that a sequence {Xn , −∞ < n <∞} of mean zero functions in H follows a
functional AR(1) model if

Xn = 9(Xn−1)+ εn , (13)

where 9 ∈ L and {εn , −∞ < n <∞} is a sequence of i.i.d. mean zero errors in H
satisfying E‖εn‖

2 <∞.
The above definition defines a somewhat narrower class of processes than that con-

sidered by Bosq (2000) who does not assume that the {εn} are i.i.d., but rather that they
are uncorrelated in an appropriate Hilbert space sense, see his Definitions 3.1 and 3.2.
The theory of estimation for the process (13) is, however, developed only under the
assumption that the errors are i.i.d.

Scalar AR(1) equations, Xn = ψXn−1 + εn , admit the unique causal solution Xn =∑
∞

j=0 ψ
jεn− j , if |ψ | < 1. Our goal in this section is to state a condition analogous to

|ψ | < 1 for functional AR(1) equations (13). We begin with the following Lemma:

Lemma 3. For any 9 ∈ L, the following two conditions are equivalent:

C0: The exists an integer j0 such that ‖9 j0‖ < 1.

C1: There exist a > 0 and 0 < b < 1 such that for every j ≥ 0, ‖9 j
‖ ≤ ab j .

Note that condition C0 is weaker than the condition ‖9‖ < 1; in the scalar case,
these two conditions are clearly equivalent. Nevertheless, C1 is a sufficiently strong
condition to ensure the convergence of the series

∑
j 9

j (εn− j ), and the existence of a
stationary causal solution to functional AR(1) equations, as stated in Theorem 3.

Note that (13) can be viewed as an iterated random function system, see Diaconis
and Freeman (1999) and Wu and Shao (2004). Condition C1 then refers to a geometric
contraction property needed to obtain stationary solutions for such processes. Because
iterated random function systems have been studied on general metric spaces, we could
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use this methodology to investigate extensions of the functional AR process to non-
linear functional Markov processes of the form X t = 9εt (X t−1).

Theorem 3. If condition C0 holds, then there is a unique strictly stationary causal
solution to (13). This solution is given by

Xn =

∞∑
j=0

9 j (εn− j ). (14)

The series converges almost surely and in L2
H .

Example 1. Consider an integral Hilbert–Schmidt operator on L2 defined by (5),
which satisfies∫∫

ψ2(t , s)dtds < 1. (15)

Recall from Section 2.2 that the left-hand side of (15) is equal to ‖9‖2
S . Since ‖9‖ ≤

‖9‖S , we see that (15) implies condition C0 of Lemma 3 with j0 = 1.

3.2. Estimation

This section is devoted to the estimation of the autoregressive operator 9, but first we
state a theorem on the convergence of the EFPCs and the corresponding eigenvalues,
which follows from Example 2, Theorem 7, and Lemma 3. In essence, Theorem 4 states
that bounds (11) also hold if the Xn follow an FAR(1) model.

Theorem 4. Suppose the operator9 in (13) satisfies condition C0 of Lemma 3, and the
solution {Xn} satisfies E‖X0‖

4 <∞. If (10) holds, then, for each 1 ≤ j ≤ d, relations
(11) hold.

We now turn to the estimation of the autoregressive operator 9. It is instructive
to focus first on the univariate case Xn = ψXn−1 + εn , in which all quantities are
scalars. We assume that |ψ | < 1, so that there is a stationary solution, such that εn

is independent of Xn−1. Then, by multiplying the AR(1) equation by Xn−1 and tak-
ing the expectation, we obtain γ1 = ψγ0, where γk = E[Xn Xn+k] = Cov(Xn , Xn+k).
The autocovariances γk are estimated by the sample autocovariances γ̂k , so the
usual estimator of ψ is ψ̂ = γ̂1/γ̂0. This estimator is optimal in many ways, see
Chapter 8 of Brockwell and Davis (1991), and the approach outlined above, known
as the Yule-Walker estimation, works for higher order and multivariate autoregressive
processes. To apply this technique to the functional model, note that by (13), under
condition C0 of Lemma 3,

E [〈Xn , x〉 Xn−1] = E [〈9(Xn−1), x〉 Xn−1] , x ∈ H .

Define the lag-1 autocovariance operator by

C1(x) = E[〈Xn , x〉 Xn+1]
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and denote with superscript T , the adjoint operator. Then, CT
1 = C9T because, by a

direct verification, CT
1 = E [〈Xn , x〉 Xn−1], i.e.,

C1 = 9C . (16)

The above identity is analogous to the scalar case, so we would like to obtain an esti-
mate of 9 by using a finite sample version of the relation 9 = C1C−1. However, the
operator C does not have a bounded inverse on the whole of H . To see it, recall that C
admits representation (4), which implies that C−1(C(x)) = x , where

C−1(y) =
∞∑
j=1

λ−1
j

〈
y, v j

〉
v j .

The operator C−1 is defined if all λ j are positive. Because ‖C−1(vn)‖ = λ
−1
n →∞, as

n→∞, it is unbounded. This makes it difficult to estimate the bounded operator 9
using the relation 9 = C1C−1. A practical solution is to use only the first p, the most
important EFPC’s v̂ j , and to define

Î C p(x) =
p∑

j=1

λ̂−1
j

〈
x , v̂ j

〉
v̂ j .

The operator Î C p is defined on the whole of L2, and it is bounded if λ̂ j > 0 for
j ≤ p. By judiciously choosing p, we find a balance between retaining the relevant
information in the sample and the danger of working with the reciprocals of small
eigenvalues λ̂ j . To derive a computable estimator of 9, we use an empirical version of
(16). Because C1 is estimated by

Ĉ1(x) =
1

N − 1

N−1∑
k=1

〈Xk , x〉 Xk+1,

we obtain, for any x ∈ H ,

Ĉ1 Î C p(x) = Ĉ1

 p∑
j=1

λ̂−1
j

〈
x , v̂ j

〉
v̂ j


=

1

N − 1

N−1∑
k=1

〈
Xk ,

p∑
j=1

λ̂−1
j

〈
x , v̂ j

〉
v̂ j

〉
Xk+1

=
1

N − 1

N−1∑
k=1

p∑
j=1

λ̂−1
j

〈
x , v̂ j

〉 〈
Xk , v̂ j

〉
Xk+1.
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The estimator Ĉ1 Î C p can be used in principle, but typically an additional smoothing
step is introduced by using the approximation Xk+1 ≈

∑p
i=1

〈
Xk+1, v̂i

〉
v̂i . This leads to

the estimator

9̂p(x) =
1

N − 1

N−1∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j

〈
x , v̂ j

〉 〈
Xk , v̂ j

〉 〈
Xk+1, v̂i

〉
v̂i . (17)

To establish the consistency of this estimator, it must be assumed that p = pN is a
function of the sample size N . Theorem 8.7 of Bosq (2000) then establishes sufficient
conditions for ‖9̂p −9‖ to tend to zero. They are technical, but, intuitively, they mean
that the λ j and the distances between them cannot tend to zero too fast.

If H = L2, the estimator (17) is a kernel operator with the kernel

ψ̂p(t , s) =
1

N − 1

N−1∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j

〈
Xk , v̂ j

〉 〈
Xk+1, v̂i

〉
v̂ j (s)v̂i (t). (18)

This is verified by noting that

9̂p(x)(t) =
∫
ψ̂p(t , s)x(s)ds.

All quantities at the right-hand side of (18) are available as output of the R
function pca.fd, so this estimator is very easy to compute. Kokoszka and Zhang
(2010) conducted a number of numerical experiments to determine how close the esti-
mated surface ψ̂p(t , s) is to the surface ψ(t , s) used to simulate an FAR(1) process.
Broadly speaking, for N ≤ 100, the discrepancies are very large, both in magni-
tude and in shape. This is illustrated in Fig. 3, which shows the Gaussian kernel
ψ(t , s) = α exp

{
−(t2
+ s2)/2

}
, with α chosen, so that the Hilbert–Schmidt norm of

ψ is 1/2, and three estimates that use p = 2, 3, 4. The innovations εn were generated
as Brownian bridges. Such discrepancies are observed for other kernels and other inno-
vation processes as well. Moreover, by any reasonable measure of a distance between
two surfaces, the distance between ψ and ψ̂p increases as p increases. This is coun-
terintuitive because by using more EFPC’s v̂ j , we would expect the approximation
(18) to improve. For the FAR(1) used to produce Fig. 3, the sums

∑p
j=1 λ̂ j explain,

respectively, 74, 83, and 87% of the variance for p = 2, 3, and 4, but (for the series
length N = 100) the absolute deviation distances between ψ and ψ̂p are 0.40, 0.44,
and 0.55. The same pattern is observed for the RMSE distance ‖ψ̂ − ψ‖S and the rel-
ative absolute distance. As N increases, these distances decrease, but their tendency
to increase with p remains. This problem is partially due to the fact that for many
FAR(1) models, the estimated eigenvalues λ̂ j are very small, except λ̂1 and λ̂2, and
so a small error in their estimation translates to a large error in the reciprocals λ̂−1

j
appearing in (18). Kokoszka and Zhang (2010) show that this problem can be allevi-
ated to some extent by adding a positive baseline to the λ̂ j . However, as we will see in
Section 3.3, precise estimation of the kernel ψ is not necessary to obtain satisfactory
predictions.
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Fig. 3. The kernel surface ψ(t , s) (top left) and its estimates ψ̂p(t , s) for p = 2, 3, 4.

3.3. Prediction

In this section, we discuss some properties of forecasts with the FAR(1) model. Besse
et al. (2000) apply several prediction methods, including traditional (nonfunctional)
methods, to functional time series derived from real geophysical data. Their conclu-
sion is that the method that we call below Estimated Kernel performs best. A different
approach to the prediction of functional data was proposed by Antoniadis et al. (2006).
In this section, we mostly report the findings of Didericksen et al. (in press), whose sim-
ulation study includes a new method proposed by Kargin and Onatski (2008), which
we call below Predictive Factors and which seeks to replace the FPC’s by directions
that are most relevant for predictions.

We begin by describing the prediction methods we compare. This is followed by the
discussion of their finite sample properties.

3.3.1. Estimated Kernel (EK)
This method uses estimator (18). The predictions are calculated as

X̂n+1(t) =
∫
ψ̂p(t , s)Xn(s)ds =

p∑
i=1

 p∑
j=1

ψ̂i j 〈Xn , v̂ j 〉

 v̂i (t), (19)
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where

ψ̂i j = λ̂
−1
j (N − 1)−1

N−1∑
n=1

〈Xn , v̂ j 〉〈Xn+1, v̂i 〉. (20)

There are several variants of this method, which depend on where and what kind
of smoothing is applied. In our implementation, all curves are converted to functional
objects in R using 99 Fourier basis functions. The same minimal smoothing is used for
the Predictive Factors method.

3.3.2. Predictive Factors (PF)
Estimator (18) is not directly justified by the problem of prediction, it is based on FPCs,
which may focus on the features of the data that are not relevant to prediction. An
approach known as predictive factors may (potentially) be better suited for forecasting.
It finds directions most relevant to prediction, rather than explaining the variability, as
the FPCs do. Roughly speaking, it focuses on the optimal expansion of 9(Xn), which
is, theoretically, the best predictor of Xn+1, rather than the optimal expansion of Xn .
Because 9 is unknown, Kargin and Onatski (2008) developed a way of approximating
such an expansion in finite samples. We describe only the general idea, as theoretical
arguments developed by Kargin and Onatski (2008) are quite complex. As we will see,
the PF method does not offer an advantage in finite samples, so we do not need to
describe all details here.

Denote by Rk the set of all rank k operators, i.e., those operators that map L2 into
a subspace of dimension k. The goal is to find A ∈ Rk that minimizes E ||Xn+1 −

A(Xn)||
2. To find a computable approximation to the operator A, a parameter α > 0

must be introduced. Following the recommendation of Kargin and Onatski (2008), we
used α = 0.75. The prediction is computed as

X̂n+1 =

k∑
i=1

〈
Xn , b̂α,i

〉
Ĉ1(b̂α,i ),

where

b̂α,i =

p∑
j=1

λ̂
−1/2
j

〈
x̂α,i , v̂ j

〉
v̂ j + α x̂α,i .

The vectors x̂α,i are linear combinations of the EFPC v̂i , 1 ≤ i ≤ k and are approxi-
mations to the eigenfunctions of the operator 8 defined by the polar decomposition
9C1/2

= U81/2, where C is the covariance operator of X1 and U is a unitary operator.
The operator Ĉ1 is the lag-1 autocovariance operator defined by

Ĉ1(x) =
1

N − 1

N−1∑
i=1

〈X i , x〉 X i+1, x ∈ L2.

The method depends on a selection of p and k. We selected p by the cumulative
variance method and set k = p.
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172 S. Hörmann and P. Kokoszka

We selected five prediction methods for comparison, two of which do not use the
autoregressive structure. To obtain further insights, we also included the errors obtained
by assuming perfect knowledge of the operator 9. For ease of reference, we now
describe these methods and introduce some convenient notation.

MP (Mean Prediction): We set X̂n+1(t) = 0. Because the simulated curves have
mean zero at every t , this corresponds to using the mean function as a predictor.
This predictor is optimal if the data are uncorrelated.

NP (Naive Prediction): We set X̂n+1 = Xn . This method does not attempt to model
temporal dependence. It is included to see how much can be gained by utilizing
the autoregressive structure of the data.

EX (Exact): We set X̂n+1 = 9(Xn). This is not really a prediction method because
the autoregressive operator 9 is unknown. It is included to see whether poor
predictions might be due to poor estimation of 9 (cf. Section 3.2).

EK (Estimated Kernel): This method is described above.
EKI (Estimated Kernel Improved): This is method EK, but the λ̂i in (20) are

replaced by λ̂i + b̂, as described in Section 3.2.
PF (Predictive Factors): This method is described above.

Didericksen et al. (2011) studied the errors En and Rn , N − 50 < n < N , defined by

En =

√√√√√ 1∫
0

(
Xn(t)− X̂n(t)

)2
dt and Rn =

1∫
0

∣∣∣Xn(t)− X̂n(t)
∣∣∣ dt .

for N = 50, 100, 200, and ||9||S = 0.5, 0.8. They considered several kernels and inno-
vation processes, including smooth errors obtained as a sum of two trigonometric
functions, irregular errors generated as Brownian bridges, and intermediate errors
obtained by adding small multiples of Brownian bridges to smooth innovations. Exam-
ples of boxplots are shown in Figs. 4 and 5. In addition to boxplots, Didericksen
et al. (2011) reported the averages of the En and Rn , N − 50 < n < N , and the stan-
dard errors of these averages, which allow to assess whether the differences in the
performance of the predictors are statistically significant. Their conclusions can be
summarized as follows:

1. Taking the autoregressive structure into account reduces prediction errors, but,
in some settings, this reduction is not statistically significant relative to method
MP, especially if ‖9‖ = 0.5. Generally if ‖9‖ = 0.8, using the autoregressive
structure significantly and visibly improves the predictions.

2. None of the methods EX, EK, and EKI uniformly dominates the other. In most
cases, EK method is the best, or at least as good at the others.

3. In some cases, PF method performs visibly worse than the other methods, but
always better than NP.

4. Using the improved estimation described in Section 3.2 does not generally reduce
prediction errors.

Didericksen et al. (in press) also applied all prediction methods to mean corrected
precipitation data studied by Besse et al. (2000). For this data set, the averages of the En
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Fig. 4. Boxplots of the prediction errors En (left) and Rn (right); Brownian bridge innovations,ψ(t , s) = Ct ,
N = 100, p = 3, ||9|| = 0.5.
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Fig. 5. Boxplots of the prediction errors En (left) and Rn (right); Brownian bridge innovations,ψ(t , s) = Ct ,
N = 100, p = 3, ||9|| = 0.8.

and the Rn are not significantly different between the first five methods, PF method per-
forms significantly worse than the others. We should point out that PF method depends
on the choice of the parameters α and k. It is possible that its performance can be
improved by better tuning these parameters. On the other hand, our simulations show
that EK method essentially reaches the limit of what is possible, it is comparable to the
theoretically perfect EX method. While taking into account the autoregressive structure
of the observations does reduce prediction errors, many prediction errors are compara-
ble to those of the trivial MP method. To analyze this observation further, we present in
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Fig. 6. Six consecutive trajectories of the FAR(1) process with Gaussian kernel, ||9|| = 0.5, and Brownian
bridge innovations. Dashed lines show EK predictions with p = 3.

Fig. 6 six consecutive trajectories of a FAR(1) process with ||9|| = 0.5, and Brownian
bridge innovations, together with EK predictions. Predictions obtained with other non-
trivial methods look similar. We see that the predictions look much smoother than the
observations, and their range is much smaller. If the innovations εn are smooth, the
observations are also smooth, but the predicted curves have a visibly smaller range
than the observations. The smoothness of the predicted curves follows from represen-
tation (19), which shows that each predictor is a linear combination of a few EFPCs,
which are smooth curves themselves. The smaller range of the the predictors is not
peculiar to functional data but is enhanced in the functional setting. For a mean zero
scalar AR(1) process Xn = ψXn−1 + εn , we have Var(Xn) = ψ

2Var(Xn−1)+ Var(εn),
so the variance of the predictor ψ̂Xn−1 is about ψ−2 times smaller than the variance of
Xn . In the functional setting, the variance of X̂n(t) is close to Var[

∫
ψ(t , s)Xn(s)ds].

If the kernel ψ admits the decomposition ψ(t , s) = ψ1(t)ψ2(s), as all the kernels we
use do, then

Var
[

X̂n(t)
]
≈ ψ2

1 (t)Var

 1∫
0

ψ2(s)Xn−1(s)ds

.

If the function ψ1 is small for some values of t ∈ [0, 1], it will automatically drive
down the predictions. If ψ2 is small for some s ∈ [0, 1], it will reduce the integral∫ 1

0 ψ2(s)Xn−1(s)ds. The estimated kernels do not admit a factorization of this type,
but they are always weighted sums of products of orthonormal functions (the EFPC’s
v̂k). A conclusion of this discussion is that the predicted curves will in general look
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smoother and “smaller” than the data. This somewhat disappointing performance is,
however, not due to the poor prediction methods but due to a natural limit of predictive
power of the FAR(1) model; the curves9(Xn) share the general properties of the curves
9̂(Xn), no matter how 9 is estimated.

4. Weakly dependent functional time series

What distinguishes time series analysis from other fields of statistics is attention to
temporal dependence of the data. In this section, we describe a general framework that
accommodates the temporal dependence of functional time series and illustrate it with
several examples.

4.1. Approximable functional sequences

The notion of weak dependence has been formalized in many ways. Perhaps the most
popular are various mixing conditions, see Doukhan (1994), and Bradley (2007), but
in recent years, several other approaches have also been introduced, see Doukhan
and Louhichi (1999) and Wu (2005, 2007), among others. In time series analysis,
moment-based measures of dependence, most notably autocorrelations and cumulants,
have gained wide acceptance. The measure we consider below is a moment type
quantity, but it is also related to the mixing conditions as it considers σ–algebras
m time units apart, with m tending to infinity. A most direct relaxation of inde-
pendence is the m-dependence. Suppose {Xn} is a sequence of random elements
taking values in a measurable space S. Denote by F−k = σ {. . . Xk−2, Xk−1, Xk} and
F+k = σ {Xk , Xk+1, Xk+2, . . .}, the σ -algebras generated by the observations up to time
k and after time k, respectively. Then the sequence {Xn} is said to be m-dependent if for
any k, the σ -algebras F−k and F+k+m are independent. Most time series models are not
m-dependent. Rather, various measures of dependence decay sufficiently fast, as the
distance m between the σ -algebras F−k and F+k+m increase. However, m-dependence
can be used as a tool to study the properties of many nonlinear sequences, see e.g.,
Hörmann (2008) and Berkes et al. (2011) for recent applications. The general idea is to
approximate {Xn , n ∈ Z} by m-dependent processes {X (m)

n , n ∈ Z}, m ≥ 1. The goal
is to establish that for every n, the sequence {X (m)

n , m ≥ 1} converges in some sense
to Xn , if we let m →∞. If the convergence is fast enough, then one can obtain the
limiting behavior of the original process from corresponding results for m-dependent
sequences. Definition 1 formalizes this idea and sets up the necessary framework for
the construction of such m-dependent approximation sequences. The idea of approxi-
mating scalar sequences by m-dependent nonlinear moving averages appears already in
Section 21 of Billingsley (1968), and it was developed in several direction by Pötscher
and Prucha (1997). A version of Definition 1 for vector-valued processes was used in
the study by Aue et al. (2009).

For X ∈ L p
H , we define

νp(X) =
(
E‖X‖p

)1/p
<∞. (21)
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Definition 1. A sequence {Xn} ∈ L p
H is called L p–m–approximable if each Xn admits

the representation

Xn = f (εn , εn−1, . . .), (22)

where the εi are i.i.d. elements taking values in a measurable space S, and f is a mea-
surable function f : S∞→ H . Moreover, we assume that if {ε′i } is an independent copy
of {εi } defined on the same probability space, then letting

X (m)
n = f (εn , εn−1, . . . , εn−m+1, ε′n−m , ε′n−m−1, . . .), (23)

we have

∞∑
m=1

νp
(
Xm − X (m)

m

)
<∞. (24)

The applicability of Definition 1 was demonstrated by Hörmann and Kokoszka
(2010) for several linear and nonlinear functional time series. The variables εn are
typically model errors. The general idea is that in the nonlinear moving average rep-
resentation (22), the impact on Xn of the εn−m becomes so small as m →∞ that they
can be replaced by different errors. We illustrate it for the FAR(1) model.

Example 2 (Functional autoregressive process). Let {Xn , n ∈ Z} be a functional
AR(1) model as given as in (13), with ‖9‖ < 1. As we have obtained in The-
orem 3, the AR(1) sequence admits the expansion Xn =

∑
∞

j=0 9
j (εn− j ), where

9 j is the j-th iterate of the operator 9. We thus set X (m)
n =

∑m−1
j=0 9

j (εn− j )+∑
∞

j=m 9
j (ε′n− j ). It is easy to verify that for every A in L, νp(A(Y )) ≤ ‖A‖ νp(Y ).

Because Xm − X (m)
m =

∑
∞

j=m

(
9 j (εm− j )−9

j (ε′m− j )
)
, it follows that νp(Xm −

X (m)
m ) ≤ 2

∑
∞

j=m ‖9‖
j νp(ε0) = O(1)νp(ε0)‖9‖

m . By assumption ν2(ε0) <∞ and
therefore

∑
∞

m=1 ν2(Xm − X (m)
m ) <∞, so condition (24) holds with p ≥ 2, as long as

νp(ε0) <∞.

4.2. Estimation of the mean function and the FPCs

With the notion of weak dependence just defined at hand, we can obtain analogs of
Theorems 1 and 2 for time series. We include the proofs because they illustrate the
ease with which the condition of m–approximability is applied. We let µ̂N and ĈN be
defined as in Section 2.3.

Theorem 5. Assume that {Xk} is an H-valued L2–m–approximable process with
E X = µ. Then E‖µ̂N − µ‖

2
= O(N−1).

Proof. Observe that for any h > 0 we have

X0 = f (ε0, ε−1, . . .), X (h)
h = f (h)(εh , εh−1, . . . , ε1, ε(h)0 , ε(h)

−1 , . . .),
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and thus the random variables X0 and X (h)
h are independent. Stationarity of {Xk},

independence of X0 and X (h)
h and the Cauchy-Schwarz inequality yield that

N E‖µ̂N − µ‖
2
=

N−1∑
h=−(N−1)

(
1−
|h|

N

)
E〈X0 − µ, Xh − µ〉

≤

∑
h∈Z

|E〈X0 − µ, Xh − µ〉|

≤ E‖X0 − µ‖
2
+ 2

∑
h≥1

|E〈X0 − µ, Xh − X (h)
h 〉|

≤ ν2(X0 − µ)×

(
ν2(X0 − µ)+ 2

∑
h≥1

ν2

(
Xh − X (h)

h

))
<∞.

2

Theorem 6. Suppose {Xn} ∈ L4
H is an L4–m–approximable sequence with covariance

operator C. Then there is some constant UX <∞, which does not depend on N, such
that

E‖Ĉ − C‖2
S ≤ UX N−1. (25)

Before we give the proof, we state the following important result that follows
immediately from Theorem 6 and from Lemmas 1 and 2.

Theorem 7. Suppose {Xn , n ∈ Z} ∈ L4
H is an L4–m–approximable sequence and

assumption (10) holds. Then, for 1 ≤ j ≤ d,

E
[
|λ j − λ̂ j |

2
]
= O(N−1) and E

[
‖ĉ j v̂ j − v j‖

2
]
= O(N−1). (26)

Theorems 5–7 show that the standard estimates for the functional mean and the FPCs
employed for i.i.d data are robust to a sufficiently weak violation of the independence
assumption.

Proof of Theorem 6: We assume for simplicity that E X = 0. For k ∈ Z, define the
operators Bk(y) = 〈Xk , y〉 Xk − C(y), y ∈ H . Then because Bk are stationary, we have

E‖ĈN − C‖2
S = E

∥∥∥∥∥ 1

N

N∑
k=1

Bk

∥∥∥∥∥
2

S

=
1

N

N−1∑
k=−(N−1)

(
1−
|k|

N

)
E〈B0, Bk〉S

≤
1

N

(
E‖B0‖

2
S + 2

∑
k≥1

|E〈B0, Bk〉S |

)
,
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and it remains to show that |E〈B0, Bk〉S | decays sufficiently fast. We let λ1 ≥

λ2 ≥ · · · be the eigenvalues of the operator C and we let {ei } be the corresponding
eigenfunctions. It can be readily verified that

E 〈B0, Bk〉S = E 〈X0, Xk〉
2
−

∑
j≥1

λ2
j , k ≥ 1.

Furthermore, by using the independence of X0 and X (k)
k , we have

E
〈
X0, X (k)

k

〉2
=

∑
j≥1

λ2
j , k ≥ 1,

showing that

E 〈B0, Bk〉S = E 〈X0, Xk〉
2
− E

〈
X0, X (k)

k

〉2
. (27)

For ease of notation, we set X ′k = X (k)
k . Then we have〈

X0, Xk − X ′k
〉2
= 〈X0, Xk〉

2
+
〈
X0, X ′k

〉2
− 2 〈X0, Xk〉

〈
X0, X ′k

〉
= 〈X0, Xk〉

2
−
〈
X0, X ′k

〉2
− 2

〈
X0, Xk − X ′k

〉 〈
X0, X ′k

〉
.

Thus,

〈X0, Xk〉
2
−
〈
X0, X ′k

〉2
=
〈
X0, Xk − X ′k

〉2
+ 2

〈
X0, Xk − X ′k

〉 〈
X0, X ′k

〉
and by repeated application of Cauchy–Schwarz, it follows that∣∣∣E 〈X0, Xk〉

2
− E

〈
X0, X ′k

〉2∣∣∣ ≤ ν2
4(X0)ν

2
4

(
Xk − X ′k

)
+ 2ν2

4(X0)ν2(X0)ν2
(
Xk − X ′k

)
.

(28)

Combining (27) and (28) and using the definition of L4–m–approximability yields the
proof of our theorem, with UX equal to the sum over k ≥ 1 of the right-hand side
of (28). 2

4.3. Estimation of the long-run variance

The main results of this section are Corollary 1 and Proposition 1, which state that the
long-run variance matrix obtained by projecting the data on the functional principal
components can be consistently estimated. We start with some preliminaries, which
lead to the main results. For illustration, we present the proof of Lemma 4. More details
can be found in the study by Hörmann and Kokoszka (2010).

Let {Xn} be a scalar (weakly) stationary sequence. Its long-run variance is defined as
σ 2
=
∑

j∈Z γ j , where γ j = Cov(X0, X j ), provided this series is absolutely convergent.
Our first Lemma shows that this is the case for L2–m–approximable sequences.
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Lemma 4. Suppose {Xn} is a scalar L2–m–approximable sequence. Then its autoco-
variance function γ j = Cov(X0, X j ) is absolutely summable, i.e.,

∑
∞

j=−∞ |γ j | < ∞.

Proof. As we have noted in the proof of Theorem 5, X0 and X ( j)
j are independent,

and thus Cov(X0, X ( j)
j ) = 0. It follows that |γ j | ≤ [E X2

0]1/2[E(X j − X ( j)
j )

2]1/2, which
proves the Lemma. 2

The summability of the autocovariances is the fundamental property of weak
dependence because NVar[X̄ N ]→

∑
∞

j=−∞ γ j , i.e., the variance of the sample mean
converges to zero at the rate N−1, the same as for i.i.d. observations. A popular
approach to the estimation of the long-run variance is to use the kernel estimator

σ̂ 2
=

∑
| j |≤q

ωq( j)γ̂ j , γ̂ j =
1

N

N−| j |∑
i=1

(X i − X̄ N )(X i+| j | − X̄ N ).

Various weights ωq( j) have been proposed and their optimality properties studied,
see Andrews (1991) and Anderson (1994), among others. In theoretical work, it is
typically assumed that the bandwith q is a deterministic function of the sample size,
such that q = q(N )→∞ and q = o(N r ).

We consider the vector case in which the data are of the form

Xn = [X1n , X2n , . . . , Xdn]T , n = 1, 2, . . . , N .

The estimation of the mean by the sample mean does not affect the limit of the
kernel long-run variance estimators, so we assume that E X in = 0 and define the
autocovariances as

γr (i , j) = E[X i0 X jr ], 1 ≤ i , j ≤ d.

If r ≥ 0, γr (i , j) is estimated by N−1∑N−r
n=1 X in X j ,n+r , but if r < 0, it is estimated by

N−1∑N−|r |
n=1 X i ,n+|r |X j ,n . The autocovariance matrices are thus

0̂r =


N−1

N−r∑
n=1

XnXT
n+r if r ≥ 0,

N−1
N−|r |∑
n=1

Xn+|r |XT
n if r < 0.

The variance Var[N−1X̄N ] has (i , j)-entry

N−2
N∑

m,n=1

E[X im X jn] = N−1
∑
|r |<N

(
1−
|r |

N

)
γr (i , j),

so the long-run variance is

6 =

∞∑
r=−∞

0r , 0r := [γr (i , j), 1 ≤ i , j ≤ d],
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and its kernel estimator is

6̂ =
∑
|r |≤q

ωq(r)0̂r . (29)

We consider the weights ωq( j) = K ( j/q), where K is a kernel satisfying the
following assumption.

Assumption 1.

(i) K(0)=1;
(ii) K is a symmetric, Lipschitz function;

(iii) K has a bounded support;
(iv) K̂ , the Fourier transform of K, is also Lipschitz and integrable.

The following theorem is proven in Horváth and Kokoszka (2012).

Theorem 8. Suppose {Xn} is an L2–m–approximable sequence. If Assumption 1 holds

and q →∞, q/N → 0, then 6̂N
P
→ 6.

In contrast to many classical results, see e.g., Newey and West (1987), Theorem 8
does not impose fourth-order conditions and replaces mixing or linearity conditions
by L2–m–approximability. Assumption 1 is standard, except its condition (iv). The
following example shows that it holds for the Bartlett kernel; the Fourier transforms of
other commonly used kernels are smoother and decay faster.

Example 3. The Bartlett kernel is

K (s) =

{
1− |s|, |s| ≤ 1,
0, otherwise

This kernel clearly satisfies parts (i)–(iii) of Assumption 1. Its Fourier transform is

Ĥ(u) =

{
1

πu
sin
(u

2

)}2

.

Thus, to verify part (iv), we must check that the function

F(t) =

{
sin(t)

t

}2

is integrable and Lipschitz. The integrability follows because |F(t)| ≤ t−2 and
F(t)→ 1, as t → 0.
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The derivative of F for t 6= 0 is

F ′(t) =
2 sin(t)

t

{
t cos(t)− sin(t)

t2

}
.

This function is clearly bounded outside any neighborhood of zero. Using the Taylor
expansion of the sine and cosine functions, it is easy to verify that F ′(t) = o(t),
as t → 0. In a similar fashion, one can verify that F(t)− F(0) = o(t2), as t → 0.
Thus, F is Lipschitz on the whole line.

We are now able to turn to functional data. Suppose {Xn} ∈ L2
H is a zero

mean sequence and e1, e2, . . . , ed is any set of orthonormal functions in H . Define
X in = 〈Xn , ei 〉, Xn = [X1n , X2n , . . . , Xdn]T and 0r = Cov(X0, Xr ). A direct verifica-
tion shows that if {Xn} is L p–m–approximable, then so is the vector sequence {Xn}.
Thus, we obtain the following corollary.

Corollary 1. (a) If {Xn} ∈ L2
H is an L2–m–approximable sequence, then the series∑

∞

r=−∞ 0r converges absolutely. (b) If, in addition, Assumption 1 holds and q →∞

with q = o(N ), then 6̂
P
→ 6.

In Corollary 1, the functions e1, e2, . . . , ed form an arbitrary orthonormal determin-
istic basis. In many applications, a random basis consisting of the EFPC’s v̂1, v̂2, . . . , v̂d

is used. The scores with respect to this basis are defined by

η̂`i =
〈
X i − X̄ N , v̂`

〉
, 1 ≤ ` ≤ d .

To use the results established so far, it is convenient to decompose the stationary
sequence {Xn} into its mean and a zero mean process, i.e., we set Xn = µ+ Yn , where
EYn = 0. We introduce the unobservable quantities

β`n = 〈Yn , v`〉, β̂`n =
〈
Yn , v̂`

〉
, 1 ≤ ` ≤ d .

The following proposition is useful in the development of asymptotic arguments for
many statistical procedures for functional time series. The boldface symbols refer to
the vectors with the coordinates just defined, and 6̂(δ) is the estimator (29) calculated
from the observation vectors δ1, . . . , δN .

Proposition 1. Let Ĉ = diag(ĉ1, . . . , ĉd), with ĉi = sign(
〈
vi , v̂i

〉
). Suppose {Xn} ∈ L4

H
is L4–m–approximable and that (10) holds. Assume further that Assumption 1 holds
with a stronger condition q4/N → 0. Then

|6̂(β)− 6̂(Ĉβ̂)| = oP(1) and |6̂(η̂)− 6̂(β̂)| = oP(1). (30)

The point of Proposition 1 is that if 6̂(β) is consistent under some conditions,
e.g., those stated in Theorem 8, then so is 6̂(η̂). Before presenting the proof of
Proposition 1, we note that for functional data, it is also often useful to consider
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the long-run covariance kernel, which is defined in terms of the kernels ch(t , s) =
Cov(X i (t), X i+h(t)). Kernel estimators can be defined analogously to (29), and their
consistency can be established under L2–m–approximability and additional technical
conditions; we refer to Horváth et al. (2012).
Proof of Proposition 1. We only prove the left relation in (30). We introduce the
constant

κ := sup
q≥1

1

q

q∑
j=−q

wq( j),

which by Assumption 1 is finite (and converges to 2
∫ 1
−1 K (x)dx). The element in the

k-th row and `-th column of 6̂(β)− 6̂(Ĉβ̂) is given by

q∑
h=0

wq(h)

N

∑
1≤n≤N−h

(
βknβ`,n+h − ĉk β̂kn ĉ`β̂`,n+h

)

+

q∑
h=1

wq(h)

N

∑
1≤n≤N−h

(
βk,n+hβ`,n − ĉk β̂k,n+h ĉ`β̂`,n

)
. (31)

For reasons of symmetry, it suffices to study (31), which can be decomposed into

q∑
h=0

wq(h)

N

∑
1≤n≤N−h

βkn

(
β`,n+h − ĉ`β̂`,n+h

)

+

q∑
h=0

wq(h)

N

∑
1≤n≤N−h

ĉ`β̂`,n+h

(
βkn − ĉk β̂kn

)
. (32)

As both summands above can be treated similarly, we will only treat (32). For any
ε > 0, we have

P

(∣∣∣∣∣
q∑

h=0

wq(h)

N

∑
1≤n≤N−h

βkn

(
β`,n+h − ĉ`β̂`,n+h

)∣∣∣∣∣ > εκ

)

≤ P

(∣∣∣∣∣
q∑

h=0

wq(h)

N

∑
1≤n≤N−h

βkn

(
β`,n+h − ĉ`β̂`,n+h

)∣∣∣∣∣ > ε

q

q∑
h=0

wq(h)

)

≤

q∑
h=0

P

(
1

N

∣∣∣∣∣ ∑
1≤n≤N−h

βkn

(
β`,n+h − ĉ`β̂`,n+h

)∣∣∣∣∣ > ε

q

)
. (33)
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To show that (33) tends to 0 as N →∞, we introduce a slowly increasing sequence
αN →∞, such that q4αN/N → 0, and we let C0, such that N max1≤`≤d E‖v` −
ĉ`v̂`‖2

≤ C0. By Cauchy–Schwarz and Markov inequality, we have

P

(∣∣∣∣∣ ∑
1≤n≤N−h

βkn

(
β`,n+h − ĉ`β̂`,n+h

)∣∣∣∣∣ > ε N

q

)

≤ P

(
N∑

n=1

β2
kn

N∑
n=1

(
β`n − ĉ`β̂`n

)2
>
ε2 N 2

q2

)

≤ P

(
1

N

N∑
n=1

β2
kn > qαN

)
+ P

(
1

N

N∑
n=1

(
β`n − ĉ`β̂`n

)2
>

ε2

q3αN

)

≤
Eβ2

k1

qαN
+ P

(
1

N

N∑
n=1

‖Yn‖
2
‖v` − ĉ`v̂`‖

2 >
ε2

q3αN

)

≤
E‖Y1‖

2

qαN
+ P

(
1

N

N∑
n=1

‖Yn‖
2 > 2E‖Y1‖

2

)

+ P

(
‖v` − ĉ`v̂`‖

2 >
ε2

2E‖Y1‖
2q3αN

)

≤
E‖Y1‖

2

qαN
+

Var
(

1
N

∑N
n=1 ‖Yn‖

2
)

E2‖Y1‖
2

+
2C0 E‖Y1‖

2q3αN

Nε2
.

It can be easily shown that for U , V in L4
H

ν2
(
‖U‖2

− ‖V ‖2
)
≤ ν2

4(U − V )+ 2 {ν4(U )+ ν4(V )} ν4(U − V ).

An immediate consequence is that L4–m–approximability of {Yn} implies L2–m–
approximability of the scalar sequence {‖Yn‖

2
}. A basic result for stationary sequences

gives

Var

(
1

N

N∑
n=1

‖Yn‖
2

)
≤

1

N

∑
h∈Z

∣∣Cov
(
‖Y0‖

2, ‖Yh‖
2
)∣∣,

where by Lemma 4, the autocovariances are absolutely summable. Hence, the sum-
mands in (33) are bounded by

C1

{
1

qαN
+

1

N
+

q3αN

Nε2

}
,

where the constant C1 depends only on the law of {Yn}. The proof of the proposition
follows immediately from our assumptions on q and αN .
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5. Further reading

All topics discussed in this survey are presented in detail in Horváth and Kokoszka
(2012). Bosq (2000) contains theoretical foundations for most results of Sections 2
and 3. Ramsay and Silverman (2005) provide an introduction to many fundamen-
tal concepts of FDA, while Ramsay et al. (2009) focus on implementation in R and
MATLAB.

A topic of particular importance in time series analysis is change point detec-
tion. Most approaches to modeling time series assume that the data follow one
model. If the stochastic structure of the data changes at some time point(s), both
exploratory and inferential tools produce misleading results. Berkes et al. (2009) study
the problem of testing for a change in the mean function assuming that the curves
are collected over time, but are independent. Hörmann and Kokoszka (2010) extend
their procedure to L4–m–approximable functional time series. Asymptotic distribu-
tions of related change point estimators are studied in Aue et al. (2009). Horváth
et al. (2009) develop a test for a change point in the autoregressive operator 9 in the
FAR(1) model. Gabrys et al. (2010a) use the framework of FDA to detect changes
in the intraday volatility pattern, while Aston and Kirch (2011a,b) consider fMRI
data.

A central topic in FDA is the functional linear model of the for Yn = 9(Xn)+ εn .
In its most general form, the responses Yn , the regressors Xn and the errors εn are
functions, and 9 is an integral kernel operator. Very extensive research is available
under the assumption that the cases (Xn , Yn) are independent and the errors εn are inde-
pendent. Hörmann and Kokoszka (2010) showed that an estimator for 9 developed
under i.i.d. assumption remains consistent if the Xn form an L4–m–approximable time
series. Gabrys et al. (2010b) developed procedures to test the assumption of i.i.d. εn

against the alternative that the εn are correlated. Gabrys and Kokoszka (2007) devel-
oped a similar test, which is, however, applicable to directly observable curves, not to
unobservable errors.

Dependence between curves plays a central role also for spatial functional data. In
this context, we observe curves at many spatial locations, for example, the precipitation
over many decades at a number of measurement stations. In addition to the dependence
between curves, spatial distribution of the locations must also be taken into account
to develop informative statistical procedures. Hörmann and Kokoszka (2012) develop
asymptotic theory for the estimation of the mean function and the FPCs for such data.
Gromenko et al. (2011) propose and compare several estimation procedures, which
improve on the standard simple mean and the EFPC’s defined in Section 2. The focus
of research for spatially indexed curves has, however, been kriging (spatial prediction),
see Delicado et al. (2010), Nerini et al. (2010), Giraldo et al. (2010), and Bel et al.
(2011).
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Abstract

Covariances play a fundamental role in the theory of time series, and they are
critical quantities that are needed in both spectral and time domain analysis. Esti-
mation of covariance matrices is needed in the construction of confidence regions
for unknown parameters, hypothesis testing, principal component analysis, pre-
diction, discriminant analysis, among others. In this chapter, we consider both
low- and high-dimensional covariance matrix estimation problems and present a
review for asymptotic properties of sample covariances and covariance matrix
estimates. In particular, we shall provide an asymptotic theory for estimates of
high-dimensional covariance matrices in time series and a consistency result for
covariance matrix estimates for estimated parameters.

Keywords: high-dimensional inference, stationary process, spectral density
estimation, Heteroscedasticity and Autocorrelation Consistent, regularization.

1. Introduction

Covariances and covariance matrices play a fundamental role in the theory and prac-
tice of time series. They are critical quantities that are needed in both spectral and
time domain analysis. One encounters the issue of covariance matrix estimation in
many problems, for example, the construction of confidence regions for unknown
parameters, hypothesis testing, principal component analysis, prediction, discriminant
analysis, among others. It is particularly relevant in time series analysis in which the
observations are dependent, and the covariance matrix characterizes the second-order
dependence of the process. If the underlying process is Gaussian, then the covariances
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completely capture its dependence structure. In this chapter, we shall provide an asymp-
totic distributional theory for sample covariances and convergence rates for covariance
matrix estimates of time series.

In Section 2 , we shall present a review for asymptotic theory for sample covariances
of stationary processes. In particular, the limiting behavior of sample covariances at
both small and large lags is discussed. The obtained result is useful for constructing
consistent covariance matrix estimates for stationary processes. We shall also present a
uniform convergence result so that one can construct simultaneous confidence intervals
for covariances and perform tests for white noises. In that section, we also introduce
dependence measures that are necessary for asymptotic theory for sample covariances.

Sections 3 and 4 concern estimation of covariance matrices, the main theme of the
paper. There are basically two types of covariance matrix estimation problems: the
first one is the estimation of covariance matrices of some estimated finite-dimensional
parameters. For example, given a sequence of observations Y1, . . . , Yn , let θ̂n =

θ̂n(Y1, . . . , Yn) be an estimate of the unknown parameter vector θ0 ∈ Rd , d ∈ N, which
is associated with the process (Yi ). For statistical inference of θ0, one would like to esti-
mate the d × d covariance matrix 6n = cov(θ̂n). For example, with an estimate of 6n ,
confidence regions for θ0 can be constructed and hypotheses regarding θ0 can be tested.
We generically call such problems as low-dimensional covariance matrix estimation
problem since the dimension d is assumed to be fixed and it does not grow with n.

For the second type, let (X1, . . . , X p) be a p-dimensional random vector with
E(X2

i ) <∞, i = 1, . . . , p; let γi , j = cov(X i , X j ) = E(X i X j )− E(X i )E(X j ), 1 ≤
i , j ≤ p, be its covariance function. The problem is to estimate the p × p dimensional
matrix

6p = (γi , j )1≤i , j≤p. (1)

A distinguished feature of such type of problem is that the dimension p can be very
large. Techniques and asymptotic theory for high-dimensional covariance matrix esti-
mates are quite different from the low-dimensional ones. On the other hand, however,
we can build the asymptotic theory for both cases based on the same framework of
causal processes and the physical dependence measure proposed in the study by Wu
(2005).

The problem of low-dimensional covariance matrix estimation is discussed in
Section 3. In particular, we consider the latter problem in the context of sample means
of random vectors and estimates of linear regression parameters. We shall review the
classical theory of Heteroscedasticity and Autocorrelation Consistent (HAC) covari-
ance matrix estimates of White (1980), Newey and West (1987), Andrews (1991),
Andrews and Monahan (1992), de Jong and Davidson (2000), and among others. In
comparison with those traditional result, an interesting feature of our asymptotic the-
ory is that we impose very mild moment conditions. Additionally, we do not need
the strong mixing conditions and the cumulant summability conditions that are widely
used in the literature (Andrews, 1991; Rosenblatt, 1985). For example, for consistency
of covariance matrix estimates, we only require the existence of 2 or (2+ ε) moments,
where ε > 0 can be very small, while in the classical theory one typically needs the
existence of 4 moments. The imposed dependence conditions are easily verifiable and
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they are optimal in certain sense. In the study of the convergence rates of the esti-
mated covariance matrices, since the dimension is finite, all commonly used norms
(e.g., the operator norm, the Frobenius norm, and the L1 norm) are equivalent and the
convergence rates do not depend on the norm that one chooses.

Section 4 deals with the second-type covariance matrix estimation problem in which
p can be big. Due to the high dimensionality, the norms mentioned above are no longer
equivalent. Additionally, unlike the lower dimensional case, the sample covariance
matrix estimate is no longer consistent. Hence suitable regularization procedures are
needed so that the consistency can be achieved. In Section 4, we shall use the operator
norm: for an p × p matrix A, let

ρ(A) = sup
v:|v|=1

|Av| (2)

be the operator norm (or spectral radius), where for a vector v = (v1, . . . , vp)
>, its

length |v| = (
∑p

i=1 v
2
i )

1/2. Section 4 provides an exact order of the operator norm of
the sample autocovariance matrix and the convergence rates of regularized covariance
matrix estimates. We shall review the regularized covariance matrix estimation theory
of Bickel and Levina (2008a,b), the Cholesky decomposition theory in Pourahmadi
(1999), Wu and Pourahmadi (2003), and among others, and the parametric covariance
matrix estimation using generalized linear models. Suppose one has n independent and
identically distributed (i.i.d.) realizations of (X1, . . . , X p). In many situations, p can be
much larger than n, which is the so-called large p small n problem. Bickel and Levina
(2008a) showed that the banded covariance matrix estimate is consistent in operator
norm if X i ’s have a very short tail and the growth speed of the number of replicates
n can be such that log(p) = o(n). In many time series applications, however, there
is only one realization available, namely n = 1. In Section 4, we shall consider high-
dimensional matrix estimation for both one and multiple realizations. In the former
case, we assume stationarity and use sample autocovariance matrix. A banded version
of the sample autocovariance matrix can be consistent.

2. Asymptotics of sample covariances

In this section, we shall introduce the framework of stationary causal process, its
associated dependence measures, and an asymptotic theory for sample covariances.
If the process (X i ) is stationary, then γi , j can be written as γi− j = cov(X0, X i− j ), and
6n = (γi− j )1≤i , j≤n is then a Toeplitz matrix. Assuming at the outset thatµ = E X i = 0.
To estimate 6n , it is natural to replace γk in 6n by the sample version

γ̂k =
1

n

n∑
i=1+|k|

X i X i−|k|, 1− n ≤ k ≤ n − 1. (3)

If µ = E X i is not known, then we can modify (3) by

γ̃k =
1

n

n∑
i=1+|k|

(X i − X̄n)(X i−|k| − X̄n), where X̄n =

∑n
i=1 X i

n
. (4)
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Section 4.4 concerns estimation of 6n , and asymptotic properties of γ̃k will be useful
for deriving convergence rates of estimates of 6n .

There is a huge literature on asymptotic properties of sample covariances. For linear
processes, this problem has been studied in the work of Priestley (1981), Brockwell
and Davis (1991), Hannan (1970, 1976), Anderson (1971), Hall and Heyde (1980),
Hosking (1996), Phillips and Solo (1992), Wu and Min (2005), and Wu et al. (2010). If
the lag k is fixed and bounded, then γ̂k is basically the sample average of the stationary
process of lagged products (X i X i−|k|) and one can apply the limit theory for strong
mixing processes; see the study by Ibragimov and Linnik (1971), Eberlein and Taqqu
(1986), Doukhan (1994), and Bradley (2007).

The asymptotic problem for γ̂k with unbounded k is important since, with that, one
can assess the dependence structure of the underlying process by examining its autoco-
variance function (ACF) plot at large lags. For example, if the time series is a moving
average process with an unknown order, then as a common way one can estimate the
order by checking its ACF plot. However, the latter problem is quite challenging if
the lag k can be unbounded. Keenan (1997) derived a central limit theorem under the
very restrictive lag condition kn →∞ with kn = o(log n) for strong mixing processes
whose mixing coefficients decay geometrically fast. A larger range of kn is allowed
in the study by Harris et al. (2003). However, they assume that the process is linear.
Wu (2009) dealt with nonlinear processes and the lag condition can be quite weak.

To study properties of sample covariances and covariance matrix estimates, it is
necessary to impose appropriate structural conditions on (X i ). Here we assume that it
is of the form

X i = H(εi , εi−1, . . .), (5)

where ε j , j ∈ Z, are i.i.d. and H is a measurable function such that X i is properly
defined. The framework (5) is very general and it includes many widely used linear
and nonlinear processes (Wu, 2005). Wiener (1958) claimed that, for every station-
ary purely nondeterministic process (X j ) j∈Z, there exists i.i.d. uniform(0, 1) random
variables ε j , and a measurable function H such that (5) holds. The latter claim, how-
ever, is generally not true; see the work done by Rosenblatt (2009), Ornstein (1973),
and Kalikow (1982). Nonetheless, the above construction suggests that the class of
processes that (5) represents can be very huge. See the study by Borkar (1993), Tong
(1990), Kallianpur (1981), Ornstein (1973), and Rosenblatt (2009) for more histor-
ical backgrounds on the above stochastic realization theory. See also the study by
Wu (2011) for examples of stationary processes that are of form (5).

Following the study by Priestley (1988) and Wu (2005), we can view (X i ) as a
physical system with (ε j , ε j−1, . . .) (resp. X i ) being the input (resp. output) and H
being the transform, filter, or data-generating mechanism. Let the shift process

Fi = (εi , εi−1, . . .). (6)

Let (ε′i )i∈Z be an i.i.d. copy of (εi )i∈Z. Hence ε′i , ε j , i , j ∈ Z, are i.i.d. For l ≤ j , define

F∗j ,l = (ε j , . . . , εl+1, ε′l , εl−1, . . .).
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If l > j , let F∗j ,l = F j . Define the projection operator

P j · = E(·|F j )− E(·|F j−1). (7)

For a random variable X , we say X ∈ Lp (p > 0) if ‖X‖p := (E |X |p)1/p <∞. Write
the L2 norm ‖X‖ = ‖X‖2. Let X i ∈ Lp, p > 0. For j ≥ 0, define the physical (or
functional) dependence measure

δp( j) = ‖X j − X∗j‖p, whereX∗j = H(F j ,0). (8)

Note that X∗j is a coupled version of X j with ε0 in the latter being replaced by ε′0. The
dependence measure (8) greatly facilitates asymptotic study of random processes. In
many cases, it is easy to work with and it is directly related to the underlying data-
generating mechanism of the process. For p > 0, introduce the p-stability condition

1p :=
∞∑

i=0

δp(i) <∞. (9)

As explained in Wu (2005), (9) means that the cumulative impact of ε0 on the pro-
cess (X i )i≥0 is finite, thus suggesting short-range dependence. If the above condition
is barely violated, then the process (X i ) may be long-range dependent and the spectral
density no longer exists. For example, let Xn =

∑
∞

j=0 a jεn− j with a j ∼ j−β , 1/2 < β,
and εi are i.i.d., then δp(k) = |ak |‖ε0 − ε

′

0‖p and (9) is violated if β < 1. The latter is
a well-known long-range dependent process. If K is a Lipschitz continuous function,
then for the process Xn = K (

∑
∞

j=0 a jεn− j ), its physical dependence measure δp(k) is
also of order O(|ak |). Wu (2011) also provides examples of Volterra processes, non-
linear AR(p) and AR(∞) processes for which δp(i) can be computed and (9) can be
verified.

For a matrix A, we denote its transpose by A>.

Theorem 1. (Wu, 2009, 2011) Let k ∈ N be fixed and E(X i ) = 0; let Yi =

(X i , X i−1, . . . , X i−k)
> and 0k = (γ0, γ1, . . . , γk)

>.

(i) Assume X i ∈ Lp, 2 < p ≤ 4, and (9) holds with this p. Then for all 0 ≤ k ≤
n − 1, we have

∥∥γ̂k − (1− k/n)γk

∥∥
p/2 ≤

4n2/p−1
‖X1‖p1p

p − 2
. (10)

(ii) Assume X i ∈ L4 and (9) holds with p = 4. Then as n→∞
√

n(γ̂0 − γ0, γ̂1 − γ1, . . . , γ̂k − γk)⇒ N [0, E(D0 D>0 )], (11)

where D0 =
∑
∞

i=0 P0(X i Yi ) ∈ L2 and P0 is the projection operator defined
by (7).

(iii) Let ln →∞ and assume (9) with p = 4. Then we have

1
√

n

n∑
i=1

[X i Yi−ln − E(Xln Y0)]⇒ N (0,6h), (12)
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where 6h is an h × h matrix with entries

σab =
∑
j∈Z

γ j+aγ j+b =
∑
j∈Z

γ jγ j+b−a =: σ0,a−b, 1 ≤ a, b ≤ h,

(13)

and if additionally ln/n→ 0, then

√
n[(γ̂ln , . . . , γ̂ln−h+1)

>
− (γln , . . . , γln−h+1)

>]⇒ N (0,6h). (14)

An attractive feature of Theorem 1 is that it provides an explicit error bound (10),
which in many cases is sharp up to a multiplicative constant. This is a significant
merit for our framework of causal processes with functional or physical dependence
measures. See also other theorems in later sections. In (11) and (12), we give explicit
forms of the asymptotic covariance matrices, and they can be estimated by using the
techniques in Section 3.

Theorem 1 suggests that, at large lags,
√

n(γ̂k − E γ̂k) behaves asymptotically as∑
j∈Z γ jηk− j , where η j are i.i.d. standard normal random variables. Wu (2011) dis-

cussed the connection with Bartlett’s (1946) approximate expressions of covariances
of estimated covariances. This result implies that the sample covariance γ̂k can be a
bad estimate for γk if γk is small, due to the weak signal-to-noise ratio. Specifically,
if kn is such that γkn = o(n−1/2), then the sample covariance γ̂kn has an asymp-
totic mean squared error (MSE) σ00/n, which is larger than γ 2

kn
. Note that γ 2

kn
is the

MSE of the trivial estimate γ̆kn = 0. The MSE of the truncated estimate of the form
γ̄k = γ̂k1|γ̂k |≥cn , where cn = c/

√
n for some constant c > 0, can reach the minimum

order of magnitude O[min(1/n, r2
n )]. Similar truncation ideas are used in the study by

Lumley and Heagerty (1999) and Bickel and Levina (2008b). The latter paper deals
with thresholded covariance matrix estimators; see Section 4.4.

As a popular way to test the existence of correlations of a process, one checks
its ACF plot. Testing of correlations involves testing multiple hypotheses H0:γ1 =

γ2 = . . . = 0. The multiplicity issue should be adjusted if the number of lags is
unbounded. To develop a rigorous test, we need to establish a distributional result
for maxk≤sn |γ̂k − γk |, where sn is the largest lag that can grow to infinity. It turns out
that, with the physical dependence measure, we can formulate an asymptotic result
for the maximum deviation maxk≤sn |γ̂k − E γ̂k |. Such a result can be used to construct
simultaneous confidence intervals for γk with multiple lags. Let

1p(m) =
∞∑

i=m

δp(i), 9p(m) =

(
∞∑

i=m

δ2
p(i)

)1/2

(15)

and

8p(m) =
∞∑

i=0

min{δp(i), 9p(m)}. (16)
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Theorem 2. (Xiao and Wu, 2011a) Assume that E X i = 0, X i ∈ Lp, p > 4, 1p(m) =
O(m−α), and 8p(m) = O(m−α

′

), where α,α′ > 0.

(i) If α > 1/2 or α′ p > 2, then for cp = 6(p + 4)ep/414‖X i‖4, we have

lim
n→∞

P

(
max

1≤k<n
|γ̂k − E γ̂k | ≤ cp

√
log n

n

)
= 1. (17)

(ii) If sn →∞ satisfies sn = O(nη) with 0 < η < min(1,αp/2) and ηmin(2−
4/p − 2α, 1− 2α′) < 1− 4/p, then we have the Gumbel convergence: for all
x ∈ R,

lim
n→∞

P

(
max

1≤k≤sn

√
n|γ̂k − E γ̂k | ≤ σ

1/2
0 (a2sn x + b2sn )

)
= exp(− exp(−x)),

(18)

where an = (2 log n)−1/2 and bn = an(4 log n − log log n − log 4π)/2.

3. Low-dimensional covariance matrix estimation

The problem of low-dimensional covariance matrix estimation often arises when one
wants to estimate unknown parameters that are associated with a time series. Let θ0 be
an unknown parameter associated with the process (Yi ). Given observations Y1, . . . , Yn ,
we estimate θ0 by θ̂n = θ̂n(Y1, . . . , Yn). For example, if (Yi ) is a d-dimensional process
with a common unknown mean vector µ0 = EYi , then we can estimate it by the sample
mean vector

µ̂n =
1

n

n∑
i=1

Yi . (19)

Under appropriate conditions on the process (Yi ), we expect that the central limit
theorem for θ̂n holds:

6−1/2
n (θ̂n − θ0)⇒ N (0, Idd), (20)

where Idd is the d-dimensional identity matrix. With (20), one can construct confidence
regions for θ0. In particular, let 6̂n be an estimate of6n . Then the (1− α)th, 0 < α < 1,
confidence ellipse for θ0 is{

ν ∈ Rd : (θ̂n − ν)
>6̂−1

n (θ̂n − ν) = |6̂
−1/2
n (θ̂n − ν)|

2
≤ χ2

d ,1−α

}
, (21)

where χ2
d ,1−α is the (1− α)th quantile of a χ2 distribution with degree of freedom d.

The key question in the above construction now becomes the estimation of 6n . The
latter question is closely related to the long-run variance estimation problem.
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In the derivation of the central limit theorem (20), one typically needs to establish
an asymptotic expansion of the type

θ̂n − θ0 =

n∑
i=1

X i + Rn , (22)

where Rn is negligible in the sense that6−1/2
n Rn = oP(1) and (X i ) is a random process

associated with (Yi ) satisfying the central limit theorem

6−1/2
n

n∑
i=1

X i ⇒ N (0, Idd).

Sometimes the expansion (22) is called the Bahadur (1966) representation. For i.i.d.
random variables Y1, . . . , Yn , Bahadur obtained an asymptotic linearizing approxima-
tion for its αth (0 < α < 1) sample quantile. Such an approximation greatly facilitates
an asymptotic study. Note that the sample quantile depends on Yi in a complicated
nonlinear manner. The asymptotic expansion (22) can be obtained from the maximum
likelihood, quasi maximum likelihood, or general method of moments estimation pro-
cedures. The random variables X i in (22) are called scores or estimating functions.
As another example, assume that (Yi ) is a stationary Markov process with transition
density pθ0(Yi |Yi−1), where θ0 is an unknown parameter. Then given the observations
Y0, . . . , Yn , the conditional maximum likelihood estimate θ̂n maximizes

`n(θ) =

n∑
i=1

log pθ (Yi |Yi−1). (23)

As is common in the likelihood estimation theory, let ˙̀n(θ) = ∂`n(θ)/∂θ and ῭n(θ) =
∂2`n(θ)/∂θ∂θ

> be a d × d matrix. By the ergodic theorem, ῭n(θ0)/n→ E ῭1(θ0)

almost surely. Since ˙̀n(θ̂n) = 0, under suitable conditions on the process (Yi ), we can
perform the Taylor expansion ˙̀n(θ̂n) ≈ ˙̀n(θ0)+ ῭n(θ0)(θ̂n − θ0). Hence the represen-
tation (22) holds with

X i = n−1(E ῭1(θ0))
−1 ∂

∂θ
log pθ (Yi |Yi−1)|θ=θ0 . (24)

A general theory for establishing (22) is presented in the study by Amemiya (1985) and
Heyde (1997) and various special cases are considered in the study by Hall and Heyde
(1980), Hall and Yao (2003), Wu (2007), He and Shao (1996), Klimko and Nelson
(1978), Tong (1990), and among others.

For the sample mean estimate (19), it is also of form (22) by writing µ̂n −

µ0 = n−1∑n
i=1(Yi − µ0) and X i = (Yi − µ0)/n. Therefore, to estimate the covariance

matrix of an estimated parameter, in view of (22), we typically need to estimate the
covariance matrix 6n of the sum Sn =

∑n
i=1 X i . Clearly,

6n =
∑

1≤i , j≤n

cov(X i , X j ), (25)
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where cov(X i , X j ) = E(X i X>j )− E(X i )E(X>j ). Sections 3.1, 3.2, and 3.3 concern
convergence rates of estimates of6n based on observations (X i )

n
i=1, which can be inde-

pendent, uncorrelated, nonstationary, and weakly dependent. In the estimation of the
covariance matrix for Sn =

∑n
i=1 X i for θ̂n based on the representation (22), the esti-

mating functions X i may depend on the unknown parameter θ0; hence, X i = X i (θ0)

may not be observed. For example, for the sample mean estimate (19), one has
X i = (Yi − µ0)/n, while for the conditional MLE, X i in (24) also depends on the
unknown parameter θ0. Heagerty and Lumley (2000) considered estimation of covari-
ance matrices for estimated parameters for strong mixing processes; see also the study
by Newey and West (1987) and Andrews (1991). In Corollary 1 of Section 3.2 and
Section 3.4, we shall present asymptotic results for covariance matrix estimates with
estimated parameters.

3.1. HC covariance matrix estimators

For independent but not necessarily identically distributed random vectors X i , 1 ≤
i ≤ n, White (1980) proposed a heteroscedasticity-consistent (HC) covariance matrix
estimator for 6n = var(Sn), Sn =

∑n
i=1 X i . Other contribution can be found in Eicker

(1963) and MacKinnon and White (1985). If µ0 = E X i is known, we can estimate 6n

by

6̂◦n =

n∑
i=1

(X i − µ0)(X i − µ0)
>. (26)

If µ0 is unknown, we shall replace it by µ̂n =
∑n

i=1 X i/n and form the estimate

6̂n =
n

n − 1

n∑
i=1

(X i − µ̂n)(X i − µ̂n)
>

=
n

n − 1

n∑
i=1

(X i X>i − µ̂nµ̂
>

n ).

(27)

Both 6̂◦n and 6̂n are unbiased for 6n . To this end, assume without loss of generality
µ = 0, then by independence, n2 E(µ̂nµ̂

>
n ) =

∑n
i=1 E(X i X>i ), hence

E6̂n =
n

n − 1

[
n∑

i=1

E(X i X>i )− E(nµ̂nµ̂
>

n )

]

=

n∑
i=1

E(X i X>i ) = 6n .

(28)

Theorem 3 below provides a convergence rate of 6̂◦n . We omit its proof since it is an
easy consequence of the Rothenthal inequality.
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Theorem 3. Assume that X i are independent Rd random vectors with E X i = 0, X i ∈

Lp, 2 < p ≤ 4. Then there exists a constant C, only depending on p and d, such that

‖6̂◦n −6n‖
p/2
p/2 ≤ C

n∑
i=1

‖X i‖
p
p. (29)

As an immediate consequence of Theorem 3, if 6 := cov(X i ) does not depend on i
and 6 is positive definite (namely 6 > 0) and supi ‖X i‖p <∞, then

‖6̂◦n6
−1
n − Idd‖p/2 = O(n2/p−1)

and the confidence ellipse in (21) has an asymptotically correct coverage probability.
Simple calculation shows that the above relation also holds if 6̂◦n is replaced by 6̂n .

If X i are uncorrelated, using the computation in (28), it is easily seen that the esti-
mates 6̂◦n in (26) and 6̂n in (27) are still unbiased. However, one no longer has (29) if
X i are only uncorrelated instead of being independent. To establish an upper bound, as
in Wu (2011), we assume that (X i ) has the form

X i = Hi (εi , εi−1, . . .), (30)

where εi are i.i.d. random variables and Hi is a measurable function such that X i is a
proper random variable. If the function Hi does not depend on i , then (30) reduces to
(5). In general, (30) defines a nonstationary process. According to the stochastic repre-
sentation theory, any finite-dimensional random vector can be expressed in distribution
as functions of i.i.d. uniform random variables; see the study by Wu (2011) for a review.
As in (8), define the physical dependence measure

δp(k) = sup
i
‖X i − X i ,k‖p, k ≥ 0, (31)

where X i ,k is a couple process of X i with εi−k in the latter being replaced by ε′i−k . For
stationary processes of form (5), (8) and (31) are identical.

Theorem 4. Assume that X i are uncorrelated with form (30) and E X i = 0, X i ∈ Lp,
2 < p ≤ 4. Let κp = supi ‖X i‖p. Then there exists a constant C = C p,d such that

‖6̂◦n −6n‖p/2 ≤ Cn2/pκp

∞∑
k=0

δp(k). (32)

Proof. Let α = p/2. Since X i X>i − E X i X>i =
∑
∞

k=0 Pi−k(X i X>i ) and Pi−k(X i X>i ),
i = 1, . . . , n are martingale differences, by the Burkholder and Minkowski inequalities,
we have

‖6̂◦n −6n‖α ≤

∞∑
k=0

‖

n∑
i=1

Pi−k(X i X>i )‖α

≤ C
∞∑

k=0

[
n∑

i=1

‖Pi−k(X i X>i )‖
α
α

]1/α

.
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Observe that E[(Xk,0 X>k,0)|F0] = E[(Xk X>k )|F−1]. By Scharwz inequality,
‖P0(Xk X>k )‖α ≤ ‖Xk,0 X>k,0 − Xk X>k ‖α ≤ 2κpδp(k). Hence we have (32). 2

3.2. Long-run covariance matrix estimation for stationary vectors

If X i are correlated, then the estimate (27) is no longer consistent for 6n and autoco-
variances need to be taken into consideration. Recall Sn =

∑n
i=1 X i . Assume E X i = 0.

Using the idea of lag window spectral density estimate, we estimate the covariance
matrix 6n = var(Sn) by

6̃n =
∑

1≤i , j≤n

K

(
i − j

Bn

)
X i X>j , (33)

where K is a window function satisfying K (0) = 1, K (u) = 0 if |u| > 1, K is even and
differentiable on the interval [−1, 1], and Bn is the lag sequence satisfying Bn →∞

and Bn/n→ 0. The former condition is for including unknown order of dependence,
whereas the latter is for the purpose of consistency.

If (X i ) is a scalar process, then (33) is the lag-window estimate for the long-run
variance σ 2

∞
=
∑

k∈Z γi , where γi = cov(X0, X i ). Note that σ 2
∞
/(2π) is the value of

the spectral density of (X i ) at zero frequency. There is a huge literature on spectral
density estimation; see the classical textbooks of Anderson (1971), Brillinger (1975),
Brockwell and Davis (1991), Grenander and Rosenblatt (1957), Priestley (1981), and
Rosenblatt (1985) and the third volume Handbook of Statistics “Time Series in the
Frequency Domain” edited by Brillinger and Krishnaiah (1983). Rosenblatt (1985)
showed the asymptotic normality for lag-window spectral density estimates for strong
mixing processes under a summability condition of eighth-order joint cumulants.

Liu and Wu (2010) present an asymptotic theory for lag-window spectral density
estimates under minimal moment and natural dependence conditions. Their results
can be easily extended to the vector-valued processes. Assume E X i = 0, then 6n =

var(Sn) satisfies

1

n
6n =

n−1∑
k=1−n

(1− |k|/n)E(X0 X>k )→
∞∑

k=−∞

E(X0 X>k ) = :6†. (34)

Let vec be the vector operator. We have the following consistency and central limit
theorem for vec(6̃n). Its proof can be similarly carried out by using the argument in
Liu and Wu (2010). Details are omitted.

Theorem 5. Assume that the d-dimensional stationary process (X i ) is of form (5), and
Bn →∞ and Bn = o(n). (i) If the short-range dependence condition (9) holds with
p ≥ 2, then ‖6̃n/n −6n/n‖p/2 = o(1) and, by (34), ‖6̃n/n −6†

‖p/2 = o(1). (ii) If
(9) holds with p = 4, then there exists a matrix 0 with ρ(0) <∞ such that

(nBn)
−1/2[vec(6̃n)− Evec(6̃n)]⇒ N (0,0), (35)
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and the bias

n−1
∥∥∥Evec(6̃n)−6n

∥∥∥ ≤ Bn∑
k=−Bn

|1− K (k/Bn)| γ2(k)+ 2
n∑

k=Bn+1

γ2(k),

(36)

where γ2(k) =
∥∥E(X0 X>i+k)

∥∥ ≤∑∞i=0 δ2(i)δ2(i + k).

An interesting feature of Theorem 5(i) is that, under the minimal moment condition
X i ∈ L2 and the very mild weak dependence condition 12 <∞, the estimate 6̃n/n
is consistent for 6n/n. This property substantially extends the range of applicability
of lag-window covariance matrix estimates. For consistency, the study by Andrews
(1991) requires a finite fourth moment and a fourth-order joint cumulant summabil-
ity condition, while for computing the asymptotic mean square error, it needs a finite
eighth moment and an eighth-order cumulant summability condition. For nonlinear
processes, it might be difficult to verify those cumulant summability conditions. Our
framework of physical dependence measure seems quite convenient and useful for
long-run covariance matrix estimation, and it is no longer needed to work with joint
cumulants.

In many situations, X i depends on unknown parameters and thus is not directly
observable. For example, X i in (24) depends on the unknown parameter θn . Then it is
natural to modify the 6̃n in (33) by the following estimate

6̃n(θ̂n) =
∑

1≤i , j≤n

K

(
i − j

Bn

)
X i (θ̂n)X j (θ̂n)

>, (37)

where θ̂n is an estimate of θ0, so that X i (θ̂n) are estimates of X i (θ0) = X i . Note that
6̃n(θ0) = 6̃n . As in the study by Newey and West (1987) and Andrews (1991), appro-
priate continuity conditions on the random function X i (·) can imply the consistency
of the estimate 6̃n(θ̂n). The following Corollary 1 is a straightforward consequence of
Theorem 5.

Corollary 1. Assume that θ̂n is a
√

n-consistent estimate of θ0, namely
√

n(θ̂n −

θ0) = OP(1). Further assume that there exists a constant δ0 > 0 such that the local
maximal function X∗i = sup{|∂X i (θ)/∂θ | : |θ − θ0| ≤ δ0} ∈ L2. Assume Bn →∞,
Bn = o(

√
n) and (9) holds with p = 2. Then 6̃n(θ̂n)/n −6n/n→ 0 in probability.

3.3. HAC covariance matrix estimators

Recall (31) for the definition of physical dependence measures for nonstationary
processes. If (X i ) is nonstationary and correlated, then under a similar short-range
dependence condition as (9), we can also obtain a convergence rate for the estimate
6̃n defined in (33). Results of similar type were given in the study by Newey and West
(1987) and Andrews (1991). Andrews and Monahan (1992) improved the estimate by
using a prewhitening procedure.
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Theorem 6. Let Bn →∞ and Bn/n→ 0. Assume that the nonstationary process (X i )

is of form (30), X i ∈ Lp, p > 2, and the short-range dependence condition (9). (i) If
2 < p < 4, then ‖6̃n/n −6n/n‖p/2 = o(1). (ii) If p ≥ 4, then there exists a constant
C depending on p and d only such that

‖6̃n − E6̃n‖p/2 ≤ C12
p Bn , (38)

and the bias

n−1
∥∥∥E6̃n −6n

∥∥∥ ≤ Bn∑
k=−Bn

|1− K (k/Bn)| γ2(k)+ 2
n∑

k=Bn+1

γ2(k), (39)

where γ2(k) = supi

∥∥E(X i X>i+k)
∥∥ ≤∑∞i=0 δ2(i)δ2(i + k).

Remark 1. We emphasize that in this section, since the dimension of the covari-
ance matrix 6 is fixed, all matrix norms are essentially equivalent and the relations
(29), (32), (36), and (38) also hold if we use other types of matrix norms such as
the Frobenius norm and the maximum entry norm. This feature is no longer present
for high-dimensional matrix estimation where the dimension can be unbounded; see
Section 4. 2

As Theorem 5, the proof of Theorem 6 can be similarly carried out by using the
argument in the study by Liu and Wu (2010). A crucial step in applying Theorem 6 is
how to choose the smoothing parameter. See the study by Zeileis (2004) for an excellent
account for the latter problem.

3.4. Covariance matrix estimation for linear models

Consider the linear model

yi = x>i β + ei , 1 ≤ i ≤ n, (40)

where β is an s × 1 unknown regression coefficient vector, xi = (xi1, xi2, . . . , xis)
′ are

s × 1 known (nonstochastic) design vectors. Let β̂ be the least square estimate of β.
Here we consider the estimation of cov(β̂) under the assumption that (ei ) is a non-
stationary process of form (30). As a special case, if there is only one covariate and
xi = 1 for each 1 ≤ i ≤ n, then β̂ = Sn/n with Sn =

∑n
i=1 ei , so the estimation of the

covariance matrix of Sn in Section 3.3 is a special case here. Assume that for large n,
Tn := X>n Xn is positive definite. It is more convenient to consider the rescaled model

yi = z>i θ + ei with zi = zi ,n = T−1/2
n xi and θ = θn = T 1/2

n β, (41)

under which the least square estimate θ̂ =
∑n

i=1 zi ei . If ei were known, we can estimate
6n := cov(θ̂) by

Vn =
∑

1≤i , j≤n

K

(
i − j

Bn

)
zi ei z>j e j , (42)
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which is in the similar fashion as (33). Since ei are unknown, we should replace ei in
Vn by the estimated residuals êi and employ the following estimate

V̂n =
∑

1≤i , j≤n

zi êi z>j ê j ci j , (43)

where ci j = K ((i − j)/Bn). We have the following convergence rate of the estimate
V̂n , which can be derived using similar arguments as those in the study by Liu and Wu
(2010).

Theorem 7. Assume that the nonstationary process (ei ) is of form (30), ei ∈ Lp with
p ≥ 4, and 1p <∞. Let ck := K (k/Bn). Then there exists a constant C depending
only on p and s such that

∥∥∥V̂n − EVn

∥∥∥
p/2
≤ C12

p

 ∑
1≤i , j≤n

c2
i− j |zi |

2
|z j |

2

1/2

, (44)

and the bias

‖EVn −6n‖ ≤ s
n−1∑

k=1−n

|1− ck |γ2(k), (45)

where γ2(k) = supi∈Z |E(ei ei+k)| ≤
∑
∞

i=0 δ2(i)δ2(i + |k|).

In Example 1 of Section 4.4, we shall obtain a best linear unbiased estimate for β
by estimating the high-dimensional covariance matrix of (e1, . . . , en). It illustrates the
different natures of two types of covariance matrix estimation.

4. High-dimensional covariance matrix estimation

In this section, we shall consider estimation of high-dimensional covariance matri-
ces in time series in which the dimensions can grow to infinity. This setting is quite
different from the one in (25), where the dimension is fixed and does not grow. Dur-
ing the last decade, the problem of high-dimensional covariance matrix estimation has
attracted considerable attention. See the work done by Pourahmadi (2011) for an excel-
lent review. The problem is quite challenging since, for estimating 6p given in (1), one
has to estimate p(p + 1)/2 unknown parameters. Additionally, those parameters must
follow the highly nontrivial positive-definiteness constraint. In the multivariate setting
in which one has multiple i.i.d. p-variate random variables, the problem has been exten-
sively studied; see the wok done by Meinshausen and Bühlman (2006), Yuan and Lin
(2007), Rothman et al. (2009), Bickel and Levina (2008a,b), Cai et al. (2010), Lam
and Fan (2009), Ledoit and Wolf (2004) and among others. As commented in the study
by Bickel and Gel (2011), the same problem in longitudinal and time series setting
has been much less investigated. In comparison with the matrix estimation problem in
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the context of multivariate statistics, there are several distinguished features when we
consider time series:

(i) The order information among observations is highly relevant;
(ii) Variables that are far apart are weakly dependent;

(iii) The number of replicates is very small, and in many cases, there is only one
realization available.

In multivariate statistics, in many cases, one can permute the variables without sac-
rificing the interpretability, and the permutation-invariance property of a covariance
matrix estimate can be quite appealing. For covariance matrix estimation in time series,
however, the permutation-invariance property is not a must.

Section 4.1 reviews the Cholesky decomposition of covariance matrices. As argued
in the study by Pourahmadi (1999), the Cholesky decomposition-based covariance
matrix estimate is inherently positive definite and its entries have a nice interpreta-
tion of being autoregressive coefficients. In Section 4.2, we briefly review parametric
covariance matrix estimation where the target covariance matrix is of certain paramet-
ric forms. Thus, it suffices to estimate the governing parameters. Sections 4.3 and 4.4
concern the nonparametric covariance matrix estimation problem for two different set-
tings: in the first setting, we assume that there are multiple i.i.d. realizations of the
underlying process, whereas in the second one only one realization is available. For the
latter, we assume that the underlying process is stationary.

4.1. Cholesky decomposition

Assume that X1, . . . , X p is a mean zero Gaussian process with covariance matrix
6p given in (1). As in the study by Pourahmadi (1999), we perform successive
autoregression of X t on its predecessors X1, . . . , X t−1 in the following manner:

X t =

t−1∑
j=1

φt j X j + ηt = :X̂ t + ηt , t = 1, . . . , p, (46)

where φt j are the autoregressive coefficients such that X̂ t is the projection of X t onto the
linear space spanned by X1, . . . , X t−1. Then η1 ≡ X1 and ηt = X t − X̂ t , t = 2, . . . , n,
are independent. Let σ 2

t = var(ηt ) be the innovation variance, D = diag(σ1, . . . , σp)

and

L =


1
−φ21 1
−φ31 −φ32 1
. . . . . . . . . . . .

−φ11 −φp2 . . . −φp,p−1 1

 (47)

be a lower triangle matrix. Then 6p has the representation

L6p L> = D2, (48)
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which implies the useful fact that the inverse, or the precision matrix,

6−1
p = L D−2L>. (49)

An important feature of the representation (48) is that the coefficients in L are uncon-
strained, and if an estimate of 6p is computed based on estimated L and D, then it is
guaranteed to be non-negative definite. The Cholesky method is particularly suited for
covariance and precision matrix estimation in time series, and the entries in L can be
interpreted as autoregressive coefficients.

Another popular method is the eigen decomposition 6p = Q3Q>, where Q is an
orthonormal matrix, namely Q Q>= Idp and 3 is a diagonal matrix that consists of
eigenvalues of6p. The eigen decomposition is related to the principal component anal-
ysis. It is generally not easy to work with the orthonormality constraint. See the work
done by Pourahmadi (2011) for more discussion.

4.2. Parametric covariance matrix estimation

In the parametric covariance matrix estimation problem, one assumes that 6n has a
known form6n(θ) indexed by a finite-dimensional parameter. To estimate6n , it would
then suffice if we can find a good estimate of θ . Anderson (1970) assumed that 6n is a
linear combination of some known matrices. Burg et al. (1982) applied the maximum
likelihood estimation method; see also the study by Quang (1984), Dembo (1986),
Fuhrmann and Miller (1988), Jansson and Ottersten (2000), and Dietrich (2008). Chiu
et al. (1996) used a log-linear covariance matrix parametrization.

Based on the Cholesky decomposition (48), Pourahmadi (1999) considered para-
metric modelling for the autoregressive coefficients φi j and the innovation variance
σ 2

i , thus substantially reducing the number of parameters. See also the study by Pan
and MacKenzie (2003) and Zimmerman and Núñez-Antón (2010).

4.3. Covariance matrix estimation with multiple i.i.d. realizations

Assume that (Xl,1, Xl,2, . . . , Xl,p), l = 1, . . . , m, are i.i.d. random vectors identically
distributed as (X1, . . . , X p). If the means µ j = E Xl, j , j = 1, . . . , p, are known, then
the covariance γi , j = cov(Xl,i , Xl, j ), 1 ≤ i , j ≤ p, can be estimated by

γ̂i , j =
1

m

m∑
l=1

(Xl,i − µi )(Xl, j − µ j ), (50)

and the sample covariance matrix estimate is

6̂p = (γ̂i , j )1≤i , j≤p. (51)

If µ j is unknown, one can naturally estimate it by the sample mean µ̄ j =

m−1∑m
l=1 Xl, j and γ̂i , j and 6̂p in (50) and (51) can then be modified correspondingly.

According to the modern random matrix theory, under the assumption that all entries
Xl,i , 1 ≤ l ≤ m, 1 ≤ i ≤ p, are independent, 6̂p is a bad estimate of 6p in the sense
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that it is inconsistent in operator norm. Such inconsistency results for sample covari-
ance matrices in multivariate analysis have been discussed in the study by Stein (1975),
Bai and Silverstein (2010), El Karoui (2007), Paul (2007), Johnstone (2001), Geman
(1980), Wachter (1978), Anderson et al. (2010), and among others. Note that if m < p,
6̂p is a singular matrix. It is known that, under appropriate moment conditions of Xl,i , if
p/m → c, then the empirical distribution of eigenvalues of 6̂p follows the Marcenko–
Pastur law that has the support [(1−

√
c)2, (1+

√
c)2] and a point mass at zero if

c > 1; and the largest eigenvalue, after proper normalization, follows the Tracy–Widom
law. All those results suggest the inconsistency of sample covariance matrices.

For an improved and consistent estimation, various regularization methods have
been proposed. Assuming that the correlations are weak if the lag i − j is large, Bickel
and Levina (2008a) proposed the banded covariance matrix estimate

6̂p,B = (γ̂i , j 1|i− j |≤B)1≤i , j≤p, (52)

where B = Bp is the band parameter, and more generally, the tapered estimate

6̂p,B = (γ̂i , j K (|i − j |/B))1≤i , j≤p, (53)

where K is a symmetric window function with support on [−1, 1], K (0) = 1, and K
is continuous on (−1, 1). Here we assume that Bp →∞ and Bp/p→ 0. The former
condition ensures that 6̂p,B can include dependencies at unknown orders, whereas the
latter aims to circumvent the weak signal-to-noise ratio issue that γ̂i , j is a bad estimate
of γi , j if |i − j | is big. In particular, Bickel and Levina (2008a) considered the class

U(ε0,α, C) =

6: max
j

∑
i : |i− j |>k

|γi , j | ≤ Ck−α , ρ(6) ≤ ε−1
0 , ρ(6−1) ≤ ε0

. (54)

This condition quantifies issue (ii) mentioned in the beginning of this section.
They proved that (i) if max j E exp(u X2

l,i ) <∞ for some u > 0 and kn � (m−1

log p)−1/(2α+2), then

ρ(6̂p,kp −6p) = OP [(m−1 log p)α/(2α+2)]; (55)

(ii) if max j E |Xl,i |
β <∞ and kn � (m−1/2 p2/β)c(α), where c(α) = (1+ α + 2/β)−1,

then

ρ(6̂p,kp −6p) = OP [(m−1/2 p2/β)αc(α)]. (56)

In the tapered estimate (53), if we choose K such that the matrix Wp = (K (|i −
j |/ l))1≤i , j≤p is positive definite, then 6̃p,l is the Hadamard (or Schur) product of 6̂n

and Wp, and by the Schur Product Theorem in matrix theory (Horn and Johnson,
1990), it is also non-negative definite since 6̂n is non-negative definite. For exam-
ple, Wn is positive definite for the triangular window K (u) = max(0, 1− |u|) or the
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Parzen window K (u) = 1− 6u2
+ 6|u|3 if |u| < 1/2 and K (u) = max[0, 2(1− |u|)3]

if |u| ≥ 1/2.
Based on the Cholesky decomposition (48), Wu and Pourahmadi (2003) proposed a

nonparametric estimator for the precision matrix 6−1
p for locally stationary processes

(Dahlhaus, 1997), which are time-varying AR processes

X t =

k∑
j=1

f j (t/p)X t− j + σ(t/p)η0
t . (57)

Here η0
t are i.i.d. random variables with mean 0 and variance 1, and f j (·) and σ(·) are

continuous functions. Hence φt ,t− j = f j (t/p) if 1 ≤ j ≤ k and φt ,t− j = 0 if j > k.
Wu and Pourahmadi (2003) applied a two-step method for estimating f j (·) and σ(·):
the first step is that, based on the data (Xl,1, Xl,2, . . . , Xl,p), l = 1, . . . , m, we perform
a successive linear regression and obtain the least squares estimate φ̂t ,t− j and the pre-
diction variance σ̂ 2(t/p); in the second step, we do a local linear regression on the raw
estimates φ̂t ,t− j and obtain smoothed estimates f̂ j (·). Then we piece those estimates
together and obtain an estimate for the precision matrix 6−1

p by (49). The lag k can
be chosen by AIC, BIC, or other information criteria. Huang et al. (2006) applied a
penalized likelihood estimator that is related to LASSO and ridge regression.

4.4. Covariance matrix estimation with one realization

If there is only one realization available, then it is necessary to impose appropriate
structural assumptions on the underlying process and otherwise it would not be possible
to estimate its covariance matrix. Here we shall assume that the process is stationary;
hence, 6n is Toeplitz and γi , j = γi− j can be estimated by the sample autocovariance
(3) or (4), depending on whether the mean µ is known or not.

Covariance matrix estimation of stationary processes has been widely studied in
the engineering literature. Lifanov and Likharev (1983) performed maximum likeli-
hood estimation with applications in radio engineering. Christensen (2007) applied an
EM-algorithm for estimating band-Toeplitz covariance matrices. Other contributions
for estimating Toeplitz covariance matrices can be found in the study by Jansson and
Ottersten (2000) and Burg et al. (1982). See also Chapter 3 in the excellent monograph
of Dietrich (2008). However, in most of those papers, it is assumed that multiple i.i.d.
realizations are available.

For a stationary process (X i ), Wu and Pourahmadi (2009) proved that the sample
autocovariance matrix 6̂p is not a consistent estimate of6p. A refined result is obtained
in the study by Xiao and Wu (2011b) and they derived the exact order of ρ(6̂p −6p).

Theorem 8. (Xiao and Wu, 2011b). Assume that X i ∈ Lβ , β > 2, E X i = 0, 1β(m) =
o(1/ log m), and minθ f (θ) > 0. Then

lim
n→∞

P

[
π minθ f 2(θ)

1212
2

log p ≤ ρ(6̂p) ≤ 1012
2 log p

]
= 1. (58)
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To obtain a consistent estimate of 6p, following the idea of lag-window spectral
density estimation and tapering, we define the tapered covariance matrix estimate

6̂p,B =
[
K ((i − j)/B)γ̂i− j

]
1≤i , j≤p

= 6̂p ? Wp, (59)

where B = Bp is the bandwidth satisfying Bp →∞ and Bp/p→ 0, and K (·) is a
symmetric kernel function with

K (0) = 1, |K (x)| ≤ 1, and K (x) = 0 for |x | > 1. (60)

Estimate (59) has the same form as Bickel and Levina’s (52) with the sample covari-
ance matrix replaced by the sample autocovariance matrix. The form (59) is also
considered in the study by McMurry and Politis (2010). Toeplitz (1911) studied the
infinite-dimensional matrix 6∞ = (ai− j )i , j∈Z and proved that its eigenvalues coincide
with the image set {g(θ) : θ ∈ [0, 2π)}, where

g(θ) =
∑
j∈Z

a j e
√
−1 jθ . (61)

Note that 2πg(θ) is the Fourier transform of (a j ). For a finite p × p matrix 6p =

(ai− j )1≤i , j≤p, its eigenvalues are approximately equally distributed as {g(θ j ), j =
0, . . . , p − 1}, where θ j = 2π j/p are the Fourier frequencies. See the excellent mono-
graph by Grenander and Szegö (1958) for a detailed account. Hence the eigenvalues
of the matrix estimate 6̂p,B in (59) are expected to be close to the image set of the
lag-window estimate

f̂ p,B(θ) =
1

2π

B∑
k=−B

K (k/B)γ̂k cos(kθ). (62)

Using an asymptotic theory for lag-window spectral density estimates, Xiao and Wu
(2011b) derived a convergence rate for ρ(6̂p,B −6p). Recall (15) and (16) for 1p(m)
and 8p(m).

Theorem 9. (Xiao and Wu, 2011b) Assume X i ∈ Lβ , β > 4, E X i = 0, and 1p(m) =
O(m−α). Assume B →∞ and B = O(pγ ), where 0 < γ < min(1,αβ/2) and (1−
2α)γ < 1− 4/β. Let cβ = (β + 4)eβ/4. Then

lim
n→∞

P

[
ρ(6̂p,B − E6̂p,B) ≤ 12cβ1

2
4

√
B log B

p

]
= 1. (63)

In particular, if K (x) = 1{|x |≤1} is the rectangular kernel and B � (p/ log p)1/(2α+1),
then

ρ(6̂p,B −6p) = OP

[(
log p

p

) α
2α+1

]
. (64)
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The uniform convergence result in Theorem 2 motivates the following thresholded
estimate:

6̂
‡
p,T = (γ̂i− j 1|γ̂i− j |≥T )1≤i , j≤p. (65)

It is a shrinkage estimator. Note that 6̂‡
p,T may not be positive. Bickel and Levina

(2008b) considered the above estimate under the assumption that one has multiple i.i.d.
realizations.

Theorem 10. (Xiao and Wu, 2011b) Assume X i ∈ Lβ , β > 4, E X i = 0, 1p(m) =
O(m−α), and 8p(m) = O(m−α

′

), α ≥ α′ > 0. Let T = 6cβ‖X0‖412

√
p−1 log p. If

α > 1/2 or α′β > 2, then

ρ
(
6̂

‡
p,T −6p

)
= OP

[(
log p

p

) α
2α+2

]
. (66)

Example 1. Here we shall show how to obtain a BLUE (best linear unbiased
estimate) for linear models with dependent errors. Consider the linear regression
model (40)

yi = x>i β + ei , 1 ≤ i ≤ p, (67)

where now we assume that (ei ) is stationary. If the covariance matrix 6p of
(e1, . . . , ep) is known, then the BLUE for β is of the form

β̂ = (X>6−1
p X)−16−1/2

p y, (68)

where y = (y1, . . . , yp)
> and X = (x1, . . . , x p)

>. If 6p is unknown, we estimate
β by a two-step method. Using the ordinary least squares approach, we obtain a
preliminary estimate β̄ and compute the estimated residuals êi = yi − xT

i β̄. Based
on the latter, using the tapered estimate 6̃p of form (59) for 6p , a refined estimate of
β̃ can be obtained via (68) by using the weighted least squares with the weight matrix
6̃p . Due to the consistency of 6̃p , the resulting estimate for β is asymptotically
BLUE.
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Abstract

Quantile information is important in time series applications. Quantile regres-
sion not only provides a method of estimating the conditional quantiles (thus
the conditional distribution) of conventional time series models but also substan-
tially expands the modeling options for time series analysis by allowing for local,
quantile-specific time series dynamics. The traditional least square-based methods
provide estimation for the conditional mean function. In many statistical applica-
tions, the research question is more complicate than just a few moments, and there
may be valuable information about the relationship between random variables
that cannot be discovered based on a simple conditional mean analysis. Quantile
regression-based methods provide a complementary way to study the relation-
ship between random variables. This chapter considers a wide range of time series
quantile regression models. Quantile regressions on traditional time series models,
quantile-domain local dynamic models, and time series applications are discussed.

Keywords: conditional distribution, quantile autoregression (QAR), quantile
regression, time series, Value-at-Risk (VaR).

1. An introduction to quantile regression

The quantile function of a scalar random variable Y is the inverse of its dis-
tribution function. Like the distribution function, the quantile function provides a
complete description of the statistical properties of the random variable. Similarly,
the conditional quantile function of Y given X is the inverse of the corresponding
conditional distribution function, i.e.,

QY (τ |X) = F−1
Y (τ |X) = inf{y : FY (y|X) ≥ τ },
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where FY (y|X) = P(Y ≤ y|X). The conditional quantile function of Y given X fully
captures the relationship between Y and X .

The study of the relationship between random variables, say, X and Y , is a central
issue in statistical analysis. In many applications, this is usually done by estimating
some form of conditional expectation function via a Least Square (LS) regression of Y
on X based on a collection of observations.

The traditional least square–based methods provide estimation for the conditional
mean function. In many statistical applications, the research question is more compli-
cate than just a few moments, there may be valuable information about the relationship
between Y and X that cannot be discovered based on a simple conditional mean anal-
ysis. This problem is particularly delicate in time series, where past information may
systematically affect the dynamics of the process.

Quantile regression–based methods provide an complementary way to study the
relationship between X and Y . Consider the following classical linear model

Yt = θ
′X t + ut , t = 1, . . . , n,

where X t are vectors of regressors including a constant, and ut are i.i.d. mean zero
errors and are independent with X t , a regression of the above model can be conducted
based on the following optimization problem:

θ̂ = min
θ

n∑
t=1

ρ(Yt − θ
′X t ), (1)

where ρ(·) is a criterion (loss) function. Under appropriate regularity assumptions,
solution of (1), θ̂ , is a consistent estimate of the vector of parameters θ∗ defined as:

θ∗ = min
θ

Eρ(Y − θ ′X).

If we use the quadratic loss function ρ(u) = u2, the ordinary LS estimator θ̂OLS is
obtained from (1). Solving θ∗OLS = minθE(Y − θ ′X)2, we have X ′θ∗OLS = E(Y |X) – the
least squares regression delivers an estimate of the conditional mean.

If we use ρ(u) = |u|, the Least Absolute Deviation (LAD) estimator θ̂LAD is
obtained. Solving θ∗LAD = minθE

∣∣Y − θ ′X ∣∣, we have X ′θ∗LAD = Median(Y |X) – the
LAD regression delivers an estimate of the conditional median and hence is also called
the median regression.

The Quantile Regression (QR) proposed by Koenker and Bassett (1978) uses an
asymmetric loss function ρ(u) = ρτ (u) = u(τ − I (u < 0)), where τ ∈ (0, 1), and I (·)
is the indicator function. Notice that ρτ (u) = (1− τ)I [u < 0] |u| + τ I [u > 0] |u|, the
corresponding loss function in (1) is simply an asymmetrically weighted sum of
absolute errors. Solving θ∗τ = minθEρτ (Y − θ ′X), we obtain X ′θ∗τ = QY (τ |X) – the
(τ th) quantile regression gives an estimate of the (τ th) conditional quantile of Y .
The criterion function ρτ (·) is called the “check function” in the study by Koenker
and Bassett (1978), and the solutions

θ̂ (τ ) = min
θ

∑
t

ρτ (Yt − θ
>X t ) (2)
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are called the regression quantiles. Given θ̂ (τ ), the τ th conditional quantile function of
Yt given X t can be estimated by

Q̂Yt (τ |X t ) = X>t θ̂ (τ ),

and the conditional density of Yt at y = QYt (τ |X t ) can be estimated by the difference
quotients,

f̂Yt (y|X t ) =
2h

Q̂Yt (τ + h|X t )− Q̂Yt (τ − h|X t )
,

for some appropriately chosen sequence of h = h(n)→ 0.
Quantile regression has attracted a lot of research attention in recent years. Koenker

and Hallock (2001) gave an excellent introduction of quantile regression. Also see, e.g.,
Cade and Noon (2003), Yu et al. (2003), and Kuan (2007) for surveys on this topic. For
a systematic and complete description of quantile regression, see Koenker (2005).

This chapter focuses on time series quantile regression methods. Quantile regression
not only provides a method of estimating the conditional quantiles (thus the condi-
tional distribution) of existing time series models but also substantially expands the
modeling options for time series analysis. We introduce quantile autoregressions in
Section 2 and discuss quantile regressions for ARCH/GARCH models in Section 3.
Quantile regressions with serially correlated residuals are considered in Section 4, and
Section 5 gives a discussion on nonparametric and semiparametric time series quantile
regressions. Section 6 introduces the CAViaR model and a few other dynamic quantile
regression models, and Section 7 looks at extremal quantile regressions. Nonstation-
ary time series quantile regressions are studied in Section 8. Three quantile regression
applications, forecasting with quantile regressions, testing for structural changes, and
portfolio construction, are briefly discussed in Section 9 to highlight the great potential
of this method.

2. Quantile regression for autoregressive time series

There is a considerable literature on quantile autoregression methods including
work by Weiss (1991), Knight (1989, 1998), Koul and Saleh (1995), Hercé (1996),
Jureckova and Hallin (1999), and Koenker and Xiao (2004, 2006). In addition, Davis
et al. (1992) and Knight (2006) studied quantile autoregression with infinite variance
errors. Knight (1997) investigated second-order properties of autoregressive quantile
regression estimator.

Quantile regression methods can be applied to traditional constant coefficient
autoregressive models and provides estimation of the conditional quantiles in these
models, and it can also be used to study new models by allowing for local, quantile-
specific time series dynamics.
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2.1. The classical AR model

Consider the following classical autoregressive model of order p:

Yt = θ0 + θ1Yt−1 + · · · + θpYt−p + ut , (3)

where ut is an i.i.d. mean zero sequence with distribution function F(·), then the condi-
tional distribution of Yt (given past information) is simply a location shift of F (·), with
conditional mean θ0 + θ1Yt−1 + · · · + θpYt−p. Thus, the conditional quantile function
of Yt is given by

QYt (τ |Ft−1) = θ0 + θ1Yt−1 + · · · + θpYt−p + F−1(τ ),

where Ft−1 denotes the σ -field that containing information up to time t − 1.
Let θ0(τ ) = θ0 + F−1

u (τ ), θ(τ ) = (θ0(τ ), θ1, . . . , θp)
>, and X t = (1, Yt−1, . . . ,

Yt−p)
>, we may write

QYt (τ |Ft−1) = θ(τ )
>X t .

Given time series observations {Yt }
n
t=1, the vector θ(τ ) can be estimated by the quan-

tile regression (2). The asymptotic behavior of the autoregression quantiles θ̂ (τ ) is
summarized in the following Theorem.

Theorem 1. If {Yt }
n
t=1 is an AR(p) process determined by (3) and {ut } are i .i .d . ran-

dom variables with mean 0 and variance σ 2 <∞, and the distribution function of ut ,
F, has a continuous density f with f (u) > 0 on U = {u : 0 < F(u) < 1}, then the
autoregression quantiles θ̂ (τ ), defined as the solution of (2), has the following limit:

f [F−1(τ )]�1/2
0

√
n(θ̂(τ )− θ(τ ))⇒ Bk(τ ),

where

�0 = E(X t X>t ) =

[
1 µ′y
µy �y

]
,

�y =

 E(Y 2
t ) · · · E(Yt Yt−p+1)

...
. . .

...
E(Yt Yt−p+1) · · · E(Y 2

t )

 ,

(4)

where µy = E(Yt ) · 1p×1, and Bk(τ ) represents a k-dimensional standard Brownian
Bridge, k = p + 1.

By definition, for any fixed τ , Bk(τ ) is N (0, τ(1− τ)Ik), thus

√
n(θ̂(τ )− θ(τ ))⇒ N

(
0,

τ(1− τ)

f [F−1(τ )]2
�−1

0

)
.
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2.2. The QAR models

In many applications, the time series dynamics can be more complicated than the clas-
sical autoregression (3), where past information (Yt− j ) influence only the location of
the conditional distribution of Yt . Let’s look at a simple example based on a time series
(Koenker, 2000; Knight, 2006) of daily temperature in Melbourne, Australia. Figure 1
is an AR(1) scatterplot of this time series. Figure 2 gives the estimated conditional
density of the daily temperature conditional on the temperature of the previous day
(Knight, 2006). It is quite clear from these figures that today’s temperature not only
affects location (and scale) of the conditional distribution of tomorrow’s temperature
but also the SHAPE of the conditional distribution. As the value of the conditioning
variable (Yt−1) increases, the conditional distribution (of Yt ) becomes bimodal!

Any attempt to diagnose or forecast series of this type requires that a mechanism
be introduced to capture the empirical features of the series, or that the series be trans-
formed in some way so that they can be analyzed by conventional models. Yet this is
often much easier to say than it is to do in a satisfactory way.

We believe that quantile regression method can be used to address some of these
problems. An important extension of the classical constant coefficient time series model
is the Quantile Autoregression (QAR) model (Koenker and Xiao, 2006). Given a time
series {Yt }, let Ft be the σ -field generated by {Ys , s ≤ t}, {Yt } is a pth order QAR
process if

QYt (τ |Ft−1) = θ0(τ )+ θ1(τ )Yt−1 + · · · + θp(τ )Yt−p. (5)
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Fig. 1. Scatterplot of Melbourne temperature.
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Fig. 2. Estimated conditional densities (Koenker, 2006).

This implies, of course, that the right hand side of (5) is monotonically increasing
in τ . In the above QAR model, the autoregressive coefficients may be τ -dependent and
thus can vary over different quantiles of the conditional distribution. Consequently,
the conditioning variables not only shift the location of the distribution of Yt but also
may alter the scale and shape of the conditional distribution. The QAR models play
a useful role in expanding the modeling territory of the classical autoregressive time
series models, and the classical AR(p) model can be viewed as a special case of QAR
by setting θ j (τ ) ( j = 1, . . . , p) to constants.

The formulation in (5) reveals that the QAR model may be interpreted as a somewhat
special form of random coefficient autoregressive (RCAR) model:

Yt = θ0(Ut )+ θ1(Ut )Yt−1 + · · · + θp(Ut )Yt−p, (6)

where {Ut } is a sequence of i.i.d. standard uniform random variables. In contrast to
most of the literature on RCAR models, in which the coefficients are typically assumed
to be stochastically independent of one another, the QAR model has coefficients that
are functionally dependent.

To illustrate some important features of the QAR process, we may consider the
following simple QAR (1) process,

Yt = αt Yt−1 + ut , (7)
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where ut = θ0(Ut ) with θ0(Ut ) = F−1(Ut ), F(·) is some distribution function, and

αt =

{
1
2 +Ut , Ut <

1
2 ,

1, Ut ≥
1
2 .

In this model, if Ut ≥ 1/2, the model generates the Yt according to a unit root
model, but for smaller realizations of the innovation, we have a mean reversion ten-
dency. Thus, the model exhibits a form of asymmetric persistence in the sense that
sequences of strongly positive innovations tend to reinforce its unit root like behavior,
whereas occasional negative realizations induce mean reversion and thus undermine
the persistence of the process. In fact, Yt is covariance stationary and satisfies a central
limit theorem. Thus, a quantile autoregressive process may allow for some transient
forms of explosive behavior while maintaining stationarity in the long run.

Denote X t = (1, Yt−1, . . . , Yt−p)
>, and θ(τ ) =

(
θ0(τ ), θ1(τ ), . . . , θp(τ )

)>
, the quan-

tile autoregressive model (5) can be estimated by the conventional quantile regression
technique through (2).

To facilitate the asymptotic analysis, we reformulate the QAR(p) model (6) in the
more conventional random coefficient notation as,

Yt = µ0 + α1,t Yt−1 + · · · + αp,t Yt−p + ut , (8)

where µ0 = Eθ0(Ut ), ut = θ0(Ut )− µ0, and α j ,t = θ j (Ut ), for j = 1, . . . , p. Thus,
{ut } is an i.i.d. sequence of random variables with distribution function F(·) = θ−1

0 (· +

µ0), and the α j ,t coefficients are functions of this ut innovation random variable.
The QAR(p) process (8) can be expressed as an p-dimensional vector autoregression
process of order 1:

Yt = 0 + At Yt−1 + Vt

with

0 =

[
µ0

0p−1

]
, At =

[
Ap−1,t αp,t

Ip−1 0p−1

]
, Vt =

[
ut

0p−1

]
,

where Ap−1,t = [α1,t , . . . ,αp−1,t ], Yt = [Yt , . . . , Yt−p+1]>, and 0p−1 is the (p − 1)-
dimensional vector of zeros. Koenker and Xiao (2006) studied the QAR model under
the following conditions:

A.1 {ut } are i.i.d. random variables with mean 0 and variance σ 2 <∞. The dis-
tribution function of ut , F , has a continuous density f with f (u) > 0 on
U = {u : 0 < F(u) < 1}.

A.2 Let E(At ⊗ At ) = �A, the eigenvalues of �A have moduli less than unity.
A.3 Denote the conditional distribution function Pr[yt < ·|Ft−1] as Ft−1(·) and its

derivative as ft−1(·), ft−1 is uniformly integrable on U .

Theorem 2. Under assumptions A.1–A.3, (1) the QAR(p) process Yt given by (8) is
covariance stationary and satisfies a central limit theorem

1
√

n

n∑
t=1

(Yt − µy)⇒ N
(
0,ω2

y

)
,
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where µy=µ0/
(

1−
∑p

j=1 µ j

)
, ω2

y= lim n−1 E[
∑n

t=1(yt − µy)]2, and µ j = E(α j ,t ),

j = 1, . . . , p. (2) The autoregression quantile process θ̂ (τ ) has the following limiting
representation:

6−1/2√n(θ̂(τ )− θ(τ ))⇒ Bk(τ ),

where 6 = �−1
1 �0�

−1
1 , �1 = lim n−1∑n

t=1 ft−1[F−1
t−1(τ )]X t X>t , �0 = E

(
X t X>t

)
,

and Bk(τ ) represents a k-dimensional standard Brownian Bridge, k = p + 1.

From Theorem 2, we have, for fixed τ , the limiting distribution of the QAR estimator
given by

√
n(θ̂(τ )− θ(τ ))⇒ N

(
0, τ(1− τ)�−1

1 �0�
−1
1

)
.

The QAR models expand the modeling options for time series that display asym-
metric dynamics and allows for local persistency. The models can capture systematic
influences of conditioning variables on the location, scale, and shape of the conditional
distribution of the response and, therefore, constitute a significant extension of classical
constant coefficient linear time series models.

Quantile varying coefficients indicate the existence of conditional heteroskedasticity.
Given the QAR process (6), let θ0 =E[θ0(Ut )], θ1 =E[θ1(Ut )] , . . . , θp =E

[
θp(Ut )

]
,

and

Vt = θ0(Ut )− Eθ0(Ut )+ [θ1(Ut )− Eθ1(Ut )] Yt−1 + · · · +
[
θp(Ut )− Eθp(Ut )

]
Yt−p.

The QAR process can be rewritten as

Yt = θ0 + θ1Yt−1 + · · · + θpYt−p + Vt , (9)

where Vt is martingale difference sequence. The QAR process is a weak-sense AR
process with conditional heteroskedasticity.

What is the difference between a QAR process and an AR process with ARCH
(or GARCH) errors? In short, the ARCH-type model focuses only on the first two
moments, whereas the QAR model goes beyond the second moment and allows for
more flexible structure in higher moments. Both models allow for conditional het-
erokedasticity and they are similar in the first two moments, but they can be quite
different beyond conditional variance.

The classical time series analysis based on autocorrelations (and partial autocorre-
lations, etc.) only requires that the residuals are uncorrelated (martingale difference
sequence). As we show in (9), the autocovariance structure of the QAR process (6) is
the same as that of a fixed coefficient AR(p) process. Thus, if we consider two different
QAR(p) processes:

Y1,t = θ10(Ut )+ θ11(Ut )Y1,t−1 + · · · + θ1p(Ut )Y1,t−p

and

Y2,t = θ20(Ut )+ θ21(Ut )Y2,t−1 + · · · + θ2p(Ut )Y2,t−p,
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then if E
[
θ1 j (Ut )

]
= E

[
θ2 j (Ut )

]
, their autocorrelation structures are the same. Con-

sequently, the classical time series analysis technique will identify QAR processes
with different dependence structures as the same (fixed coefficient) AR(p) process.
In this case, the QAR technique helps to reveal valuable additional information that
the classical time series analysis may ignore. The QAR method provides a very use-
ful complement to the classical analysis in identifying time series with different local
behavior. See Knight (2006) for related discussions.

A simple high-level assumption that we made on the QAR process is mono-
tonicity of the right-hand side of (5). The monotonicity of the conditional quantile
functions imposes some discipline on the forms taken by the θ functions. It usually
imposes restrictions on the domain of the random variable Yt unless Yt is a tradi-
tional constant coefficient process. It requires that the domain of the random variables
(or appropriately transformed versions) are bounded at least in one direction (say,
non-negative).

If the monotonicity assumption does not hold, the results in Theorem 2 need to be
modified. We may still consider the linear quantile regression, but treating X t

′θ̂ (τ ) as
an approximation for QYt (τ |Ft−1). In this case, θ̂ (τ ) will converge to some pseudo-
parameter θ(τ ) that minimizes some distance between X ′tθ and QYt (τ |Ft−1), i.e.,

θ̂ (τ )→p θ(τ ) = arg min
θ

Ed
(
X ′tθ , QYt (τ |Ft−1)

)
,

where the distance is defined as d(X ′tθ , QYt (τ |Ft−1)) = E{(δ − |εtτ |)1(|εtτ | < δ)

|Ft−1}, with δ(θ , X t ) = |X t
′θ − QYt (τ |Ft−1)|, and εtτ = Yt − QYt (τ |Ft−1).

One can establish asymptotic normality of θ̂ (τ ) around θ(τ ). This is similar to
the general theory of AR(p) estimation under misspecification. The estimated linear
QAR model serves as a local approximation device for the global model. Statistical
inference can still be conducted, but the limiting distribution needs to be modified
to accommodate the possible misspecification. In particular, without monotonicity
assumption, under regularity assumptions, the following asymptotic representation
(and thus asymptotic normality) can be obtained:

√
n
(
θ̂ (τ )− θ(τ )

)
= Vn(τ )

−1 1
√

n

n∑
t=1

X tψτ (u
∗

tτ )+ op(1),

where Vn(τ ) = n−1∑n
t=1 ft

(
X ′tθ(τ )

)
X t X>t , and u∗tτ = yt − X ′tθ(τ ), ψτ (u) = τ −

I (u < 0), extending the result of Angrist et al. (2005) from i.i.d. case to time series
models. Simulation-based methods such as subsampling may be used to conduct
statistical inference for the QAR models under misspecification.

Despite the possible crossing of quantile curves, the linear QAR model provides a
convenient and useful local approximation to global nonlinear QAR models. Such sim-
plified QAR models can still deliver important insight about dynamics, e.g., adjustment
asymmetries, in time series observations and thus provide a useful tool in empirical
diagnostic time series analysis. See Koenker and Xiao (2006) and discussions on QAR
in the issue of JASA (Vol. 101, 2006) for more details.
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2.3. Nonlinear QAR models

More complicated functional forms with nonlinearity can be considered for the condi-
tional quantile function if we are interested in the global behavior of the time series.
The absence of monotonicity implies that a more complicated functional form with
nonlinearity is needed for QYt (τ |X t ). If the τ th conditional quantile function of Yt is
given by

QYt (τ |Ft−1) = H(X t ; θ(τ )),

where X t is the vector containing lagged Y s, we may estimate the vector of parame-
ters θ(τ ) (and thus the conditional quantile of Yt ) by the following nonlinear quantile
regression:

min
θ

∑
t

ρτ (Yt − H(X t , θ)). (10)

Let εtτ = yt − H(xt , θ(τ )), Ḣθ (xt , θ) = ∂H(xt ; θ)/∂θ , we assume that:

Vn(τ ) =
1

n

∑
t

ft (QYt (τ |X t ))Ḣθ (X t , θ(τ ))Ḣθ (X t , θ(τ ))
> P
→ V (τ ),

�n(τ ) =
1

n

∑
t

Ḣθ (X t , θ(τ ))Ḣθ (X t , θ(τ ))
> P
→ �(τ),

and

1
√

n

∑
t

Ḣθ (xt , θ(τ ))ψτ (εtτ )⇒ N (0, τ(1− τ)�(τ)),

where V (τ ) and �(τ) are nonsingular, then under appropriate assumptions, the non-
linear QAR estimator θ̂ (τ ) defined as solution of (10) is root-n consistent and

√
n
(
θ̂ (τ )− θ(τ )

)
⇒ N (0, τ(1− τ)V (τ )−1�(τ)V (τ )−1). (11)

In practice, one may employ parametric copula models to generate nonlinear-in-
parameters QAR models (see, e.g., Bouyé and Salmon (2008) and Chen et al. (2009)).
Copula-based Markov models provide a rich source of potential nonlinear dynamics
describing temporal dependence and tail dependence. If we consider, for example, a
first-order strictly stationary Markov process, {Yt }

n
t=1, whose probabilistic properties

are determined by the joint distribution of Yt−1 and Yt , say, G∗(yt−1, yt ), and suppose
that G∗(yt−1, yt ) has continuous marginal distribution function F∗(·), then by Sklar’s
Theorem, there exists an unique copula function C∗(·, ·), such that

G∗(yt−1, yt ) ≡ C∗(F∗(yt−1), F∗(yt )),
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where the copula function C∗(·, ·) is a bivariate probability distribution function with
uniform marginals. Differentiating C∗(u, v) with respect to u, and evaluate at u =
F∗(x), v = F∗(y), we obtain the conditional distribution of Yt given Yt−1 = x :

Pr [Yt < y|Yt−1 = x] =
∂C∗(u, v)

∂u

∣∣∣∣
u=F∗(x),v=F∗(y)

≡ C∗1 (F
∗(x), F∗(y)).

For any τ ∈ (0, 1), solving τ = Pr [Yt < y|Yt−1 = x] ≡ C∗1 (F
∗(x), F∗(y)) for y (in

terms of τ ), we obtain the τ th conditional quantile function of Yt given Yt−1 = x :

QYt (τ |x) = F∗−1(C∗−1
1 (τ ; F∗(x))),

where F∗−1(·) signifies the inverse of F∗(·) and C∗−1
1 (·; u) is the partial inverse of

C∗1 (u, v) with respect to v = F∗(yt ).
In practice, neither the true copula function C∗(·, ·) nor the true marginal distribution

function F∗(·) of {Yt } is known. If we model both parametrically by C(·, ·;α) and
F(y;β), then the τ th conditional quantile function of Yt , QYt (τ |x) becomes a function
of the unknown parameters α and β, i.e.,

QYt (τ |x) = F−1(C−1
1 (τ ; F(x ,β),α),β).

Denoting θ = (α′,β ′)′ and h(x ,α,β) ≡ C−1
1 (τ ; F(x ,β),α), we will write,

QYt (τ |x) = F−1(h(x ,α,β),β) ≡ H(x ; θ). (12)

For example, if we consider the Clayton copula:

C(u, v;α) = [u−α + v−α − 1]−1/α , where α > 0.

one can easily verify that the τ th conditional quantile function of Ut given ut−1 is

QUt (τ |ut−1) = [(τ−α/(1+α) − 1)u−αt−1 + 1]−1/α

See Bouyé and Salmon (2008) for additional examples of copula-based conditional
quantile functions.

Although the quantile function specification in the above representation assumes the
parameters to be identical across quantiles, we may permit the estimated parameters to
vary with τ and thus extending the original copula-based QAR models to capture a wide
range of systematic influences of conditioning variables on the conditional distribution
of the response. By varying the choice of the copula specification, we can induce a
wide variety of nonlinear QAR dependence, and the choice of the marginal enables
us to consider a wide range of possible tail behavior as well. In many financial time
series applications, the nature of the temporal dependence varies over the quantiles of
the conditional distribution. Chen et al. (2009) studied the asymptotic properties of the
copula-based nonlinear quantile autoregression.
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Remark 1. We could even further relax the assumption of the conditional quantile
function and allow for a nonparametric specification. See Section 5 on discussions of
nonparametric QR. 2

Remark 2. ARMA models may also be analyzed via nonlinear QR in a similar
way. 2

3. Quantile regression for ARCH and GARCH models

ARCH and GARCH models have proven to be highly successful in modeling finan-
cial data. Estimators of volatilities and quantiles based on ARCH and GARCH models
are now widely used in finance applications. Koenker and Zhao (1996) studied quan-
tile regression for linear ARCH models. They consider the following linear ARCH(p)
process

ut = σt · εt , σt = γ0 + γ1 |ut−1| + · · · + γp

∣∣ut−p

∣∣ , (13)

where 0 < γ0 <∞, γ1, . . . , γp ≥ 0, and εt are i.i.d. (0,1) random variables
with pdf f (·) and CDF F (·). Let Z t = (1, |ut−1| , . . . ,

∣∣ut−q

∣∣)> and γ (τ) =

(γ0 F−1(τ ), γ1 F−1(τ ), . . . , γq F−1(τ ))>, the conditional quantiles of ut is given by

Qut (τ |Ft−1) = γ0(τ )+ γ1(τ ) |ut−1| + · · · + γp(τ )
∣∣ut−p

∣∣ = γ (τ)>Z t

and can be estimated by the following linear quantile regression of ut on Z t :

min
γ

∑
t

ρτ (ut − γ
>Z t ), (14)

where γ = (γ0, γ1, . . . , γq)
>. The asymptotic behavior of the above quantile regression

estimator is given in the following theorem (Koenker and Zhao, 1996).

Theorem 3. Suppose that ut is given by model (13), f is bounded and continuous,
f (F−1(τ )) > 0 for any 0 < τ < 1. In addition, E|ut |

2+δ <∞, then the regression
quantiles γ̂ (τ ) of (14) has the following Bahadur representation

√
n (γ̂ (τ )− γ (τ)) =

6−1
1

f (F−1(τ ))

1
√

n

n∑
t=1

Z tψτ (εtτ )+ op(1),

where 61 =EZ t Z ′t/σt and εtτ = εt − F−1(τ ). Consequently,

√
n (γ̂ (τ )− γ (τ)) = N

(
0,

τ(1− τ)

f (F−1(τ ))2
6−1

1 606
−1
1

)
, with 60 = EZ t Z ′t .

In many applications, conditional heteroskedasticity is modeled on the residuals of
a regression. For example, we may consider the following AR–ARCH model:

Yt = α
′X t + ut , (15)
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where X t = (1, Yt−1, . . . , Yt−p)
>, α = (α0,α1, . . . ,αp)

>, and ut is a linear ARCH(p)
process given by model (13). The conditional quantiles of Yt is then given by

QYt (τ |Ft−1) = α
′X t + γ (τ)

>Z t . (16)

One way to estimate the above model is to construct a joint estimation of α and γ (τ)
based on nonlinear quantile regression. Alternatively, we may consider a two-step pro-
cedure that estimates α in the first step and then estimates γ (τ) based on the estimated
residuals. The two-step procedure is usually less efficient because the preliminary esti-
mation of α may affect the second-step estimation of γ (τ), but it is computationally
much simpler and is widely used in empirical applications. Koenker and Zhao (1996)
studied the two-step estimation, and Theorem 4 summarizes the results.

Theorem 4. Suppose that Yt is given by (15) and (13), and conditions of Theorem 3
holds, α̂ is a root-n consistent estimator, and

γ̃ (τ ) = arg min
γ

∑
t

ρτ (̂ut − γ
> Ẑ t ),

where Ẑ t = (1, |̂ut−1| , . . . ,
∣∣̂ut−q

∣∣)>, ût = Yt − α̂
′X t , then

√
n (γ̃ (τ )− γ (τ)) =

6−1
1

f (F−1(τ ))

1
√

n

n∑
t=1

Z tψτ (εtτ )+6
−1
1 G1

√
n (̂α − α)+ op(1)

with G1=E
(
σ−1

t Z t (X t−Btγ (τ))
>
)
, and Bt=(0, sign(ut−1)X t−1, . . . , sign(ut−p)X t−p).

If f is symmetric about zero, and α0 = 0, then G1 = 0, and thus

√
n (γ̃ (τ )− γ (τ)) = N

(
0,

τ(1− τ)

f (F−1(τ ))2
6−1

1 606
−1
1

)
.

ARCH models are easier to estimate, but cannot parsimoniously capture the per-
sistent influence of long past shocks comparing to the GARCH models. However,
quantile regression GARCH models are highly nonlinear and thus complicated to esti-
mate. In particular, the quantile estimation problem in GARCH models corresponds to a
restricted nonlinear quantile regression and conventional nonlinear quantile regression
techniques are not directly applicable.

Xiao and Koenker (2009) studied quantile regression estimation of the following
linear GARCH(p, q) model:

ut = σt · εt , (17)

σt = β0 + β1σt−1 + · · · + βpσt−p + γ1 |ut−1| + · · · + γq

∣∣ut−q

∣∣ . (18)

Let Ft−1 represents information up to time t − 1, the τ th conditional quantile of ut is
given by

Qut (τ |Ft−1) = θ(τ )
>Z t , (19)
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where Z t = (1, σt−1, . . . , σt−p, |ut−1| , . . . ,
∣∣ut−q

∣∣)> and θ(τ )> = (β0,β1, . . . ,βp,
γ1, . . . , γq)F−1(τ ).

As Z t contains σt−k (k = 1, . . . , p), which in turn depends on unknown param-
eters θ = (β0,β1, . . . ,βp, γ1, . . . , γq), we may write Z t as Z t (θ) to emphasize the
nonlinearity and its dependence on θ . If we use the following nonlinear quantile
regression

min
θ

∑
t

ρτ (ut − θ
>Z t (θ)), (20)

for a fixed τ in isolation, consistent estimate of θ cannot be obtained because it ignores
the global dependence of the σt−k’s on the entire function θ(·). If the dependence struc-
ture of ut is characterized by (17) and (18), we can consider the following restricted
quantile regression instead of (20):

(
π̂ , θ̂

)
=

{
arg minπ ,θ

∑
i

∑
t ρτi (ut − π

>

i Z t (θ))

s.t .πi = θ(τi ) = θF−1(τi ).

Estimation of this global restricted nonlinear quantile regression is complicated.
Xiao and Koenker (2009) propose a simpler two-stage estimator that both incorporates
the global restrictions and also focuses on the local approximation around the specified
quantile. The proposed estimation consists of the following two steps: (i) The first step
considers a global estimation to incorporate the global dependence of the latent σt−k’s
on θ . (ii) Then, using results from the first step, we focus on the specified quantile to
find the best local estimate for the conditional quantile. Let

A(L) = 1− β1L − · · · − βp L p, B(L) = γ1 + · · · + γq Lq−1,

under regularity assumptions ensuring that A(L) is invertible, we obtain an ARCH(∞)
representation for σt :

σt = a0 +

∞∑
j=1

a j

∣∣ut− j

∣∣ . (21)

For identification, we normalize a0 = 1. Substituting the above ARCH(∞) repre-
sentation into (17) and (18), we have

ut =

a0 +

∞∑
j=1

a j

∣∣ut− j

∣∣ εt (22)

and

Qut (τ |Ft−1) = α0(τ )+

∞∑
j=1

α j (τ )
∣∣ut− j

∣∣ ,

where α j (τ ) = a j Qεt (τ ), j = 0, 1, 2, . . . .
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Let m = m(n) be a truncation parameter, we may consider the following truncated
quantile autoregression:

Qut (τ |Ft−1) ≈ a0(τ )+ a1(τ ) |ut−1| + · · · + am(τ ) |ut−m | .

By choosing m suitably, small relative to the sample size n, but large enough to avoid
serious bias, we obtain a sieve approximation for the GARCH model.

One could estimate the conditional quantiles simply using a sieve approximation:

Q̌ut (τ |Ft−1) = â0(τ )+ â1(τ ) |ut−1| + · · · + âm(τ ) |ut−m | ,

where â j (τ ) are the quantile autoregression estimates. Under regularity assumptions,

Q̌ut (τ |Ft−1) = Qut (τ |Ft−1)+ Op(m/
√

n).

However, Monte Carlo evidence indicates that the simple sieve approximation does
not directly provide a good estimator for the GARCH model, but it serves as an ade-
quate preliminary estimator. Because the first step of estimation focuses on the global
model, it is desirable to use information over multiple quantiles in estimation. Combin-
ing information over multiple quantiles helps us to obtain globally coherent estimate of
the scale parameters.

Suppose that we estimate the mth-order quantile autoregression

α̃(τ ) = arg min
α

n∑
t=m+1

ρτ

ut − α0 −

m∑
j=1

α j

∣∣ut− j

∣∣ (23)

at quantiles (τ1, . . . , τK ), and obtain estimates α̃(τk), k = 1, . . . , K . Let ã0 = 1 in
accordance with the identification assumption. Denote

a = [a1, . . . , am , q1, . . . , qK ]> , π̃ =
[̃
α(τ1)

>, . . . , α̃(τK )
>
]>

,

where qk = Qεt (τk), and

φ(a) = g ⊗ α = [q1, a1q1, . . . , amq1, . . . , qK , a1qK , . . . , amqK ]> ,

where g = [q1, . . . , qK ]> and α = [1, a1, a2, . . . , am]>, we consider the following esti-
mator for the vector a that combines information over the K quantile estimates based
on the restrictions α j (τ ) = a j Qεt (τ ):

ã = arg min
a
(π̃ − φ(a))> An (π̃ − φ(a)) , (24)

where An is a (K (m + 1))× (K (m + 1)) positive definite matrix. Denoting ã =
(̃a0, . . . , ãm), σt can be estimated by

σ̃t = ã0 +

m∑
j=1

ã j

∣∣ut− j

∣∣ .
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In the second step, we perform a quantile regression of ut on Z̃ t = (1, σ̃t−1, . . . ,
σ̃t−p, |ut−1|, . . . , |ut−q |)

> by

min
θ

∑
t

ρτ (ut − θ
> Z̃ t ), (25)

the two-step estimator of θ(τ )> = (β0(τ ),β1(τ ), . . . ,βp(τ ), γ1(τ ), . . . , γq(τ )) is then
given by solution of (25), θ̂ (τ ), and the τ th conditional quantile of ut can be
estimated by

Q̂ut (τ |Ft−1) = θ̂ (τ )
> Z̃ t .

Iteration can be applied to the above procedure for further improvement.
Let α̃(τ ) be the solution of (23), then under appropriate Assumptions, we have

‖α̃(τ )− α(τ)‖2
= Op(m/n). (26)

and for any λ ∈ Rm+1,

√
nλ> (̃α(τ )− α(τ))

σλ
⇒ N (0, 1),

where σ 2
λ = fε

(
F−1
ε (τ )

)−2
λ>D−1

n 6n(τ )D−1
n λ, and

Dn =

[
1

n

n∑
t=m+1

xt x>t
σt

]
, 6n(τ ) =

1

n

n∑
t=m+1

xt x
>

t ψ
2
τ (utτ ),

where xt = (1, |ut−1| , . . . , |ut−m |)
>.

Define

G =
∂φ(a)
∂a>

∣∣∣∣
a=a0

= φ̇(a0) =

[
g0 ⊗ Jm

...IK ⊗ α0

]
, g0 =

Qεt (τ1)

· · ·

Qεt (τK )

 ,

where g0 and α0 are the true values of vectors g = [q1, · · · , qK ]> and α =

[1, a1, a2, . . . , am]>, and

Jm =


0 · · · 0
1 · · · 0
...

. . .
...

0 · · · 1


is an (m + 1)× m matrix and IK is an K-dimensional identity matrix, under regu-
larity assumptions, the minimum distance estimator ã solving (24) has the following
asymptotic representation:

√
n(̂a− a0) =

[
G>AnG

]−1
G>An

√
n
(
π̃ − π

)
+ op(1),
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where

√
n(π̃ − π) = −

1
√

n

n∑
t=m+1



(
D−1

n xt
ψτ1(utτ1)

fε
(
F−1
ε (τ1)

))
· · ·(

D−1
n xt

ψτk (utτk )

fε
(
F−1
ε (τk)

))
+ op(1),

and the two-step estimator θ̂ (τ ) based on (25) has asymptotic representation:

√
n
(
θ̂ (τ )− θ(τ )

)
= −

1

fε
(
F−1
ε (τ )

)�−1

{
1
√

n

∑
t

Z tψτ (utτ )

}

+�−10
√

n (̃a − a)+ op(1),

where a = [a1, a2, . . . , am]>, � = E
[
Z t Z t

>/σt
]
, and

0 =

p∑
k=1

θkCk , Ck = E

[
(|ut−k−1| , . . . , |ut−k−m |)

Z t

σt

]
.

Remark 3. Note that the infeasible estimator θ̃ (τ ) based on unobserved regressors zt

has the following Bahadur representation:

√
n
(
θ̃ (τ )− θ(τ )

)
= −

1

fε
(
F−1
ε (τ )

)�−1

{
1
√

n

∑
t

ztψτ (utτ )

}
+ op(1),

we see that the Bahadur representation (and thus the variance) of θ̂ (τ ) contains an
additional term that arises from the preliminary estimation. 2

Remark 4. The estimation procedure also provides a robust estimator for the condi-
tional volatility. 2

Remark 5. Quantile regression estimation can also be applied to other types of ARCH
and GARCH models, say the quadratic ARCH or GARCH models, or the Threshold
ARCH/GARCH models based on nonlinear quantile regressions. 2

4. Quantile regressions with dependent errors

Quantile regression can also be applied to regression models with dependent errors.
Consider the following linear model:

Yt = α + β
′X t + ut = θ

′Z t + ut , (27)
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where X t and ut are k and 1-dimensional weakly dependent stationary random
variables, {X t } and {ut } are independent with each other, E(ut ) = 0. If we denote
distribution function of ut as Fu(·), then conditional on X t , the τ th quantile of Yt is
given by

QYt (τ |X t ) = α + β
′X t + F−1

u (τ ) = θ(τ )′Z t ,

where θ(τ ) = (α + F−1
u (τ ),β ′)′. The vector of parameters, θ(τ ), can be estimated by

solving the problem

θ̂ (τ ) = arg min
θ∈Rp

n∑
t=1

ρτ (Yt − Z tθ). (28)

Let utτ = Yt − θ(τ )
′Z t , we have E [ψτ (utτ )|X t ] = 0. Under assumptions on

moments and weak dependence of (X t , ut ),

n−1/2
n∑

t=1

Z tψτ (utτ ) =

[
n−1/2∑n

t=1 ψτ (utτ )

n−1/2∑n
t=1 X tψτ (utτ )

]
⇒ N (0,6(τ)),

where 6(τ) is the long-run covariance matrix of Z tψτ (utτ ) defined by

6(τ) = lim

(
n−1/2

n∑
t=1

Z tψτ (utτ )

)(
n−1/2

n∑
t=1

Z tψτ (utτ )

)
=

[
ω2
ψ (τ ) 0
0 �(τ)

]
.

Under regularity assumptions, the quantile regression estimator (28) has the follow-
ing asymptotic representation:

√
n(θ̂(τ )− θ(τ )) =

1

2 f (F−1(τ ))
6−1

z

1

n1/2

n∑
t=1

Z tψτ (utτ ),

where

6z = lim
n→∞

1

n

n∑
t=1

Z t Z>t .

As a result,

√
n(θ̂(τ )− θ(τ ))⇒ N

(
0,

1

4 f (F−1(τ ))2
6−1

z 6(τ)6−1
z

)
.

The above results may be extended to the case where other elements in θ(τ ) are also
τ -dependent.

Statistical inference based on θ̂ (τ ) requires estimation of the covariance matrices6z

and 6(τ). The matrix 6z can be easily estimated by its sample analogue

6̂z = n−1
n∑

t=1

Z t Z>t ,
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6(τ) may be estimated following the HAC estimation literature (see, e.g., Andrews
(1991)). Let ûtτ = Yt − θ̂ (τ )

′Z t , we may estimate 6(τ) by

6̂(τ ) =

M∑
h=−M

k

(
h

M

)1

n

∑
1≤t ,t+h≤n

Z tψτ (̂utτ )Z
>

t+hψτ (̂u(t+h)τ )

 ,

where k(·) is the lag window defined on [−1, 1] with k(0) = 1 and M is the bandwidth
parameter satisfying the property that M →∞ and M/n→ 0 as the sample size
n→∞.

Portnoy (1991) studied the asymptotic properties for regression quantiles with
m-dependent errors; his analysis also allows for nonstationarity with a nonvanishing
bias term.

The above quantile regression analysis can also be extended to the case with long-
range dependent errors. Koul and Mukherjee (1994) considered linear model (27) when
the errors are a function of Gaussian random variables that are stationary and long-
range dependent, so that

Cov(ut , ut+h) = h−λL(h), for some 0 < λ < 1,

where L(h) is positive for large h and slow varying at infinity.

5. Nonparametric and semiparametric QR models

One direction that has attracted a lot of research attention is the nonparametric and
semiparametric time series quantile regression models – see, e.g., Koenker et al. (1994),
Honda (2000), Cai (2002), Cai and Xu (2009), Cai and Xiao (2010), and Wei et al.
(2006).

5.1. Nonparametric dynamic quantile regressions

Consider the model

QYt (τ |X t ) = θτ (X t ),

where θτ (·) is an unknown function. We may estimate the conditional quantile func-
tion θτ (x) = QYt (τ |X t = x) via nonparametric smoothing. In particular, given time
series observations {(Yt , X t )}

n
t=1, we may consider the following Nadaraya-Watson

nonparametric quantile regression that minimizes the following objective function

θ̂τ (x) = arg min
θ

n∑
t=1

Kh (X t − x) ρτ (Yt − θ),

where Kh (X t − x) = K ((X t − x) /h) and K (·) is a product kernel of k (·), which
is symmetric and has a compact support, say [−1, 1], h = h (n)→ 0 is a bandwidth
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parameter that controls how “close” X t is from x . Denote θτ (x) = θ0, let fX (x) be the
density of X , and fY |X (y) be the conditional density of Y given X ,

µ j =

∫
u j K (u)du, and ν0 =

∫
K 2(u)du, (29)

and let v =
√

nhq (θ − θ0), where q is the dimension of X ; under appropriate assump-
tions, we may approximate

n∑
t=1

Kh (X t − x) ρτ (Yt − θ)−

n∑
t=1

Kh (X t − x) ρτ (Yt − θ0)

by a quadratic function

−
1
√

nhq
v

[
n∑

t=1

Kh (X t − x) ψτ (utτ )

]
+

1

2
fX (x) fY |X (QY (τ |x)) v

2

whose minimizer is asymptotically normal and then show that the QR estimator is
close enough to the minimizer. The NW estimator of the conditional quantile function
QYt (τ |X t = x) has the following local Bahadur representation:

√
nhq

(
θ̂τ (x)− θτ (x)

)
=

1

fX (x) fY |X (QY (τ |x))

×

[
1
√

nhq

n∑
t=1

Kh (X t − x) ψτ (Yt − θτ (x))

]
+ op(1).

If we choose bandwidth h so that nhq
→∞, h → 0,

√
nhq

(
θ̂τ (x)− θτ (x)− h2 Bτ (x)

)
⇒ N

(
0,

τ(1− τ)ν0

fX (x) fY |X (QY (τ |x))
2

)
,

where Bτ (x) is the bias term.
Other types of nonparametric estimators, such as the local polynomial estimator,

can also be analyzed in a similar way. Under smoothness condition of θτ (·), so that it
has (m + 1)th continuous derivative (m ≥ 1), for any given point x , when X t is in a
neighborhood of x , θτ (X t ) can be approximated by a polynomial function as

θτ (X t ) ≈ θτ (x)+ θ
′

τ (x) (X t − x)+ · · · + θ (m)τ (x) (X t − x)m/m!,

thus

QYt (τ |X t ) ≈

m∑
j=0

θT
jτ (X t − x) j ,
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where θ jτ = θ
( j)
τ (x)/j for 0 ≤ j ≤ m. Then, we may estimate θτ (x) based on

min
θ

n∑
t=1

Kh (X t − x) ρτ

Yt −

m∑
j=0

θT
j (X t − x) j

 .

Like the nonparametric mean regressions, the nonparametric quantile regression
estimator suffers the “curse of dimensionality.” Various dimension reduction meth-
ods have been proposed in the literature, including additive nonparametric models and
functional coefficient quantile regressions. Cai and Xu (2009) studied the dynamic
functional coefficient quantile regression models, extending the results of Honda (2004)
to the time series case.

Consider a stationary sequence {Yt , X t , Z t }
∞
t=−∞, let

QYt (τ |x , z) = QYt (τ |(X t , Z t ) = (x , z))

be the conditional quantile function of Yt given (X t , Z t ) = (x , z), for any 0 < τ < 1, a
functional (or, varying) coefficient quantile regression model takes the following form:

QYt (τ |X t , Z t ) = ατ (X t )
>Z t . (30)

Under smoothness condition of coefficient functions ατ (·), if X t is in a neighborhood
of x , we have

QYt (τ |X t , Z t ) = ατ (X t )
>Z t ≈

m∑
j=0

θT
jτ Z t (X t − x) j ,

where θ jτ = α
( j)
τ (x)/j! for 0 ≤ j ≤ m. Then, we may estimate ατ (x) based on the

following local polynomial functional coefficient quantile regression estimation

min
θ

n∑
t=1

Kh (X t − x) ρτ

Yt −

m∑
j=0

θT
j Z t (X t − x) j

 .

Under regularity assumptions, Cai and Xu (2009) show that

√
nhq

(̂
ατ (x)− ατ (x)− h2bτ (x)

)
⇒ N

(
0,
τ(1− τ)ν2(K )

fX (x)
�∗(x)−1�(x)�∗(x)−1

)
.

where bτ (x) =
1
2

(∫
u2 K (u)du

)
α′′τ (x)+ op(1), and

�∗(x) = E
[

fY |X ,Z (QY (τ |X t , Z t )) Z t Z>t |X t = x
]

,�(x) = E
[
Z t Z>t |X t = x

]
.

Koenker et al. (1994) proposed nonparametric quantile regression method via
smoothing splines. They consider a class of quantile smoothing splines defined as a
solution of

min
g∈G

n∑
t=1

ρτ (Yt − g (X t ))+ λV (g′), (31)
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for appropriately chosen G, where V ( f ) denote the total variation norm of f , and λ is
the smoothing parameter. If g′ is sufficiently smooth, V (g′) =

∫ ∣∣g′′(x)∣∣ dx . Koenker
et al. (1994) show that the solutions ĝ(x) of (31) are continuous, piecewise linear
functions. For λ sufficiently large, the solution is the corresponding globally lin-
ear regression quantile. Computation of quantile smoothing splines can be efficiently
carried out by linear programming methods.

Chen and Shen (1998) and Chen (2006) studied general sieve estimates for weakly
dependent data that can be applied to the estimation of quantiles.

Instead of using the “check” function, an alternative nonparametric approach to
estimate conditional quantiles is to invert an estimator of the conditional distribution
function. Yu and Jones (1998) propose first estimating the conditional distribution func-
tion using the “double-kernel” local linear technique of Fan et al. (1996) and then
inverting the conditional distribution estimator to obtain an estimator of a conditional
quantile. The Yu and Jones (1998) estimator has nice properties such as no bound-
ary effects and design adaptation, but it produces conditional distribution estimators
that are not constrained to lie within [0,1] or be monotonic, and modifications are
needed. Cai (2002) proposed another estimator for the conditional quantile by invert-
ing the weighted Nadaraya-Watson estimator of the conditional distribution function
of Hall et al. (1999). Giving a stationary strong mixing process {Yt , X t }, the weighted
Nadaraya-Watson estimator of the conditional distribution function is defined as

F̂ (y|x) =

∑n
t=1 pt (x)K

( x−X t
h

)
I (Yt ≤ y)∑n

t=1 pt (x)K
( x−X t

h

) ,

where pt (x) ≥ 0 are the weighting functions and
∑n

t=1 pt (x) = 1. The weighted
Nadaraya-Watson estimator has nice properties such as being in [0,1] and monotonic
increasing, and good boundary behavior. Cai (2002) proposes the following estimate
for the τ th conditional quantile of Yt :

Q̂Yt (τ |x) = inf
{

y : F̂ (y|x) ≥ τ
}

.

Under smoothness conditions on the densities and mixing conditions that con-
trols the dependence, Cai (2002) shows that Q̂Yt (τ |x) is a consistent estimator for
QYt (τ |X t = x), and, letting f (y|x) be the conditional density function and fX (·) be
the marginal density of X ,

√
nh
[
Q̂Yt (τ |x)− QYt (τ |x)− h2 Bτ (x)+ op(h

2)
] d
−→ N

(
0, σ 2

τ (x)
)

,

where

Bτ (x) = −
1

2
µ2
∂2 F (QY (τ |x)|x) /∂x2

f (QY (τ |x)|x)
, σ 2

τ (x) =
τ(1− τ)ν0

f (QY (τ |x)|x)2 fX (x)
.

5.2. Semiparametric dynamic quantile regressions

Following the partially linear approach in conditional mean models, Cai and Xiao
(2010) consider another dimension-reduction modeling method – the partially varying
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coefficient models. The partially varying coefficient quantile regression model serves
as an intermediate class of models with good robustness by nonparametric treatment
on certain covariates and relatively more precise estimation on the parametric effect of
other variables. In this semiparametric approach, existing information concerning pos-
sible linearity of some of the components can be taken into account in such models to
improve efficiency.

A partially varying coefficient quantile regression model for time series data takes
the following semiparametric form,

QYt (τ |X t , Z t ) = β
T
τ Z t1 + ατ (X t )

T Z t2,

where Z t = (Z T
t1, Z T

t2)
T
∈ <

p+q , ατ (·) = (a1,τ (·), . . . , aq ,τ (·))
T , and {ak,τ (·)} are

smooth coefficient functions. Given this model, if βτ were known, we would be able to
construct the following partial quantile residual: Yt1 = Yt − β

T
τ Z t1, thus

QY1t (τ |X t , Z2t ) = ατ (X t )
T Z t2.

Then, one may estimate ατ (u0) based on the nonparametric functional coefficient
quantile regression estimation.

In practice, βτ is unknown. To estimate both the parameter vector β and the func-
tional coefficients α(·), we may first treat β as a function of X t , β(X t ), then the model
becomes a functional coefficient model, and all coefficient functions can be estimated
by using the following local fitting,

min
β,θ

n∑
t=1

Kh (X t − x) ρτ

Yt − β
T Z t1 −

m∑
j=0

θT
j Z t2 (X t − x) j

. (32)

We denote the above local polynomial estimator of β as β̂(x). Notice that although
β is a global parameter, the above estimation of β involves only local data points in
a neighborhood of x , so that it is not optimal. Indeed, β̂(·)− β = Op((n hq)−1/2). An
optimal estimation of the constant coefficients requires using all data points, and the
optimal convergence rate should be

√
n instead of

√
n hq . To obtain a

√
n-consistent

estimator for βτ , we may use the following averaging method to obtain a second-stage
estimator of β that achieves the optimal rate of convergence:

β̃ = β̃τ =
1

n

n∑
t=1

β̂(X t ). (33)

To estimate the functional coefficients α(·), we define the estimated partial quantile
residual as Yt∗ = Yt − β̃

T Z t1, where β̃ is a
√

n-consistent estimate of β, and consider
the following feasible local polynomial functional coefficient estimation:

min
θ

n∑
t=1

Kh1 (X t − x) ρτ

Yt∗ −

m∑
j=0

θ j
T Z t2 (X t − x) j

 , (34)
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where h1 is the bandwidth used for this step, which is different from the bandwidth used
in (32). Solving the minimization problem in (34) gives α̃(u0) = θ̂0∗, the local polyno-
mial estimate of α(u0), and α̃( j)(u0) = j ! θ̂ j∗ ( j ≥ 1), the local polynomial estimate
of the j th derivative α( j)(u0) of α(u0).

Choosing h/h1 = o(1), and under other regularity assumptions, the above non-
parametric estimator is “oracle,” in the sense that the asymptotic properties of this
nonparametric estimator are not affected by preliminary estimation of βτ . Denote
fX (·), the marginal density of X t , and fy|z,x (·|·), the conditional density of Yt , given
(Z t , X t ), let

�(x) = E
[
Z t Z T

t |X t = x
]

and �∗(x) = E
[
Z t Z T

t fy|z,x (qτ (Z t , X t ))|X t = x
]

,

B∗1 = eT
1 E

[
(�∗(X1))

−1�∗
′

(X1)

(
0

α′(X1)

)]
,

where �∗
′

(x) is the first-order derivative of �∗(x) and eT
1 = (Ip, 0p×q) with Ip

being a p × p identity matrix and 0p×q being a p × q zero matrix, and B∗2 =
eT

1 E
[
(�∗(X1))

−10(X1)
]
, where

0(x) = E
[

f ′y|z,x (qτ (Z t , X t ))Z t
(
α′(X t )

T Z t2
)2
|X t = x

]
,

and f ′y|z,x (y) denotes the derivative of fy|z,x (y) with respect to y. Under regularity
assumptions,

√
n
[
β̃τ − βτ − Bβ

] d
−→ N (0, 6β),

where the asymptotic bias term is Bβ = h2µ2(B∗1 − B∗2/2), µ2 is defined as (29), and
the asymptotic variance is

6β = τ(1− τ) E
[
eT

1 (�
∗(X1))

−1�(X1)(�
∗(X1))

−1e1
]

+ 2
∞∑

s=1

Cov(eT
1

(
�∗(X1))

−1 Z1 η1, eT
1 (�

∗(Xs+1))
−1 Zs+1 ηs+1

)
.

Here, ηt = τ − I {Yt ≤ QY (τ |Z t , X t )}.
Linton and Shang (2010) studied the conditional quantile estimation in a semi-

parametric GARCH model. In particular, they consider the following quadratic
GARCH(1,1) model:

ut = σt · εt , σ
2
t = γ0 + β1σ

2
t−1 + γ1u2

t−1,

where εt are i.i.d. (0,1). The conditional quantile is given by Qut (τ |Ft−1) = σt F−1
ε (τ ).

Linton and Shang (2010) studied efficient estimation of the GARCH parameters
(γ0,β1, γ1) and nonparametric estimation of F−1

ε (τ ) based on inverting the distribu-
tion estimator. Notice that εt is standardized to be variance 1, they consider a weighted
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empirical distribution estimator for Fε(·), where the weights are determined by

{ŵt } = arg max
wt

{
5n

t=1wt
}

s.t.
n∑

t=1

wt = 1;
n∑

t=1

wtεt = 0;
n∑

t=1

wt
(
ε2

t − 1
)
= 0.

The weighted empirical distribution estimator for Fε(·) is then given by

F̂ε(·) =
n∑

t=1

ŵt 1 (εt ≤ x),

and F−1
ε (τ ) is estimated by F̂−1

ε (τ ) = sup
{
s:F̂ε(s) ≤ τ

}
. Also see Komunjer and

Vuong (2010) for semiparametric estimations based on minimizing an M-objective
function.

6. Other dynamic quantile models

6.1. The CAViaR model and local modeling methods

Quantile-based method provides a local approach to directly model the dynamics of a
time series at a specified quantile.

Consider again the linear GARCH model given by (17) and (18). Note that
σt− j F−1(τ ) = Qut− j (τ |Ft− j−1); hence, the conditional quantile Qut (τ |Ft−1) has the
following representation:

Qut (τ |Ft−1) = β
∗

0 +

p∑
i=1

β∗i Qut−i (τ |Ft−i−1)+

q∑
j=1

γ ∗j

∣∣ut− j

∣∣ , (35)

where β∗0 = β0(τ ) = β0 F−1(τ ), β∗i = βi , i = 1, . . . , p, γ ∗j = γ j (τ ) = γ j F−1(τ ), and
j = 1, . . . , q . From (35) we can see an important feature of the linear GARCH model:
conditional quantiles Qut (τ |Ft−1) themselves follow an autoregression. This represen-
tation suggests that one may model the local dynamics or local correlation directly
based on the conditional quantiles.

Engle and Mangenelli (2004) propose the Conditional Autoregressive Value-at-Risk
(CAViaR) specification for the τ th conditional quantile of ut :

Qut (τ |Ft−1) = β0 +

p∑
i=1

βi Qut−i (τ |Ft−i−1)+

q∑
j=1

α j`(X t− j ), (36)

where X t− j ∈ Ft− j , Ft− j is the information set at time t − j . A natural choice of X t− j

is the lagged u. When we choose X t− j =
∣∣ut− j

∣∣, we obtain (35). Engle and Mangenelli
(2004) discussed many choices of `(X t− j ) leading to different specifications of the
CAViaR model.
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Sim and Xiao (2009) and Sim (2009) considered local models to study the asym-
metric correlation of international stock returns. To study the correlations between the
τY th quantile of Yt and the τX th quantile of X t , they consider the following quantile
dependence model:

QYt (τY |Ft−1) = h(Q X t (τX |Vt ),β(τX , τY )). (37)

Let X t = Yt−1, τX = τY = τ , and Q X t (τX |Vt ) = Q X t (τX |Ft−2), and consider linear
function of h (·), we obtain an autoregression model for the τ th conditional quantile
of Yt :

Q yt (τ |Ft−1) = β0 + βQ yt−1(τ |Ft−2).

The model can be extended to include additional regressors. For instance, let τX =

τY = τ , and consider the following quantile model

QYt (τ |Ft−1) = h(Q Z t−1(τ |Ft−2), QYt−1(τ |Ft−2),β(τ)),

where the τ th conditional quantile of Yt is affected by its own lagged value and lagged
values of the conditional quantile of covariates.

Estimation of the CAViaR model is challenging. If we denote the vector of unknown
parameters by θ , and, for simplicity, denote Qut (τ |Ft−1) by Qt (τ , θ), then we may
consider estimate θ by minimizing:

RQn(τ , θ) =
∑

t

ρτ (Yt − Qt (τ , θ)), (38)

where Qt (τ , θ) = β0 +
∑p

i=1 βi Qt−i (τ , θ)+
∑q

j=1 α j`(X t− j ). Because conditional
quantiles enters the CAViaR regression model as regressors and they are latent, con-
ventional nonlinear quantile regression techniques are not directly applicable. De
Rossi and Harvey (2009) studied an iterative Kalman filter method to calculate
dynamic conditional quantiles that may be applied to calculate certain types CAViaR
models. In their model, the observed time series Yt is described by measurement
equation

Yt = ξt (τ )+ εt (τ ),

where ξt (τ ) = QYt (τ |Ft−1) is the state variable and the disturbances εt (τ ) are assumed
to be serially independent and independent of ξt (τ ). The dynamics of this system
is characterized by the state transition equation based on ξt (τ ). For example, if the
conditional quantiles follow an autoregression, we have

ξt (τ ) = βξt−1(τ )+ ηt (τ ).

Alternative forms of the state transition equations can be considered. The above
state-space model can then be estimated by iteratively applying an appropriate signal
extraction algorithm.
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Hsu (2010) studied estimating CAViaR with an MCMC method based on the Bayes
approach of Yu and Moyeed (2001). She considered the following asymmetric Laplace
density as a working conditional density for the error term in the CAViaR model:

f (εtτ |Ft−1) =
τ(1− τ)

σ
exp

{
−

1

σ
ρτ (εtτ )

}
,

where εtτ = Yt − Qt (τ , θ) and σ is a scale parameter, then, given a data set of size n,
the working likelihood is

f (Data|θ , σ) =

(
τ(1− τ)

σ

)n

exp

{
−

1

σ
RQn(τ , θ)

}
,

where RQn(τ , θ) is given by (38). Hsu (2010) choose a flat prior for each coefficient
in θ and the inverse gamma distribution IG(α0, s0) for σ , thus the joint prior for θ is
given by

π (θ , σ) ∝
1

σ α0+1
exp

(
−

s0

σ

)
,

and the posterior for (θ , σ) is

f (θ , σ |Data) ∝
1

σ α0+1

(
τ(1− τ)

σ

)n

exp

{
−

1

σ
RQn(τ , θ)−

s0

σ

}
.

Posterior inference on the CAViaR model can then be implemented.

6.2. Additive quantile models

Gourieroux and Jasiak (2008) proposed a dynamic additive quantile model based on
a group of baseline quantile functions. In particular, let QYt (τ |Ft−1) be dependent
on some unknown parameters θ and denote it as QYt |X t (τ ; θ), they define a dynamic
additive quantile model as

QYt |X t (τ ; θ) =
K∑

k=1

ρk (X t ,αk) Qk(τ ,βk)+ ρ0 (X t ,α0),

where Qk(τ ,βk) are baseline quantile functions with identical range and ρk (X t ,αk) are
positive functions of the past information. By construction, the quantile curves do not
cross. Information-based estimation methods are proposed by Gourieroux and Jasiak
(2008) to estimate these models.

6.3. QR for dynamic panel

Galvao (2010) recently studied quantile regression with dynamic panel data. In
particular, he considered the following dynamic panel quantile model

QYi t (τ |Z i t , Yi ,t−1, X i t ) = Z i tη (τ)+ α (τ) Yi ,t−1 + X ′i tβ(τ),

i = 1, . . . , n; t = 1, . . . , T ,
(39)
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where Z i t takes value 0 or 1 that identifies the fixed effects for the n groups and η =
(η1, . . . , ηn)

> is the n × 1 vector of individual specific effects. In the presence of lagged
y, a direct quantile regression based on (39) that minimizes

n∑
i=1

T∑
t=1

ρτ
(
Yi t − Z i tη − αYi ,t−1 − X ′i tβ

)
is potentially biased. Galvao studied the instrumental variable estimation for the above
dynamic panel mode. Assuming that there is instrumental variable Wi t that affects
Yi ,t−1 but are independent of the errors, following Chernozhukov and Hansen (2008),
he considers: for fixed α,

(̂η (α) , β̂(α), γ̂ (α)) = arg min
η,β,γ

n∑
i=1

T∑
t=1

ρτ
(
Yi t − Z i tη − αYi ,t−1 − X ′i tβ −W ′i tγ

)
and estimates α by solving for

α̂ = min
α
‖γ̂ (α)‖A,

where ‖x‖A = x ′Ax . The final estimators for α (τ) and β(τ) are then given by
(̂α (τ ) , β̂(̂α (τ ) , τ)).

7. Extremal quantile regressions

Many statistical applications focus on either the lower quantile or upper quantiles of
the distribution or conditional distribution. Consequently, theory of extremal quantiles
may be used in such applications. Without loss of generality, we consider the lower
extreme quantiles (i.e., τ ↘ 0) only.

Given a random sample of n observations {Yt , X t }
n
t=1, we are interested in the

τ th quantile of Y or the τ th conditional quantile of Y given X . Knight (2001) and
Portnoy and Jureckova (1999) studied asymptotic behavior of extremal quantile regres-
sion estimators when τn→ 0 as n→∞. In particular, Knight (2001) investigated
extremal quantile regression estimators via the point process approach, and Portnoy
and Jureckova (1999) studied it using a density convergence approach. Chernozhukov
(2005) studied asymptotic behavior of extremal quantile regression estimators when
τn→ κ and τn→∞ as n→∞. If τ ↘ 0 and τn→ κ ≥ 1 as n→∞, he calls
the corresponding quantile an extremal quantile; if τ ↘ 0 and τn→∞ as n→∞,
the corresponding quantile is called an intermediate-order quantile. In these cases,
τ = τ(n) (and converges to 0 as n→∞) is a sequence of quantiles index associated
with the sample size n.

The limiting behavior of extremal quantiles depends not only on the types of quan-
tiles but also on the tail behavior of the distributions (or conditional distributions).
Consider, say, the classical linear quantile regression model, where

QY (τ |X) = X ′θ(τ ), (40)
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where X is a d-dimensional vector, suppose that there exists an auxiliary parameter θ0,
such that U = Y − X ′θ0 has conditional lower endpoint 0 (or −∞ ) a.s. and its con-
ditional quantile function QU (τ |X) satisfies the following tail conditions: As τ ↘ 0,
uniformly in the support of X ,

QU (τ |X) = QY (τ |X)− X ′θ0 ∼ F−1
U (τ ),

where F−1
U (τ ) is a quantile function exhibiting Pareto-type behavior in the tails, such

that F−1
U (τ ) ∼ L(τ )τ−ξ , where L(τ ) is a slow-varying function at 0. The number ξ is

called the extreme value index.
Given time series observations {Yt , X t }

n
t=1 and the quantile regression model (40), if

we estimate QY (τ |X) by X ′θ̂ (τ ), where θ̂ (τ ) is estimated via quantile regression (2),
under appropriate assumptions, the extreme quantiles converge to non-normal distri-
butions, and the intermediate-order quantiles converge to normal limits. If we consider
the canonically normalized regression quantile

Z∗n(τ ) =
1

F−1
U (1/n)

(
θ̂ (τ )− θ(τ )

)
,

under the assumption that {Yt , X t }t is weakly dependent stationary sequence with
extreme events satisfying a nonclustering condition, Chernozhukov (2005) show that if
τ ↘ 0 and τn→ κ ≥ 1 as n→∞,

Z∗n(τ )⇒ Z∞(κ)− κ
−ξ ,

where

Z∞(κ) = arg min
z

[
−κµ′X z +

∞∑
i=1

[
X ′i z − 0

−ξ

i

]
+

]
, ξ < 0

Z∞(κ) = arg min
z

[
−κµ′X z +

∞∑
i=1

[
X ′i z + 0

−ξ

i

]
+

]
, ξ > 0

where {01,02, . . .} = {E1, E1 + E2, . . .} and {E1, E2, . . .} is an i.i.d. sequence of expo-
nential variables that is independent of {X1, X2, . . .}, µX = E(X).

The canonically normalized regression quantile is infeasible due to the standardiza-
tion by F−1

U (1/n). As an alternative, one may consider the self-normalized regression
quantile

Zn(κ) =

√
τn

X
′ (
θ̂ (mτ)− θ̂ (τ )

) (θ̂ (τ )− θ(τ )) ,

for any m, such that κ(m − 1) > d, Chernozhukov (2005) shows that, again, under
weak dependence and nonclustering conditions, if τ ↘ 0 and τn→ κ ≥ 1 as n→∞,

Zn(κ)⇒

√
κZ∞(κ)

µ′X [Z∞(mκ)− Z∞(κ)]
,
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and, if τ ↘ 0 and τn→∞ as n→∞,

Zn(κ)⇒ N

(
0,6−1

X

ξ 2(
m−ξ − 1

)2

)
,

where 6X = E(X X ′). The limiting distributions can be approximated via bootstrap or
subsampling methods, and thus, statistical inference can be conducted based on such
methods. See, e.g., Chernozhukov (2005) for more details.

8. Quantile regression for nonstationary time series

8.1. Unit root quantile regressions

An important model in economic time series analysis is the autoregressive unit root
model, where the differenced time series is stationary (I(0)). Quantile regression can
also be applied to unit root time series.

One of the most widely used unit root model is the following Augmented Dickey-
Fuller (ADF) regression model

Yt = α1Yt−1 +

q∑
j=1

α j+11Yt− j + ut , (41)

where ut is i.i.d. (0, σ 2). Under assumptions that all the roots of A(L) = 1−∑q
j=1 α j+1L j lie outside the unit circle, if α1 = 1, Yt contains a unit root; and if

|α1| < 1, Yt is stationary. If we denote the σ -field generated by {us , s ≤ t} by Ft , then
conditional on Ft−1, the τ th conditional quantile of Yt is given by

QYt (τ |Ft−1) = Qu(τ )+ α1Yt−1 +

q∑
j=1

α j+11Yt− j .

Let α0(τ ) = Qu(τ ), α j (τ ) = α j , j = 1, . . . , p, p = q + 1, and define

α(τ) = (α0(τ ),α1, . . . ,αq+1), X t = (1, Yt−1,1Yt−1, . . . ,1Yt−q)
′,

we have QYt (τ |Ft−1) = X ′tα(τ). The unit root quantile autoregressive model can be
estimated by:

min
α

n∑
t=1

ρτ (Yt − X>t α).

Denote wt = 1Yt , utτ = Yt − X ′tα(τ), under the unit root hypothesis and other
regularity assumptions,

n−1/2
[nr ]∑
t=1

(wt ,ψτ (utτ ))
>
⇒ (Bw(r), Bτψ (r))

>
= B M(0,6(τ)),
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where

6(τ) =

[
σ 2
w σwψ (τ )

σwψ (τ ) σ 2
ψ (τ )

]

is the long-run covariance matrix of the bivariate Brownian motion and can be written
as 60(τ )+61(τ )+6

>

1 (τ ), where 60(τ ) = E[(wt ,ψτ (utτ ))
>(wt ,ψτ (utτ ))] and

61(τ ) =

∞∑
s=2

E[(w1,ψτ (u1τ ))
>(ws ,ψτ (usτ ))].

In addition, n−1∑n
t=1 Yt−1ψτ (utτ )⇒

∫ 1
0 Bwd Bτψ .

The random function n−1/2∑[nr ]
t=1 ψτ (utτ ) converges to a two-parameter process

Bτψ (r) = Bψ (τ , r), which is partially a Brownian motion and partially a Brownian
bridge in the sense that for fixed r , Bτψ (r) = Bψ (τ , r) is a rescaled Brownian bridge,

while for each τ , n−1/2∑[nr ]
t=1 ψτ (utτ ) converges weakly to a Brownian motion with

variance τ(1− τ). Thus, for each fixed pair (τ , r), Bτψ (r) = Bψ (τ , r) ∼ N (0, τ(1−
τ)r). Let α̂(τ ) = (̂α0(τ ), α̂1, . . . , α̂p) and Dn = diag(

√
n, n,
√

n, . . . ,
√

n), the limit-
ing distribution of α̂(τ ) is summarized in the following Theorem (Koenker and Xiao,
2004).

Theorem 5. Let yt be determined by (41), under the unit root assumption α1 = 1, and
other regularity conditions,

Dn (̂α(τ )− α(τ))⇒
1

f (F−1(τ ))

 1∫
0

BwB
>

w 02×q

0q×2 �8

−1 1∫
0

Bwd Bτψ

8

 ,

where Bw(r) = [1, Bw(r)]>, 8 = [81, . . . ,8q ]> is a q-dimensional normal variate
with covariance matrix τ(1− τ)�8, where

�8 =

ν0 · · · νq−1
...

. . .
...

νq−1 · · · ν0

 , ν j = E[wtwt− j ],

and 8 is independent with
∫ 1

0 Bwd Bτψ .

As an immediate by-product of the above Theorem, the limiting distribution of
n(̂α1(τ )− 1) is invariant to the estimation of α̂ j (τ )( j = 2, . . . , p) and the lag length p.
In particular,

n(̂α1(τ )− 1)⇒
1

f (F−1(τ ))

 1∫
0

B2
w

−1 1∫
0

Bwd Bτψ , (42)
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where Bw(r) = Bw(r)−
∫ 1

0 Bw is a demeaned Brownian motion.
Inference based on the autoregression quantile process provides a robust approach

to testing the unit root hypothesis. Like the conventional ADF t-ratio test, we may
consider the t-ratio statistic

tn(τ ) =
̂f (F−1(τ ))
√
τ(1− τ)

(
Y>
−1 PX Y−1

)1/2
(̂α1(τ )− 1) ,

where ̂f (F−1(τ )) is a consistent estimator of f (F−1(τ )), Y−1 is the vector of lagged
dependent variables (Yt−1) and PX is the projection matrix onto the space orthogonal
to X = (1,1Yt−1, . . . ,1Yt−q). Under the unit root hypothesis, we have

tn(τ )⇒ t (τ ) =
1

√
τ(1− τ)

 1∫
0

B2
w

−1/2 1∫
0

Bwd Bτψ . (43)

At any fixed τ , the test statistic tn(τ ) is simply the quantile regression counterpart
of the well-known ADF t-ratio test for a unit root. The limiting distribution of tn(τ )
is nonstandard and depends on nuisance parameters (σ 2

w, σwψ (τ )) as Bw and Bτψ are
correlated Brownian motions.

The limiting distribution of tn(τ ) can be decomposed as a linear combination of
two (independent) distributions, with weights determined by a long-run (zero fre-
quency) correlation coefficient that can be consistently estimated. Following Hansen
and Phillips (1990), we have

1∫
0

Bwd Bτψ =
∫

Bwd Bτψ .w + λωψ (τ )

∫
Bwd Bw,

where λωψ (τ ) = σwψ (τ )/σ 2
w and Bτψ .w is a Brownian motion with variance σ 2

ψ .w(τ ) =

σ 2
ψ (τ )− σ

2
wψ (τ )/σ

2
w and is independent of Bw. Therefore, the limiting distribution of

tn(τ ) can be decomposed as

1
√
τ(1− τ)

∫
Bwd Bτψ .w(∫ 1
0 B2

w

)1/2 +
λwψ (τ )
√
τ(1− τ)

∫
Bwd Bw(∫ 1

0 B2
w

)1/2 .

For convenience of exposition, we may rewrite the Brownian motions Bw(r) and
Bτψ .w(r) as

Bw(r) = σwW1(r), Bτψ .w(r) = σψ .w(τ )W2(r),

Bw(r) = σwW 1(r), W 1(r) = W1(r)−

1∫
0

W1(s)ds,
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where W1(r) and W2(r) are standard Brownian motions and are independent of one
another. Note that σ 2

ψ (τ ) = τ(1− τ), and the limiting distribution of tn(τ ) can be
written as,

δ

 1∫
0

W 1
2

−1/2 1∫
0

W 1dW1 +

√
1− δ2 N (0, 1), (44)

where

δ = δ(τ ) =
σwψ (τ )

σwσψ (τ )
=

σwψ (τ )

σw
√
τ(1− τ)

.

The above limiting distribution can be easily approximated using simulation methods.
In fact, required critical values are tabulated in the literature and thus are available for
use in applications.

Alternatively, we may consider a transformation of tn(τ ) that annihilates the nui-
sance parameter, and thereby provides a distributional-free form of inference. Hasan
and Koenker (1997) consider rank-type tests based on regression rank scores in an
augmented Dickey-Fuller framework. A third option is to abandon the asymptotically
distribution-free nature of tests and use critical values generated by resampling meth-
ods. One may also consider unit root tests based on quantile autoregression over a
range of (multiple) quantiles – targeting toward a somewhat broader class of alterna-
tives than those considered in the OLS literature. See Koenker and Xiao (2004) for
more discussions on this topic.

8.2. Quantile regression on cointegrated time series

Consider again the regression model (27), if X t is a k-dimensional vector of integrated
regressors and ut is still mean zero stationary (possibly correlated with X t ), it becomes
the important cointegration regression model (Xiao, 2009). To deal with endogeneity,
we may use leads and lags of X t (other methods may also be considered to deal with
correlation between ut and X t ). If we assume that ut has the following representation

ut =

K∑
j=−K

v′t− j5 j + εt , (45)

where vt = 1X t , εt is a stationary process, such that E(vt− jεt ) = 0, for any j , and

n−1/2
[nr ]∑
t=1

[
ψτ (εtτ )

vt

]
⇒ B(r) =

[
B∗ψ (r)
Bv(r)

]
= B M(0,�∗),

the original cointegrating regression can be rewritten as:

Yt = α + β
′X t +

K∑
j=−K

1X ′t− j5 j + εt .



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 13-ch09-211-258-9780444538581 2012/4/24 0:36 Page 246 #36

246 Z. Xiao

If we denote the τ th quantile of εt as Qε(τ ), let Gt = σ {X t ,1X t− j ,∀ j}, then,
conditional on Gt , the τ th quantile of Yt is given by

QYt (τ |Gt ) = α + β
′X t +

K∑
j=−K

1X ′t− j5 j + F−1
ε (τ ),

where Fε(·) is the c.d.f. of εt . Let Z t be the vector of regressors consisting zt = (1, X t )

and (1X ′t− j , j = −K , . . . , K ), 2 = (α,β ′,5′
−K , . . . ,5′K )

′, and

2(τ) = (α(τ),β(τ)′,5′
−K , . . . ,5′K )

′,

where α(τ) = α + F−1
ε (τ ), then, we can rewrite the above regression as Yt = 2

′Z t +

εt , and

QYt (τ |Ft ) = 2(τ)
′Z t .

We now consider the following quantile cointegrating regression:

2̂(τ ) = arg min
θ

n∑
t=1

ρτ (Yt −2
′Z t ). (46)

Similar to case of the ADF regression, the components in 2̂(τ ) have different rates of
convergence. Denote Gn = diag(

√
n, n, . . . , n,

√
n, . . . ,

√
n). Conformable with2(τ),

we partition 2̂(τ ) as follows:

2̂(τ )′ =
[̂
α(τ), β̂(τ )′, 5̂−K (τ )

′, . . . , 5̂K (τ )
′
]

.

Under regularity assumptions,

Gn(2̂(τ )−2(τ))⇒
1

fε(F−1
ε (τ ))

 1∫
0

BvB
>

v 0

0 0

−1 1∫
0

Bvd B∗ψ

9

 .

In particular,

n(β̂(τ )− β(τ))⇒
1

fε(F−1
ε (τ ))

 1∫
0

BvB>v

−1 1∫
0

Bvd B∗ψ ,

and where Bv(r) = (1, Bv(r)′)′, and Bv(r) = Bv(r)− r Bv(1), 0 = E(Vt V ′t ), and Vt =

(1X ′t−K , . . . ,1X ′t+K )
′, and 9 is a multivariate normal with dimension conformable

with (5−K (τ )
′, . . . ,5K (τ )

′)′.
Consider the quantile regression residual

εtτ = Yt − QYt (τ |Ft ) = Yt −2(τ)
′Z t = εt − F−1

ε (τ ),

then we have Qεtτ (τ ) = 0, where Qεtτ (τ ) signifies the τ th quantile of εtτ , and
Eψτ (εtτ ) = 0.
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The cointegration relationship may be tested by directly looking at the fluctuation in
the residual process εtτ from the quantile cointegrating regression. If we consider the
following partial sum process

Yn(r) =
1

ω∗ψ
√

n

[nr ]∑
j=1

ψτ (ε jτ ),

where ω∗2ψ is the long-run variance of ψτ (ε jτ ), under appropriate assumptions, the
partial sum process follows an invariance principle and converges weakly to a stan-
dard Brownian motion W (r). Choosing a continuous functional h(·) that measures the
fluctuation of Yn(r), notice that ψτ (ε jτ ) is indicator based, a robust test for cointegra-
tion can be constructed based on h(Yn(r)). By the continuous mapping theorem, under
regularity conditions and the null of cointegration,

h(Yn(r))⇒ h(W (r)).

In principle, any metric that measures the fluctuation in Yn(r) is a natural candidate
for the functional h. The classical Kolmogoroff–Smirnof-type or Cramer–von Mises-
type measures are of particular interest. Under the alternative of no cointegration, the
statistic diverges.

In practice, we estimate 2(τ) by 2̂(τ ) using (46) and obtain the residuals

ε̂tτ = Yt − 2̂(τ )
′Z t .

A robust test for cointegration can then be constructed based on

Ŷn(r) =
1

ω̂∗ψ
√

n

[nr ]∑
j=1

ψτ ( ε̂ jτ ),

where ω̂∗2ψ is a consistent estimator of ω∗2ψ . Under regularity assumptions and the
hypothesis of cointegration,

Ŷn(r)⇒ W̃ (r) = W1(r)−

 1∫
0

dW1W
′

2

 1∫
0

W 2W
′

2

−1 r∫
0

W 2(s),

where W 2(r) = (1, W2(r)′)′ and W1 and W2 are independent 1 and k-dimensional stan-
dard Brownian motions – see Xiao (forthcoming) for more discussion on robust tests
for cointegration.

9. Time series quantile regression applications

There is a large and growing literature of quantile regression applications in various
fields. We discuss three examples of quantile regression applications in this section:
interval forecasting, testing for structural changes, and portfolio construction.
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9.1. Forecasting with quantile models

Dynamic quantile regression models offer a natural approach for interval forecast-
ing. Given the time series observations {Yt }

T
t=1, and a dynamic quantile regression

model

QYt (τ |Ft−1) = g(X t , θ(τ )),

where X t = (1, Yt−1, . . . , Yt−p)
>, we consider out-of-sample prediction based on the

available observations. In the special case g(X t , θ(τ )) = X>t θ(τ ), this is the QAR
model (5). If the parameters θ(τ ) were known, the interval

[g(XT+1, θ(α/2)), g(XT+1, θ(1− α/2))]

is an exact 1− α level interval forecast of YT+1. In practice, we do not know θ(τ )

and have to use a quantile regression estimator θ̂ (τ ) in the above construction.
Following Portnoy and Zhou (1996), we may use the following modified interval
forecast [

g(XT+1, θ̂ (α/2− hT )), g(XT+1, θ̂ (1− α/2+ hT ))
]

,

where hT → 0, to account for the uncertainty from the preliminary quantile regression
estimation θ̂ (τ ).

To generate an p-step interval forecast for YT+p, notice that the one-step ahead
forecast conditional distribution of YT+1 can be obtained from

ŶT+1 = g(XT+1, θ̂ (U )),

where U are random draws from a uniform distribution U [0, 1], let U ∗1 be a draw
from uniformly distribution on [0,1], then a draw from the one-step ahead forecast
distribution of YT+1 is given by

Ŷ ∗T+1 = g(XT+1, θ̂ (U ∗1 )).

Next, let X̃T+2 = (1, Ŷ ∗T+1, YT , . . . , YT−p+2)
>, and U ∗2 ∼ U [0, 1], then a draw from the

two-step ahead forecast distribution of YT+2 is given by

Ŷ ∗T+2 = g(X̃T+2, θ̂ (U ∗2 )).

At step s, let X̃T+s = (1, Ŷ ∗T+s−1, . . . , Ŷ ∗T+s−p)
> (where Ŷ ∗j = Y j if j ≤ T ) and U ∗s ∼

U [0, 1], we can obtain a draw of forecast

Ŷ ∗T+s = g(X̃T+s , θ̂ (U ∗s )).

Applying the above sampling procedure recursively, we obtain a sample path of
forecast (

Ŷ ∗T+1, Ŷ ∗T+2, . . . , Ŷ ∗T+p

)
.
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Repeating this process R times, a forecast of the conditional distribution of
YT+p can then be approximated based on an ensemble of such sample paths{
(Ŷ (r)

T+1, . . . , Ŷ (r)
T+p)

}R

r=1
, and an p-step (1− α) level interval forecast can be con-

structed based on the sample quantiles of
{

Ŷ (r)
T+p

}R

r=1
.

Other types of models, say, the ARCH model, or a combination of AR structure in
the mean equation and ARCH error, may be forecasted in the same way – see Granger
et al. (1989) and Koenker and Zhao (1996) for a discussion based on the linear ARCH
models.

Yu and Moyeed (2001) proposed a Bayesian solution to the quantile regression prob-
lem via the likelihood of a skewed-Laplace distribution. If the density of a random
variable takes the form

f (ε) = τ(1− τ) exp {−ρτ (ε)} ,

the density is called an asymmetric Laplace density. Consider, say, an autoregression
model, if the error term ut has probability density function ∝ exp {−ρτ (u)}, the asso-
ciated maximum likelihood estimation is equivalent to minimizing the check function
of a quantile regression. The likelihood interpretation of quantile regression facilitates
extracting the posterior distributions of unknown parameters via the MCMC method
and provides a convenient way of incorporating parameter uncertainty into quantile
predictive inference. Giving a specified quantile model, Bayesian quantile forecasting
can be obtained along this direction.

Lee and Yang (2007) proposed bootstrap aggregating (bagging) to generate quantile
predictors.

9.2. Testing for structural changes in conditional distribution

Quantile regression offers a variety of techniques for making inferences about condi-
tional quantile functions. For example, it can provide a useful approach in testing for
changes in distribution or conditional distribution. Being the inverse of a conditional
distribution function, the conditional quantile function is a natural object to examining
distributional changes.

Let {Yt , X t }
n
t=1 denote a time series sequence of random vectors, F0 = σ {X1},

Ft−1 = σ (Yt−1, . . . , Y1, X t , . . . , X1) for t ≥ 2, and assume that the τ th conditional
quantile function of Yt given Ft−1 is given by:

QYt (τ |Ft−1) = β (τ , t)′ X t , (47)

where β (τ , t) is a p × 1 parameter vector. For example, if X t =
(
1, Yt−1, . . . , Yt−p−1

)′
and β (τ , t) does not depend on t , we get the quantile autoregression (QAR) model (5),

QYt (τ |Ft−1) = β1 (τ )+ β2 (τ ) Yt−1 + · · · + βp (τ ) Yt−p−1 = β (τ)
′ X t ,

(48)

where β (τ) =
(
β1 (τ ) ,β2 (τ ) , . . . ,βp (τ )

)′
.
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We are interested in testing the null hypothesis that, in a random sample of size
n, the conditional distribution of Yt , given X t , has not changed. Let the conditional
distribution function be Ft (y, xt ) = Pr(Yt ≤ y|xt ), then, the null hypothesis can be
written as

H0 : Ft (y, xt ) = F(y, xt ).

Because the inverse of a conditional distribution function is the conditional quantile
function, we can equivalently express H0 as

H0 : Qt (τ , xt ) = Q(τ , xt ),

where Qt (τ , xt ) and Q(τ , xt ) are conditional quantile functions of Yt , given xt , obtained
from solving

Ft (y, xt ) = τ and F(y, xt ) = τ , respectively, for τ ∈ [0, 1].

If we consider a linear parametric model, such that

Qt (τ , xt ) = β (τ , t)′ xt ,

we can then write the inference problem in terms

H0 : β (τ , t) = β (τ) for some β (τ) ∈ B ⊂ Rp. (49)

If there is a change in distribution, as the change point r is usually unknown in
practice, we have to endogenize it. For this purpose, we define a dummy variable
Ir ,t = 1 (t ≥ dnrc + 1), where 1 (.) is the indicator function. We consider the sequential
quantile regression model

QYt

(
τ |xt , Ir ,t

)
= β (τ)′ xt + δ (τ )

′
(
xt Ir ,t

)
, (50)

then testing the null of no structural change reduces to testing

H0 : δ0 (τ ) = 0 for all τ , (51)

where δ0 (τ ) is the true parameter value of δ (τ ) in (50).
To proceed, let zr t =

(
x ′t , x ′t Ir ,t

)′
and θ (τ ) = (β (τ )′ , δ (τ )′)′. Based on {Yt , zr t }

n
t=1,

the sequential quantile regression estimators (SQREs) of θ (τ ) are given by

θ̂ (τ , r) = arg min
β∈R2p

ρτ
(
Yt − θ (τ )

′ zr t
)
, (52)

where ρτ (u) = u [τ − 1 (u < 0)]. θ̂ (τ , r) = (β̂ (τ , r)′ , δ̂ (τ , r)′)′ ∈ Rp
× Rp. Intu-

itively, under the null hypothesis, we expect that δ̂ (τ , r) should be small for all τ and r .
Su and Xiao (2008) studied this application. Let F (.|Ft−1) denote the condi-

tional distribution function of Yt given Ft−1. F (.|Ft−1) = F (.|xt ) = Ft (
.). Ft (

.) has
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Lebesgue density ft (
.) = f (.|xt ) a.s., assuming that under the null hypothesis of no

distributional change, E[ψτ (Yt − β0 (τ )
′ xt )|Ft−1] = 0 a.s. for some unique β0 (τ ) ∈

B ⊂ Rp, and β0 (τ ) is an interior point of the compact set B for each τ , under assump-
tions on the conditional distribution and weak dependence of the time series, it can be
shown that the sequential regression quantile process

√
n
(
θ̂ (τ , r)− θ0 (τ )

)
have the

following Bahadur representation uniformly in both τ and r :[
1

n

n∑
t=1

ft (θ0 (τ )
′ zr t )zr t z

′

r t

]−1
1
√

n

n∑
t=1

ψτ (Yt − θ0 (τ )
′ zr t )zr t .

If we assume that sup0<r≤1

∣∣∣n−1∑dnrc
t=1 xt x ′t − r Q

∣∣∣ = oP (1), where Q is a finite,

symmetric, and positive definite matrix, and

sup
0≤τ≤1,

sup
0<r≤1

∣∣∣∣∣n−1
dnrc∑
t=1

ft
(
β0 (τ )

′ xt
)

xt x
′

t − r H∗ (τ )

∣∣∣∣∣ = oP (1) ,

where H∗ (τ ) is a finite, symmetric, and positive definite matrix for each τ , under the
null,

√
n δ̂ (τ , r)⇒ (r (1− r))−1 H∗ (τ )−1 Q1/2W (τ , r) ,

where W (τ , r) = r W ∗ (τ , 1)−W ∗ (τ , r), and {W ∗ (τ , r) : (τ , r) ∈ [0, 1]2
} is a

Kiefer process with E [W ∗ (τ , r)] = 0 and E[W ∗ (τ1, r1)W ∗ (τ2, r2)] = (r1 ∧ r2)

(τ1 ∧ τ2 − τ1τ2) Ip.
Let �̂ (τ , r) be a uniformly consistent estimator of

�(τ , r) ≡
τ (1− τ)

r (1− r)
H∗ (τ )−1 Q H∗ (τ )−1 ,

the following sup-Wald statistic can be used to test for structural changes in conditional
distribution:

supWn ≡ sup
τ∈T

sup
r∈A

Wn (τ , r) with Wn (τ , r) = nδ̂ (τ , r)′ �̂ (τ , r)−1 δ̂ (τ , r) . (53)

Under the null and regularity conditions,

supWn
d
→ sup

τ∈T
sup
r∈A

W (τ , r)′W (τ , r) / [τ (1− τ) r (1− r)] .

See Su and Xiao (2008) and Qu (2008) for related studies in linear quantile regres-
sion models. Also see Hušková (1997) and Hušková and Picek (2002) for related
studies.

In the above model, notice that Ft−1 contains yt−1; hence, under the assumption

E[ψτ (Yt − β0 (τ )
′ X t )|Ft−1] = 0,
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the quantile regression residual is a martingale difference sequence. This assumption
can be relaxed, and the above analysis can be extended to the case where the regression
residuals are weakly correlated. In this case, under the null hypothesis of no structural
change in the conditional distribution, the limiting regression quantile process is still
a zero-mean Gaussian process. However, the covariance kernel of the limiting process
will be more complicate and depends on the dependence structure in the data. Inference
procedures can be constructed based on the simulation methods.

In the above case, the relationship between Yt and X t is characterized by a para-
metric model; testing for distributional change may be formulated as testing quantile
regression coefficient instability. In many applications, the functional form of the
relationship between Yt and X t is unknown. Misspecification of econometric models
can also manifest themselves in the form of structural changes. Misleading conclu-
sions may be obtained if the linearity (or other parametric) assumption is violated. To
avoid spurious breaks from misspecification, Su and Xiao (2009) proposed and studied
residual-based tests for distributional changes via nonparametric quantile regressions.

9.3. Portfolio construction

There is a large literature of quantile regression applications in finance – see, e.g.,
Taylor (1999), Chernozhukov and Umantsev (2001), Bassett and Chen (2001), Wu and
Xiao (2002), Bassett et al. (2004), Linton and Whang (2004), Ma and Pohlman (2008),
Gowlland et al. (2009), and Xiao and Koenker (2009). Quantile regression has very
important applications in portfolio construction. There has been an ongoing debate
in the financial literature about which risk measures to use in market risk measure-
ment and portfolio selection. For a long time, the variance of portfolio return has been
the predominant market risk measurement. Markowitz (1952) proposed that investors
should choose the portfolio that offers the smallest return variance for a given level of
expected return. This approach to optimal portfolio selection has a nice connection to
maximizing expected utility if portfolio returns are normally distributed or if investors
have quadratic utility.

However, in general, financial returns are not normally distributed. Empirical evi-
dence against the normality of returns has been reported by many researchers. In
empirical analysis, financial time series tend to be heavy tailed (or “leptokurtic” ), and
these features are usually accentuated when the data are sampled more frequently. On
the other hand, quadratic utility assumes that investors are as averse to upside gain as
they are to downside loss. In practice, investors care mainly about the loss associated
with downside movements, and upside gain should not be penalized. Over the last few
decades, accumulated empirical evidence indicates that when people make investment
decisions, they often have different attitude with respect to gains and losses.

A growing number of researchers and practitioners are using downside-risk mea-
surements in various portfolio management applications. The most prominent example
is Value-at-Risk (VaR)-based risk measurement, which has become a part of the inter-
national banking regulatory mechanisms. Value-at-Risk is defined as the percentage
loss in market value over a given time horizon that is exceeded with probability τ . That
is, for a time series of returns on an asset, {rt }

n
t=1, the Value-at-Risk at time t , V a Rt , is

defined by

Pr (rt < −V a Rt |It−1) = τ , (54)
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where It−1 denotes the information set at time t − 1. VaR is a conditional quantile, and
therefore, estimation of Value-at-Risk is intimately linked to quantile estimation, and
the quantile regression models introduced in the previous sections can be applied to
these problems.

Minimizing portfolio VaR would imply that investors only care about τ th quantile
of portfolio return distribution, instead of paying attention to the whole distribution of
portfolio return. Despite of its popularity, VaR as a risk measure has been criticized
by financial engineers. An important criticism of VaR is that it is not a “coherent”
risk measure. Following the axiomatic approach, Artzner et al. (1999) define a coher-
ent risk measurement from a regulator’s point of view. In the mean-variance-based
approach, the standard deviation (variance) is used as a measure of risk. Accord-
ing to the definition of Artzner et al. (1999), such a measure is not a coherent risk
measurement.

VaR is also not coherent. For this reason, Expected Shortfall (ES), a coherent risk
measurement, has been suggested as an alternative (remedy) for VaR-based risk mea-
surement. ES is defined as the expected loss exceeding VaR. More specifically, The ES
of portfolio return Y at τ level is the expected loss of portfolio value given that a loss
is occurring at or below the τ th quantile:

ESτ = E(Y |Y < VaRτ ).

Unlike VaR, which is insensitive to the magnitude of loss beyond a certain per-
centile, ES weights large losses by their magnitude. Because ES has the nice property
of being a coherent risk measurement, researchers and practitioners, recently, advocate
the Mean-ES analysis for portfolio selection by minimizing portfolio ES for a given
level of expected portfolio return level. This approach is usually called the Mean-ES
analysis.

Bassett et al. (2004) studied Mean-ES portfolio allocation and Choquet expected
utility maximization via quantile regression. Let qτ be the τ th quantile of the return
distribution, the Mean-ES approach corresponds to a simple truncated utility function

u(R) =

{
R/τ , if R ≤ qτ ,
0, otherwise.

(55)

In the Mean-ES setting, investors expected that utility is the ES of the portfolio
return distribution corresponding to τ th quantile:

Eu(R) =

+∞∫
−∞

u(R)d F(R) =
1

τ

qτ∫
−∞

Rd F(R).

Bassett et al. (2004) define the τ -risk of R as

%τ (R) = −
1

τ

qτ∫
−∞

Rd F(R),
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where qτ is the τ th quantile of the return distribution, and show that empirical strategies
for minimizing the τ -risk lead to the methods of quantile regression. Let ρτ (·) be the
check function of quantile regression, they show that

min
θ

Eρτ (R − θ) = α (µ+ %τ (R)) . (56)

Consider an investment decision over L underlying assets with random returns
r = (r1, . . . , rL)

′, if we construct a portfolio by choosing portfolio weights w =
(w1, . . . ,wL)

′,
∑L

i=1wi = 1, the portfolio return rate R is equal to w′r . Denote the
mean of the portfolio as µ(w′r), the optimal portfolio choice for an Mean-ES investor
corresponds to

min
w
%τ (w

′r)

s.t. µ(w′r) = µ0,
L∑

i=1

wi = 1.

In practice, giving a sample of n observations of the assets return, say
{rt , t = 1, . . . , n}, using the relationship (56) and replacing the expectations by their
sample analogues, we have

min
w,θ

n∑
t=1

ρτ (w
′rt − θ)

s.t.
1

n

n∑
t=1

w′rt = µ0,
L∑

i=1

wi = 1.

To study the above quantile regression problem and incorporate the restriction
L∑

j=1
ω j = 1, we may transform the data Yt = r1t , X t = (r1t − r2t , . . . , r1t − rLt )

>, and let

ω =

1−
L∑

j=2

β j ,β2, . . . ,βL

 ,β = (β2, . . . ,βL)
>,

then the problem can be rewritten as the following unrestricted quantile regression

min
β,θ

{
n∑

t=1

ρτ
(
Yt − θ − β

>X t
)}

,

thus providing a straightforward way to estimate optimal portfolio weights using
expected shortfall as a risk criterion.
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10. Conclusion

Time series quantile regression is a growing subject – with many interesting issues
under current investigation. This survey is only a selected review on dynamic quantile
models. There are lots of interesting topics that are not included due to space restriction.
In particular, we only focus on introduction of time series quantile regression meth-
ods, many interesting inference problems and empirical applications are not discussed
(see, e.g., Koenker (2005) and Koenker and Xiao (2002, 2006)). There are several
existing programs for quantile regression applications. For example, both parametric
and nonparametric quantile regression estimations can be implemented by the func-
tion rq() and rqss() in the package quantreg in the computing language R, and SAS
now has a suite of procedures modeled closely on the functionality of the R package
quantreg.
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Hušková, M., 1997. L1-test procedures for detection of change. In: Dodge, Y. (Ed.), L1-Statistics Procedures

and Related Topics. Institute of Mathematical Statistics, Hayward, California, pp. 57–70.
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Abstract

The concept of the spectral envelope for analyzing periodicities in categorical-
valued time series was introduced in the statistics literature (Stoffer et al., 1993a)
as a computationally simple and general statistical methodology for the harmonic
analysis and scaling of non-numeric sequences. In the process of developing the
technology, many possible interesting adaptations became apparent; for example,
Stoffer and Tyler (1998) consider the maximal squared coherency between two
categorical-valued time series. One of the most interesting directions was the use
of the technology in the analysis of long DNA sequences. A benefit of the tech-
niques was that it combined rigorous statistical analysis with modern computer
power to quickly search for diagnostic patterns within long DNA sequences. The
methodology is closely related to frequency domain principal component analysis
and canonical correlation analysis of time series, and consequently, these topics
are described and summarized in the appendix. In addition to presenting the the-
ory and methods of the spectral envelope and related techniques, various analyses
of DNA sequences are included. The investigations focus primarily, but not exclu-
sively, on the analysis of viruses. The problems addressed concern about period
lengths in nucleosome positioning signals, optimal alphabets in codon usage, and
sequence alignment.

Keywords: spectral analysis, molecular biology, spectral envelope, coherency
envelope, categorical time series.

1. Introduction

Rapid accumulation of genomic sequences has increased demand for methods to
decipher the genetic information gathered in data banks such as GenBank in the
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United States, the DNA Data Bank of Japan (DDBJ), and the European Molec-
ular Biology Laboratory (EMBL). Although many methods have been developed
for a thorough microanalysis of short sequences, there is a shortage of powerful
procedures for the macroanalyses of long DNA sequences. Combining statistical anal-
ysis with modern computer power makes it feasible to search, at high speeds, for
diagnostic patterns within long sequences. This combination provides an automated
approach to evaluating similarities and differences among patterns in long sequences
and aids in the discovery of the biochemical information hidden in these organic
molecules.

Is a DNA strand a time series? Briefly, a DNA strand can be viewed as a long
string of linked nucleotides. Each nucleotide is composed of a nitrogenous base, a
five carbon sugar, and a phosphate group. There are four different bases that can
be grouped by size, the pyrimidines, thymine (T) and cytosine (C), and the purines,
adenine (A) and guanine (G). The nucleotides are linked together by a backbone
of alternating sugar and phosphate groups with the 5′ carbon of one sugar linked
to the 3′ carbon of the next, giving the string direction. DNA molecules occur nat-
urally as a double helix composed of polynucleotide strands with the bases facing
inward. The two strands are complementary, so it is sufficient to represent a DNA
molecule by a sequence of bases on a single strand; refer to Fig. 1. Thus, a strand
of DNA can be represented as a sequence {X t ; t = 1, . . . , n} of letters, termed base
pairs (bp), from the finite alphabet {A, C, G, T}.1 The order of the nucleotides con-
tains the genetic information specific to the organism. Expression of information stored
in these molecules is a complex multistage process. One important task is to trans-
late the information stored in the protein-coding sequences (CDS) of the DNA. A
common problem in analyzing long DNA sequence data is in identifying CDS that
are dispersed throughout the sequence and separated by regions of noncoding (which
makes up most of the DNA). Another problem of interest that we will address here
is that of matching two DNA sequences, say X1t and X2t . The background behind
the problem is discussed in detail in the study by Waterman and Vingron (1994). For
example, every new DNA or protein sequence is compared with one or more sequence
databases to find similar or homologous sequences that have already been studied, and
there are numerous examples of important discoveries resulting from these database
searches.

Great effort has been focused on questions about the mechanisms placing and
removing nucleosomes along the DNA molecule. The exact location of a nucleosome
relative to the DNA sequence can be crucial to the regulatory activity. Accordingly,
the nucleosome positioning problem became an early concern of molecular genetics
(Komberg, 1974). Studies suggest that a large fraction on most genomes are organized

1 It is worthwhile to review the allocation of symbols used in nucleotide sequences. Aside from the gua-
nine, adenine, thymine, cytosine (G, A, T, C) alphabet, we have R: purine (adenine or guanine); Y: pyrimidine
(thymine or cytosine); W: adenine or thymine (for the weak hydrogen bonding interaction between the
base pairs); S: guanine or cytosine (for the strong hydrogen bonding interaction between the base pairs);
M: adenine or cytosine (from aMino); K: guanine or thymine (both have Keto groups in similar positions);
H: adenine or thymine or cytosine (or not-G); B: guanine or cytosine or thymine (or not-A); V: guanine
or adenine or cytosine (or not-T); D: guanine or adenine or thymine (or not-C); N: guanine or adenine or
thymine or cytosine (aNy or uNspecified); X: unknown.
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Fig. 1. The general structure of DNA and its bases.

in positioned nucleosomes (for a review, see Simpson (1990)). If positioned nucleo-
somes do occur in vivo, how are their precise locations established and maintained?
Several possible mechanisms have been discussed in the literature, some are strongly
supported by empirical evidence, others are not. No evidence, for example, has yet
been gathered for special phasing proteins or for replication related alignment. A major
factor that seems to contribute to nucleosome positioning is the DNA sequence itself.
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Histone–DNA interactions2 are believed to be decisive in the fine tuning of the precise
octamer location. Two parameters are distinguished with respect to sequence-related
nucleosome positioning: translational signals mark the site on the DNA sequence, and
rotational signals define the curvature of the DNA on the side that faces toward the
histones. Translational signals are less well understood at present. One hypothesis sug-
gests that certain preferred base patterns at the dyad3serve as translational signals, since
special sequence properties are necessary near dyads, where the wrapped DNA devi-
ates in sharp bends from its otherwise smooth superhelical path around the octamer.
This view is supported by observed preferences for the trinucleotides RRR-YYY and
RRY-RYY in the dyad (Turnell et al., 1988). Another hypothesis regards runs of 5–18
As or Ts as potential signals because they tend to be excluded from the regions near the
dyad but are found at both ends. A third sequence-dependent translational signal might
be the change, or interruption of periodicities of di- or trinucleotides in the immediate
dyad region (Satchwell et al., 1986).

The idea of rotational signals for nucleosome positioning is based on the fact that
the nucleosomal DNA is tightly wrapped around its protein core. The bending of the
wound DNA requires compression of the grooves that face toward the core and a
corresponding widening of the grooves facing the outside. Since, depending on the
nucleotide sequence, DNA bends more easily in one plane than another, Trifonov and
Sussman (1980) proposed that the association between the DNA sequence and its pre-
ferred bending direction might facilitate the necessary folding around the core particle.
This sequence-dependent bendability motivated the theoretical and experimental search
for rotational signals. These signals were expected to exhibit some kind of periodicity
in the sequence, reflecting the structural periodicity of the wound nucleosomal DNA.

Although model calculations as well as experimental data strongly agree that some
kind of periodic signal exists, they largely disagree about the exact type of periodicity.
A number of questions remain unresolved: Do the periodicities in rotational signals
occur predominantly in di- or in trinucleotides, or even in higher order dinucleotides?
Ioshikhes et al. (1992) reported new evidence for dinucleotide signals, whereas the
analysis of Satchwell et al. (1986) resulted in a trinucleotide pattern that was newly sup-
ported by data from the works of Muyldermans and Travers (1994). Which nucleotide
alphabets are involved in rotational signals? Satchwell et al. (1986) used a strong (G, C)
versus weak (A, T) hydrogen bonding alphabet to propose a 10-bp signal, W3N2S3N2.
Zhurkin (1985) suggested the purine–pyrimidine alphabet with an RYN3YRN3 pat-
tern, and Trifonov and coworkers propose an AAN3TTN3 motif. What is the exact
period length? The helical repeat of free DNA is about 10.5 bp, the periodicities of
rotational signals tend to be slightly shorter than 10.5 in general, for example: 10.1 bp
in Shrader and Crothers (1990), 140.2 in Satchwell et al. (1986), 10.3 bp in Bina (1994),
and 10.4 bp in Ioshikhes et al. (1992). Consistent with all these data is the proposition
by Shrader and Crothers (1990) that nucleosomal DNA is over wound by about 0.3 bp

2 Histones are proteins that act as spools around which DNA winds, and play a role in gene regulation.
Bending occurs at an approximate period of 10 bp.

3 Dyad is a type of symmetry that refers to two areas of a DNA molecule whose base pair sequences are
inverted relative to each other. The complementary sequences will fold and base-pair with each other, and
the sequence of bases between them form a hairpin loop.
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per turn. Are there other periodicities besides the approximate 10-bp period? Uber-
bacher et al. (1988) observed several additional periodic patterns of lengths 6 to 7, 10,
and 21 bp. Bina (1994) reports a TT-period of 6.4 bp.

Of course, one could extend this list of controversial questions about the properties
and characteristics of positioning signals. Depending on the choice among these diver-
gent observations and claims, different sequence-directed algorithms for nucleosomic
mapping have been developed, for example, by Drew and Calladine (1987), Menger-
itsky and Trifonov (1983), Uberbacher et al. (1988), Zhurkin (1983), and Piña et al.
(1990). The analysis of existing data by the spectral envelope (Stoffer et al., 1993a)
has resulted in a more unified picture about the major periodic signals that contribute
to nucleosome positioning. This, in turn, can lead to new reliable and efficient ways to
predict nucleosome locations in long DNA sequences by computer.

In addition to positioning, the spectral envelope has proved to be a useful tool in
examining nonsynonymous codon usage. Regional fluctuations in G+ C content (iso-
chores) not only influence silent sites, but seem to create a general tendency in high
G+ C regions toward G+ C-rich codons (G+ C pressure), see Bernardi and Bernardi
(1985) and Sueoka (1988). Schachtel et al. (1991) compared two closely related α-
herpesviruses, HSVI, and VZV, and showed that for pairs of homologous genes, G+ C
frequencies differed in all three codon positions, reflecting the large difference in their
global G+ C content. In perfect agreement with their overall compositional bias, the
usage for each individual amino acid type was shifted significantly toward codons of
preferred G+ C content. Several authors reported codon context related biases (see
Buckingham (1990) for a review). Blaisdell (1983) observed that codon sites three
were chosen to be unlike neighboring bases to the left and to the right with respect to
the S-W alphabet. Shepherd (1984) observed an enrichment of RNY codons in cod-
ing sequences and suggested that this bias was the remnant of a primitive primeval
message (see Wong and Cedergren (1986)). Another purine–pyrimidine pattern for
weakly expressed genes was suggested by Yarus and Folley (1985). They observed
a preference for R|YYR or Y|RRY (the first letter represents the third position of the
preceding codon and the bar indicates the border between the codons). Trifonov (1987)
and Lagunez-Otero and Trifonov (1992) suggested a G-nonG-N-based frame-keeping
mechanism to prevent ribosomal slippage in the translational process. This mechanism
could explain a widely observed preference for GHN codons (see Curran and Gross
(1994)), for a critical evaluation. Although the various mentioned studies on nonsyn-
onymous codon usage exhibit many substantial differences, most of them agree on
one point, namely the existence of some kind of periodicity in coding sequences. This
widely accepted observation is supported by the spectral envelope approach that shows
a very strong period-three signal in genes but disappears in noncoding regions. This
method can even detect wrongly assigned gene segments as will be seen. In addition,
the spectral envelope provides not only the optimal period lengths but also most favor-
able alphabets, for example, {S, W}, {R, Y}, or {G, H}. This analysis might help decide
which among the different suggested pattern (such as RNY, GHN, etc.) are the most
valid.

The spectral envelope methodology is computationally fast and simple because it is
based on the fast Fourier transform and is nonparametric (i.e., it is model independent).
This makes the methodology ideal for the analysis of long DNA sequences. Fourier
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analysis has been used in the analysis of correlated data (time series) since the turn of
the century. Of fundamental interest in the use of Fourier techniques is the discovery
of hidden periodicities or regularities in the data. Although Fourier analysis and related
signal processing are well established in the physical sciences and engineering, they
have only recently been applied in molecular biology. Since a DNA sequence can be
regarded as a categorical-valued time series it is of interest to discover ways in which
time series methodologies based on Fourier (or spectral) analysis can be applied to
discover patterns in a long DNA sequence or similar patterns in two long sequences.

One naive approach for exploring the nature of a DNA sequence is to assign numer-
ical values (or scales) to the nucleotides and then proceed with standard time series
methods. It is clear, however, that the analysis will depend on the particular assign-
ment of numerical values. Consider the artificial sequence ACGTACGTACGT. . . Then,
setting A = G = 0 and C = T = 1, yields the numerical sequence 010101010101. . . ,
or one cycle every two base pairs (i.e., a frequency of oscillation of ω =

1/2 cycle/bp, or a period of oscillation of length 1/ω = 2 bp/cycle). Another
interesting scaling is A = 1, C = 2, G = 3, and T = 4, which results in the sequence
123412341234. . . , or one cycle every four bp (ω = 1/4). In this example, both scal-
ings (i.e., {A, C, G, T} = {0, 1, 0, 1} and {A, C, G, T} = {1, 2, 3, 4}) of the nucleotides
are interesting and bring out different properties of the sequence. It is clear, then, that
one does not want to focus on only one scaling. Instead, the focus should be on finding
all possible scalings that bring our interesting features of the data. Rather than choose
values arbitrarily, the spectral envelope approach selects scales that help emphasize
any periodic feature that exists in a DNA sequence of virtually any length in a quick
and automated fashion. In addition, the technique can determine whether a sequence is
merely a random assignment of letters.

Fourier analysis has been applied successfully in molecular genetics; McLachlan
and Stewart (1976) and Eisenberg et al. (1994) studied the periodicity in proteins
using Fourier analysis. They used predefined scales (e.g., the hydrophobicity alphabet)
and observed the ω = 1/3.6 frequency of amphipathic helices. Because predetermi-
nation of the scaling is somewhat arbitrary and may not be optimal, Cornette et al.
(1987) reversed the problem and started with a frequency of ω0 = 1/3.6 and proposed
a method to establish an “optimal” scaling at ω0 = 1/3.6. In this setting, optimality
roughly refers to the fact that the scaled (numerical) sequence is maximally correlated
with the sinusoid that oscillates at a frequency of ω0. Viari et al. (1990) generalized this
approach to a systematic calculation of a type of spectral envelope (which they called
λ-graphs) and of the corresponding optimal scalings over all fundamental frequencies.
Although the aforementioned authors dealt exclusively with amino acid sequences,
various forms of harmonic analysis have been applied to DNA by, for example, Tavaré
and Giddings (1989), and in connection to nucleosome positioning by Satchwell et al.
(1986) and Bina (1994). Stoffer et al. (1993a) proposed the spectral envelope as a gen-
eral technique for analyzing categorical-valued time series in the frequency domain.
The basic technique is similar to the methods established by Tavaré and Giddings
(1989) and Viari et al. (1990), however, there are some differences. The main difference
is that the spectral envelope methodology is developed in a statistical setting to allow
the investigator to distinguish between significant results and those results that can be
attributed to chance. In particular, tests of significance and confidence intervals can be
calculated using large sample techniques.
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2. The spectral envelope

2.1. Spectral analysis

For a numerical-valued time series sample, X t , t = 1, . . . , n, that has been centered by
its sample mean, the sample spectral density (or periodogram) is defined in terms of
frequency ω ∈ [− 1

2 , 1
2 ] as

f̃ (ω) =
∣∣∣n−1/2

n∑
t=1

X t exp(−2π i tω)
∣∣∣2.

The spectral density f (ω) of the time series is defined (as a descriptor of the hypo-
thetical population of possible sample paths in the statistical model) as the limit as
the sample size n tends to infinity of E[ f̃ (ω)] provided that it exists. Its existence
is guaranteed if the process is stationary with an absolutely summable covariance
function, γ (h) = cov(X t+h , X t ); i.e.,

∑
h |γ (h)| <∞. Details can be found in many

time series texts, for example, in the study by. It is worthwhile to note that f (ω) ≥ 0,
f (ω) = f (−ω), and

1/2∫
−1/2

f (ω) dω = 2

1/2∫
0

f (ω) dω = σ 2 (1)

where var(X t ) = σ
2 is the population variance of the time series. Thus, the spec-

tral density can be thought of as a decomposition of the total variance of a process
into components attributed to frequency. That is, for positive frequencies, the pro-
portion of the variance of X t that can be attributed to oscillations in the data in the
small frequency interval [ω,ω + dω] is roughly 2 f (ω)dω. If n is a highly compos-
ite integer, the fast Fourier transform provides extremely fast calculation of f̃ ( j/n),
for j = 1, 2, . . . , [[n/2]], where [[·]] is the greatest integer function. The frequencies
ω j = j/n are called the fundamental (or Fourier) frequencies. The sample equivalent
of the integral equation (1) is

2
[[(n−1)/2]]∑

j=1

f̃ ( j/n) n−1
+ f̃ (1/2) n−1

= S2, (2)

where S2 is the sample variance of the data; the last term is dropped if n is odd. One
can plot the periodogram, f̃ (ω j ), versus the fundamental frequencies ω j = j/n, for
j = 1, 2, . . . , [[n/2]], and inspects the graph for large values. Large values of the peri-
odogram at ω j indicate that the data are highly correlated with the sinusoid that is
oscillating at a frequency of j cycles in n observations. If the data are uncorrelated (or
white noise) the spectral density is flat, that is, f (ω) = σ 2 at all frequencies.

Since – no matter how large the sample size – the variance of periodogram is
unduly large, the graph of the periodogram can exhibit many nonsignificant peaks.
To overcome this problem, a smoothed estimate of the spectral density is typically used.
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The general form of the estimate is

f̂ (ω) =
m∑

q=−m

hq f̃ (ω j+q), (3)

where {ω j+q ; q = 0,±1, . . . ,±m} is a band of frequencies where ω j is the funda-
mental frequency closet to ω, and such that the weights hq = h−q are positive and∑m

q=−m hq = 1. A simple average corresponds to the case where hq = 1/(2m + 1)
for q = −m, . . . , 0, . . . , m. The number m is chosen to obtain a desired degree of
smoothness. Larger values of m lead to smoother estimates, but one has to be care-
ful not to smooth away significant peaks (this is the so-called bias-variance tradeoff
problem). Experience and trial-and-error can be used to select good values of m and
the set of weights {hq}. Another consideration is that of tapering the data prior to a
spectral analysis; i.e., rather than work with the data X t directly, one can improve the
estimation of spectra by working with tapered data, say Yt = at X t , where tapers {at }

generally have a shape that enhances the center of the data relative to the extremities,
such as a cosine bell, at = 0.5[1+ cos(2π t ′/n)] where t ′ = t − (n + 1)/2, favored by
Blackman and Tukey (1959). Another related approach is window spectral estimation.
Specifically, consider a window function H(α), −∞ < α <∞, that is real-valued,
even, of bounded variation, with

∫
∞

−∞
H(α)dα = 1, and

∫
∞

−∞
|H(α)|dα <∞. The

window spectral estimator is

f̂ (ω) = n−1
n−1∑
q=1

Hn(ω − q/n) f̃ (q/n), (4)

where Hn(α) = B−1
n

∑
∞

j=−∞ H(B−1
n [α + j]) and Bn is a bounded sequence of non-

negative scale parameters such that Bn → 0 and nBn →∞ as n→∞. Estimation
of the spectral density requires special attention to the issues of leakage and of the
variance-bias tradeoff typically associated with the estimation of density functions.
Readers who are unfamiliar with this material can consult one of the many texts on the
spectral domain analysis of time series; e.g., Shumway and Stoffer (2011), Chapter 4.

An analogous theory applies if one collects p numerical-valued time series, say
X1t , . . . , X pt , for t = 1, . . . , n. In this case, write X t = (X1t , . . . , X pt )

′ as the p × 1
column vector of data. The periodogram is now a p × p complex matrix

f̃ (ω) =

[
n−1/2

n∑
t=1

X t exp(−2π i tω)

][
n−1/2

n∑
t=1

X t exp(−2π i tω)

]∗
,

where * means to transpose and conjugate. The diagonal elements of f̃ (ω) are the
individual sample spectra and the off diagonal elements are related to the pairwise
dependence structure among the p sequences. We will investigate the off-diagonal
elements in more detail later. The population spectral density is again defined as the
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limit as n tends to infinity of E[ f̃ (ω)]. Smoothing the periodogram also proceeds
analogously to the univariate case, that is, f̂ (ω j ) =

∑m
q=−m hq f̃ (ω j+q).

2.2. Definition and asymptotics

The spectral envelope is an extension of spectral analysis when the data are categorical-
valued such as DNA sequences. To briefly describe the technique using the nucleotide
alphabet, let X t , t = 1, . . . , n be a DNA sequence taking values in {A, C, G, T}. For
real numbers β = (β1, β2, β3, β4)

′, not all equal, denote the scaled (numerical) data by
X t (β), where

X t (β) = β1 if X t = A; X t (β) = β2 if X t = C;

X t (β) = β3 if X t = G; X t (β) = β4 if X t = T.

For example, if β = (1, 0, 1, 0)′, then X t (β) = 1 if there is a purine (A or G) at
position t , and X t (β) = 0 if there is a pyrimidine (C or T) at position t . Hence, if X t is
ATAGC, then X t (β) is 10110. We define, for each frequency, β(ω) to be the optimal
scaling at frequency ω if it satisfies

λ(ω) = max
β

{
f (ω; β)

σ 2
β

}
,

where f (ω; β) is the spectral density of X t (β), the scaled data, and σ 2
β is the variance of

the scaled data. Note that λ(ω) can be thought of as the largest proportion of the power
(variance) that can be obtained at frequency ω for any scaling of the DNA sequence X t ,
and β(ω) is the particular scaling that maximizes the power at frequency ω. Thus, λ(ω)
is called the spectral envelope. The name spectral envelope is appropriate because λ(ω)
envelopes the spectrum of any scaled process. That is, for any assignment of numbers
to letters, the standardized spectral density of a scaled sequence is no bigger than the
spectral envelope, with equality only when the numerical assignment is proportional
to the optimal scaling, β(ω). The importance of this fact is demonstrated in Fig. 2.
We say “proportional to” because optimal scaling β(ω) is not unique. It is, however,
unique up to location and scale changes; that is, any scaling of the form aβ(ω)+ b1,
where a 6= 0 and b are real numbers, and 1 = (1, 1, 1, 1)′ yields the same value of the
spectral envelope λ(ω). For example, the numerical assignments {A, C, G, T} = {0, 1,
0, 1} and {A, C, G, T} = {−1, 1,−1, 1} will yield the same normalized spectral density.
The value of λ(ω), however, does not depend on the particular choice of scales; details
can be found in the works done by Stoffer et al. (1993a). For ease of computation, we
set one element of β(ω) equal to zero (i.e., for example, the scale for T is held fixed at
T = 0) and then proceed with the computations.

For example, to find the spectral envelope, λ(ω), and the corresponding optimal
scaling, β(ω), holding the scale for T fixed at zero, form 3× 1 vectors Yt ,

Yt = (1, 0, 0)′ if X t = A; Yt = (0, 1, 0)′ if X t = C;

Yt = (0, 0, 1)′ if X t = G; Yt = (0, 0, 0)′ if X t = T.
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Fig. 2. Demonstration of the spectral envelope. The short dashed line indicates a spectral density correspond-
ing to some scaling. The long dashed line indicates a spectral density corresponding to a different scaling.
The thick solid line is the spectral envelope, which can be thought of as throwing a blanket over all possi-
ble spectral densities corresponding to all possible scalings of the sequence. Because the exhibited spectral
densities attain the value of the spectral envelope at the frequencies near 0.1 and 0.33, the corresponding
scalings are optimal at those frequencies. In addition to finding interesting frequencies (e.g., there is some-
thing interesting near the frequency of 0.2 that neither scaling 1 or 2 discovers), the spectral envelope reveals
frequencies for which nothing is interesting (e.g., no matter which scaling is used, there is nothing interesting

in this sequence in the frequency range above 0.4).

Now with β = (β1,β2,β3)
′, the scaled sequence, X t (β), can be obtained from the Yt

vector sequence by the relationship X t (β) = β ′Yt . This relationship implies that

λ(ω) = max
β

{
β ′ fY (ω)β

β ′V β

}
(5)

where fY (ω) is the 3× 3 spectral density matrix of the indicator data, Yt , and V is
the population variance–covariance matrix of Yt . Because fY (ω) = f re

Y (ω)+ i f im
Y (ω)

is Hermitian, f im
Y (ω) is skew-symmetric, so that β ′ fY (ω)β = β ′ f re

Y (ω)β. It follows
that λ(ω) and β(ω) can easily be obtained by solving an eigenvalue problem with
real-valued matrices.

In other words, if Yt is the vector indicator process associated with a categorical
series X t , and fY (ω) and V are the spectral density and variance–covariance matrices
of Yt , respectively, then

(i) The spectral envelope, λ(ω), is the largest eigenvalue of f re
Y (ω) in the met-

ric of V ; that is, λ(ω) is largest eigenvalue of the determinantal equation∣∣ f re
Y (ω)− λV

∣∣ = 0.
(ii) The optimal scaling β(ω) is the corresponding eigenvector, that is, it satisfies

f re
Y (ω)β(ω) = λ(ω)V β(ω).
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An algorithm for estimating the spectral envelope and the optimal scalings given a
particular DNA sequence with alphabet S = {c1, . . . , ck+1}, is as follows.

1. Given a DNA sequence of length n, form the k × 1 vectors Yt , t = 1, . . . , n;
namely, for j = 1, . . . , k, Yt = ej if X t = c j where ej is a k × 1 vector with a 1
in the j th position as zeros elsewhere, and Yt = 0 if X t = cj+1.

2. Calculate the (fast) Fourier transform of the data,

d( j/n) = n−1/2
n∑

t=1

Yt exp(−2π i t j/n).

Note that d( j/n) is a k × 1 complex-valued vector. Calculate the peri-
odogram, f̃ ( j/n) = d( j/n)d∗( j/n), for j = 1, . . . , [[n/2]], and retain only the
real part, say f̃ re( j/n).

3. Smooth the real part of the periodogram as preferred to obtain f̂ re( j/n), a
consistent estimator of the real part of the spectral matrix.

4. Calculate the k × k variance–covariance matrix of the data, S = n−1∑n
t=1(Yt −

Y)(Yt − Y)′, where Y is the sample mean of the data.
5. For each ω j = j/n, j = 1, . . . , [[n/2]], determine the largest eigenvalue and

the corresponding eigenvector of the matrix 2n−1S−1/2 f̂ re(ω j )S−1/2. Note that
S−1/2 is the inverse of the unique square root matrix of S.4

6. The sample spectral envelope λ̂(ω j ) is the eigenvalue obtained in the previous
step. If b(ω j ) denotes the eigenvector obtained in the previous step, the optimal
sample scaling is β̂(ω j ) = S−1/2b(ω j ); this will result in three values, the fourth
being held fixed at zero.

Any standard programming language can be used to do the calculations; basi-
cally, one only has to be able to compute fast Fourier transforms and eigenvalues
and eigenvectors of real symmetric matrices. Some examples using the R Statistical
Programming Language may be found in the works of Shumway and Stoffer (2011,
Chapter 7). Again we note that the procedure can be done with any finite number
of possible categories, and is not restricted to looking only at the nucleotide alpha-
bets. Inference for the sample spectral envelope and the sample optimal scalings are
described in detail by Stoffer et al. (1993a). A few of the main results of that paper are
as follows.

If X t is an i.i.d. sequence, and if no smoothing is used [i.e., m = 0 in (3)], then the
following large sample approximation based on the chi-square distribution is valid for
x > 0:

Pr{n2−1̂λ(ω j )< x}
.
= Pr{χ2

2k < 4x} − π 1/2 x (k−1)/2 exp(−x)Pr{χ2
k+1< 2x}

/
0(k/2),

(6)

where k + 1 is the size of the alphabet being considered.

4 If S = P3P ′ is the spectral decomposition of S, then S−1/2
= P3−1/2 P ′, where 3−1/2 is the diagonal

matrix with the reciprocal of the root eigenvalues along the diagonal.
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In the general case, if a smoothed estimator is used and λ(ω) is a distinct root (which
implies that λ(ω) > 0), then, independently, for any collection of frequencies {ω ji ; i =
1, . . . , M}, M fixed, and for large n and m,

νm
λ̂(ω ji )− λ(ω ji )

λ(ω ji )
∼ AN(0, 1) (7)

and

νm
[
β̂(ω ji )− β(ω ji )

]
∼ AN(0,6 ji ), (8)

where 6 ji = V−1/2� ji V
−1/2 with

� ji = {λ(ω ji )H(ω ji )
+ f re(ω ji )H(ω ji )

+
− a(ω ji )a(ω ji )

′
}/2,

and H(ω ji ) = f re(ω ji )− λ(ω ji )I k−1, a(ω ji ) = H(ω ji )
+ f im(ω ji )V

1/2u(ω ji ), and
H(ω ji )

+ refers to the Moore–Penrose inverse of H(ω ji ). The term νm depends on the
type of estimator being used. In the case of weighted averaging, ν−2

m =
∑m

q=−m h2
q [if a

simple average is used, hq = 1/(2m + 1), then ν2
m = (2m + 1)]. Based on these results,

asymptotic normal confidence intervals and tests for λ(ω) can be readily constructed.
Similarly, for β(ω), asymptotic confidence ellipsoids and chi-square tests can be con-
structed; details can be found in the study by Stoffer et al. (1993a, Theorems 3.1–3.3).
As a note, we mention that this technique is not restricted to the use of sinusoids. In
the works done by Stoffer et al. (1993b), the use of the Walsh basis 5 of square-waves
functions that take only the values ±1, is described.

A simple asymptotic test statistic for β(ω) can be obtained. Let Ĥ(ω) = f̂ re
Y (ω)−

λ̂(ω)Ik , and

ξm(ω) =
√

2 νm f̂ re
Y (ω)

−1/2 Ĥ(ω)
(
β̂(ω)− β(ω)

) /
λ̂(ω)1/2.

Then,

ξm(ω)
′ξm(ω) (9)

converges (m →∞) in distribution to a distribution that is stochastically less than
χ2

k and stochastically greater than χ2
k−1. Note that the test statistic (9) is zero if β(ω) is

replaced by β̂(ω). One can check whether or not a particular element of β̂(ω) is zero by
inserting β̂(ω) in for β(ω), but with the particular element zeroed out and the resulting
vector rescaled to be of unit length, into (9).

Significance thresholds for the smoothed spectral envelope estimate can easily be
computed using the following approximations. Using the first-order Taylor expansion
we have

log λ̂(ω) ≈ log λ(ω)+
λ̂(ω)− λ(ω)

λ(ω)
,

5 The Walsh functions are a completion of the Haar functions; a summary of their use in statistics is given
in the works of Stoffer (1991).
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so that (n, m →∞)

νm[log λ̂(ω)− log λ(ω)] ∼ AN(0, 1). (10)

It also follows that E[log λ̂(ω)] ≈ log λ(ω) and var[log λ̂(ω)] ≈ ν−2
m . If there is no

signal present in a sequence of length n, we expect λ( j/n) ≈ 2/n for 1 < j < n/2,
and hence approximately (1− α)× 100% of the time, log λ̂(ω) will be less than
log(2/n)+ (zα/νm) where zα is the (1− α) upper tail cutoff of the standard normal
distribution. Exponentiating, the α critical value for λ̂(ω) becomes (2/n) exp(zα/νm).
Although this method is a bit crude, from our experience, thresholding at very small
α-levels (say, α = 10−4–10−6, depending on the size of n) works well.

2.3. Data analysis

As a simple example, consider the sequence data presented in the study by Whisenant
et al. (1991), which were used in an analysis of a human Y-chromosomal DNA frag-
ment; the fragment is a string of length n = 4156 bp. The sample spectral envelope of
the sequence is plotted in Fig. 3, where frequency is measured in cycles per bp. The
spectral envelope can be interpreted as the largest proportion of the total variance at
frequency ω that can be obtained for any scaling of the DNA sequence. The graph
can be inspected for peaks by employing the approximate null probabilities previously
given. In Fig. 3, we show the approximate 0.00001 null significance threshold for a
single a priori-specified frequency ω. The null significance value was chosen small in
view of the problem of making simultaneous inferences about the value of the spectral
envelope over more than one frequency.

Figure 3 shows a major peak near the zero frequency, indicating that the process has
long memory. Long memory is typically seen in the analysis of long DNA sequences,
and the implication of this was discussed by Maddox (1992). The estimated optimal
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Fig. 3. Spectral envelope of a human Y-chromosomal fragment based on a smoothed periodogram estimate;
the horizontal dashed line is an approximate 0.00001 significance threshold.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 14-ch10-259-296-9780444538581 2012/4/24 0:36 Page 274 #16

274 D. S. Stoffer

scalings at the zero frequency estimate are A = 0.67, C = 0.74, G = 0.03, T = 0; this
particular scaling suggests that the long memory is in terms of the amino-keto alpha-
bet (A = C, G = T). There is also a secondary peak at approximately ω = 0.25 cycle
per bp with a corresponding sample scaling of A = 0.41, C = 0.43, G = 0.80, T = 0.
Again we see the amino pairing A = C, but in this case, G and T are different.

3. Local spectral envelope

3.1. Piecewise stationarity

Long DNA sequences are heterogeneous and hence there is a need to establish methods
to investigate local behavior. In particular, as discussed in the Introduction, the genetic
model is that CDS are segments of DNA that are dispersed throughout the sequence and
separated by regions of noncoding or noise. Because genetic information is contained
in segments, piecewise stationarity appears to be a suitable model.

A k × 1 vector-valued piecewise stationary process, {Y s,n}
n−1
s=0 , for n ≥ 1, is defined

to be

Ys,n =

B∑
b=1

Ys,b I(s/n, Ub), (11)

where the Ys,b are stationary processes with continuous k × k spectral matrices fY ,b(ω),
and where Ub = [ub−1, ub) ⊂ [0, 1) is an interval, and I(s/n, Ub) is an indicator that
takes the value 1 if s/n ∈ Ub, and 0 otherwise. For ease of notation, we rescale time in
each block so that

{Ys,b: s/n ∈ Ub} 7→ {Yt ,b: t = 1, . . . , nb},

where the number of observations in segment b is nb and
∑B

b=1 nb = n. This rescaling
of time represents a simple time shift to the origin wherein Ys,b 7→ Yt ,b for s/n ∈ Ub

with t = s + 1−
∑b−1

i=1 ni .
We shall say that a categorical time series, {Xs,n}, on a finite state space and with

nonzero marginal probabilities (as discussed in Section 1), is piecewise stationary if
the corresponding k × 1 points process, {Ys,n}, is piecewise stationary. Quite often,
infill asymptotics is used for locally stationary processes (e.g., Dahlhaus, 1997). How-
ever, a DNA sequence is truly a discrete-time process, so it would be unrealistic to
consider an infill asymptotic situation wherein we assume we are able to obtain more
observations in a segment as the number of observations grows. In our case, we rely on
increasing domain asymptotics to approximate the behavior of the estimated spectral
envelope for suitably large segments. For small segments, simple Monte Carlo simu-
lations can be used to approximate the small sample null distribution of the spectral
envelope estimator.

If Xs,n is a piecewise stationary categorical time series, we define the local spectral
as the local analog of the optimality criterion described in (5), that is,

λb(ω) = sup
β

{
β ′ f re

Y ,b(ω)β

β ′Vbβ

}
, (12)
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for b = 1, . . . , B, where Vb is the variance–covariance matrix of Yt ,b, which are
the indicator vectors in block b as described in the previous section. Analogous to
Section 1, we define λb(ω) to be the local spectral envelope and the corresponding
eigenvector βb(ω) to be the local optimal scaling of block b and frequency ω.

The sample local spectral envelope is obtained analogously to the stationary case,
the local periodogram of the data {Ys,n : s/n ∈ Ub} in block b, for b = 1, . . . , B, is
given by

f̃b(ω) = db(ω)d
∗

b(ω), (13)

where

db(ω) = n−1/2
b

nb∑
t=1

Yt ,b exp{−2π i tω}

is the finite Fourier transform of the data {Yt ,b : t = 1, . . . , b}. A smoothed estimate of
the local spectral density can be obtained as

f̂b(ω j ) =

mb∑
q=−mb

hq ,b f̃b(ω j+q), (14)

where ω j = j/nb and the amount and type of smoothing, {hq ,b}, depends on nb among
other things. Under the assumption of piecewise stationarity, and in the case that the
stationary blocks are known, the results regarding estimation follow from the previous
section. In particular, the results (6)–(10) apply to the local estimation case provided
that nb is sufficiently large. As previously stated, the small nb case can be dealt with by
direct simulation.

3.2. Data analysis

As a simple example of the kind of analysis that can be accomplished, we consider the
gene BNRF1 (bp 1736–5689) of the Epstein–Barr virus (EBV); note that the gene is
nearly 4000-bp long. Fig. 4 shows a dynamic spectral envelope with a block size of
nb = 500. It is immediately evident from the figure that the even within a gene, there is
heterogeneity. There is, however, a basic cyclic pattern that exists through most of the
gene as evidenced by the peak at ω = 1/3 except at the end of the gene. Table 1 shows
the optimal scalings at the one-third frequency and we note that the corresponding
alphabets are somewhat consistent in the “significant” blocks, with each block indi-
cating a weak–strong bonding alphabet (A = T, C = G), except block number five
(bp 3736-4235).

3.3. Dyadic segmentation

Next, we discuss a systematic method for obtaining a local spectral envelope. The basic
idea is laid out in the works done by Stoffer et al. (2002) and is made more rigorous
by Jeong (2011). In the study by Stoffer et al. (2002), we presented asymptotic theory
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Fig. 4. Dynamic spectral envelope estimates for the BNRF1 gene (bp 1736–5689) of the Epstein–Barr
virus (EBV). The horizontal dashed lines indicate the blocks, and values over the approximate 0.005 null

significance threshold are indicated by darker regions.

Table 1
Blockwise optimal scaling, β̂(1/3), for the Epstein–Barr BNRF1 gene example

Block (bp) A C G T

1736–2235 0.26 0.69 0.68 0
2236–2735 0.23 0.71 0.67 0
2736–3235 0.16 0.56 0.82 0
3236–3735 0.15 0.61 0.78 0
3736–4235 0.30 0.35 0.89 0
4236–4735 0.22 0.61 0.76 0
4736–5235a 0.41 0.56 0.72 0
5236–5689a 0.90 −0.43 −0.07 0

a λ̂(1/3) is not significant in this block.

in the local stationary case that is similar to stationary case, with the added condi-
tion that the block size is large. One problem that was not considered in that article
was whether local spectral estimates were independent across blocks. To this end, we
state the following lemma wherein we assume the conditions under which Stoffer et al.
(2002, Theorem 3.3) hold; these conditions ensure the asymptotic normality of the local
spectral envelope, λb(ω) defined in (12). The main condition for which the indepen-
dence holds is if the process is not long memory; as was seen in the previous section,
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this assumption is likely to be violated in long DNA sequences, but perhaps not in
relatively short subsequences. In the following lemma, we define ω j :n = jn/n, where
{ jn} is a sequence of integers chosen so that jn/n is the closest Fourier frequency to the
frequency of interest, ω; i.e., ω j :n → ω as n→∞.

Lemma 1. Let {X t } be stationary with covariance function, γ (h), satisfying∑
h |h| |γ (h)| <∞. Suppose we observe X1, . . . , Xn , Xn+1, . . . X2n for n ≥ 1. For

j = 0, 1, . . . , n − 1, let

d1(ω j :n) = n−1/2
n∑

t=1

X t exp(−2π i tω j :n)

and let

d2(ωk:n) = n−1/2
n∑

t=1

X t+n exp(−2π i tωk:n),

such that ω j :n → ω1 and ωk:n → ω2. Then d`(·), for ` = 1, 2, is asymptotically
(n→∞) complex normal and such that d1(ω j :n) and d2(ωk:n) are asymptotically
independent for any ω1 and ω2.

Proof. The asymptotic complex normality follows directly from the works of
Shumway and Stoffer (2011, Theorem C.4). The independence follows from the
following inequality.

|cov{d1(ω j :n), d2(ωk:n)}| ≤ n−1
n∑

t=1

n∑
s=1

|γ (n + s − t)|

=

n∑
j=1

j

n
|γ ( j)| +

2n−1∑
j=n+1

2n − j

n
|γ ( j)|

≤

n∑
j=1

j

n
|γ ( j)| +

2n−1∑
j=n+1

|γ ( j)|.

Let n→∞, then by Kronecker’s Lemma,
∑n

j=1
j
n |γ ( j)| → 0, and by the absolute

summability of γ (h), we have
∑2n−1

j=n+1 |γ ( j)| → 0. 2

Based on Lemma 1, and provided that we are not in the long memory case, com-
parison of blockwise spectral envelope estimates and corresponding scalings is readily
available based on the asymptotic independence of the estimates in each block. For
example, a large sample test of equality of βs at the same frequency in two blocks
would proceed as follows. Let β̂1 is estimate of the optimal scale at frequency ω j in the
first block, β̂2 in the second block (with the first nonzero element of β positive) and 6̂i
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are the estimates of the corresponding covariance matrices given in (8). Under the null
hypothesis that β1 = β2 (which does not imply 61 = 62) we have that

ν2
m

(
β̂1 − β̂2

)′ (
6̂1 + 6̂2

)−1
(
β̂1 − β̂2

)
·

∼ χ2
k ;

recall k is one less than the size of the alphabet.
Now, we discuss a tree-based adaptive segmentation method for finding the blocks

b = 1, . . . , B. The strategy is to divide the sequence into small blocks and then to
recombine adjacent blocks whose estimated local spectral envelopes are sufficiently
similar. The basic idea is that adjacent blocks with similar local spectral envelope esti-
mates give similar genetic information. The main feature of the algorithm is it divides
the sequence in a dyadic manner using a measure of distance (or discrepancy) between
the genetic coding information contained at two adjacent blocks. The algorithm, which
was inspired by Adak (1998) and was suggested by Stoffer et al. (2002), is as follows.

1. Set the maximum level J . The value of J determines the smallest possible size
of the segmented blocks. For a sequence of length n, the smallest blocks have
length n/2J . Ideally, the block sizes should be small enough so that one can
separate useful genetic information unique to that block from the noncoding
material (noise). One should be careful, however, about making the blocks too
small. Blocks have to be large enough to give good estimates of the local spectral
envelope. Our recommendation is that the block size should be at least 28.

2. Form the blocks. At each level j = 0, . . . , J , divide the data sequence into 2 j

blocks. Denote B( j , `) to be the `th block on level j , where ` = 1, . . . , 2 j . The
first block on level j is denoted as B( j , 1) and the last as B( j , 2 j ). The “inner”
blocks at level j are B( j , `), (where ` = 2, . . . , 2 j

− 1). For any level j =
0, . . . , J , block B( j , `), for ` = 1, . . . , 2 j , consists of the M j = n/2 j elements
{X [(`−1)n/2 j ], . . . , X [`n/2 j−1]}.

3. Estimate the spectral envelope. Compute an estimate of the local spectral enve-
lope, λ̂ j ,`(ωk), at each fundamental frequency ωk = k/M j (k = 0, . . . , M j/2) in
each block B( j , `) where j = 0, . . . , J , and ` = 1, . . . , 2 j .

4. Create a table of distances. Let δ[·, ·] be a distance (discrepancy) measure
between the spectral envelope estimates of two children blocks. We will dis-
cuss choosing such a measure after the algorithm is presented. Using the distance
measure, create a table of distances corresponding to each block, B( j , `), namely,

D( j , `) = δ[ λ̂ j+1,2`−1(ω), λ̂ j+1,2`(ω)],

for ` = 1, . . . , 2 j , and for each level j < J .
5. Mark the blocks for final segmentation. Mark all the blocks B(J − 1, `), at level

J − 1 for ` = 1, . . . , 2J−1. For j = J − 2, and ` = 1, . . . , 2 j , if

D( j , `) ≤ D( j + 1, 2`− 1)+ D( j + 1, 2`),

then mark the block B( j , `) and leave D( j , `) unchanged. Otherwise, leave the
block B( j , `) as unmarked and set

D( j , `) = D( j + 1, 2`− 1)+ D( j + 1, 2`).
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Iterate this procedure for j = J − 3, J − 4, . . . , 0. The final segmentation of the
DNA sequence is the set of highest marked blocks B( j , `) such that B( j , `) is
marked and its parent block and ancestor blocks are not marked.

6. Classification. For the final segmentation, use the information in the estimated
local spectral envelope to classify a segment as (i) highly likely to contain CDS,
(ii) highly likely to contain noncoding, or (iii) uncertain. A specific classification
method is discussed below.

As opposed the recommendation in the works of Stoffer et al. (2002), our preferred
choice for a distance measure in Step 4 is a symmetric Kullback–Leibler divergence
between the local spectral envelope in children blocks B( j + 1; 2`− 1) and B( j + 1;
2`). To this end, we define the distance measure,

D( j , `) =
1

M j/2

M j /2∑
j=1

[
λ̂ j+1,2`−1(ω j )− λ̂ j+1,2`(ω j )

]
log

λ̂ j+1,2`−1(ω j )

λ̂ j+1,2`(ω j )
, (15)

where ω j = j/M j . The use of the measure is discussed in the study by Jeong (2011),
where it is shown that, if λ j+1,2`−1(ω) = λ j+1,2`(ω), then, as M j →∞,

Pr{D( j , `) > D( j + 1, 2`− 1) + D( j + 1, 2`)} → 0.

In other words, for large block sizes, the probability that the algorithm splits a block
when in fact the block should not be split is small. Once the final segmentation is deter-
mined, a classification rule should be put into place on the segmented sequence. Such
rules are perhaps best left to molecular biologists and should take into account the type
of DNA being considered. Experience with viruses leads us to the following classifica-
tion rule for viruses, which we demonstrate in an example. To this end, (i) a block is
designated as containing only coding if the local estimated spectral envelope exhibits
a peak at frequency 1/3 and other nonzero frequencies such as the 1/10 frequency pre-
dicted by Trifonov in the early 1980s. (ii) A block is designated as containing both
coding and noncoding if the spectral envelope exhibits a peak at (or near) the zero
frequency as well as a peak at frequency 1/3, and possibly other nonzero frequencies.
(iii) A block is designated as containing noncoding (noise) if the spectral envelope is
either flat, indicating white noise, or has a peak at, or near, the zero frequency and no
other peaks, indicating fractional noise. (iv) A block is designated as containing other
interesting features (e.g., repeat regions) if spectral envelope exhibits several nonzero
peaks. (v) If adjacent blocks are classified in the same way, and the optimal scaling
indicates the same alphabets, they may be recombined.

3.4. Data analysis

As an example, we present the analysis of a subsequence of the Epstein–Barr virus
genome. The subsequence consists of bp 46001–54192; the length of the series is n =
213
= 8192. Table 2 shows a portion of the EMBL file on the virus, and there are

three interesting regions indicated within this subsequence. The segment contains two
coding sequences (CDS), one from bp 46,333 to 47481 [BWRF1], and another from
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Table 2
Section of the Epstein–Barr file at the European Molecular Biology Laboratory (EMBL)

Key Location/Qualifiers Key Location/Qualifiers

CDSa 46333..47481 mRNA 49852..50032

/note="BWRF1 reading /note="exon (Bodescot

frame 12" et al., 1984)

misc feature 47007..47007 misc feature 50003..50003

/note="BAM: BamH1 W/Y" /note="polyA signal:

AATAAA, end of

mRNA 47761..47793 T1 RNA and EBNA-2 RNA

/note="Exon Y1 Bodescot (3.0kb latent RNA

et al., 1984" in IB4 cells)"

promoter 47831..47831 promoter complement(50156..50156)

/note="TATA: TATAAGT" /note="TATA: TATAAGT"

mRNA 47878..47999 misc feature complement(50317..50317)

/note="Exon Y2 Bodescot /note="polyA signal:

et al., 1984 EBNA-1 AATAAA, early RNA

(Speck and Strominger, from 52817"

1985) last common exon" repeat regiona 50578..52115

misc feature complement(48023..48023) /note="12 x "125bp"

/note="polyA signal: repeats"

AATAAA" misc feature complement (50578..52557)

CDSa 48386..50032 /note="BHLF1 early

reading frame"

/note="Coding exon misc feature 52654..53697

for EBNA-2 /note="region homologous

(Sample et al., 1986)" to Eco

mRNA 48386..48444 promoter complement(52817..52817)

/note="exon Bodescot /note="TATA: GATAAAA

et al., 1984" early RNA containing

CDSa 48429..49964 BHLF1

/note="BYRF1, encodes (Jeang and Hayward, 1983;

EBNA-2 (Dambaugh et al., Freese et al., 1983)"

1984; Dillner et al., promoter 53759..53759

1984)"

a Indicates interesting regions of the sequence.

bp 48386 to 50032 [BYRF1]. Also notable is a large repeat region from bp 50578 to
52115; repeat regions are highly repetitive regions DNA. Repeat regions are as much
of an interest to molecular biologists as CDS. For example, in humans, repeat regions
are often associated with disease syndromes. In this example, we set the lowest level at
J = 5 so that the smallest blocks have 256 elements.

The table of distances indicating the best segmentation and classifications is shown
in Table 3. We note that adjacent blocks with the same classification can be recom-
bined; this situation happens with blocks B(4, 10) and B(3, 6). The spectral envelopes
for the final segmentation are displayed in Fig. 5. The algorithm locates the interesting
regions of the DNA sequence considered here. In particular, block B(1, 1), indicates
a CDS in the subsequence. The spectral envelope of that region has peaks at the pre-
dicted frequencies of 1/10 and 1/3. The combination of blocks B(4, 10) and B(3, 6),
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Table 3
Distances (in %) as defined in (15) for each block

Level B( j , `)

j = 0 28 7→ 25

j = 1 9 [C] 29 7→ 16

j = 2 7 7 30 7→ 8 8 [N]

j = 3 6 7 15 11 19 7→ 6 2 [R] 7 8

j = 4 6 3 7 7 6 14 19 5 6 [N] 0 [R] 3 3 6 46 12 6

Note: The 7→ symbol indicates that an original distance has been reset, and thus a block with-
out a 7→ symbol indicates a marked block, all according to step 5 of the algorithm. The best
segmentation is marked with a letter indicating the classification: [C] = CDS, [N] = Noise,
[R] = Repeat region.

Frequency
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0.2

0.6
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Fig. 5. Spectral envelopes for the DNA subsequence in each block of best segmentation and an approximate
0.00001 significance threshold shown as a dashed line.

which includes bp 50609–52144, correctly identifies a large repeat region (the actual
location is bp 50578–52115); notice the difference between a CDS region and a repeat
region, which has multiple peaks. It is of course reasonable to recombine these two
blocks. Finally, the spectral envelopes in blocks B(4, 9) and B(2, 4) are similar and
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EBV − BWRF1

0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.8

Frequency

EBV − BYRF1

Fig. 6. Spectral envelopes of the BWRF1 gene and the BYRF1 gene that are both within block B(1, 1). An
approximate 0.00001 significance threshold is shown as a dashed line.

both indicate fractional noise. Figure 5 includes the approximate 0.00001 null signifi-
cance thresholds, shown as dashed lines, for reference. Note that the coding sequences,
which are both within block B(1, 1), are not separated by the algorithm. This is likely
due to the fact that the CDS BWRF1 is in both blocks B(2, 1) and B(2, 2), which were
combined in the algorithm. Although the genes are not separated by the algorithm, it
correctly identifies a region of interest. Further investigation of the region of interest
indicates that there are two different mechanisms, one indicated by the 1/10 frequency
and the other by the 1/3 frequency. The spectral envelopes of the individual genes are
displayed in Fig. 6, where the distinction between the two genes are evident.

3.5. Discussion

Before closing this section, I will mention that smoothing the spectral matrix of a
multivariate process takes special care. For example, all the elements of the peri-
odogram matrix are smoothed the same way with the typical smoothing technique
given in (3). This is done to ensure that the estimate, f̂ (ω), is non-negative definite.
There are, however, many situations, including the analysis DNA sequences, for which
different components of the spectral matrix have different degrees of smoothness. To
overcome this problem, Rosen and Stoffer (2007) proposed a Bayesian approach that
used Markov chain Monte Carlo techniques to fit smoothing splines to each compo-
nent, real and imaginary, of the Cholesky decomposition of the periodogram matrix.
The spectral estimator is then obtained by reconstructing the spectral estimator from
the smoothed Cholesky decomposition components. The technique produces an auto-
matically smoothed spectral matrix estimator along with samples from the posterior
distributions of the parameters to facilitate inference. We will not present an analysis
using the technique here, but interested readers can see the DNA sequence example in
Section 3.3 of the paper by Rosen and Stoffer (2007).
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4. Detection of genomic differences

As discussed in the Introduction, the problem of matching two DNA sequences is of
essential interest to molecular biologists. The paper of Waterman and Vingron (1994),
which gives some background to problem, is written for statisticians. They noted that
new DNA or protein sequences are compared with one or more sequence databases to
find similar or homologous sequences that have already been studied. Moreover, there
are numerous examples of important discoveries resulting from these comparisons. For
example, when the cystic fibrosis gene was cloned and sequenced, a database search
revealed that the gene product had similarity to a family of related ATP-binding pro-
teins involved in active transport of small hydrophilic molecules across the cytoplasmic
membrane (Riordan et al., 1989).

4.1. The general problem

Stoffer and Tyler (1998) discussed a more general problem and we give some back-
ground here. In the general case, X1t and X2t , t = 0,±1,±2, . . . , are categorical
sequences taking values in possibly different state spaces of dimensions k1 + 1 and
k2 + 1, respectively. Consider two nonconstant transformations g and h with g(X1t )

and h(X2t ) being real-valued time series such that g(X1t ) has continuous spectral
density fgg(ω) and h(X2t ) has continuous spectral density fhh(ω). We denote the
complex-valued cross-spectral density of the two series g(X1t ) and h(X2t ) by fgh(ω).
A measure of the degree of similarity between the sequences g(X1t ) and h(X2t ) at
frequency ω is the squared coherency,

ρ2
gh(ω) =

| fgh(ω)|
2

fgg(ω) fhh(ω)
. (16)

Of course the value of ρ2
gh(ω) will depend on the choices of the transformations g

and h. If X1t and X2t are independent, then so are g(X1t ) and h(X2t ), for any g and h,
in which case ρ2

gh(ω) = 0 for all ω. The main goal here is to find g and h, under var-
ious constraints, to maximize the squared coherency ρ2

gh(ω). If the maximized value
of ρ2

gh(ω) is small, we can say that the two sequences X1t and X2t do not match at
frequency ω. If the maximized value of ρ2

gh(ω) is large, then the resulting transforma-
tions g and h can help in understanding the nature of the similarity between the two
sequences.

To this end, identify the categorical sequence X1t with the vector indicator process
Y 1t , where Y1t is a k1 × 1 vector with a one in the j th position if X1t is in state j
( j = 1, . . . , k1) at time t and zeros elsewhere. If X1t is in state k1 + 1, then Y 1t is the
zero vector. Similarly, we identify X2t with the k2 × 1 vector indicator process Y 2t .
We assume the existence of the ki × ki (i = 1, 2), nonsingular spectral matrices f11(ω)

and f22(ω) of Y 1t and Y 2t , respectively, and denote the k1 × k2 cross-spectral matrix
between Y 1t and Y 2t by f12(ω).

To describe the problem in terms of scaling sequences, let α = (α1, . . . , αk1)
′
∈ Rk1 ,

α 6= 0, be a vector of reals (scalings) associated with the categories of the first sequence,
X1t , and let β = (β1, . . . , βk2)

′
∈ Rk2 , β 6= 0, be a vector of scalings associated with the
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categories of the second sequence, X2t . Define the real-valued series

X1t (α) = α j if X1t is in state j for j = 1, . . . , k1,

X2t (β) = β j if X2t is in state j for j = 1, . . . , k2,
(17)

where, in addition, X1t (α) = 0 if X1t is in state k1 + 1, and X2t (β) = 0 if X2t is in state
k2 + 1. Since the scaled series can be written as X1t (α) = α′Y 1t , and X2t (β) = β ′Y 2t ,
the squared coherency between X1t (α) and X2t (β) can be written as

ρ2
12(ω; α, β) =

|α′ f12(ω)β|
2

[α′ f re
11 (ω)α] [β ′ f re

22 (ω)β]
. (18)

Setting a = f re
11 (ω)

1/2α and b = f re
22 (ω)

1/2β, subject to a′a = 1 and b′b = 1, define

Q(ω) = f re
11 (ω)

−1/2 f12(ω) f re
22 (ω)

−1/2
= Qre(ω)+ i Qim(ω) (19)

and write (18) as

ρ2
12(ω; a, b) = [a′Qre(ω)b]2

+ [a′Qim(ω)b]2. (20)

The goal is to find a and b to maximize (20) for each ω of interest. Several approaches
to the maximization are available; one approach is based on the following observations.

Proposition 1. (Stoffer & Tyler) Fix ω and drop it from the notation. Then (20) can be
written as

ρ2
12(a, b) = a′(Qrebb′Qre

+ Qim bb′Qim)a = b′(Qreaa′Qre
+ Qim aa′Qim)b. (21)

Let b0 be an arbitrary real-valued k2 × 1 unit length vector. Define the sequence of
vectors aj to be the eigenvector corresponding to the largest root of the at most rank 2,
nonnegative definite matrix

Qreb j−1b′j−1 Qre′
+ Qim b j−1b′j−1 Qim ′ (22)

and the sequence b j to be the eigenvector corresponding to the largest root of the at
most rank 2, nonnegative definite matrix

Qre′a j a′j Qre
+ Qim ′a j a′j Qim , (23)

for j = 1, 2, . . . Then, from the first part of (21) it follows that ρ2(a j+1, b j ) ≥

ρ2(a, b j ) for any a of unit length, and from the second part of (21) it follows that
ρ2(a j+1, b j+1) ≥ ρ

2(a j+1, b) for any b of unit length. Thus,

ρ2(a j+1, b j+1) ≥ ρ
2(a j+1, b j ) ≥ ρ

2(a j , b j ). (24)
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The algorithm can be used to find the optimal scalings at each frequency, ω,
of interest. With L[A] denoting the eigenvector corresponding to the largest eigen-
value of matrix A, the algorithm can be initialized by setting b0 equal to either
L[Qre(ω)′Qre(ω)] or L[Qim(ω)′Qim(ω)], depending on which vector produces the
larger value of (20) for arbitrary a. In turn, α(ω) and β(ω) can be taken proportional
to f re

11 (ω)
−1/2a(ω) and f re

22 (ω)
−1/2b(ω), respectively, where a(ω) and b(ω) maximize

(20). Note that the algorithm requires only the computation of latent roots and vectors
of at most rank 2, nonnegative definite matrices, regardless of the dimension of the
state-spaces. Moreover, by (24), the objective function increases with each step.

In the specific problem of comparing DNA sequences, we will be interested in using
the same scaling for both sequences. The next proposition establishes a condition under
which that approach is optimal.

Proposition 2. (Stoffer & Tyler) Under the notation and conditions of Proposition 1,
if k1 = k2 = k and the matrices Qre and Qim are symmetric, the maximum value of
ρ2

12(a, b) is attained when a = b.

In the case of symmetry, the algorithm in Proposition 1 is simplified by setting b0

equal to either L[Qre(ω)2] or L[Qim(ω)2], depending on which vector produces the
larger value of ρ2

12(ω, b0). The sequence

b j = L[Qre(ω)b j−1b′j−1 Qre(ω)+ Qim(ω)b j−1b′j−1 Qim(ω)], (25)

for j = 1, 2, . . . , replaces the alternating sequences (22)–(23); note that ρ2
12(ω; b j ) ≥

ρ2
12(ω; b j−1).

The problems mentioned above are related to the canonical analysis of time series as
developed by Brillinger (2001, Chapter 10). The details are described in the Appendix,
but briefly, if in (17), we allow α and β to be complex-valued, then the solution is that
X1t (α) and X2t (β) are the canonical variate series with maximal squared coherency
being the largest eigenvalue of f22(ω)

−1/2 f21(ω) f11(ω)
−1 f12(ω) f22(ω)

−1/2. Although
this method can be used to obtain an upper bound for the real-valued cases, it is perhaps
too brutal to be used in applications to DNA sequences; one obvious problem being that
it leads to the use of complex-valued scales that are different for each sequence.

4.2. Models for sequence matching

In the case of matching DNA sequences, we are interested in sequences X1t and X2t that
are defined on the same state space, S = {c1, . . . , ck+1}. In this case, it is appropriate
to choose common scalings. We consider two cases, local alignment where the two
sequences may be in phase, and global alignment where the sequences may be out of
phase. Henceforth, the k × 1 indicator sequence corresponding to the DNA sequence,
X i t is denoted by Yi t , for i = 1, 2.

In Stoffer (1987, Section 3), I developed a number of signal-plus-noise models for
discrete-valued time series. In the context of matching sequences, we may use those
concepts as follows. The first model, which I will call the local alignment model, is

Y i t = pi + St + ei t (26)
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where pi = (pi1, . . . , pik)
′ is the vector of positive probabilities pi j = Pr(X i t = c j ),

for i = 1, 2 and j = 1, . . . , k. In addition, St is possibly a common k × 1 vector-valued
series that is uncorrelated with the k × 1 series ei t , i = 1, 2. There may be some depen-
dence structure between St and ei t and they may take values on different supports. If we
are examining a relatively short sequence, then we may assume that St has k × k spec-
tral density matrix f ss(ω), and ei t , i = 1, 2, have common k × k spectra denoted by
f ee(ω). It will become apparent that the method is fairly robust against the assumption
of common spectra for the ei t .

Let β = (β1, . . . , βk)
′
∈ Rk , β 6= 0, be a vector of scalings associated with the

categories {c1, . . . , ck}. As before, define the real-valued series X i t (β) = β j

if X i t = c j , j = 1, . . . , k, and X i t (β) = 0 if X i t = ck+1, for i = 1, 2. Note that
X i t (β) = β ′Y i t = β ′ pi + β ′St + β ′ei t , for i = 1, 2. Let f11(ω; β) be the spectrum of
scaled process X1t (β); similarly, let f22(ω; β) denote the spectrum of X2t (β) and
let f12(ω; β) denote the cross-spectrum between X1t (β) and X2t (β). The following
conditions hold:

fi i (ω; β) = β ′{ f re
ss (ω)+ f re

ee (ω)}β, i = 1, 2,

f12(ω; β) = β ′ f re
ss (ω)β.

(27)

The coherence between X1t (β) and X2t (β) is seen to be

ρ12(ω; β) =
β ′ f re

ss (ω)β

β ′[ f re
ss (ω)+ f re

ee (ω)]β
. (28)

Note that the conditions of Proposition 2 are satisfied, so that choosing common
scalings is optimal here.

If there is no common signal, i.e., fss(ω) = 0, then ρ12(ω; β) = 0 for any scaling β.
Thus, the detection of a common signal can be achieved by considering the maximal
coherence under the model conditions. Setting b = [ f re

ss (ω)+ f re
ee (ω)]

1/2β, subject to
b′b = 1, write (28) as

ρ12(ω; b) = b′[ f re
ss (ω)+ f re

ee (ω)]
−1/2 f re

ss (ω) [ f re
ss (ω)+ f re

ee (ω)]
−1/2b. (29)

This is an eigenvalue problem, and the maximum value of (29) is the largest scalar
λ(ω) such that

[ f re
ss (ω)+ f re

ee (ω)]
−1/2 f re

ss (ω) [ f re
ss (ω)+ f re

ee (ω)]
−1/2b(ω) = λ(ω)b(ω). (30)

The optimal scaling, β(ω), is taken proportional to [ f re
ss (ω)+ f re

ee (ω)]
−1/2b(ω).

This value will maximize the coherence at frequency ω between the two sequences,
with the maximum value being λ(ω). That is, ρ12(ω; β) ≤ ρ12(ω; β(ω)) = λ(ω), with
equality only when β is proportional to β(ω). Estimation proceeds in an obvious way:
Given consistent estimates f̂i j (ω), for i , j = 1, 2, put

f̂ re
ss (ω) = [ f̂ re

12 (ω)+ f̂ re
21 (ω)]/2 and f̂ re

ss (ω)+ f̂ re
ee (ω) = [ f̂ re

11 (ω)+ f̂ re
22 (ω)]/2. (31)

A frequency-based test for a common signal in the scaled sequences X1t (β) and
X2t (β) was described by Stoffer and Tyler (1998), the null hypothesis being that
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fss(ω) = 0. The basic requirement is that we smooth the periodograms by simple aver-
aging; that is, the weights in (3) are all equal to 1/L , where L = 2m + 1. In this case,
it was shown that the estimated coherence based on (31) is (we use a bar over the
estimates to indicate simple averaging)

ρ12(ω j ; β) =
β ′ f

re
ss (ω j )β

β ′ f
re
ss (ω j )β + β ′ f

re
ee(ω j )β

=
F(ω j ; β)− 1

F(ω j ; β)+ 1
, (32)

provided ρ12(ω j ; β) 6= 1. Here, ω j is a fundamental frequency, and for a fixed value
of ω j and β, F(ω j ; β) has an asymptotic (n→∞) F-distribution with 2L numera-
tor and denominator degrees of freedom. It follows that the scaling, say β(ω j ), that
maximizes (32) also maximizes F(ω j ; β). Moreover, the maximum value of F(ω j ; β)
under model (26) is λF (ω j ) = [1+ λ(ω j )]/[1− λ(ω j )], where λ(ω j ) denotes the sam-
ple spectral envelope for this model with estimates based on simple averaging. Note
that λF (ω j ) = sup F(ω j ; β), over β 6= 0. Under the assumption that Y 1t and Y 2t are
mixing, the asymptotic (n→∞) null distribution of λF (ω j ) is that of Roy’s largest
root. Finite sample null distributions under the additional model assumption that e1t

and e2t are both white noise can be obtained by direct simulation. Details can be found
in the works of Stoffer and Tyler (1998).

The model can be extended to include the possibility that there may be many signals
common to each sequence, and that the sequences are not necessarily aligned. The
general global alignment model is

Y 1t = p1 +

q∑
j=1

S j t + e1t and Y 2t = p2 +

q∑
j=1

S j ,t−τ j + e2t , (33)

where S j t , j = 1, . . . , q , are zero-mean realizations of stationary k × 1 vector-valued
time series that are mutually uncorrelated, and in addition are uncorrelated with the
zero-mean, stationary k × 1 vector-valued series e1t and e2t . Furthermore, S j t has k × k
spectral density matrix fS j (ω), j = 1, . . . , q , and ei t , i = 1, 2, have common k × k
spectra denoted by fee(ω). Again, it will become apparent that the estimation procedure
is robust against the assumption of equal spectra.

There is no need to specify the phase shifts, τ1, . . . , τq , or the integer q ≥ 0, however,
the problem of their estimation is interesting. We consider the following method to help
decide whether or not q = 0. First, note that if q > 0, then

f11(ω)= f22(ω)=

q∑
j=1

fS j (ω)+ fee(ω), and f12(ω)=

q∑
j=1

fS j (ω) exp(iωτ j ). (34)

Let β = (β1, . . . , βk)
′
∈ Rk , β 6= 0, be a vector of scalings, write X i t (β) = β ′Y i t , for

i = 1, 2, so that the squared coherency between X1t (β) and X2t (β) is

ρ2
12(ω; β) =

∣∣∣∑q
j=1 β ′ f re

S j
(ω)β exp(iωτ j )

∣∣∣2∣∣β ′ f re(ω)β
∣∣2 , (35)
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where f (ω) = f11(ω) = f22(ω). Setting b = f re(ω)1/2β, with the constraint b′b = 1,
write (35) as

ρ2
12(ω; b) =

∣∣∣∣b′ { q∑
j=1

f re(ω)−1/2 f re
S j
(ω) f re(ω)−1/2 exp(iωτ j )

}
b

∣∣∣∣2. (36)

Define the complex-valued matrix Q(ω) as

Q(ω) =
q∑

j=1

f re(ω)−1/2 f re
S j
(ω) f re(ω)−1/2 exp(iωτ j ) = Qre(ω)+ i Qim(ω), (37)

and note that both Qre(ω) and Qim(ω) are symmetric matrices (but not necessarily
positive definite). As noted in Proposition 2, the optimal strategy is to select the scalings
to be the same for both sequences. Now, write (36) as

ρ2
12(ω; b) = [b′Qre(ω)b]2

+ [b′Qim(ω)b]2. (38)

Given consistent spectral estimates f̂i j (ω), we can estimate f (ω) by f̂ (ω) =
1/2[ f̂11(ω)+ f̂22(ω)] so that consistent estimates of Qre(ω) and Qim(ω) are, respec-
tively,

Q̂re(ω) = [ f̂ re
11 (ω)+ f̂ re

22 (ω)]
−1/2 [ f̂ re

12 (ω)+ f̂ re
21 (ω)] [ f̂ re

11 (ω)+ f̂ re
22 (ω)]

−1/2, (39)

Q̂im(ω) = [ f̂ re
11 (ω)+ f̂ re

22 (ω)]
−1/2 [ f̂ im

12 (ω)− f̂ im
21 (ω)] [ f̂ re

11 (ω)+ f̂ re
22 (ω)]

−1/2. (40)

The estimated squared coherency can be maximized via Proposition 2 and the
optimal scaling vector at any particular frequency, β̂(ω), is taken proportional to
f̂ re(ω)−1/2 b̂(ω), where b̂(ω) is the maximizing vector.

4.3. Data analysis

In Fig. 4, it is seen that, although a cycle of 1/3 could be found in most of the gene, the
last 1000 bp appeared to contain no cyclic behavior and might be considered to be non-
coding. Herpesvirus saimiri (HVS) also contains a gene labeled BNRF1. The spectral
envelopes of the last 1000 bp of the BNRF1 gene in HVS and EBV are shown in Fig. 7.
Unlike EBV-BNRF1, the spectral envelope for HVS-BNRF1 has considerable power
at frequency 1/3 in the final 1000 bp. It is of interest to know if the two genes match
in the final 1000 bp, even though no evidence exists that the last part of EBV-BNRF1
is actually coding. Figure 8 compares the local and global alignment methods and we
note significant coherency between the sequences near the one-third frequency, at least.
Thus, based on the local model, we are lead to conclude that there is a significant match
between the two genes in the final 1000 bp. The estimated optimal common scaling at
the one-third frequency for the local model was A = 59.4, C = 0.8, G = 64.9, T = 0
(the global model had A = 60.8, C = 5.6, G = 67.1, T = 0), which indicates that the
match is in the purine–pyrimidine (A = G, C = T) alphabet.
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Fig. 7. Spectral envelopes of the last 1000 bp of the BNRF1 gene in the Herpesvirus saimiri (HVS)
and in the Epstein–Barr virus (EBV). The horizontal dashed line indicates a pointwise 0.001 null

significance threshold.
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Fig. 8. Maximum squared coherency between part of ebv-bnrf and hvs-bnrf using two models,
the local model, (26), and the global model, (33). The pointwise 0.0001 null significance threshold for the

local model is 41.2%.

Appendix: Principal component and canonical correlation analysis
for time series

As previously mentioned, the theory and methods associated with the spectral envelope
and maximal coherency presented here are closely related to the theory and meth-
ods associated with principal component analysis and canonical correlation analysis
for time series. In this appendix, we summarize the techniques so that the connection
between the concepts is evident.
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A.1. Principal components

For the case of principal component analysis for time series, suppose we have a zero
mean, p × 1, stationary vector process X t that has a p × p spectral density matrix
given by fxx (ω). Recall fxx (ω) is a complex-valued, nonnegative-definite, Hermitian
matrix. Using the analogy of classical principal components, suppose for a fixed value
of ω, we want to find a complex-valued univariate process Yt (ω) = c(ω)∗X t , where
c(ω) is complex, such that the spectral density of Yt (ω) is maximized at frequency ω,
and c(ω) is of unit length, c(ω)∗c(ω) = 1. Because, at frequency ω, the spectral density
of Yt (ω) is fy(ω) = c(ω)∗ fxx (ω)c(ω), the problem can be restated as, find complex
vector c(ω) such that

max
c(ω) 6=0

c(ω)∗ fxx (ω)c(ω)
c(ω)∗c(ω)

. (A.1)

Let {(λ1(ω), e1(ω)), . . . , (λp(ω), ep(ω))} denote the eigenvalue–eigenvector pairs of
fxx (ω), where λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λp(ω) ≥ 0, and the eigenvectors are of unit
length. We note that the eigenvalues of a Hermitian matrix are real. The solution
to (A.1) is to choose c(ω) = e1(ω), in which case the desired linear combination is
Yt (ω) = e1(ω)

∗X t . For this choice,

max
c(ω) 6=0

c(ω)∗ fxx (ω)c(ω)
c(ω)∗c(ω)

=
e1(ω)

∗ fxx (ω)e1(ω)

e1(ω)∗e1(ω)
= λ1(ω). (A.2)

This process may be repeated for any frequency ω, and the complex-valued process,
Yt1(ω) = e1(ω)

∗X t , is called the first principal component at frequency ω. The kth
principal component at frequency ω, for k = 1, 2, . . . , p, is the complex-valued time
series Ytk(ω) = ek(ω)

∗X t , in analogy to the classical case. In this case, the spectral
density of Ytk(ω) at frequency ω is fyk (ω) = ek(ω)

∗ fxx (ω)ek(ω) = λk(ω).
The previous development of spectral domain principal components is related to the

spectral envelope methodology as discussed around Eq. (5). In particular, the spectral
envelope is a principal component analysis on the real part of fxx (ω). Hence, the differ-
ence between spectral domain principal component analysis and the spectral envelope
is that, for the spectral envelope, the c(ω) are restricted to be real. If, in the development
of the spectral envelope, we allowed for complex scalings, the two methods would be
identical.

Another way to motivate the use of principal components in the frequency domain
was given by Brillinger (1981, Chapter 9). Although the technique appears to be dif-
ferent, it leads to the same analysis. In this case, we suppose we have a stationary,
p-dimensional, vector-valued process X t and we are only able to keep a univariate
process Yt such that, when needed, we may reconstruct the vector-valued process, X t ,
according to an optimality criterion. Specifically, we suppose we want to approximate
a mean-zero, stationary, vector-valued time series, X t , with spectral matrix fxx (ω), by
a univariate process Yt defined by

Yt =

∞∑
j=−∞

c∗t− j X j , (A.3)
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where {c j } is a p × 1 vector-valued filter, such that {c j } is absolutely summable; that
is,
∑
∞

j=−∞ |c j | <∞. The approximation is accomplished, so the reconstruction of X t

from yt , say,

X̂ t =

∞∑
j=−∞

bt− j Y j , (A.4)

where {b j } is an absolutely summable p × 1 filter, is such that the mean square
approximation error

E{(X t − X̂ t )
∗(X t − X̂ t )} (A.5)

is minimized.
Let b(ω) and c(ω) be the transforms of {b j } and {c j }, respectively. For example,

c(ω) =
∞∑

j=−∞

c j exp(−2π i jω), (A.6)

and, consequently,

c j =

1/2∫
−1/2

c(ω) exp(2π i jω)dω. (A.7)

Brillinger (1981, Theorem 9.3.1) shows that the solution to the problem is to choose
c(ω) to satisfy (A.1) and to set b(ω) = c(ω). This is precisely the previous problem,
with the solution given by (A.2). That is, we choose c(ω) = e1(ω) and b(ω) = e1(ω);
the filter values can be obtained via the inversion formula given by (A.7). Using these
results, in view of (A.3), we may form the first principal component series, say Yt1.

This technique may be extended by requesting another series, say, Yt2, for approx-
imating X t with respect to minimum mean square error, but where the coherency
between Yt2 and Yt1 is zero. In this case, we choose c(ω) = e2(ω). Continuing this way,
we can obtain the first q ≤ p principal components series, say, Yt = (Yt1, . . . , Ytq)

′, hav-
ing spectral density fyy(ω) = diag{λ1(ω), . . . , λq(ω)}. The series Ytk is the kth principal
component series.

A.2. Canonical correlation

In Section 4, below equation (25), we discuss the relationship between the problem
of matching DNA sequences and canonical correlation analysis of time series. Here,
we elaborate on the details of the relationship. Suppose we have stationary, mean-zero,
k1 × 1 time series X t1 and k2 × 1 time series X t2, with respective nonsingular spectral
density matrices, f11(ω) and f22(ω). The cross-spectral matrix between X t1 and X t2

is the k1 × k2 matrix containing the cross-spectra between the components of X t1 and
X t2. We will denote this matrix by f12(ω) and note f21(ω) = f ∗12(ω).
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In analogy to classical canonical correlations, we suppose we want to find, at a
specific frequency ω, the complex linear combinations, Ut (ω) = α∗X t1, and Vt (ω) =

β∗X t1, where α and β are k1 × 1 and k2 × 1 complex vectors, respectively, such
that the squared coherency ρ2

uv(ω) between Ut (ω) and Vt (ω) is maximum. Noting
the spectral density of Ut at ω is fuu(ω) = α∗ f11(ω)α, the spectral density of Vt (ω)

at ω is fvv(ω) = β∗ f11(ω)β, and the cross-spectrum between Ut (ω) and Vt (ω) is
fuv(ω) = α∗ f12(ω)β, we have

ρ2
uv(ω) =

| fuv(ω)|
2

fuu(ω) fvv(ω)
=

|α∗ f12(ω)β|
2

[α∗ f11(ω)α] [β∗ f22(ω)β]
. (A.8)

Calling the solutions α = α1(ω) and β = β1(ω), we choose α1(ω) to be pro-
portional to the first eigenvector of f −1/2

11 (ω) f12(ω) f −1
22 (ω) f21(ω) f −1/2

11 (ω) and
choose β1(ω) to be proportional to the first eigenvector of f −1/2

22 (ω) f21(ω)

f −1
11 (ω) f12(ω) f −1/2

22 (ω). The maximum squared coherency at ω is the largest eigen-
value, λ2

1(ω), of f −1
11 (ω) f12(ω) f −1

22 (ω) f21(ω). Typically, α1(ω) and β1(ω) are subject
to the constraints

α1(ω)
∗ f11(ω)α1(ω) = 1 and β1(ω)

∗ f22(ω)β1(ω) = 1,

respectively. In this case,

max ρ2
uv(ω) = |α

∗

1(ω) f12(ω)β1(ω)|
2
= λ2

1(ω). (A.9)

The other canonical series are selected in an obvious fashion by analogy to the classical
case.

As in principal components, another view of canonical analysis exists, and this is
the approach taken by Brillinger (1981, Chapter 10). Here, consider ki × 1 linear filters
{bti } such that

∑
t |bti | <∞, i = 1, 2. The real-valued univariate series

Ut =

∞∑
j=−∞

b∗t− j ,1 X j1 and Vt =

∞∑
j=−∞

b∗t− j ,2 X j2,

having maximum squared coherency, ρ2
uv(ω), at each ω, and subject to the constraints

b∗i (ω) fi i (ω)bi (ω) = 1,

for i = 1, 2, where bi (ω) is the transform of {bti }, are given by finding the largest scalar
λ(ω) such that

f11(ω)
−1/2 f12(ω) f22(ω)

−1 f21(ω) f11(ω)
−1/2α(ω) = λ2(ω)α(ω) (A.10)

and

f22(ω)
−1/2 f21(ω) f11(ω)

−1 f12(ω) f22(ω)
−1/2β(ω) = λ2(ω)β(ω). (A.11)
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The maximum squared coherency achieved between Ut and Vt is λ2(ω), and b1(ω) and
b2(ω) are taken proportional to first eigenvectors of

f −1/2
11 (ω) f12(ω) f −1

22 (ω) f21(ω) f −1/2
11 (ω)

and of

f −1/2
22 (ω) f21(ω) f −1

11 (ω) f12(ω) f −1/2
22 (ω),

respectively. The required filters can be obtained by inverting b1(ω) and b2(ω) using
a relationship such as (A.7). Again, the other canonical variate series are obtained
in an obvious way, and estimation proceeds by replacing the spectra fi j (ω) by their
respective estimates f̂i j (ω), for i , j = 1, 2.
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Abstract

The statistical analysis of spatial and temporal data is discussed from the view-
point of an fMRI connectivity study. The limitations of the well-known SPM
method for the characterization of fMRI connectivity study are pointed out. The
use of an innovation approach with NN-ARX is suggested to overcome the lim-
itations of the SPM modeling. The maximum likelihood method is presented
for the NN-ARX model estimation. The exploratory use of innovations for the
identification of brain connectivity between remote voxels is discussed.

Keywords: spatial temporal correlations, spatial stochastic process, innova-
tion approach, state space modeling, fMRI data, SPM, NN-ARX model, brain
connectivity, causality.

1. Introduction

The main objective of this chapter is to show that the innovation approach, developed
for time series analysis, is useful for the characterization of the spatial and temporal
dynamic structure of the “very high” dimensional spatial temporal data such as fMRI
(functional magneto-resonance imaging) in neuroscience.

fMRI is the measurement of BOLD (Blood-Oxygen-Level Dependence) signal,
which is a hemodynamic response related to neural activity in the brain or spinal cord of
humans or other animals. fMRI data are obtained as a time series at each voxel inside
the brain; thus, the fMRI data are typically a high-dimensional (64× 64× 36) time
series observed from one experiment on a subject usually under some properly designed
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stimulus. In the live human brain, more neuronal activity requires more glucose and
oxygen to be delivered rapidly through the blood stream. It results in a surplus of oxy-
hemoglobin in the veins of the area and distinguishable change of the local ratio of
oxyhemoglobin to deoxyhemoglobin. The higher BOLD signal intensities arise from
increases in the concentration of oxygenated hemoglobin since the magnetic suscep-
tibility of blood now more closely matches with that of the tissue. Here, the fMRI
data are obtained by collecting data in an MRI (Magneto Resonance Imaging) scanner
with sequence parameters sensitive to changes in magnetic susceptibility, and one can
assess changes in BOLD contrast (Buxton, 2002). Thus, the fMRI is a type of speciali-
zed Magneto Resonance Imaging (MRI) scan. The problem with original MRI scan
technology was that although it provides a detailed assessment of the physical appear-
ance, water content, and many kinds of subtle derangements of structure of the brain
(such as inflammation or bleeding), it fails to provide information about the metabolism
of the brain (i.e., how actively it is “functioning”) at the time of imaging. Therefore,
a distinction is made between “MRI imaging” and “functional MRI imaging” (fMRI),
where MRI provides only structural information on the brain while fMRI yields both
structural and “dynamic” (functional) data.

The dynamic neural association between spatially remote distinct brain regions
gives us the key to understand human brain functions, and fMRI data are becoming
a more and more common tool for brain connectivity studies. According to Friston
and Buckel (2004), the definition of functional connectivity is “correlation between
spatially remote neurophysiological events.” fMRI (BOLD signal) time series data
are a kind of spatial temporal data, and what is needed here is an efficient statistical
method for the estimation of “spatial temporal correlation structure” from the fMRI
time series data, which usually consists of about 147,000 channel time series measured
at 64× 64× 36 grid points in the brain.

2. A traditional approach: Spatial and temporal covariance functions

A traditional approach to the statistical characterization of spatial and temporal data is
to estimate the covariance and correlation structure of the data. The correlation struc-
ture of a spatial temporal process behind the fMRI data, {x (i , j ,k)

t (t = 1, 2, . . . , N )} with
{(i , j , k) ∈ (64× 64× 36)}, may be derived from the spatial and temporal covariance
function,

cx (h, k) = cov
{

x̃ (s+h)
t+k , x̃ (s)t

}
where x̃t = xt − E[xt ].

In much of the literature (Cressie (1993) for example), it is assumed that the spatial
temporal covariance function has the following product representation,

cx (h, k) = c(1)x (h)c
(2)
x (k)

with a purely spatial component c(1)x (h) and a purely temporal component c(2)x (k).
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However, it must be noted that this assumption, called “separability,” is purely arti-
ficial and there is no physical or physiological reason supporting this assumption.
Although the spatial covariance function of a spatial temporal process x (s)t may be
formally defined (Whittle, 1962), under the spatial stationarity assumption, as

c(1)x (h) = cov
{

x̃ (s+h)
t , x̃ (s)t

}
,

it is not so useful a tool as the temporal covariance function E[x̃ (s)t x̃ (s)t+τ ] = R(s)xx (τ )

defined in neuroscience at each voxel s = (i , j , k). A large spatial correlation between
two cortexes, for example the primary visual cortex V 1 at (i , j , k) and the visual cor-
tex V 5 at (i + u1, j + u2, k + u3), does not imply similar large spatial correlations for
any other voxels (x , y, z) and (x + u1, y + u2, z + u3) with the same spatial shift deter-
mined by u1, u2, and u3. This kind of spatial stationarity assumption may be suitable
for the analysis of agricultural yield in the plane where the space is isotropic and the
specific position does not matter (Whittle, 1962), but it is surely not suitable for the
human brain functioning.

Unlike the spatial covariance function, the temporal covariance function is a reason-
able measure for the characterization of the spatial process underlying the fMRI time
series. When the brain is under control for some time interval, with or without a stim-
ulus, the measured fMRI time series may be considered to be temporally stationary.
Under the assumption of temporal stationarity, we can define the temporal covariance
functions at each voxel (i , j , k) as

R(i , j ,k)
xx (τ ) = E

[
x (i , j ,k)

t x (i , j ,k)
t+τ

]
(1)

When fMRI data are measured under the on–off block-designed external stimulus,
the temporal covariance function needs to be redefined carefully. If we could assume
that the stimulus affects the BOLD signal continuously and the effect of stimuli contin-
ues beyond the resting period during the experiment, the definition of (1) may still be
valid. However, if the effect of the stimulus on the BOLD signal is significantly large
compared with the period when stimulus is off, the relation between the connectivity
and the temporal covariance function is not so simple. The temporal covariance func-
tion under on-mode and off-mode has to be distinguished through elaborate modeling
in time domain (see Yamashita et al. (2005)).

3. SPM and the implied determinism

In neuroscience, one of the most commonly used methods for the statistical analysis of
spatial and temporal structure of fMRI data is not the classical spatial temporal covari-
ance function approach but a statistical method called SPM (Friston et al., 1995) and its
later versions. The SPM approach brings together two well-established bodies of the-
ory (the general linear model and the theory of Gaussian fields) to provide a complete
and simple framework for the statistical analysis of imaging data. Indeed, the spatial
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information in fMRI is well exploited by sophisticated spatial statistical methods in
SPM. However, it must be noted that, in SPM, the temporal correlation information is
not fully exploited.

The fMRI data x (v)t (after going through necessary preprocessing such as normaliza-
tion and removing artifacts) are characterized in SPM as

x (v)t =

T∑
k=0

hkst−k + ξ
(v)
t (2)

Here, the noise ξ (v)t is an observation error and does not affect the future trajectory
of x (v)t . The response function hk is given by a combination of Gamma functions (see
Lange and Zeger (1997) and Worsley et al. (2002)), for example, tr e−λt . The assumed
parametric response function is subsampled at n scan acquisition times t1, t2, . . . , tn
to give the response yi = y(ti ) at scan i . Then, the observed fMRI data xi may be
explained using an observation error ξi as

xi = yiβ + ξi ,

where the parameters in the model are estimated by the least squares method. Then (2)
is equivalent to

y(v)t =
∑

hkst−k

x (v)t = y(v)t + ξ
(v)
t

(3)

The model implied by (3) is a deterministic process y(v)t , driven by an exogenous
process s(t), measured by x (v)t with an additive observation noise ξ (v)t , that is,

dz(v)(t)

dt
= Az(v)(t)+ Bs(t)

x (v)t = Cz(v)(t)+ ξ (v)t (4)

For example, the deterministic system implied by the response function tk−1e−λt is
given by (4), where the k × k matrix A, k-dimensional vectors B and C are given by,

A =


−λ 0 . . . 0 0
1 −λ . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . −λ 0
0 0 . . . 1 −λ

 , B =


b(v)

0
. . .

0
0

 , and C = (0 0 . . . 0 1)

If we need a more general response function, we need to use a more general state
space model. For example, in order to have the following impulse response function,

h(t) = h1e−λ1t
+ h2te−λ2t

+ · · · + hk tke−λk t ,
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we need to have the following state space model,

d



z(1)1 (t)

z(2)1 (t)

z(2)2 (t)

. . .

z(k)1 (t)

z(k)2 (t)

. . .

z(k)k−1(t)

z(k)k (t)


dt

=



−λ1 0 0 . . . 0 0 . . . 0 0

0 −λ2 0 . . . 0 0 . . . 0 0

0 1 −λ2 . . . 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −λk 0 . . . 0 0

0 0 0 . . . 1 −λk . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 . . . −λk 0

0 0 0 . . . 0 0 . . . 1 −λk



×



z(1)1 (t)

z(2)1 (t)

z(2)2 (t)
. . .

z(k)1 (t)

z(k)2 (t)
. . .

z(k)k−1(t)

z(k)k (t)


+



b(v)1

b(v)2
0
. . .

b(v)k
0
. . .

0
0


s(t)

x (v)t = z(1)1 (t)+ z(2)2 (t)+ · · · + z(k)k (t)+ ξ (v)t

The discrete time version of the model (4) is written as,

Z (v)t = AZ (v)t−1 + B(v)st−1

x (v)t = C Z (v)t + ξ
(v)
t (5)

Here, the dimension of the state Z t (v) is K = k(k + 1)/2. What this deterministic
model (4) or (5) implies is a very strong assumption that the future value of the
BOLD signal y(v)t+τ (τ > 0) is exactly predicted by the initial state Z (v)0 and the input
s(t)(0 < t < T ). Here, the noise ξ (v)t is an observation error and never affects the future
value of Z (v)t or y(v)t . The model is equivalent to the following ARMA (K , K ) model
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with exogenous input (see Ozaki (1998)),

x (v)t + φ1x (v)t−1 + · · · + φK x (v)t−K = (ξt + C B(v)st )+ {C(A − φ1 I )B(v)st−1 + φ1ξt−1}

+ · · · + {C(AK−1
+ φ1 AK−2

+ · · · + φK−1 I )

× B(v)st−K+1 + φK−1ξt−K+1} + φK ξt−K

= C B(v)st−1 + C(A − φ1 I )B(v)st−2 + · · · + C(AK−1

+ φ1 AK−2
+ · · · + φK−1 I )B(v)st−K + ξt + φ1ξt−1

+ · · · + φK−1ξt−K+1 + φK ξt−K

We can calculate, with the assumption of the Gaussian white noise for ξ (v)t , (−2)log-
likelihood of the ARX model (see Box and Jenkins (1970)). Note that, the AR and MA
coefficients and coefficients of the input signals have strong constraint between them.
This kind of constrained model is known to be very inflexible and does not produce
small prediction errors, yielding larger (−2)log-likelihood and larger AIC compared
with unconstrained ARMAX models. The validity of this assumption of constrain-
ing also needs to be checked by an objective statistical method based on the observed
data x (v)t .

Note that the response function hk (k = 1, 2, . . . .) in SPM is set as independent from
the space variable v. This is also a very strong assumption, whose validity needs to be
checked by an objective statistical method based on the observed fMRI data.

4. Innovation approach and the NN-ARX model

In time series analysis, a natural way of characterizing the temporal correlation struc-
ture of a stationary time series is to use a linear dynamic model such as an AR model.
By identifying a suitable multivariate AR model from the observed data, we can
characterize the multivariate autocovariance functions of the process behind the data.

Identification and estimation of stochastic/deterministic dynamical system models
from observed time series data have been the much-studied topic since the era of N.
Wiener and A.N. Kolmogorov. Many methods have been introduced and discussed
since the 1930s. Among them, one approach called the “Innovation Approach” (or
equivalently “Prediction Error Approach”), introduced by N. Wiener (1949), may be
specially interesting and useful for applied scientists, since the guideline principle is
intuitionally simple and the computational algorithm and statistical diagnostic checking
is straightforward and easy to perform for practitioners.

The innovation approach suggests us to find a dynamic model yielding the smallest
prediction errors from the time series data. The fMRI BOLD signal data are presented
as a set of huge (typically 147,000) dimensional time series, where the prediction of
each variable out of the 147,000 variables is considered. The optimal prediction of
x (i , j ,k)

t at time point t−1 will be E
[
x (i , j ,k)

t |x (∗)t−1

]
under the local Gaussian assump-

tion. Here, x (∗)t−1 denotes all the BOLD signal information at the time point t−1. Since
neighboring voxels could contain the most useful information for the one-step ahead
prediction of x (i , j ,k)

t , a natural approximate linear predictor will be a linear combination
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of the neighboring voxels x (i−1, j ,k)
t−1 , x (i+1, j ,k)

t−1 , . . . x (i , j ,k+1)
t−1 and itself x (i , j ,k)

t−1 . Then, the
prediction error may be written as

ε
(i , j ,k)
t = x (i , j ,k)

t −

{
a(i , j ,k)

1 x (i , j ,k)
t−1 + b(i , j ,k)

1 x (i−1, j ,k)
t−1 + b(i , j ,k)

2 x (i+1, j ,k)
t−1

+ · · · + b(i , j ,k)
6 x (i , j ,k+1)

t−1

}
When the fMRI of the subject is measured under some experiment with controlled

stimulus inputs, the one-step ahead predictions may be significantly improved by using
the information (on or off) of the stimulus in the experiment. Then, the prediction error
of x (i , j ,k)

t is,

ε
(i , j ,k)
t = x (i , j ,k)

t −

{
a(i , j ,k)

1 x (i , j ,k)
t−1 + b(i , j ,k)

1 x (i−1, j ,k)
t−1 + b(i , j ,k)

2 x (i+1, j ,k)
t−1

+ · · · + b(i , j ,k)
6 x (i , j ,k+1)

t−1 + θ
(i , j ,k)
1 st−1

}
This implies that the following spatial autoregressive type model will be a reason-

able approximate dynamic initial model for an fMRI time series:

x (i , j ,k)
t = a(i , j ,k)

1 x (i , j ,k)
t−1 + b(i , j ,k)

1 x (i−1, j ,k)
t−1 + b(i , j ,k)

2 x (i+1, j ,k)
t−1

+ · · · + b(i , j ,k)
6 x (i , j ,k+1)

t−1 + θ
(i , j ,k)
1 st−1 + ε

(i , j ,k)
t

The original idea of this model was introduced by the present author at the Workshop
on Mathematical Methods in Brain Mapping at CRM, University of Montreal, in 2000,
and has been further developed by Riera et al. (2004), where the physiological meaning
of the model is clarified, and is called NN-ARX model (Nearest Neighbor AutoRegres-
sive model with eXogenous variable). A more general NN-ARX model with higher lag
orders may be written as

x (v)t = a(v)1 x (v)t−1 + · · · + a(v)p x (v)t−p +
1

6

 ∑
v′∈N (v)

b(v)v′ x (v
′)

t−1


+ θ

(v)

1 st−1 + · · · + θ
(v)
r st−r + ε

(v)
t (6)

Here, (v)= (i , j , k), N (v) = {(i − 1, j , k), (i + 1, j , k), (i , j − 1, k), (i , j + 1, k),
(i , j , k − 1), (i , j , k + 1)}. Coefficients a(v)1 , . . . , a(v)p , b(v)v′ , . . . , θ (v)1 , . . . , θ (v)r are calcu-

lated by solving the linear equation for each voxel v. Whether the system noise ε(v)t is
zero or not need to be checked by a statistical method. Incidentally, we note that the
discrete time model (6), with p = 1 and r = 1, can be obtained by discretizing the
following partial differential equation model of a spatial stochastic process with an
external input s(t).

∂x(ξ , η, ς , t)

∂t
= a(ξ , η, ς)x + b(ξ , η, ς)

(
∂2x

∂ξ 2
+
∂2x

∂η2
+
∂2x

∂ς2

)
+ θ(ξ , η, ς)s(t)+ δW (ξ , η, ς , t)
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In other words, we are interpreting the fMRI data as a realization of a spatial
“blurring” process driven by stimulus s(t) and a spatial Gaussian white noise pro-
cess δW (ξ , η, ς , t) (Brown et al., 2000). Here, the innovation approach with NN-ARX
model performs a kind of “de-blurring” procedure in order to improve the resolution
so that we may discover important temporal spatial information in the data. The the-
oretical foundation of the innovation (prediction error) approach to spatial stochastic
processes was given by K. Ito (1984).

It must be noted that we have so far ignored possible instantaneous correlations
between the noise of neighboring voxels and the noise covariance of the 147,000
dimensional AR model is assumed to be diagonal. This may not be an appropriate
assumption for the NN-ARX model to be a general spatial time series model. One sim-
ple way of removing the instantaneous correlations between the neighboring voxels is
to apply an instantaneous Laplacian operator L , which operates as

Lx (i , j ,k)
t = x (i , j ,k)

t −
1

6

(
x (i+1, j ,k)

t + x (i−1, j ,k)
t + x (i , j+1,k)

t

+x (i , j−1,k)
t + x (i , j ,k−1)

t + x (i , j ,k+1)
t

)
for the three-dimensional case.

If we apply the Laplacian operator L to the original data before fitting the above
NN-ARX model, then we have,

Lx (v)t = y(v)t

y(v)t = µ
(v)
t +

r1∑
k=1

α
(v)
k y(v)t−k +

r2∑
k=1

β
(v)
k ξ

(v)
t−k +

r3∑
k=1

γ
(v)
k st−k + n(v)t

While the variance matrix of the noise n(v)t in the transformed space is diagonal,
so that E[nt n′t ] = σ

2
n I , the variance matrix of the noise ε(v)t = L−1n(v)t in the origi-

nal space is nondiagonal and is given by6ε = σ 2
n (L

′L)−1. This is a simple but useful
way of characterizing a spatially homogeneous instantaneous dependency between the
noises of neighboring voxels and was used in EEG dynamic inverse solutions by Galka
et al. (2004) and Yamashita et al. (2004). The superiority of the NN-ARX model with
the Laplacian operator can be confirmed by comparing the AIC of the two models, with
or without the Laplacian, fitted to the same fMRI data.

5. Likelihood and the significance of the assumptions

The (−2)log-likelihood of the NN-ARX model is given by

(−2) log p
(

x (1,1,1)
1 , . . . , x (64,64,36)

1 , . . . , x (1,1,1)
N , . . . , x (64,64,36)

N |ϕ
)

≈

(64,64,36)∑
v=(1,1,1)

 T∑
t=p+1

{
log σ 2

ε
(v)
t
+
(ε
(v)
t )2

σ 2
ε
(v)
t

}+ Const
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If the data x (v)t are transformed into y(v)t by a Laplacian operator L , in order
to remove the instantaneous correlations between neighboring voxels, the likelihood
function becomes,

(−2) log p
(

x (1,1,1)
1 , . . . , x (64,64,36)

1 , . . . , x (1,1,1)
N , . . . , x (64,64,36)

N |ϕ
)

= (−2) log p
(

y(1,1,1)
1 , . . . , y(64,64,36)

1 , . . . , y(1,1,1)
N , . . . , y(64,64,36)

N |ϕ
)

+ log det(L−1)

≈

(64,64,36)∑
v=(1,1,1)

[
T∑

t=1

{
log σ 2

ε
(v)
t
+
(ε
(v)
t )

2

σ 2
ε
(v)
t

}]
+ log det(L−1)+ Const

(7)

ε
(v)
t is given for a standard NN-ARX model by,

ε
(v)
t = y(v)t −

a(v)1 y(v)t−1 +
1

6

 ∑
v′∈N (v)

b(v)v′ y(v
′)

t−1

+ θ (v)1 st−1

 for ∀v

(−2)log-likelihood of the deterministic SPM model,

Z (v)t = AZ (v)t−1 + B(v)st−1

x (v)t = C Z (v)t + ξ
(v)
t

(8)

is given by

(−2) log p
(

x (1,1,1)
1 , . . . , x (64,64,36)

1 , . . . , x (1,1,1)
N , . . . , x (64,64,36)

N |ϕ
)

= (−2) log p
(

x (1,1,1)
1 , . . . , x (64,64,36)

1 , . . . , x (1,1,1)
N , . . . , x (64,64,36)

N |ϕ
)

≈

(64,64,36)∑
v=(1,1,1)

[
T∑

t=1

{
log σ 2

ε
(v)
t
+
(ε
(v)
t )2

σ 2
ε
(v)
t

}]
+ Const

where ε(v)t is given by the following recursive Kalman filter scheme,

ε
(v)
t = x (v)t − C Z (v)t |t−1

Z (v)t |t−1 = AZ (v)t−1|t−1 + B(v)st−1

Z (v)t−1|t−1 = Z (v)t−1|t−2 + K (v)
t−1ε

(v)
t−1

K (v)

t−1 = P (v)
t−1C ′

{
C P (v)

t−1C ′ + σ 2
ξ (v)

}−1

P (v)

t−1 = AV (v)

t−2 A′

V (v)

t−1 = P (v)

t−1 − K (v)

t−1C P (v)

t−1

(9)
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Because of the affecting mechanism of the nearest neighbors in the spatial structure,
we have approximately

Z (v)t |t−1 = E
[

Z (v)t |x
(∗)

t−1, x (∗)t−2, . . . , x (∗)1

]
≈ E

[
Z (v)t |x

(v)

t−1, x N (v)
t−1 , x (∗)t−2, . . . , x (∗)1

]
Z (v)t |t = E

[
Z (v)t |x

(∗)
t , x (∗)t−1, .x (∗)t−2, .., x (∗)1

]
≈ E

[
Z (v)t |x

(v)
t , x (v)t−1, x N (v)

t−1 , .x (∗)t−2, . . . , x (∗)1

]
.

Here x (∗)t means all the observed BOLD signals at the time point t .

5.1. Statistical check of the assumption of determinism implied in SPM

We can statistically check whether the deterministic model employed by SPM is
justified by comparing (−2)log-likelihood of the deterministic SPM model:

Z (v)t = AZ (v)t−1 + B(v)st−1

x (v)t = C Z (v)t + ξ
(v)
t

(10)

and (−2)log-likelihood of the more general stochastic model:

Z (v)t = AZ (v)t−1 + B(v)st−1 + Dn(v)t

x (v)t = C Z (v)t + ξ
(v)
t .

(11)

Since both models have state space representations, their (−2)log-likelihoods are
calculated using the innovations obtained by the Kalman filter scheme (9). If we com-
pare the AIC of two models, obviously the model (11) shows much smaller AIC than
the model (10).

5.2. Statistical check of the activation in each voxel

Whether the voxel V is activated while the subject is under certain stimulus can be
detected by comparing the two models. One is the NN-AR model,

y(v)t = a(v)1 y(v)t−1 + · · · + a(v)p(v) y
(v)

t−p(v) +
b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + n(v)t

x (v)t = L−1 y(v)t

and another is the NN-ARX model,

y(v)t = a(v)1 y(v)t−1 + · · · + a(v)p(v) y
(v)

t−p(v) +
b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + θ
(v)
1 st−1 + n(v)t

x (v)t = L−1 y(v)t
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The significance of the extra term θ
(v)

1 st−1 can be checked by comparing the AIC or
by checking the log-likelihood ratio of the two models. If we map the difference of
the AIC of the two models at each voxel, we can see that the positive area of AIC,
especially strongly positive area are showing the strongly activated area. An AIC plot
shows, however, only the strength of the significance of the stimulus term, while if we
plot the value of θ (v)1 st−1 at each voxel it shows “how” the stimulus is affecting the
voxel, increasing the BOLD signal or reducing it.

5.3. Statistical check of instantaneous connectivities between remote voxels

Since the fMRI data are measured at a rather slow sampling rate, causal information
transferred by neural connections may appear to be instantaneously driving the voxels
from outside the two voxels. In other words, the prediction errors of the two remote
voxels must be strongly correlated. The statistical significance of the simultaneous cor-
relation of the prediction errors can be checked either by comparing AICs or checking
the likelihood ratio of the following two models:

y(v)t = a(v)1 y(v)t−1 + · · · + a(v)p(v) y
(v)

t−p(v) +
b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + θ
(v)

1 st−1 + n(v)t

y(w)t = a(w)1 y(w)t−1 + · · · + a(w)p(w) y
(w)

t−p(w) +
b(w)

6

∑
w′∈N (w)

y(w
′′)

t−1 + θ
(w)

1 st−1 + n(w)t

x (v)t = L−1 y(v)t

x (w)t = L−1 y(w)t 6n =


. . . . . . . . . . . . . . .

. . . σvv . . . 0 . . .

. . . . . . . . . . . . . . .

. . . 0 . . . σww . . .

. . . . . . . . . . . . . . .


versus

y(v)t = a(v)1 y(v)t−1 + · · · + a(v)p(v) y
(v)

t−p(v) +
b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + θ
(v)

1 st−1 + n(v)t

y(w)t = a(w)1 y(w)t−1 + · · · + a(w)p(w) y
(w)

t−p(w) +
b(w)

6

∑
w′∈N (w)

y(w
′′)

t−1 + θ
(w)

1 st−1 + n(w)t

x (v)t = L−1 y(v)t

x (w)t = L−1 y(w)t 6n =


. . . . . . . . . . . . . . .

. . . σvv . . . σvw . . .

. . . . . . . . . . . . . . .

. . . σvw . . . σww . . .

. . . . . . . . . . . . . . .
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Here, the innovations are given in the same way as for a standard NN-ARX model, but

∑
t

{
log σ 2

ε
(v)
t
+
(ε
(v)
t )2

σ 2
ε
(v)
t

}
+

∑
t

{
log σ 2

ε
(w)
t
+
(ε
(w)
t )2

σ 2
ε
(w)
t

}

in the (−2)log-likelihood (7) must be replaced by

∑
t

log det

(
σ 2
ε
(v)
t

σvw

σvw σ 2
ε
(w)
t

)
+

(
ε
(v)
t ε

(w)
t

) (
σ 2
ε
(v)
t

σvw

σvw σ 2
ε
(w)
t

)−1 (
ε
(v)
t

ε
(w)
t

)
where

σvw =
1

N

∑
ε
(v)
t ε

(w)
t .

5.4. Statistical check of the dynamic correlations between remote voxels

Even though the hemodynamics between remote voxels have no physical interaction,
they may appear to be correlated with a time lag, if the deoxygenation in voxel w
systematically follows a few seconds after the deoxygenation in voxel v under a certain
task condition. In such situations, the statistical significance of the dynamic correlations
between the two voxels may be checked by comparing the AIC of the following two
models or by checking the likelihood ratio of the two models.

y(v)t = a(v)1 y(v)t−1 + · · · + a(v)p(v) y
(v)

t−p(v) +
b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + θ
(v)

1 st−1 + n(v)t

y(w)t = a(w)1 y(w)t−1 + · · · + a(w)p(w) y
(w)

t−p(w) +
b(w)

6

∑
w′∈N (w)

y(w
′)

t−1 + θ
(w)

1 st−1 + n(w)t

x (v)t = L−1 y(v)t

x (w)t = L−1 y(w)t

versus

y(v)t = a(v)1 y(v)t−1 + · · · + a(v)p(v) y
(v)

t−p(v) +
b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + θ
(v)

1 st−1 + n(v)t

y(w)t = a(w)1 y(w)t−1 + · · · + a(w)p(w) y
(w)

t−p(w) +
b(w)

6

∑
w′∈N (w)

y(w
′)

t−1

+ c(w,v)y(v)t−1 + θ
(w)
1 st−1 + n(w)t

x (v)t = L−1 y(v)t

x (w)t = L−1 y(w)t
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5.5. Gaussianity of innovations

The guideline principle, the “Innovation Approach” or “Prediction Error Approach,” is
useful in various stage of modeling the dynamics, either microscopic or macroscopic,
whenever the dynamic phenomena is measured in time series data. We know intuition-
ally that it is better for the prediction error to be small, and this is one of the reasons
why the least squares method is widely used in the statistical analysis of time series.
Prediction errors tend to become white noise since any temporal correlations are useful
for further reducing the prediction errors.

A very important point we should pay attention to is the fact, summarized in
Theorem 1, that the prediction errors are not only “white” but also “Gaussian” when-
ever the finite dimensional process is a sample-continuous finite-variance Markov (not
necessarily Gaussian) process (for infinite dimensional stochastic processes, a similar
theorem is given by K. Ito (1984)). The choice of the least squares criterion or the Gaus-
sian innovation-based maximum likelihood criterion in many settings is mathematically
supported by this theorem.

Theorem 1. (Doob, 1953; Feller, 1966) For any sample-continuous finite-
variance d-dimensional Markov process xt , the prediction error vt = xt−

E [xt |xt−1, xt−2, . . . , xN , θ ] converges to a Gaussian white noise for 1t → 0.

If the prediction errors do not appear to be Gaussian, we need to reconsider the
dynamic model which we are currently using. Often people tend to look for an easy
solution, that is, to use the same dynamic model with more generally distributed non-
Gaussian noise model. Errors with nonzero mean density distributions, asymmetric
density distributions, fat-tailed density distributions, or bimodal density distributions
sound more general and suitable than Gaussian errors, but actually this kind of idea is
nonsensical. The non-Gaussian characters of the prediction errors are simply showing
the inappropriateness of the dynamic model we assumed for the data. We must pay
attention to the mathematical fact that the prediction errors “cannot” be too general.
We already saw that Theorem 1 implies that the prediction errors of Markov diffusion
processes are Gaussian. When the Markov process is not a diffusion type, that is, its
sample path has discontinuous jumps, the Levy-Ito Decomposition Theorem says that
the prediction error process is decomposed into two mutually independent processes,
that is, Gaussian white noise and the (compensated) compound Poisson process (see
Levy (1954) and Sato (1999) for details).

The most sensible and easy solution in this awkward situation for the prediction
error-based maximum likelihood approach may be to redesign the experiment and elim-
inate all the possibility of pulse like shot noise and collect a new data set. If shot noise
is unavoidable in the experiment or if the shot noise has some important physiological
meaning, an alternative and natural extension of the prediction error-based maximum
log-likelihood approach may be to use the Markov diffusion model with jumps, where
the driving white Gaussian noise of the stochastic dynamical system is replaced by
a sum of Gaussian white noise and a compound Poisson noise process. An approxi-
mate numerical solution for the maximum likelihood method for the detection of jumps
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and estimation of models can be obtained (see Ozaki and Iino (2001), Jimenez and
Carbonell (2006)), although the evaluation of the exact log-likelihood function for the
Markov jump diffusion process with an observation error is quite difficult.

6. Applications to connectivity study and brain mapping

We note that, since the fMRI data are measured at a rather slow sampling rate, fast
causal information transferred by neural connections may appear to be instantaneously
driving the voxels from outside. Then, the NN-ARX model prediction errors of the two
remote voxels, if they are systematically connected by a neural network, must have
a strong correlation. A computational method to search for the pairs of the voxels,
whose prediction errors have significantly large correlations between the pairs, leading
to the further significant reduction of the (−2)log-likelihood, is already implemented in
a toolbox, and applied to the analysis of fMRI data in some physiological experiments
(see Bosch-Bayard et al. (2007, 2010)).

In brain data analysis, it always helps if the results are plotted on the brain image,
and there are always two ways of plotting statistical results; one is the significance plot
and another is the plot of “how” variables affect each other. For example, if we plot
the difference of AIC of NN-AR model without an exogenous stimulus input variable
and NN-ARX model with an exogenous stimulus input variable at each voxel, the map
shows the strength of the significance of the activation at each voxel. However, the
significance plot does not contain the information how the stimulus affects the BOLD
signal at each voxel. If we plot the stimulus term θ

(v)

1 st−1 at each voxel, this could be
more useful, since this will be showing whether it is contributing to increase the BOLD
signal or decrease the BOLD signal. This may provide us with a useful phenomenolog-
ical information for the understanding of the whole brain’s responsive mechanism to
the stimulus.

The same thing could be said for the plotting in the connectivity study. To see
the connectivity between important voxels, say the primary visual cortex V1 and the
rest of the brain, we could compare two models: an NN-ARX model-1 which ignores
simultaneous noise correlations between V1 and the other voxels and an NN-ARX
model-2 which takes account the simultaneous noise correlations between V1 and the
other voxels. We could either plot the difference of AIC of the two models, NN-ARX
model-1 and NN-ARX model-2, at each voxel or plot the correlations between the pre-
diction errors at V1 and the prediction errors at the other voxel. The AIC plot shows
the strength of significance of the simultaneous correlations of each voxel toward V1.
However, it does not show whether the correlation is positive or negative, and it is
always useful in understanding the brain function if we plot the correlation values at
each voxel at the same time. The two plots, plot of the significance (difference of AICs)
and the plot of the correlation values, compensate each other and they are to be used
together by the analysts.

Incidentally, we note that the difference of the AIC of the two local models, depen-
dent model and independent model for the two voxels v andw, is essentially equivalent
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to the mutual information I (x (v), x (w)|θ̂ ),

I
(

x (v), x (w)|θ̂
)
= log

{
p
(

x (v)1 , x (w)1

)′
,
(

x (v)2 , x (w)2

)′
, . . .

(
x (v)N , x (w)N

)′
|θ̂ (vw)

}
− log

{
p
(

x (v)1 , . . . , x (v)N |θ̂
(v)
)

p
(

x (w)1 , . . . , x (w)N |θ̂
(w)
)}

Since we have

I
(

x (v), x (w)|θ̂
)
= log

{
p
(

x (v)1 , x (w)1

)′
,
(

x (v)2 , x (w)2

)′
, . . .

(
x (v)N , x (w)N

)′
|θ̂ (vw)

}
− log

{
p
(

x (v)1 , . . . , x (v)N |θ̂
(v)
)

p
(

x (w)1 , . . . , x (w)N |θ̂
(w)
)}

=

N∑
i=1

log


p

((
ε
(v|v,w)
t , ε(w|v,w)

t

)′
|θ̂ (vw)

)
p
(
ε
(v)
i |θ

(v)

)
p
(
ε
(w)
i |θ̂

(w)

)


=

(
−

1

2

)
N
[
log

(
1− ρ̂2

v,w

)
+
{(

log σ̂ 2
(v|v,w) − log σ̂ 2

v

)
+
(
log σ̂ 2

(w|v,w) − log σ̂ 2
w

)}]
+ Const

the plot of AIC difference or the plot of log of the likelihood ratio of the two models is
essentially equivalent to the plot of log(1− ρ̂2

v,w) of the prediction errors for v and w,
where the sign (positive or negative) of ρ̂v,w is lost.

Another merit of the innovation approach is related to the resolution of the infor-
mation in the mapping. Even though the map of correlations between the whitened
prediction errors ε(v)1 , ε(v)2 , . . . , ε(v)N and ε(w)1 , ε(w)2 , . . . , ε(w)N and between the original
remote voxels y(v)1 , y(v)2 , . . . , y(v)N and y(w)1 , y(w)2 , . . . , y(w)N contain the same information
of the instantaneous correlations, the resolution has been shown to be much clearer in
the map of the correlations between the prediction errors than in the map of correlations
between the original data in simulation studies (see Galka et al. (2006)). This means
that the connectivity information, that is, significantly strong instantaneous correlations
between the two remote connected voxels, can be elucidated and more easily seen in
the prediction errors than may be seen in the original fMRI spatial time series.

7. Concluding remarks

In time series analysis, a natural way of characterizing the temporal correlation struc-
ture of a stationary time series is to use linear models, such as an AR model. For
example, if the whole brain is in a stationary state, the multivariate 147,000 dimen-
sional AR model of the fMRI (BOLD) signal determines the 147,000 dimensional
autocovariance function, where we can extract autocorrelations at each voxel and cross
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correlations between all the pair voxels. However, when the process is driven by an
exogenous variable, the definition of the correlation structure of the process is not as
straight forward as the stationary time series case.

The innovation approach is useful for finding any evidence of the need of more
sophisticated modeling than simple stationary AR models. For example, the innovation
approach is useful for detecting the existence of any effect of the stimulus variable
by treating the stimulus indicator as an exogenous variable. By separating the effect
of the stimulus from the ordinary behavior of the BOLD signals, we can estimate the
correlation structure of the whole brain better than by the NN-AR model where the
effect of the stimulus is interpreted as a part of the driving noise.

The validity of the innovation approach is not confined to linear modeling. If we
notice any evidence from the prediction errors of the NN-ARX model at stimulus-on
mode and prediction errors at the off mode, we could further generalize the NN-ARX
model to a bilinear NN-ARX model such as

y(v)t =

p(v)∑
i=1

(
a(v)i + α

(v)
i st−1

)
y(v)t−i +

b(v)

6

∑
v′∈N (v)

y(v
′)

t−1 + θ
(v)

1 st−1 + n(v)t

x (v)t = L−1 y(v)t .

AIC and log-likelihood ratio statistics are always useful for checking the signifi-
cance of the contribution of the extra terms in the generalized model.

Once we find several important pairs of remote voxels having strong correlations
through the above mentioned exploratory brain mapping methods, we can do fur-
ther more elaborate analysis of dynamic causality between the remote voxels using
techniques developed in time series analysis (Akaike, 1968, 1974; Granger, 1969;
Yamashita et al., 2005). Especially, Akaike’s parametric spectral method (Akaike,
1968; Ozaki, 2012) is useful in finding the causality from one variable to another
through unobserved hidden state variables in complicated high-dimensional feedback
systems. Here, the state space representation approach becomes useful for the situation
where the driving noise is strongly correlated between the variables in the feedback
system (Ozaki, 2012; Wong and Ozaki, 2006).
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Abstract

We review regression models for count time series. We discuss the approach that
is based on generalized linear models and the class of integer autoregressive pro-
cesses. The generalized linear models’ framework provides convenient tools for
implementing model fitting and prediction using standard software. Furthermore,
this approach provides a natural extension to the traditional ARMA methodology.
Several models have been developed along these lines, but conditions for station-
arity and valid asymptotic inference were given in the literature only recently. We
review several of these facts. In addition, we consider integer autoregressive mod-
els for count time series and discuss estimation and possible extensions based on
real data applications.

Keywords: autocorrelation, link function, Poisson distribution, prediction,
stationarity.

1. Introduction

Figure 1 motivates the study of appropriate models for the statistical analysis of count
time series. The upper left plot shows a time series of claims – referred to as series C3 –
of short-term disability benefits made by cut-injured workers in the logging industry
(Zhu and Joe, 2006). The lower left plot shows the usual sample autocorrelation func-
tion (ACF) for these data. If the ACF is adapted as a measure of correlation between
pairs of observations, then the resulting plot points to weak correlation that decays fast,
after a few lags. Therefore, to model these data, in the spirit of usual ARMA models
(see Brockwell and Davis (1991) for instance), a few lagged variables entertained by
a regression model will suffice to describe the correlation among the data. The right
plots illustrate quite the opposite situation. The upper right plot of Fig. 1 shows the
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Fig. 1. Left plot: Time series of claims (up) and their sample ACF (bottom). Right plot: Number of
transactions (up) and their sample ACF (bottom).

number of transactions for the stock Ericsson B, for one-day period. The lower right
plot of the same figure shows the sample ACF for these data. When compared to the
previous data example, we note a distinct feature characterizing the transactions data;
there exists a strong correlation among observations, which decays slowly. Hence,
a few lagged variables in a regression model will not be sufficient to accommodate
these particular features of the data. In other words, the modeling of these data raises
analogous questions and poses similar challenges to the case of ARCH and GARCH
models (Bollerslev, 1986; Engle, 1982). The main goal of this chapter is to discuss
statistical inference for count time series and give some guidelines for inference in
situations similar to the aforementioned data examples. By doing so, we also review
some important probabilistic properties of such models and the associated statistical
inference.

Modeling counts of events can be found in all areas of statistics and econometrics,
and throughout the social and physical sciences. Apart from the above cases, we can
observe daily number of hospital admissions, monthly number of cases of some disease,
weekly number of rainy days, and so on. For the regression analysis of count data, the
ordinary linear model would not be applicable, because the response variable assumes
discrete values. However, a related counterpart is the Poisson regression model and it
is a natural starting point to extend it to dependent count data. The Poisson regression
model has been used in several applied areas to model counts. In fact, the Poisson
model is a nonlinear, albeit straightforward, and popular modeling tool, whose fitting
is implemented by standard software. This chapter will survey models and methods for
analyzing time series of counts, beginning with this basic tool.
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The Poisson model provides the main instrument for modeling count time series
data. However, other distributional assumptions may be used instead; the most natural
among other candidates being the negative binomial distribution. Regardless of the
chosen distribution, we will review mostly models that fall under the framework of
generalized linear models for time series. This class of models and the maximum like-
lihood theory provide a systematic framework for the analysis of quantitative as well
as qualitative time series data. Indeed, estimation, diagnostics, model assessment, and
forecasting are implemented in a straightforward manner, where the computation is
carried out by a number of existing software packages. Experience with these models
shows that both positive and negative association can be taken into account by a suit-
able parametrization of the model. These issues are addressed in the list of desiderata
suggested by Davis et al. (1999) and Zeger and Qaqish (1988).

There are other alternative classes of regression models for count time series; the
most prominent being the integer autoregressive models. These models are based on
the notion of thinning operator. Accordingly, integer autoregressive models imitate the
structure of the common autoregressive process in the sense that the thinning operation
is applied instead of scalar multiplication.

This chapter surveys several of the above models. We discuss their properties, esti-
mation methods, and theory. Section 2 is introductory to Poisson regression modeling.
Section 3 discusses, in detail, linear and log-linear models for count time series. The
Poisson assumption is dropped in Section 4, where we study models using different
distributional assumptions. Section 5 summarizes properties of the integer autoregres-
sive models. Finally, Section 6 concludes this work with other potential applications
and further development of the methodology. For ease of presentation, we use slightly
abused notation for the regression parameters and the error sequences. However, this
does not affect the main concepts as will be clear from the context.

2. Poisson regression modeling

The Poisson distribution is commonly used to model rate of random events that
occur (arrive) in some fixed time interval. If we assume that λ denotes the rate of
arrivals, then the distribution of the random variable Y , which denotes the number of
arrivals in a fixed time interval, follows the Poisson distribution with probability mass
function

P[Y = y] =
exp(−λ)λy

y!
, y = 0, 1, 2, . . . (1)

It is an elementary exercise to show that the mean and variance of Y are both equal
to λ; E[Y ] = Var[Y ] = λ. In fact, this property characterizes the Poisson distribution. A
related property is that the cumulant generating function of a Poisson random variable is
given by KY (t) ≡ log MY (t) = λ(exp(t)− 1), where MY (t) is the moment generating
function of Y . This can be proved by simple calculations, but for this presentation, it is
instructive to consider the Poisson distribution as a member of the natural exponential
family of distributions.
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Let f (x ; θ ) denote the density function of the natural exponential family with
parameter θ , i.e.,

f (x ; θ) = h(x) exp(θx − b(θ)), x ∈ A, (2)

where h(·), b(·) are known functions andA is a subset of R. Then, it is straightforward
to show that the Poisson distribution is expressed as in (2) with θ = log λ, b(θ) =
exp(θ), and h(x) = 1/x!. Using the fact that the cumulant generating function of (2) is
equal to b(t + θ)− b(θ), the claim follows.

In most of the applications, count data are usually observed with some covariate
information. For example, see the works of McCullagh and Nelder (1989, Section
6.3.2) where the authors study the relation between the type of ship, its year of con-
struction, and its service period to the expected number of damage incidents using
the logarithm of the aggregate months of service as an offset. (An offset is a contin-
uous regression variable with corresponding known regression coefficient equal to 1.)
In general, assume that X1, . . . , X p are p regression variables observed jointly with
a count response variable Y that follows the Poisson distribution. A possible regres-
sion model for association between the regressors and the expected value of Y given
X1, . . . , X p is

λ = β0 +

p∑
i=1

βi X i . (3)

This is an ordinary linear model with unknown regression coefficients βi , i =
0, . . . , p to be estimated. Model (3) poses several difficulties for fitting, because the
parameter λ has to be positive. Nevertheless, in the context of time series and when
the correlation among successive observations is positive, models such as (3) are quite
useful; recall Fig. 1. A more natural choice for the regression modeling of count data
is the so called log-linear model which is specified by

log λ = β0 +

p∑
i=1

βi X i , (4)

where the notation is as in (3). Regardless of the chosen model, a fact that remains
true is that both (3) and (4) belong to the class of generalized linear models as intro-
duced by Nelder and Wedderburn (1972) and elaborated further by McCullagh and
Nelder (1989). Recall, that a generalized linear model consists of three components;
the random component that belongs to the exponential family of distributions (2) with
E[X ] = µ, the systematic component η, and the link function g(·). The link function
is a monotone twice differentiable function that is chosen by the user (or can be esti-
mated). This function associates the random and systematic component via g(µ) = η.
For the Poisson distribution, it is clear that both (3) and (4) introduce a generalized lin-
ear model with η = β0 +

∑p
i=1 βi X i and g(λ) = λ (for (3)) and g(λ) = log λ (for (4)).

Estimation and inference are based on the maximum likelihood theory – this topic has
been described in several texts; see McCullagh and Nelder (1989) and Agresti (2002),
for example. In the next section, we explore these ideas in the context of count time
series.
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3. Poisson regression models for count time series

It is useful to consider the classical AR(1) process

Yt = b1Yt−1 + εt , (5)

where |b1| < 1 and {εt } is a sequence of independent and identically distributed (i.i.d.)
normal random variables with zero mean and variance σ 2. This is a standard model used
for the analysis of real-valued time series. It implies that the value of the process at time
t depends on the value of the process at time (t − 1) plus a random error; e.g., Priestley
(1981), Brockwell and Davis (1991, Chapter 3), and Shumway and Stoffer (2006). It
is enlightening to consider model (5) as a member of the family of generalized linear
models for time series. Recalling the discussion at the end of the last section, note
that the random component of the model (for the AR(1) model (5) the conditional
probability density function of Yt given its past is Gaussian) belongs to the exponential
family of distribution. In addition, the systematic component is defined by ηt = b1Yt−1.
If the link function g(·) is chosen to be the identity, then g(E[Yt | Yt−1] = ηt . Hence,
the AR(1) process (5) falls within the framework of generalized linear models for time
series, see Kedem and Fokianos (2002, Chapter 1). This discussion motivates much of
the following development.

3.1. Linear models for count time series

From this point on, assume that {Yt } denotes a count time series; we will call this
process the ”response.” Following the AR(1) paradigm, we generalize model (5) in the
context of Poisson autoregression by assuming that

Yt | Ft−1 ∼ Poisson(λt ), λt = d + b1Yt−1, t ≥ 1, (6)

with Ft = σ(Ys , s ≤ t), d, b1 non-negative parameters and {λt } denoting the mean
process of Yt given its past. Positive d and b1 ensure that λt > 0, since Yt is a non-
negative integer. With this notation, it is clear that model (6) falls within the framework
of generalized linear models with the random component being the Poisson distribu-
tion, the systematic component given by ηt = d + b1Yt−1 and the identity link. This is
a situation quite analogous to (5). Model (6) implies the same dynamics of model (5),
since

Yt = λt + (Yt − λt ) = d + b1Yt−1 + εt , t ≥ 1, (7)

where the notation is obvious. The last line displays that the values of the process at
time t depend on the value of the process at time (t − 1) plus the term {εt }, which is
white noise sequence; that is a sequence of uncorrelated random variables with zero
mean and constant variance. Indeed, if we assume that the process {Yt } is stationary,
then we obtain the following results:

• Constant mean:

E[εt ] = E
[
(Yt − λt )

]
= E

[
E
(

Yt − λt | Ft−1

)]
= 0,
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• Constant variance:

Var[εt ] = Var
[
E
(
εt | Ft−1

)]
+ E

[
Var

(
εt | Ft−1

)]
= E[λt ] = E[Yt ].

This is independent of t since {Yt } has been assumed to be stationary. The last
equality follows from the fact that E[εt ] = 0.

• Uncorrelated sequence: For k > 0,

Cov(εt , εt+k) = E[εtεt+k] = E
[
εt E
(
εt+k | Ft+k−1

)]
= 0

These results verify the claim that the sequence {εt } is a white noise sequence.
Because of the assumed stationarity, (7) shows that E[Yt ] = d + b1E[Yt−1] and there-
fore that Var[εt ] = E[Yt ] = d/(1− b1); a fact which illustrates that b1 needs to be
positive but less than 1.

To start investigating the second-order properties of (6), we employ representa-
tion (7). By repeated substitution, we obtain that

Yt = d + b1Yt−1 + εt

= d + b1(d + b1Yt−2 + εt−1)+ εt

= d(1+ b1)+ b2
1Yt−2 + b1εt−1 + εt

= · · · · · · · · · · · · · · · · · ·

= d(1+ b1 + b2
1 + · · · b

t
1)+

t∑
i=0

bi
1εt−i . (8)

Therefore, as in the case of the usual AR(1) model, assuming that 0 < b1 < 1, we
obtain by (8) for large t , the useful representation

Yt =
d

1− b1
+

∞∑
i=0

bi
1εt−i ,

in mean square sense. Standard arguments now show that the autocovariance function
of model (6) is given by

Cov(Yt , Yt+h) =
bh

1

1− b2
1

E[Yt ], h ≥ 0,

a fact that yields the ACF of model (6):

Corr(Yt , Yt+h) = bh
1 , h ≥ 0. (9)

Note that unless b1 = 0, the variance of {Yt } is always greater than its expectation;
i.e., model (6) takes into account overdispersion. These results are straightforward con-
sequences of (7) because it reveals that (6) has identical second-order properties to
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those of the AR(1) model (5). However, Corr(Yt , Yt+h) > 0, for all h > 0, because
b1 > 0; that is, model (6) can be employed for positively correlated count time series.

An empirical verification of these considerations is illustrated in the left plot of
Fig. 2. The upper plot shows 200 observations from (6) with d = 1 and b1 = 0.6. The
lower plot shows the autocorrelation function of the same model. Quite clearly, as the
lag h increases, the autocorrelation function tends fast to smaller values; see Eq. (9)
and compare this plot with the left-hand plot of Fig. 1. (Further results about moments
and cumulants of model (6) are given in Weiß (2010)).

The right plot of Fig. 2 illustrates a different situation. It shows 200 realizations of
the following model

Yt | FY ,λ
t−1 ∼ Poisson(λt ), λt = d + a1λt−1 + b1Yt−1, t ≥ 1, (10)

where FY ,λ
t the σ -field generated by {Y0, . . . , Yt , λ0}, that is, FY ,λ

t = σ(Ys , λ0, s ≤ t),
and {λt } is a Poisson intensity process, as before. The parameters d , a1, b1 are assumed
to be positive and to satisfy 0 < a1 + b1 < 1. Both starting values λ0 and Y0 are
assumed to be random. When a1 = 0, then model (6) is recovered. Recall the lower
right plot of Fig. 2 and compare it with the corresponding plot of Fig. 1. Apparently,
the persistence of large positive values of the autocorrelation function is a consequence
of the existence of the feedback mechanism {λt } introduced in (10). In principle, when
count time series are available and their autocorrelation function assumes relatively
high values for large lags, then we should expect a model of the form (6) to accommo-
date this fact by entertaining a large number of lagged regressor variables. However,
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Fig. 2. Left plot: Two hundred observations (up) and their sample ACF (bottom) from model (6) for d = 1
and b1 = 0.6. Right plot: Two hundred observations (up) and their sample ACF (bottom) from model (10)

for d = 1, a1 = 0.3, and b1 = 0.6.
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such an approach can be avoided when employing model (10); it simply provides a
parsimonious way to model this type of data (Fokianos et al., 2009).

Several results for model (10) have been reported in the literature, see Rydberg and
Shephard (2000), Streett (2000), Heinen (2003), and Ferland et al. (2006), who consider
the following general model of order (p, q):

Yt | FY ,λ
t−1 ∼ Poisson(λt ), λt = d +

p∑
i=1

aiλt−i +

q∑
j=1

b j Yt− j , t ≥ max(p, q), (11)

and show that it is second-order stationary provided that 0 <
∑p

i=1 ai +
∑q

j=1 b j < 1.
To study the properties of (10), it is instructive to consider again decomposition (7)

and then use the second part of (10) to express the response process as

Yt = d + (a1 + b1)Yt−1 + εt − a1εt−1,

with some slight abuse of notation. In the last display, εt = Yt − λt and this sequence of
random variables, although distinct from the corresponding sequence defined by means
of (7), is still a white noise process; the proof of this fact is the same as to the case of
the noise sequence that corresponds to model (6).

Furthermore, the last display can be rewritten as

(
Yt −

d

1− (a1 + b1)

)
= (a1 + b1)

(
Yt−1 −

d

1− (a1 + b1)

)
+ εt − a1εt−1, (12)

which shows that (10) has exactly identical second-order properties as those of a
usual ARMA(1,1) model. Hence, when 0 < a1 + b1 < 1, then there exists a sta-
tionary solution {Yt } of (10), with mean E [Yt ] = E[λt ] ≡ µ = d/(1− a1 − b1) and
autocovariance function

Cov [Yt , Yt+h] =


(1− (a1 + b1)

2
+ b2

1)µ

1− (a1 + b1)2
, h = 0,

b1(1− a1(a1 + b1))(a1 + b1)
h−1µ

1− (a1 + b1)2
, h ≥ 1.

It is clear that the ACF of model (10) is equal to

Corr [Yt , Yt+h] =
b1(1− a1(a1 + b1))(a1 + b1)

h−1

(1− (a1 + b1)2 + b2
1)

, h ≥ 1.

This fact matches the right-hand plots of Figs. 1 and 2 and explains the slower decay
of the corresponding ACF.
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For the Poisson distribution, E[Yt | FY ,λ
t−1] = Var[Yt | FY ,λ

t−1] = λt . Therefore, model
(10) can be defined as an INGARCH(1,1); i.e., an integer GARCH model, because its
structure is analogous to that of the customary GARCH model whereby volatility is
regressed on past values of itself and squared responses. In fact, model (11) can be
termed as an INGARCH(p, q) model. However (10), and more generally (11), specify
a conditional mean relation to the past values of both λt and Yt . Observe that Var[Yt ] ≥
E[Yt ] with equality when b1 = 0. Thus, the inclusion of the past values of Yt in the
evolution of λt yields overdispersion – this is the same fact that holds true for model
(6). Furthermore, Corr [Yt , Yt+h] > 0 for model (10) like in the case of model (6).

By repeated substitution,

λt = d + a1λt−1 + b1Yt−1

= d + a1(d + a1λt−2 + b1Yt−2)+ b1Yt−1

= d + a1d + a2
1λt−2 + a1b1Yt−2 + b1Yt−1

= · · · · · · · · · · · · · · · · · ·

= d
1− at

1

1− a1
+ at

1λ0 + b1

t−1∑
i=0

ai
1Yt−i−1. (13)

The last display shows that the hidden process {λt } is determined by past functions
of lagged responses and the initial value λ0. Therefore, model (10) belongs to the class
of observation driven models in the sense of Cox (1981). Representation (13) explains
further the reason that model (10) offers a parsimonious way of modeling count time
series data whose ACF decays slowly; see the example shown in the right plot of Fig. 1.
The process {λt } depends on a large number of lagged response values, so it is expected
to provide a more parsimonious model than a model of the form (6).

As a final remark, when a1 + b1 approaches 1, then the ACF function of model (10)
becomes unstable and the resulting model has similar properties to those of an inte-
grated GARCH model; that is, predictions for λt will reflect the most recent variation
found in the data. Such models have not been studied in the literature.

3.2. Log-linear models for count time series

The previous discussion shows that model (10) provides a satisfactory conceptual
framework for modeling-dependent count data. However, the model definition imposes
implicitly some restrictions on the data. First recall that, Cov [Yt , Yt+h] > 0, because
0 < a1 + b1 < 1. Therefore, model (10) cannot be employed for modeling negative
correlation among successive observations. An additional drawback of (10) is that it
does not accommodate covariates in a straightforward way, because of the identity link
function. However, as it was mentioned in Section 2, the choice of the logarithmic func-
tion is the most popular among the link functions for modeling count data. In fact, this
choice corresponds to the canonical link model. Hence, we resort to log-linear models
for count time series; see Zeger and Qaqish (1988), Li (1994), MacDonald and Zucchini
(1997), Brumback et al. (2000), Kedem and Fokianos (2002), Benjamin et al. (2003),
Davis et al. (2003), Fokianos and Kedem (2004), Jung et al. (2006), Creal et al. (2008),
and Fokianos and Tjøstheim (2011).
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Suppose again that {Yt } denotes a count time series. We will be working with the
so-called canonical link process νt ≡ log λt . We study the following family of log-
linear autoregressive models

Yt | FY ,ν
t−1 ∼ Poisson(λt ), νt = d + a1νt−1 + b1 log(Yt−1 + 1), t ≥ 1. (14)

where FY ,ν
t the σ -field generated by {Y0, . . . , Yt , ν0}, that is, FY ,ν

t = σ(Ys , ν0, s ≤ t).
In general, the parameters d , a1, b1 can be positive or negative but they need to satisfy
certain conditions so that we obtain a stationary time series. Both ν0 and Y0 are assumed
again to be some random starting values.

Note that the lagged observations of the response Yt are fed into the autoregressive
equation for νt via the term log(Yt−1 + 1). This is a one-to-one transformation of Yt−1,
which is quite standard in coping with zero data values. Moreover, both λt and Yt are
transformed into the same scale. Covariates can be accommodated by model (14), by
including them in the second equation of (14). An alternative modeling approach is
based upon employing the transformation log(max(Yt−1, c)), (cf. Zeger and Qaqish,
1988) for c ∈ (0, 1], instead of log(Yt−1 + 1) in (14).

When a1 = 0, we obtain the model

νt = d + b1 log(Yt−1 + 1), t ≥ 1, (15)

which parallels the structure of (6). With this notation, it is clear that model (15) falls
within the framework of generalized linear models with the random component being
the Poisson distribution, the systematic component given by ηt = d + b1 log(Yt−1 + 1)
and the link function being the logarithmic. Figure 3 illustrates the same phenomenon
as that observed in Fig. 2, namely the inclusion of the feedback mechanism yields
parsimony when the correlation decays slowly to zero.

The log-intensity process of (14) can be rewritten as

νt = d
1− at

1

1− a1
+ at

1ν0 + b1

t−1∑
i=0

ai
1 log(1+ Yt−i−1), (16)

after repeated substitution. Hence, we obtain again that the hidden process {νt } is deter-
mined by past functions of lagged responses. Equivalently, the log-linear model (14)
belongs to the class of observation driven models and possess similar properties to the
linear model (10).

To motivate further the choice of the log(·) function for the lagged values of the
response, consider a model like (14), but with Yt−1 included instead of log(Yt−1 + 1).
In other words, set

Yt | FY ,ν
t−1 ∼ Poisson(λt ), νt = d + a1νt−1 + b1Yt−1.

In this case

λt = exp(d)λa1
t−1 exp(b1Yt−1),
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Fig. 3. Left plot: Two hundred observations (up) and their sample ACF (bottom) from model (15) for d = 0.1
and b1 = 0.6. Right plot: Two hundred observations (up) and their sample ACF (bottom) from model (14)

for d = 0.1, a1 = 0.3, and b1 = 0.6.

and therefore stability of the above system is guaranteed only when b1 < 0. Other-
wise, the process {λt } increases exponentially fast, see Wong (1986) and Kedem and
Fokianos (2002, Chapter 4) for more details. Hence, only negative correlation can be
introduced by such a model. However (14) yields both positive (respectively, negative)
correlation by allowing the parameter b1 to take positive (respectively, negative) val-
ues. It is a challenging problem to obtain an explicit expression for the autocorrelation
function of model (14). This is easily seen by considering (16). Exponentiating both
sides of this formula shows that

λt = exp
(

d(1− at
1)/(1− a1)

)
λ

at
1

0

t−1∏
i=0

(
1+ Yt−i+1

)b1ai
1
,

which demonstrates the complications of calculating first and second moments for
model (14). However, by simulating a very long path of the series, we get a clue of
the range of possible values of correlation obtained by (14). Table 1 illustrates the ACF
of model (14) at lags one and two. It is evident that the log-linear model takes into
account both negative and positive correlations.

An alternative log-linear model specification for count time series was studied by
Davis et al. (2003). The model is given by the following

νt = β0 +

p∑
i=1

βiζt−i , (17)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 16-ch12-315-348-9780444538581 2012/4/24 2:05 Page 326 #12

326 K. Fokianos

Table 1
Typical values of the autocorrelation function at lags 1 and 2 derived by model (14) for selected values of the
parameters a1 and b1 when d = 0.5. Results are based on 10,000 data points. Here ρ(h) = Corr[Yt , Yt+h ]
for h = 1, 2

a1 −0.800 −0.500 −0.400 0.100 0.250 0.250
b1 −0.430 −1.000 −0.350 0.200 0.550 0.730
ρ(1) −0.984 −0.519 −0.188 0.145 0.630 0.979
ρ(2) 0.997 0.613 0.117 0.016 0.500 0.959

with

ζt =
Yt − λt

λδt
, (18)

where βi , i = 0, . . . , p ( with βi 6= 0 for i = 1, 2, . . . , p) are unknown regres-
sion parameters and δ ∈ (0, 1]. If δ = 1/2 then (17) is a moving average model
of the so-called Pearson residuals; see definition (29). Under the above specifi-
cation, we have the following results:

• The mean of the sequence {ζt } is zero:

E[ζt ] = 0.

• The variance of the sequence {ζt } is given by the following:

Var[ζt ] = E[λ1−2δ
t ].

• The mean and ACF of the log-mean process {νt } are:

E[νt ] = β0,

and

Cov[νt , νt+h] =



p−h∑
i=1

βiβi+hλ
1−2δ
t−i , h ≤ p,

0, otherwise.

We note that when δ = 1/2, all the above expressions do not depend on t . In par-
ticular, the autocovariance function between νt and νt+h , for h > 0 reduces to the
autocovariance functions of a standard moving average model of order p.

Remark 1. As it was already mentioned, one of the advantages of model (14) is that
time-dependent covariates can be easily introduced. To be more specific, suppose
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that {X t } is some covariate time series. Then enlarging the σ -field to FY ,X ,λ
t =

σ(Ys , Xs+1, λ0, s ≤ t) we obtain the model

Yt | FY ,X ,λ
t−1 ∼ Poisson(λt ), νt = d + a1νt−1 + b1 log(Yt−1 + 1)+ cX t , t ≥ 1, (19)

where c is, in general, a real-valued parameter. Some remarks about the possible
choices of the parameter c will be made in later sections. This remark, with obvious
modifications, also applies to the case of model (17) as well. 2

3.3. Nonlinear models for count time series

A large class of models for the analysis of count time series is given by the following
specification

Yt | FY ,λ
t−1, λt = f (λt−1, Yt−1), t ≥ 1, (20)

where f (·) is a known function up to an unknown finite dimensional parameter vector.
Moreover, f (·) takes values on the positive real line, that is, f : (0,∞)× N→ (0,∞)
and the initial values Y0 and λ0 are assumed again to be random. An interesting example
of a nonlinear regression model for count time series analysis is given by the following
specification

f (λ, y) = d + (a1 + c1 exp(−γ λ2))λ+ b1 y, (21)

where d , a1, c1, b1, γ are positive parameters. The above model is rather similar to the
traditional exponential autoregressive model, see Haggan and Ozaki (1981). In the
study by Fokianos et al. (2009), model (21) was studied for the case d = 0. Note that
the parameter γ introduces a perturbation of the linear model (10), in the sense that
when γ tends either to 0 or infinity, then (21) approaches two distinct linear models.
An obvious generalization of model (20) is given by the following specification of the
mean process

λt = f (λt−1, . . . , λt−p, Yt−1, . . . , Yt−q), (22)

where f (.) is function such that f : (0,∞)p
× Nq

→ (0,∞). Such examples are pro-
vided by the class of smooth transition autoregressive models of which the exponential
autoregressive model is a special case (cf. Teräsvirta et al., 2010). Further examples of
nonlinear time series models can be found in the works of Tong (1990) and Fan and Yao
(2003). These models have not been considered in the literature earlier in the context of
generalized linear models for count time series, and they provide a flexible framework
for studying dependent count data.

3.4. Inference

We illustrate conditional maximum likelihood inference for the linear model (10). The
methodology is quite analogous for models (14) and (20), so it is omitted. However, for
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models such as (21), the presence of nonlinear parameters requires larger sample sizes
for accurate estimation. Recall now (10) and let θ be the three dimensional vector of
unknown parameters, that is, θ = (d , a1, b1)

′

, and let the true value of the parameter be
θ0 = (d0, a1 ; 0, b1,0)

′

. Then, the conditional likelihood function for θ based on model
(10) and given a starting value λ0 is given by

L(θ) =
n∏

t=1

exp(−λt (θ))λ
Yt
t (θ)

Yt !
.

Here we use the Poisson assumption, λt (θ) = d + a1λt−1(θ)+ b1Yt−1 by (10) and
λt = λt (θ0). Hence, the log-likelihood function is given up to a constant, by

l(θ) =
n∑

t=1

lt (θ) =

n∑
t=1

(Yt log λt (θ)− λt (θ)) , (23)

and the score function is defined by

Sn(θ) =
∂l(θ)

∂θ
=

n∑
t=1

∂lt (θ)

∂θ
=

n∑
t=1

(
Yt

λt (θ)
− 1

)
∂λt (θ)

∂θ
, (24)

where ∂λt (θ)/∂θ is a three-dimensional vector with components given by

∂λt

∂d
= 1+ a1

∂λt−1

∂d
,

∂λt

∂a1
= λt−1 + a1

∂λt−1

∂a1
,

∂λt

∂b1
= Yt−1 + a1

∂λt−1

∂b1
. (25)

The solution of the equation Sn(θ) = 0, if it exists, yields the conditional maximum
likelihood estimator of θ , which is denoted by θ̂ . Furthermore, the Hessian matrix for
model (10) is obtained by further differentiation of the score equations (24),

Hn(θ) = −

n∑
t=1

∂2lt (θ)

∂θ∂θ
′

=

n∑
t=1

Yt

λ2
t (θ)

(
∂λt (θ)

∂θ

)(
∂λt (θ)

∂θ

)′
−

n∑
t=1

(
Yt

λt (θ)
− 1

)
∂2λt (θ)

∂θ∂θ
′ .

(26)

The conditional information matrix is defined by

Gn(θ) =

n∑
t=1

Var

[
∂lt (θ)

∂θ
| FY .λ

t−1

]
=

n∑
t=1

1

λt (θ)

(
∂λt (θ)

∂θ

)(
∂λt (θ)

∂θ

)′
, (27)

and plays a crucial role in the asymptotic distribution of the MLE θ̂ . More specif-
ically, under certain regularity conditions, it can be proved that θ̂ is consistent and
asymptotically normal, i.e.,

√
n
(̂
θ − θ0

) D
→ N (0, G−1),
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with the matrix G defined by

G(θ) = E

[
1

λt

(
∂λt

∂θ

)(
∂λt

∂θ

)′]
,

where E[·] is taken with respect to the stationary distribution. All the above quanti-
ties can be computed, and they are employed for constructing predictions, confidence
intervals, and so on. Although, the above formulaes are given for the linear model
(10), they can be modified suitably for the log-linear model (14) and the nonlinear
model (20).

3.5. On the asymptotic distribution of the MLE

It can be proved for regression models of the form (10), (14), and more generally for
models like (20), that the MLE θ̂ is asymptotically normally distributed, as it was men-
tioned before. This is an important fact, since inference is based on this approximation.
However, to study the asymptotic theory there is need to develop a central limit theory
for the bivariate process {(Yt , λt )}. We mention the approach taken by Neumann (2011),
who studies model (20) and shows that the bivariate process {(Yt , λt )} has a unique sta-
tionary distribution and the response process is absolutely regular. In addition, Franke
(2010) considers (22) and shows that the response process is weakly dependent with
finite first moment; see Doukhan and Louhichi (1999) and the recent monograph by
Dedecker et al. (2007) for definition of weak dependence and further examples. Using
the general model (22), the essential condition assumed by both the above references,
is that the function f (·) is a contraction, that is, for any (λ1, . . . , λp, y1, . . . , yq) and
(λ′1, . . . , λ′p, y′1, . . . , y′q)

| f (λ1, . . . , λp, y1, . . . , yq)− f ((λ′1, . . . , λ′p, y′1, . . . , y′q)|

≤

p∑
i=1

αi |λi − λ
′

i | +

q∑
j=1

γ j |y j − y′j |, (28)

where
∑p

i=1 αi +
∑q

j=1 γ j < 1. This is the same condition assumed by Fokianos et al.
(2009) and Fokianos and Tjøstheim (2012), whose approach is based on Markov chains
theory.

Turning now to the questions regarding ergodicity and inference, we note that
these problems have been examined in detail by Fokianos et al. (2009), Fokianos
and Tjøstheim (2011, 2012) (see also Woodard et al. (2011)), who also use a pertur-
bation argument to prove geometric ergodicity of {(Yt , λt )}. This means that instead
of proving geometric ergodicity of {(Yt , λt )}, the authors are considering a perturbed
{(Y m

t , λm
t , Ut )}, where {Ut } is a sequence of i.i.d uniform random variables. The strategy

to study the properties of the bivariate process {(Yt , λt )} is to prove geometric ergod-
icity of {(Y m

t , λm
t , Ut )} and then to use this fact to obtain asymptotic normality for the

likelihood estimators. Asymptotic normality of the likelihood estimates of the nonper-
turbed model is proved by employing an approximation lemma, which gives conditions
for the proximity of the perturbed version to nonperturbed version. Detailed exposition
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of the perturbation argument can be found in the references mentioned above. Here, we
list the following up-to-date known facts for models (10) and (14):

1. For the linear model (10):
(a) Consider the perturbed linear model and suppose that 0<a1 + b1<1. Then,

the process {(Y m
t , λm

t , Ut ), t ≥ 0} is a V(Y ,U ,λ)-geometrically ergodic Markov
chain with VY ,U ,λ(Y , U , λ) = 1+ Y k

+ λk
+U k .

(b) If 0 < a1 + b1 < 1, then the perturbed model can be made arbitrarily close
to the unperturbed model.

(c) If 0 < a1 + b1 < 1, then the conditional maximum likelihood estimators of
(d , a1, b1) are consistent and asymptotically normally distributed.

2. For the log-linear model (14), define {(Y m
t , νm

t , Ut ), t ≥ 0} as its perturbed
version.
(a) Suppose that | a1 |< 1. In addition, assume that when b1 > 0, then |a1 +

b1| < 1, and when b1 < 0, then |a1||a1 + b1| < 1. Then, the process
{(Y m

t , Ut , νm
t ), t ≥ 0} is a V(Y ,U ,ν)-geometrically ergodic Markov chain with

VY ,U ,λ(Y , U , ν) = 1+ log2k(1+ Y )+ ν2k
+U 2k , k being a positive integer.

(b) If |a1 + b1| < 1, whenever a1 and b1 have the same sign, and a2
1 + b2

1 < 1
whenever a1 and b1 have different signs, then the perturbed log-linear model
can be made arbitrarily close to the unperturbed log-linear model.

(c) If |a1 + b1| < 1, whenever a1 and b1 have the same sign, and a2
1 + b2

1 < 1,
whenever a1 and b1 have different signs, then the conditional maximum like-
lihood estimators of (d, a1, b1) are consistent and asymptotically normally
distributed.

We clarify the above results by considering the first statement about the linear model
(10). Result 1(a) implies that when 0 < a1 + b1 < 1, then the perturbed model pos-
sesses moments of any order and any average of functions of {(Y m

t , λm
t , Ut ), t ≥ 0} will

converge weakly to its expected value. This fact has important consequences, because
it allows the study of the maximum likelihood estimators derived by (23) given that the
unperturbed model is close to the perturbed model under the same condition. For the
log-linear model (14), the conditions for proving that the perturbed model approaches
the unperturbed model are quite restrictive when compared to the conditions for geo-
metric ergodicity. The same phenomenon occurs for model (17) for the case p = 1;
see Davis et al. (2005), who prove asymptotic normality of the maximum likelihood
estimators when δ = 1 and β1 > 0, such that β1(1+ exp(β1 − β0))

1/2 < 1. However,
it was shown by Davis et al. (2003) that if 1/2 ≤ δ ≤ 1, then the chain {νt } has a sta-
tionary distribution. In particular, when δ = 1, then {νt } is uniformly ergodic and has a
unique stationary distribution.

To complement the presentation, ergodicity of model (20) has been proved by
employing the contraction assumption (28) for p = q = 1 on (·), Fokianos and
Tjøstheim (2012) for its perturbed version, and Neumann (2011) and Franke (2010)
for the response process. Under such assumption Fokianos and Tjøstheim (2012) show
the asymptotic normality of the MLE for mode (20) showing that the perturbed version
approximates the nonperturbed version. We close this part by the following important
remarks.

Remark 2. For a log-linear model which includes covariates, such as (19), the estima-
tion problem is attacked along the lines described in Section 3.4. To study ergodicity
and asymptotic normality of the MLE in this case, suppose that {X t } a real-valued
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Markov chain which possess a density. Then, we can construct a two-dimensional
Markov chain {νt , X t+1} and a corresponding three-dimensional chain with {Yt }

included. If the transition mechanism of {X t } does not depend on {νt , Yt }, it is sim-
ple to find conditions for geometric ergodicity; see Fokianos and Tjøstheim (2011), for
more details. 2

Remark 3. We note, however, that the asymptotic theory concerning the maximum
likelihood estimators for the regression parameters has been developed under the
assumption of the Poisson distribution. Such an approach poses several robustness
issues related to model misspecification. A possible venue to overcome this problem
is the quasi-likelihood estimation method, see Heyde (1997) and Kedem and Fokianos
(2002, Section 1.7), for instance. In this case, the score is determined by a mean regres-
sion equation and a working variance function. Such methods have been explored, for
example, in the GARCH framework by Berkes et al. (2003) and it is worth studying
their performance in the context of count time series regression models. 2

3.6. Data examples

The above theory is applied to the real data examples discussed in the Introduction;
recall Fig. 1. For both time series, the mean is always less than their variance. In
other words, the data exhibits overdispersion – a fact that holds for all the Poisson-
distributed models that were discussed so far. For the analysis of those time series,
we fit both the linear model (10) and the log-linear model (14). To model these
data, set λ0 = 0 and ∂λ0/∂θ = 0 for initialization of the recursions in the case of
the linear model; see Eqs (25). For the log-linear model, the corresponding initial-
izations are set to ν0 = 1 and ∂ν0/∂θ = 0. Table 2 lists the results of the analysis.
The numbers in parentheses, next to the estimators, correspond to the standard errors
of the estimates. These are computed by using the so-called robust sandwich matrix
Hn(θ̂)G−1

n (θ̂)Hn(θ̂), where Gn(θ̂) has been defined by (27) and Hn(θ) is given by (26).
To examine the adequacy of the fit, consider the so-called Pearson residuals (recall (18)
with δ = 1/2)

et =
Yt − λt
√
λt

, t ≥ 1. (29)

Table 2
Data analysis results

Linear Model Log-linear Model Fit

Series C3

d̂ â1 b̂1 MSE d̂ â1 b̂1 MSE

2.385 0.050 0.5603 1.285 0.476 0.080 0.619 1.296
(0.533) (0.088) (0.073) (0.183) (0.097) (0.084)

Transactions Data

d̂ â1 b̂1 MSE d̂ â1 b̂1 MSE

0.581 0.744 0.198 2.367 0.105 0.746 0.207 2.391
(0.162) (0.026) (0.016) (0.034) (0.026) (0.019)
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Under the true model, the process {et } is a white noise sequence with constant vari-
ance; see Kedem and Fokianos (2002, Section 1.6.3). To estimate the Pearson residuals,
substitute λt by λ̂t ≡ λt (θ̂). Comparison among the models is implemented by cal-
culating the mean square error (MSE) of the Pearson residuals, which is given by∑N

t=1 ê2
t /(N − p), where p denotes the number of estimated parameters; see Kedem

and Fokianos (2002, Section 1.8) for more details on diagnostics (see also Zhu and
Wang (2010), for a recent contribution directly related to models of the form (6)).

Table 2 summarizes the findings of the data analysis. Consider first the C3 series.
We note that both linear and log-linear models yield almost the same MSE and the
estimators obtained for a1 and b1 are similar from both models. In fact, the feedback
mechanism does not provide any improvement for the fit, because the estimator of
a1 is large when compared to its standard error, for both models. Figure 4 shows the
results of the data analysis that point to the adequacy of the fit. Note that the bottom
plot shows the cumulative periodogram plot of the Pearson residuals, which confirms
that the sequence (29) is white noise. One practical aspect that arises in applications of
model (14) is the choice of log(Yt−1 + 1) in the regression equation. Here, we mention
that in order to examine the sensitivity of the results, as a function of the log term in
model (14), we can work as follows. Fit the following series of models to the log-mean
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Fig. 4. (a) Series C3. The red line corresponds to the prediction λt (θ̂) obtained by fitting model (14).
(b) Pearson Residuals obtained by fitting model (14). (c) Cumulative periodogram plot of the Pearson

residuals.
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processes

νt = d + a1νt−1 + b1 log(Yt−1 + v),

for both time series, where v is a constant that takes values from 1 to 10 (or some
other bound) with step equal to 0.5. Then, calculate the MSE of the Pearson residuals
for all different model specifications obtained by varying the constant v and compare
them. For the C3 series, the sample variance of obtained MSE values is almost zero.
In conclusion, we see that the choice of log(Yt−1 + 1) does not affect the results of the
analysis greatly, at least for the C3 series.

Turning now to the transactions data, we see again that both the models (10) and
(14) yield similar MSE values. Note that the sum of estimated coefficients is close to
one for both linear and log-linear model. This corresponds to a frequently observed
phenomenon for GARCH(1,1) models. Figure 5 demonstrates again the adequacy of
the fit for the log-linear model. To examine the sensitivity of the results as a function of
the log term in model (14), we repeat the previous exercise with a constant v that takes
values from 1 to 10 with step equal to 0.5. The MSE values have a range between 2.389
and 2.391. Therefore, we observe again that choice of log(Yt−1 + 1) does not affect the
results of the analysis greatly.

(a)

Time

N
um

be
r 

of
T

ra
ns

ac
tio

ns

0 100 200 300 400
0

10
20
30

P
ea

rs
on

re
si

du
al

s

(b)

Time

0 100 200 300 400

−2
0
2
4
6

0.50.40.30.20.10.0
0.0

0.4

0.8

Frequency

(c)

Fig. 5. (a) Transactions data. The red line corresponds to the prediction λt (θ̂) obtained by fitting model (14).
(b) Pearson Residuals obtained by fitting model (14). (c) Cumulative periodogram plot of the Pearson

residuals.
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As a general remark, models like (10) and (14) will be more useful when applied
to count time series data with strong correlation. The feedback mechanism allows for
more parsimonious modeling. This is in accordance with the GARCH methodology,
whereby lagged values of volatility allow for parsimony. Furthermore, when the data
are positively correlated, then models (10) and (14) will yield similar conclusions. It is
anticipated that the log-linear model (14) provides a better fit when either there exists
negative correlation among the data or when covariates need to be taken into account
for the data analysis.

4. Other regression models for count time series

The Poisson distribution is the most natural candidate among discrete distributions to
model count data. However, the literature offers several alternatives to Poisson. In this
section, we discuss the case of negative binomial distribution and the double Poisson
distribution as alternative models for the analysis of count time series. We also survey
other alternative regression-based methods for count time series analysis.

4.1. Other distributional assumptions

Recall that if Y is random variable that follows the negative binomial distribution with
parameters (r , θ), where θ ∈ (0, 1) and r an integer, then its probability mass function
is given by

P[Y = y] =

(
y + r − 1

y

)
θ y(1− θ)r , y = 0, 1, 2, . . . . (30)

Accordingly, we denote Y ∼ NegBin(r , θ). With this notation, it is well known that
E[Y ] = rθ/(1− θ) and Var[Y ] = rθ/(1− θ)2.

Consider again {Yt } to be the response and assume the following model, see Zhu
(2011):

Yt | FY ,λ
t−1 ∼ NegBin(r , θt ), λt ≡

θt

1− θt
= d + a1λt−1 + b1Yt−1, t ≥ 1, (31)

where the parameters d, a1, b1 are all non-negative and λ0, Y0 are some random starting
values. The above model regresses the log-odds of θt to its past values and past values
of the responses. More generally, we can study models of the form

λt = d +
p∑

i=1

aiλt−i +

q∑
j=1

b j Yt− j , t ≥ max(p, q),

but we will insist on the simpler model (31) for ease of presentation (see Zhu (2011)
for more details). With the same notation as before, it is easily seen that this particular
specification yields again

E[Yt ] = E
(

E
[
Yt | FY ,λ

t−1

])
= rE[λt ].
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Therefore, assuming stationarity, we obtain, from (31), that

E[Yt ] = r
d

1− a1 − rb1
,

provided that a1 + rb1 < 1. We will be working again as in the case of model (10) in
order to understand the dynamics of model (31). Toward this goal, consider again the
following representation

Yt = rλt + (Yt − rλt ) = rd + ra1λt−1 + rb1Yt−1 + εt , (32)

where the error term {εt } is again a white noise sequence. This fact is proved next, by
assuming the condition a1 + rb1 < 1. Furthermore, Eq. (32) implies that the observed
process depends on its past values and on its past odds of the sequence of probabilities
{θt }. The details for proving that the sequence {εt } is white noise are as follows:

• Constant mean:

E[εt ] = E
[
(Yt − rλt )

]
= E

[
E
(

Yt − rλt | FY ,λ
t−1

)]
= 0,

• Constant variance:

Var[εt ] = Var
[
E
(
εt | FY ,λ

t−1

)]
+ E

[
Var

(
εt | FY ,λ

t−1

)]
= rE[λt (1+ λt )]

=
1− (a1 + rb1)

2

1− (a1 + rb1)2 − rb2
1

(
E[Yt ]+

E2[Yt ]

r

)
, (33)

which is independent of t , since {Yt } is stationary. Equation (33) is proved in the
Appendix.

• Uncorrelated sequence: For k > 0,

Cov(εt , εt+k) = E[εtεt+k] = E
[
εt E
(
εt+k | FY ,λ

t+k−1

)]
= 0

To study the second-order properties of (31), we employ representation (32) using the
same technique as that which was employed for deriving (12). More specifically, Eq.
(32) shows that the {Yt } process can be expressed as(

Yt −
rd

1− a1 − rb1

)
= (a1 + rb1)

(
Yt−1 −

rd

1− a1 − rb1

)
+ εt − a1εt−1. (34)

This is an ARMA(1,1) process and therefore when 0 < (a1 + rb1)
2
+ rb2

1 < 1 we
have that {Yt } is second order stationary with autocovariance function

Cov [Yt , Yt+h] =


(1− (a1 + rb1)

2
+ r2b2

1)

1− (a1 + rb1)2 − rb2
1

(
E[Yt ]+

E2[Yt ]

r

)
, h = 0,

rb1(1− a1(a1 + rb1))

1− (a1 + rb1)2 − rb2
1

(
E[Yt ]+

E2[Yt ]

r

)
(a1 + rb1)

h−1, h ≥ 1.
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It is clear that the ACF of model (31) is equal to (see Appendix)

Corr [Yt , Yt+h] =
rb1(1− a1(a1 + rb1))

1− (a1 + rb1)2 + r2b2
1

(a1 + rb1)
h−1, h ≥ 1. (35)

Estimation for model (31) is based on the maximum likelihood method, where a pro-
filing procedure is employed. For a grid of values of r (recall that r is positive integer)
the negative binomial log-likelihood function is maximized with respect to (d , a1, b1).
Then, we estimate r by the value that maximizes all log-likelihood functions. For this
choice of r , the regression parameters are estimated. This method implies that the stan-
dard errors of the parameter estimators need to be calculated by resampling methods
because the methodology corresponds to a two-stage procedure. The problem of esti-
mation of the parameter r is challenging and the interpretation of its value is unclear.
A better way to deal with this issue is to define the negative binomial probability mass
function (30) by

P[Y = y] =
0(y + k)

y!0(k)

( k

λ+ k

)k( λ

λ+ k

)y
, y = 0, 1, 2, . . . ,

where k > 0. This is a plain consequence of the fact that the negative binomial distri-
bution is a mixture of Poisson random variables. Then we employ model (31) – or its
generalization – with obvious modifications.

An alternative way to relax the Poisson distributional assumption is given by
the double Poisson distribution (Efron, 1986). The double Poisson distribution is an
exponential combination of two Poisson densities, that is

f (y ; λ, θ) = C(λ, θ) [Poisson(λ)]θ [Poisson(y)]1−θ ,

where θ is a dispersion parameter and C(λ, θ) is the normalizing constant. It can be
shown that

1

C(λ, θ)
≈ 1+

1− θ

12θλ

(
1+

1

θλ

)
,

and that the mean and variance of the double Poisson distribution are approximately
equal to λ and λ/θ , respectively. For the Double Poisson model, we can use models
such as (10) to model the mean process, see Kedem and Fokianos (2002, Section 4.6,
Problem 4) and Heinen (2003). Properties of maximum likelihood estimators derived
by imposing either the negative binomial distribution or the double Poisson distribu-
tion is a research topic that has not been addressed suitably in the literature. As a final
remark, we note that several other alternative distributional assumptions can be adopted
along the previous lines; for example, data can be modeled by means of the zero-
inflated Poisson model (Lambert, 1992), or the truncated Poisson model (Fokianos,
2001), and so on. However, the likely gains of such approaches will depend, in general,
upon the context of their application.
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4.2. Parameter driven models

So far we have discussed models that fall under the framework of observation driven
model. This implies that even though the mean process {λt } is not observed directly, it
can still be recovered explicitly as function of the past responses, see Eq. (13) for exam-
ple. However, a different point of view has been taken by Zeger (1988), who introduced
a regression models for time series of counts by assuming that the observed process is
driven by a latent (unobserved) process. To be more specific suppose that, conditional
on an unobserved process {ξt , t ≥ 1}, {Yt , t ≥ 1}, is a sequence of independent counts
such that

E[Yt | ξt ] = Var[Yt | ξt ] = ξt exp(d + a1 yt−1). (36)

In the above we consider a simple model for illustration, but more complex mod-
els that include higher order lagged values of the response and any covariates can
be included in (36). Assume that {ξt } is a stationary process with E[ξt ] = 1 and
Cov[ξt , ξt+h] = σ 2ρξ (h), for h ≥ 0. Then, it can be proved that

E[Yt ] = E[exp(d + a1Yt−1)], Cov[Yt , Yt+h] = σ 2E[Yt ]E[Yt+h]ρξ (h).

It is clear that the above formulation, although similar to a Poisson–loglinear model,
reveals that the observed data are overdispersed. Estimation of all unknown parameters
is discussed by Zeger (1988). Further detailed study of model (36) can be found in the
study by Davis et al. (2000), where the authors address the problem of existence of
the latent stochastic process {ξt } and derive the asymptotic distribution of the regres-
sion coefficients when the latter exist. They also suggest adjustments for the estimators
of σ 2 and of the autocovariance. In the context of negative binomial regression, the
latent process model (36) has been extended by Davis and Wu (2009). See also Harvey
and Fernandes (1989) for a state-space approach with conjugate priors for the analy-
sis of count time series and Jørgensen et al. (1999) for multivariate count longitudinal
data. More generally, state-space models for count time series are discussed by West
and Harrison (1997), Durbin and Koopman (2001), Cappé et al. (2005), and among
others.

5. Integer autoregressive models

We discuss another class of models for integer-valued time series. This class consists
of the so-called integer autoregressive models that are constructed by means of the
thinning operator. As we shall see, these models can be viewed as a special case of a
branching process with immigration; see Kedem and Fokianos (2002, Chapter 5) for a
detailed account of integer AR and MA processes. The notation {Yt } still refers to the
response process.

5.1. Branching processes

An important model for integer-valued time series is the branching process with
immigration, also known as the Galton–Watson process with immigration. It is
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defined by

Yt =

Yt−1∑
i=1

X t ,i + It , t = 1, . . . , (37)

where the initial value Y0 is a non-negative integer-valued random variable, and∑0
1 ≡ 0. The processes {X t ,i } and {It } drive the dynamics of the system and they are

mutually independent, independent of Y0, and each consisting of i.i.d. random vari-
ables. This defines a Markov chain {Yt } with non-negative integer states. Model (37)
was originally introduced and applied by Smoluchowski in 1916 for studying the fluc-
tuations in the number of particles contained in a small volume in connection with the
second law of thermodynamics; see Chandrasekhar (1943). Since then, the process has
been applied extensively in biological, sociological, and physical branching phenom-
ena, see for instance Kedem and Chiu (1987), Franke and Seligmann (1993), Berglund
and Brännäs (2001), Böckenholt (1999), and the review by McKenzie (2003), Weiß
(2008), and Jung and Tremayne (2011).

Note that Yt is the size of the t’th generation of a population, X t ,1, . . . , Yt ,Yt−1 are the
offspring of the (t − 1)st generation, and It is the contribution of immigration to the t’th
generation. An important role in the behavior of {Yt } is played by the mean m = E[X t ,i ]
of the offspring distribution, where the cases m < 1, m = 1, m > 1, are referred to as
subcritical, critical, and supercritical, respectively. In the subcritical case {Yt } has a
limiting stationary distribution, whereas in the supercritical case {Yt } explodes at an
exponential rate. In the critical case, the process is either null recurrent or transient.

The process (37) admits a useful autoregressive representation, similar to the model
representation (32), for instance. Let λ = E[It ], and let Ft be generated by the past
information Y0, Y1, Y2, . . . , Yt . Then E[Yt | Ft−1] = mYt−1 + λ. Therefore, with εt ≡

Yt − E[Yt |Ft−1], the stochastic Eq. (37) is transformed into a stochastic regression
model,

Yt = mYt−1 + λ+ εt , t = 1, . . . , (38)

as before. The noise process {εt } consists of uncorrelated random variables such
that E[εt ] = 0. However, E[ε2

t | Ft−1] = Var[X t ,i ]Yt−1 + Var[It ] is unbounded as Yt−1

increases.
As suggested by (38), the least squares estimators for m, λ are obtained by

minimizing,

n∑
t=1

ε2
t =

n∑
t=1

(Yt − mYt−1 − λ)
2,

and are given by

m̃ =

∑
Yt
∑

Yt−1 − n
∑

Yt Yt−1

(
∑

Yt−1)2 − n
∑

Y 2
t−1

λ̃ =

∑
Yt−1Yt

∑
Yt−1 −

∑
Y 2

t−1

∑
Yt

(
∑

Yt−1)2 − n
∑

Y 2
t−1

,
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where the summation limits are from t = 1 to t = n. It turns out that m̃ is consistent
in all the three cases, whereas λ̃ is not consistent in the critical and supercritical cases.
Improved estimators are obtained by weighted least squares. We write (38) as

Yt
√

Yt−1 + 1
= m

√
Yt−1 + 1+

(λ− m)
√

Yt−1 + 1
+

εt
√

Yt−1 + 1
, (39)

and estimate m and λ− m by minimizing
∑
δ2

t where δt = εt/
√

Yt−1 + 1 to obtain
(see Winnicki (1986)),

m̂ =

∑
Yt
∑ 1

Yt−1+1 − n
∑ Yt

Yt−1+1∑
(Yt−1 + 1)

∑ 1
Yt−1+1 − n2

, (40)

λ̂ =

∑
Yt−1

∑ Yt
Yt−1+1 −

∑
Yt
∑ Yt−1

Yt−1+1∑
(Yt−1 + 1)

∑ 1
Yt−1+1 − n2

, (41)

where again the summation limits are from 1 to n. Then for 0 < m <∞, m̂ → m in
probability. That is m̂ is consistent in all cases, provided that m > 0. Furthermore, the
limiting distribution of m̂ is normal in noncritical cases and non-normal in the critical
case. On the other hand, λ̂ is consistent for m ≤ 1, but not for m > 1, and is asymp-
totically normal when m < 1 or m = 1 and 2λ > Var[Yn,i ] (Wei and Winnicki, 1990;
Winnicki, 1986).

5.2. Thinning operator-based models

In this section, we review models that are based on the thinning operator. The thinning
operator is defined as follows (see Steutel and van Harn (1979)). Suppose that Y is a
non-negative integer random variable and let α ∈ [0, 1]. Then, the thinning operator,
denoted by ◦, is defined as

α ◦ Y =
Y∑

i=1

X i ,

where {X i } is a sequence of i.i.d. Bernoulli random variables – independent of Y –
with success probability α. The sequence {X i } is termed as counting series. The ran-
dom variable α ◦ Y counts the number of successes in a random number of Bernoulli
trials, where the probability of success α remains constant throughout the experiment.
Therefore, given Y = y, the random variable α ◦ Y follows the binomial distribution
with parameters y and α.

It turns out that the thinning operator is quite useful for modeling count time series.
Building a model for count time series is based on a typical autoregressive model
where scalar multiplication is replaced by thinning operators, see McKenzie (1985,
1986, 1988), Al-Osh and Alzaid (1987), Alzaid and Al-Osh (1990), and Du and Li
(1991). Let us consider the simple integer autoregressive model of order 1, which is
abbreviated by INAR(1). The INAR(1) model is a special case of the branching process
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with immigration (37). However, it deserves special consideration due to the thinning
operation or calculus. Suppose that a1 ∈ (0, 1) and let {εt } be a sequence of i.i.d non-
negative integer-valued random variables with E[εt ] = µ and Var[εt ] = σ 2. The integer
autoregressive process of order 1, {Yt , t ≥ 1}, is defined as

Yt = a1 ◦ Yt−1 + εt , t ≥ 1, (42)

where a1 ◦ Yt−1 is the sum of Yt−1 Bernoulli random variables all of which are inde-
pendent of Yt−1. It should be noted that the Bernoulli variables used in a1 ◦ Yt−1 are
independent of those used in a1 ◦ Yt−2, and so on. This is the assumption imposed by
Du and Li (1991) and used subsequently in the majority of all published work related
to integer autoregressive processes. Clearly, (42) is a special case of (37). Employing
the same techniques that we used before (or by repeated substitution into (42) and use
of the properties of the thinning operator), we obtain that the mean, variance, and ACF
of the INAR(1) are given by

E [Yt ] =
µ

1− a1
, Var [Yt ] =

a1µ+ σ
2

1− a2
1

, Cov[Yt , Yt+h] = ah
1 , h ≥ 1. (43)

Note that the ACF decays exponentially with the lag h as in AR(1) models, but
unlike the autocorrelation of a stationary AR(1) process, it is always positive for
a1 ∈ (0, 1). Furthermore, under suitable conditions, it can be shown that Yt has a dis-
crete self-decomposable distribution. This, in turn, implies unimodality properties and
characterization of the distribution of Yt through the sequence {εt }. For instance, we
can obtain the result that Yt follows the Poisson distribution if and only if εt follows
the Poisson distribution; see Al-Osh and Alzaid (1987).

Estimation in INAR(1) means estimation in the branching process with immigration
in the subcritical case, and this has already been discussed earlier. Still it is interesting to
note a few facts regarding estimation in the Poisson INAR(1). Estimation procedures
for the parameters a1 and µ of the INAR(1) model (42) assuming that the sequence
{εt } follows the Poisson distribution, has been discussed by Al-Osh and Alzaid (1987).
Imposing the Poisson assumption on the distribution of the error sequence {εt }, and
employing Eq. (43) yields a method of moments estimators for a1 and µ (in this case
µ = σ 2), given by

â1 =

∑n−1
t=0 (Yt − Ȳ )(Yt+1 − Ȳ )∑N

t=0(Yt − Ȳ )2
, µ̂ =

1

n

n∑
t=1

ε̂t ,

where ε̂t = Yt − â1Yt−1, for t = 1, . . . , n. Alternatively, we can consider the condi-
tional least squares of the parameters a1 andµ, i.e., the values that minimize the residual
sum of squares

N∑
t=1

(X t − a1 X t−1 − µ)
2 .
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Asymptotic properties of the resulting estimators are deduced by using classical results
from Klimko and Nelson (1978). In the works of Ispány et al. (2003), the authors
study the INAR(1) model where the autoregressive coefficient a1 = a1n satisfies a1n =

1− γn/n with γn → γ > 0. Such a sequence is called nearly unstable. The authors
show that it can be approximated, in an appropriate sense, by a Gaussian martingale
and use this result to show that the conditional least squares estimator of a1 is asymp-
totically normal with the rate of convergence n3/2. As a final remark, we note that
application of maximum likelihood estimation requires a full distributional assumption
about the innovations. With the Poisson assumption, the likelihood function of a time
series Y0, Y1, . . . , Yn from model (42) is(

N∏
t=1

Pt (Yt )

)
(µ/(1− a1))

Y0

Y0!
exp (−µ/(1− a1)),

Pt (y) = exp(−µ)
min(Yt ,Yt−1)∑

i=0

µy−i

(y − i)!

(
Yt−1

i

)
ai

1(1− a1)
Yt−1−i , t = 1, 2, . . . , n.

More generally, the p’th order model, abbreviated by INAR(p), is defined as

Yt =

p∑
i=1

ai ◦ Yt−i + εt , (44)

where {εt } is a sequence of i.i.d non-negative integer-valued random variables with
mean µ and variance σ 2, and all p thinning operations are independent of each other;
existence and generalizations of INAR(p) are studied by Latour (1997, 1998), whereas
the unifying work based on convolution is presented by Joe (1996). A unique stationary
and ergodic solution of (44) exists if

p∑
i=1

ai < 1. (45)

Estimation for INAR(p) models is based on the same methods as those described for
the INAR(1) model. However, in a recent contribution, Drost et al. (2009) consider the
problem of semiparametric maximum likelihood estimation for INAR(p) models. In
other words, the authors estimate both the finite dimensional parameters of the model
plus the unknown cumulative distribution of the residual process and obtain efficient
estimators. See also Jung and Tremayne (2006), Neal and Subba Rao (2007), Bu et al.
(2008), and McCabe et al. (2011) for further results on estimation and prediction.

5.3. Extensions of thinning operator-based models

A generalization of binomial thinning is given by Joe (1996), who considers the
following model

Yt = At (Yt−1; a)+ εt , t = 1, 2, . . . ,
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where At (·) is a random transformation, and At (Yt−1; a) and εt are independent. Based
on this general thinning, a class of stationary moving average processes with margins
in the class of infinitely divisible exponential dispersion models was introduced by
Jørgensen and Song (1998).

Another generalization is that of the first-order conditional linear autoregressive
process, abbreviated by CLAR(1),

m(Yt−1) = a1Yt−1 + µ,

where m(Yt−1) = E[Yt |Yt−1], and a1,µ are real numbers. The CLAR(1) class includes
many of the non-Gaussian AR(1) models proposed in the literature and allows var-
ious generalizations of previous results; see Grunwald et al. (2000). Interestingly,
when |a1| < 1, the ACF of the CLAR(1) model is equal to ah

1 , h = 1, 2, . . ., as
in other first-order autoregressive processes including the branching process with
immigration (37).

Non-negative integer-valued bilinear processes have been defined and studied by
Doukhan et al. (2006); see also Latour and Truquet (2008). These processes are
given by

Yt =

p∑
i=1

ai ◦ Yt−i +

q∑
j=1

c jεt− j +

m∑
k=1

n∑
l=1

blk ◦ (Yt−kεt−l)+ εt ,

where all thinning operators are defined independently of each other and {εt } is a
sequence of i.i.d. non-negative integer-valued random variables. Furthermore, Drost
et al. (2008) consider some special cases of the above model. Random coefficient
integer-valued autoregressive models have been proposed by Zheng et al. (2006, 2007).
For instance, the random coefficient model of order 1 is given by

Yt = a1t ◦ Yt−1 + εt ,

where now {a1t } is a sequence of independent and identically distributed random vari-
ables, independent of the noise {εt }. Multivariate INAR type of models have been
considered by Franke and Rao (1995), who also discuss stationarity conditions and the
properties of the maximum likelihood estimator for the first-order multivariate model.
For several new results regarding inference for multivariate models, see the thesis of
Pedeli (2011).

5.4. Renewal process models

In a recent contribution by Cui and Lund (2009), the authors propose a new and sim-
ple model for stationary time series of integer counts. Their methodology does not
resort to thinning operations. Instead they use a renewal process to generate a time-
correlated sequence of Bernoulli trials. It turns out that superposition of i.i.d. such
processes, yields stationary processes with binomial, Poisson, geometric, or any other
discrete marginal distribution. Apparently, this new model class of non-Markov model
offers parsimony and easily produces series with either short- or long-memory auto-
covariances. The model can be fitted with linear prediction techniques for stationary
series.
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6. Conclusions

In general, count time series refers to stochastic processes whose state space is a
countable set. Although probabilistic properties of these processes are well under-
stood, (e.g., Billingsley, 1961; Meyn and Tweedie, 1993), it is still not clear what
conditions should be met for valid parametric modeling, especially when the time
series is observed jointly with covariates or its behavior is driven by an unobserved
process. The parametric framework allows for estimation, model assessment and fore-
casting by employing existing statistical software. These facts make a strong case
in favor of this approach and advocate the point of view that a successful approach
toward the resolution of the aforementioned problems is via the theory of GLM as
advanced by Nelder and Wedderburn (1972) and McCullagh and Nelder (1989). In
this contribution, we have surveyed the most commonly used models related to the
regression of count time series. The foundation for this class of models is Poisson
regression. However, models like (10) can be developed within the context of other dis-
tributional assumptions, like the negative binomial or other discrete distributions. The
literature, both applied and theoretical, on this subject is growing fast. For instance,
Andersson and Karlis (2010) consider methods for estimating the parameters of the
first-order integer-valued autoregressive model in the presence of missing data and
Monteiro et al. (2010) study the periodic integer-valued autoregressive model of order
one. In the works of Fokianos and Fried (2010), the authors introduce the concept
of intervention for the linear model (6) and discuss estimation of the intervention
size as well as testing for its existence. Another problem of current interest is the
analysis of multivariate count data, see Jung et al. (2011), who propose a dynamic
factor model for the analysis of number of trades for five stocks from two industrial
sectors.

Appendix

Proof of (33) and (35)

Consider the negative binomial regression model (31) and note that E[Yt ] = rd/(1−
a1 − rb1). Then assuming second-order stationarity, we obtain that

σ 2
= Var[εt ] = rE[λt + λ

2
t ].

But E[λt ] = E[Yt ]/r . Hence, we need to calculate E[λ2
t ] ≡ µ(2)λ . Consider the state

equation of (31) to obtain

µ
(2)
λ = E

(
d + a1λt−1 + b1Yt−1

)2

= E
[
d + (a1 + rb1)λt−1 + b1(Yt−1 − rλt−1)

)2

= d2
+ (a1 + rb1)

2µ
(2)
λ + b2

1σ
2
+ 2d(a1 + rb1)E[λt ]

=

(
(a1 + rb1)

2
+ rb2

1

)
µ
(2)
λ + d2

+

(
rb2

1 + 2d(a1 + rb1)
)

E[λt ].
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Therefore, we obtain that

µ
(2)
λ =

d2
+

(
rb2

1 + 2d(a1 + rb1)
)

E[λt ]

1− (a1 + rb1)2 − rb2
1

.

Plugging this expression into the definition of σ 2 and using the fact that d = (1− a1 −

rb1)E[λt ] yields to (33). Formula (35) is proved by employing representation (34) and
well-known results about the ACF.
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Abstract

The article contains an overview over locally stationary processes. At the
beginning, time varying autoregressive processes are discussed in detail – both as
a deep example and an important class of locally stationary processes. In the next
section, a general framework for time series with time varying finite dimensional
parameters is discussed with special emphasis on nonlinear locally stationary pro-
cesses. Then, the paper focuses on linear processes where a more general theory
is possible. First, a general definition for linear processes is given and time vary-
ing spectral densities are discussed in detail. Then, the Gaussian likelihood theory
is presented for locally stationary processes. In the next section, the relevance of
empirical spectral processes for locally stationary time series is discussed. Empiri-
cal spectral processes play a major role in proving theoretical results and provide a
deeper understanding of many techniques. The article concludes with an overview
of other results for locally stationary processes.

Keywords: locally stationary process, time varying parameter, local likelihood,
derivative process, time varying autoregressive process, shape curve, empirical
spectral process, time varying spectral density.

1. Introduction

Stationarity has played a major role in time series analysis for several decades. For
stationary processes, there exist a large variety of models and powerful methods, such
as bootstrap methods or methods based on the spectral density. Furthermore, there are
important mathematical tools such as the ergodic theorem or several central limit theo-
rems. As an example, we mention the likelihood theory for Gaussian processes which
is well developed.
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During recent years, the focus has turned to nonstationary time series. Here, the sit-
uation is more difficult: First, there exists no natural generalization from stationary to
nonstationary time series, and second, it is often not clear how to set down a meaningful
asymptotics for nonstationary processes. An exception are nonstationary models that
are generated by a time invariant generation mechanism – for example, integrated or
cointegrated models. These models have attracted a lot of attention during recent years.
For general, nonstationary processes ordinary asymptotic considerations are often con-
tradictory to the idea of nonstationarity since future observations of a nonstationary
process may not contain any information at all on the probabilistic structure of the pro-
cess at present. For this reason, the theory of locally stationary processes is based on
infill asymptotics originating from nonparametric statistics.

As a consequence valuable asymptotic concepts such as consistency, asymptotic
normality, efficiency, LAN expansions, neglecting higher-order terms in Taylor expan-
sions, etc. can be used in the theoretical treatment of statistical procedures for such
processes. This leads to several meaningful results also for the original nonrescaled case
such as the comparison of different estimates, the approximations for the distribution
of estimates and bandwidth selection (for a detailed example, see Remark 2).

The type of processes that can be described with this infill asymptotics are pro-
cesses which locally at each time point are close to a stationary process but whose
characteristics (covariances, parameters, etc.) are gradually changing in an unspecific
way as time evolves. The simplest example for such a process may be an AR(p) pro-
cess whose parameters are varying in time. The infill asymptotic approach means that
time is rescaled to the unit interval. For time varying AR processes, this is explained in
detail in the next section. Another example are GARCH processes that have recently
been investigated by several authors – see Section 3.

The idea of having locally approximately a stationary process was also the start-
ing point of Priestley’s (1965) theory of processes with evolutionary spectra (see also
Priestley (1988), Granger and Hatanaka (1964), Tjøstheim (1976), and Mélard and
Herteleer-de-Schutter (1989), among others). Priestley considered processes having a
time varying spectral representation

X t =

π∫
−π

exp(iλt) Ãt (λ) dξ(λ), t ∈ Z

with an orthogonal increment process ξ(λ) and a time varying transfer function Ãt (λ).
(Priestley mainly looked at continuous-time processes, but the theory is the same).
Also within this approach, asymptotic considerations (e.g., for judging the efficiency
of a local covariance estimator) are not possible or meaningless from an applied view.
Using the above mentioned infill asymptotics means, in this case, basically to replace
Ãt (λ) with some function A(t/T , λ) – see (78).

Beyond the above cited references on processes with evolutionary spectra, there has
also been work on processes with time varying parameters which does not use the infill
asymptotics discussed in this paper (cf. Subba Rao (1970) and Hallin (1986), among
others). Furthermore, there have been several papers on inference for processes with
time varying parameters – mainly within the engineering literature (cf. Grenier (1983)
and Kayhan et al. (1994), among others).
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The paper is organized as follows: In Section 2, we start with time varying autore-
gressive processes as a deep example and an important class of locally stationary
processes. There we mark many principles and problems addressed at later stages with
higher generality. In Section 3, we present a more general framework for time series
with time varying finite-dimensional parameters and show how nonparametric infer-
ence can be done and theoretically handled. We also introduce derivative processes that
play a major role in the derivations. The results cover in particular nonlinear processes
such as GARCH processes with time varying parameters.

If one restrict to linear processes or even more to Gaussian processes, then a much
more general theory is possible which is developed in the subsequent sections. In
Section 4, we give a general definition for linear processes and discuss time varying
spectral densities in detail. Section 5 then contains the Gaussian likelihood theory for
locally stationary processes. In Section 6, we discuss the relevance of empirical spec-
tral processes for locally stationary time series. Empirical spectral processes play a
major role in proving theoretical results and provide a deeper understanding of many
techniques.

2. Time varying autoregressive processes – A deep example

We now discuss time varying autoregressive processes in detail. In particular, we mark
many principles and problems addressed at later stages with higher generality. Consider
the time varying AR(1) process

X t + αt X t−1 = σt εt with εt i.i.d. N (0, 1). (1)

We now apply infill asymptotics, that is, we rescale the parameter curves αt and σt

to the unit interval. This means that we replace them by α( t
T ) and σ( t

T ) with curves
α(·): [0, 1]→ (−1, 1) and σ(·): [0, 1]→ (0,∞) leading in the general AR(p) case to
the definition given in (2) below. Formally, this results in replacing X t by a triangular
array of observations

(
X t ,T ; t = 1, . . . , T ; T ∈ N

)
, where T is the sample size.

We now indicate again the reason for this rescaling. Suppose we fit the paramet-
ric model αθ ,t := b + ct + dt2 to the nonrescaled model (1), which we assume to be
observed for t = 1, . . . , T . It is easy to construct different estimators for the parame-
ters (e.g., the least squares estimator, the maximum likelihood estimator or a moment
estimator), but it is nearly impossible to derive the finite sample properties of these
estimators. On the other hand, classical nonrescaled asymptotic considerations for com-
paring these estimators make no sense since with t →∞ also αθ ,t →∞, while, e.g.,
|αt | may be less than one within the observed segment – i.e., the resulting asymp-
totic results are without any relevance for the observed stretch of data. By rescaling
αt and σt to the unit interval as described above, we overcome these problems. As T
tends to infinity, more and more observations of each local structure become available,
and we obtain a reasonable framework for a meaningful asymptotic analysis of sta-
tistical procedures allowing to retain such powerful tools as consistency, asymptotic
normality, efficiency, LAN expansions, etc. for nonstationary processes. For example,
the results on asymptotic normality of an estimator obtained in this framework may
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be used to approximate the distribution of the estimator in the finite sample situa-
tion. It is important to note that classical asymptotics for stationary processes arises
as a special case of this infill asymptotics in case where all parameter curves are
constant.

Unfortunately, infill asymptotics does not describe the physical behavior of the pro-
cess as T →∞. This may be unusual for time series analysis, but it has been common
in other branches of statistics for many years. We remark that all statistical methods
and procedures stay the same or can easily be translated from the rescaled processes to
the original nonrescaled processes. A more complicated example on how the results of
the rescaled case transfer to the nonrescaled case is given in Remark 2.

In the following, we, therefore, consider time varying autoregressive
(
tvAR(p)

)
processes defined by

X t ,T +

p∑
j=1

α j

(
t

T

)
X t− j ,T = σ

(
t

T

)
εt , t ∈ Z, (2)

where the εt are independent random variables with mean zero and variance 1. We
assume σ(u) = σ(0), α j (u) = α j (0) for u < 0 and σ(u) = σ(1), α j (u) = α j (1) for
u > 1. In addition, we usually assume some smoothness conditions on σ(·) and the
α j (·). In addition, one may include a time varying mean by replacing X t− j ,T in (2) by
X t− j ,T − µ(t − j/T ) – see Section 7.6.

In some neighborhood of a fixed time point u0 = t0/n, the process X t ,T can be
approximated by the stationary process X̃ t (u0) defined by

X̃ t (u0)+

p∑
j=1

α j (u0) X̃ t− j (u0) = σ(u0) εt , t ∈ Z. (3)

It can be shown (see Section 3) that we have under suitable regularity conditions

∣∣X t ,T − X̃ t (u0)
∣∣ = Op

(∣∣∣ t

T
− u0

∣∣∣+ 1

T

)
(4)

which justifies the notation “locally stationary process.” X t ,T has an unique time
varying spectral density which is locally the same as the spectral density of X̃ t (u),
namely

f (u, λ) :=
σ 2(u)

2π

∣∣∣1+ p∑
j=1

α j (u) exp(−i jλ)
∣∣∣−2

(5)

(see Example 7). Furthermore, it has locally in some sense the same autocovariance

c(u, j) :=

π∫
−π

ei jλ f (u, λ)dλ, j ∈ Z
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Fig. 1. T = 128 as realizations of a time varying AR(2) model.
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Fig. 2. True and estimated time varying spectrum of a tvAR(2) process.

since cov(X [uT ],T , X [uT ]+k,T ) = c(u, k)+ O(T−1) uniformly in u and k (cf. (73)). This
justifies to term c(u, k), the local covariance function of X t ,T at time u = t/T .

As an example, Fig. 1 shows T = 128 observations of a tvAR(2) process with
mean 0 and parameters σ(u) ≡ 1, α1(u) ≡ −1.8 cos(1.5− cos 4πu), α2(u) = 0.81,
and Gaussian innovations εt . The parameters are chosen in a way such that for fixed u
the complex roots of the characteristic polynomial are 1

0.9 exp[±i(1.5− cos 4πu)], that
is, they are close to the unit circle and their phase varies cyclically with u. As could be
expected from these roots, the observations show a periodic behavior with time vary-
ing period length. The left picture of Fig. 2 shows the true time varying spectrum of the
process. One clearly sees that the location of the peak is also time varying (it is located
at frequency 1.5−cos 4πu).

2.1. Local estimation by stationary methods on segments

An ad-hoc method that works in nearly all cases for locally stationary processes is to
do inference via stationary methods on segments. The idea is that the process X t ,T is
almost stationary on a reasonably small segment {t : |t/T − u0| ≤ b/2}. The parame-
ter of interest (or the correlation, spectral density, etc.) is estimated by some classical
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method, and the resulting estimate is assigned to the midpoint u0 of the segment. By
shifting the segment, this finally leads to an estimate of the unknown parameter curve
(time varying correlation, time varying spectral density, etc). An important modifica-
tion of this method is obtained when more weight is put on data in the center of the
interval than at the edges. This can often be achieved by using a data taper on the
segment or by using a kernel-type estimate.

Since we use observations from the process X t ,T (instead of X̃ t (u0)), the proce-
dure causes a bias which depends on the degree of nonstationarity of the process on
the segment. It is possible to evaluate this bias and to use the resulting expression
for an optimal choice of the segment length. To demonstrate this, we now discuss
the estimation of the AR coefficient functions by classical Yule-Walker estimates
on segments. Since the approximating process X̃ t (u0) is stationary, we obtain from
(3) that the Yule-Walker equations hold locally at time u0, that is, we have with
α(u0) :=

(
α1(u0), . . . ,αp(u0)

)′
α(u0) = −R(u0)

−1 r(u0) and σ 2(u0) = c(u0, 0)+ α(u0)
′ r(u0), (6)

where r(u0) :=
(
c(u0, 1), . . . , c(u0, p)

)′
and R(u0) :={c(u0, i − j)}i , j=1,...,p.

To estimate α(u0), we use the classical Yule-Walker estimator on the segment
[u0T ]− N/2+ 1, . . . , [u0T ]+ N/2 (ordinary time) or on [u0 − bT /2, u0 + bT /2]
(rescaled time with bandwidth bT := N/T ), that is

α̂T (u0) = −R̂T (u0)
−1 r̂T (u0) and σ̂ 2

T (u0) = ĉT (u0, 0)+ α̂T (u0)
′ r̂T (u0), (7)

where r̂T (u0) := (ĉT (u0, 1), . . . , ĉT (u0, p))′ and R̂T (u0) := {ĉT (u0, i − j)}i , j=1,...,p with
some covariance estimator ĉT (u0, j).

Before we discuss the properties of this estimator, we first discuss different
covariance estimates and their properties.

2.2. Local covariance estimation

The covariance estimate with data taper on the segment [u0T ]−N/2+1, . . . , [u0T ]+
N/2 is

ĉT (u0, k) :=
1

HN

N∑
s,t=1

s−t= j

h
( s

N

)
h

(
t

N

)
X [u0T ]− N

2 +s,T X [u0T ]− N
2 +t ,T . (8)

where h : [0, 1]→ R is a data taper with h(x) = h (1− x), HN :=
∑N−1

j=0 h2(
j

N ) ∼

N
∫ 1

0 h2(x) dx is the normalizing factor. The data taper usually is largest at x = 1/2 and
decays slowly to 0 at the edges. For h(x) = χ(0,1](x), we obtain the classical nontapered
covariance estimate.
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An asymptotically equivalent (and from a certain viewpoint more intuitive estima-
tor) is the kernel density estimator

c̃T (u0, k) :=
1

bT T

∑
t

K

(
u0 − (t + k/2)/T

bT

)
X t ,T X t+k,T (9)

where K : R→ [0,∞) is a kernel with K (x) = K (−x),
∫

K (x)dx = 1, K (x) = 0 for
x 6∈ [−1/2, 1/2] and bT is the bandwidth. Also, equivalent is

˜̃cT (u0, i , j) :=
1

bT T

∑
t

K

(
u0 − t/T

bT

)
X t−i ,T X t− j ,T (10)

with i − j = k, which appears in least square regression – cf. Example 1(i). If K (x) =
h(x)2, all three estimators are equivalent in the sense that they lead to the same asymp-
totic bias, variance, and mean-squared error. For reasons of clarity, a few remarks are
in order:

1. The classical stationary method on a segment is in this case the estimator without
data taper which is the same as the kernel estimator with a rectangular kernel.

2. A first step toward a better estimate (as it is proved below) is to put higher weights
in the middle and lower weights at the edges of the observation domain in order
to cope in a better way with the nonstationarity of X t ,T on the segment. In this
context, this may be either achieved by using a kernel estimate or a data taper,
which is asymptotically equivalent. This is straightforward for local covariance
estimates and local Yule-Walker estimates and can usually also be applied to
other estimation problems.

3. Data tapers have also been used for stationary time series (in particular in spectral
estimation, but also with Yule-Walker estimates and covariance estimation where
they give positive definite autocovariances with a lower bias). Thus, the reason
for using data tapers for segment estimates is fold: reducing the bias due to non-
stationarity on the segment and reducing the (classical) bias of the procedure as
a stationary method.

We now determine the mean-squared error of the above estimators. Furthermore, we
determine the optimal segment length N and show that weighted estimates are better
than ordinary estimates.

Theorem 1. Suppose X t ,T is locally stationary with mean 0. Under suitable regularity
conditions (in particular second-order smoothness of c(·, k)), we have for ĉT (u0, k),
c̃T (u0, k), and ˜̃cT (u0, i , j) with K (x) = h(x)2 and bT = N/T

(i) EĉT (u0, k)= c(u0, k)+
1

2
b2

T

∫
x2 K (x)dx

[
∂2

∂2u
c(u0, k)

]
+ o(b2

T )+ O

(
1

bT T

)
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and

(i i) var
(
ĉT (u0, k)

)
=

1

bT T

1/2∫
−1/2

K (x)2dx
∞∑

`=−∞

c(u0, `)
[
c(u0, `)+ c(u0, `+ 2k)

]
+ o

(
1

bT T

)
.

Proof. (i) see Dahlhaus (1996c), (ii) is omitted (the form of the asymptotic variance is
the same as in the stationary case). 2

Note that the above bias of order b2
T is solely due to nonstationarity, which is

measured by ∂2/∂u2c(u0, k). If the process is stationary, this second derivative is
zero and the bias disappears. The bandwidth bT may now be chosen to minimize the
mean-squared error.

Remark 1 (Minimizing the mean-squared error). Let µ(u0) := ∂2

∂2u0
c(u0, k), τ(u0) :=∑

∞

`=−∞ c(u0, `)
[
c(u0, `)+ c(u0, `+ 2k)

]
, dK :=

∫
x2 K (x) dx and vK :=

∫
K (x)2 dx .

Then, we have for the mean-squared error

E
∣∣ĉT (u0, k)− c(u0, k)

∣∣2 = b4

4
d2

K µ(u0)
2
+

1

bT
vK τ(u0)+ o

(
b4
+

1

bT

)
. (11)

It can be shown (cf. Priestley, 1981, Chapter 7.5) that this MSE gets minimal for

K (x) = Kopt (x) = 6x(1− x), 0 ≤ x ≤ 1 (12)

and

b = bopt (u0) = C(Kopt )
1/5

[
τ(u0)

µ(u0)2

]1/5

T−1/5 (13)

where C(K ) = vK /d2
K . In this case, we have with c(K ) = vK d1/2

K

T 4/5 E
∣∣ĉT (u0, k)− c(u0, k)

∣∣2 = 5

4
c(Kopt )

4/5 µ(u0)
2/5 τ(u0)

4/5
+ o(1). (14)

µ(u0) =
∂2

∂2u0
c(u0, k) measures the “degree of nonstationarity,” while τ(u0) measures

the variability of the estimate at time u0. The segment length Nopt = bopt T gets larger
if µ(u0) gets smaller, i.e., if the process is closer to stationarity (in this case: if the kth
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order covariance is more constant/more linear in time). At the same time, the mean-
squared error decreases. The results are similar to kernel estimation in nonparametric
regression. A yet unsolved problem is how to adaptively determine the bandwidth from
the observed process. 2

2.3. Segment selection and asymptotic mean-squared error for local Yule-Walker
estimated

For the local Yule-Walker estimates from (7) with the covariances ĉT (u0, k) as defined
in (8), Dahlhaus and Giraitis (1998) have proved (see also Example 4)

E α̂T (u0) = α(u0)−
b2

2
dK µ(u0)+ o(b2)

with

µ(u0) = R(u0)
−1
[( ∂2

∂u2
R(u)

)
α(u0)+

( ∂2

∂u2
r(u)

)]
u=u0

and

var
(
α̂T (u0)

)
=

1

bT
vK σ

2(u0) R(u0)
−1
+ o

( 1

bT

)
.

Thus, we obtain for E
∥∥α̂T (u0)− α(u0)

∥∥2
, the same expression as in (11) with τ(u0) =

σ 2(u0) tr{R(u0)
−1
} and µ(u0)

2 replaced by ‖µ(u0)‖
2. With these changes, the optimal

bandwidth is given by (13) and the optimal mean-squared error by (14).

Remark 2 (Implications for nonrescaled processes). Suppose that we observe data
from a (nonrescaled) tvAR(p) process

X t +

p∑
j=1

αt j X t− j = σt εt , t ∈ Z. (15)

In order to estimate αt at some time t0, we may use the segment Yule-Walker estimator
as given in (7). The theoretically optimal segment length is given by (13) as

Nopt (u0) = C(Kopt )
1/5

[
τ(u0)

‖µ(u0)‖2

]1/5

T 4/5, (16)

which at first sight depends on T and the rescaling.
Suppose that we have parameter functions ã j (·) and some T > t0 with ã j (

t0
T ) = α j (t0)

(i.e., the original function has been rescaled to the unit interval) and we denote by R̃,
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r̃ , and α̃, the corresponding parameters in the rescaled world (i.e., R̃(u0) = R(t0) etc.).
Then,

τ(u0) = σ̃
2(u0) tr{R̃(u0)

−1
} = σ 2(t0) tr{R(t0)

−1
}

and (with the second-order difference as an approximation of the second derivative)

µ(u0) = R̃(u0)
−1

[(
∂2

∂u2
R̃(u)

)
α̃(u0)+

(
∂2

∂u2
r̃(u)

)]
u=u0

≈ R(t0)
−1

[
R(t0)− 2R(t0 − 1)+ R(t0 − 2)

1/T 2
a(t0)

+
r(t0)− 2r(t0 − 1)+ r(t0 − 2)

1/T 2

]
.

Plugging this into (16) reveals that T drops out completely, and the optimal segment
length can completely be determined in terms of the original nonrescaled process. This
is a nice example on how the asymptotic considerations in the rescaled world can be
transferred with benefit to the original nonrescaled world. 2

These considerations justify the asymptotic approach of this paper: while it is not
possible to set down a meaningful asymptotic theory for the nonrescaled model (1), an
approach using the rescaled model (2) leads to meaningful results also for the model (1).
Another example for this relevance is the construction of confidence intervals for the
local Yule-Walker estimates from the central limit theorem by Dahlhaus and Giraitis
(1998) Theorem 3.2.

2.4. Parametric Whittle-type estimates – A first approach

We now assume that the p + 1-dimensional parameter curve θ(·) =
(
α1(·), . . . ,αp(·),

σ 2(·)
)′

is parameterized by a finite-dimensional parameter η ∈ Rq , that is, θ(·) = θη(·).
An example studied below is where the AR coefficients are modeled by polynomials.
Another example is where the AR coefficients are modeled by a parametric transition
curve as in Section 2.6(iv). In particular, when the length of the time series is short, this
may be a proper choice. We now show how the stationary Whittle likelihood can be
generalized to the locally stationary case (another generalization is given in (89)).

If we were looking for a nonparametric estimate for the parameter curve θ(·), we
could apply the stationary Whittle estimate on a segment leading to

θ̂
W

T (u0) := argmin
θ∈2

LW
T (u0, θ) (17)

with the Whittle likelihood

LW
T (u0, θ) :=

1

4π

π∫
−π

{
log 4π2 fθ (λ)+

IT (u0, λ)

fθ (λ)

}
dλ (18)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 17-ch13-349-414-9780444538581 2012/4/24 2:03 Page 361 #13

Locally Stationary Processes 361

with the tapered periodogram on a segment about u0, that is

IT (u0, λ) :=
1

2πHN

∣∣∣∣ N∑
s=1

h
( s

N

)
X [u0T ]−N/2+s,T exp

(
− iλs

)∣∣∣∣2. (19)

Here, h(·) is a data taper as in (8). For h(x) = χ(0,1](x), we obtain the nontapered
periodogram. The properties of this nonparametric estimate are discussed later – in
particular in Example 3 and at the end of Example 9. In case of a tvAR(p) process,
θ̂T (u0) is exactly the local Yule-Walker estimate defined in (7) with the covariance
estimate given in (8).

Suppose now that we want to fit globally the parametric model θ(·) = θη(·) to the
data, that is, we have the time varying spectrum fη(u, λ) := fθη(u)(λ). Since LW

T (u, θ)
is an approximation of the Gaussian log-likelihood on the segment {[uT ]− N/2+
1, . . . , [uT ]+ N/2}, a reasonable approach is to use

η̂BW
T := argmin

η∈2η

LBW
T (η) (20)

with the block Whittle likelihood

LBW
T (η) :=

1

4π

1

M

M∑
j=1

π∫
−π

{
log 4π2 fη(u j , λ)+

IT (u j , λ)

fη(u j , λ)

}
dλ. (21)

Here, u j := t j/T with t j := S( j − 1)+ N/2 ( j = 1, . . . , M), i.e., we calculate the
likelihood on overlapping segments which we shift each time by S. Furthermore, T =
S(M − 1) + N . A better justification of the form of the likelihood is provided by the
asymptotic Kullback-Leibler information divergence derived in Theorem 5.

As discussed above, the reason for using data tapers is twofold: they reduce the
bias due to nonstationarity on the segment and they reduce the leakage (already known
from the stationary case). It is remarkable that the taper in this case does not lead to
an increase of the asymptotic variance if the segments are overlapping (cf. Dahlhaus,
1997, Theorem 3.3).

The properties of the above estimate are discussed by Dahlhaus (1997) including
consistency, asymptotic normality, model selection, and the behavior if the model is
misspecified. The estimate is asymptotically efficient if S/N → 0.

As an example, we now fit a tvAR(p) model to the data from Fig. 1 and estimate the
parameters by minimizing LBW

T (η). The AR coefficients are modeled as polynomials
with different orders. Thus, we fit the model

α j (u) =
K j∑

k=0

b jk uk ( j = 1, . . . , p) and σ(u) ≡ c
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Table 1
Values for AIC for p = 2 and different polynomial orders.

HHH
HK2

K1 4 5 6 7 8 9

0 0.929 0.888 0.669 0.685 0.673 0.689
1 0.929 0.901 0.678 0.694 0.682 0.698
2 0.916 0.888 0.694 0.709 0.697 0.712

0.0
−2.00

−1.20

−0.40

0.40

1.20

0.2 0.4 0.6 0.8 1.0

Fig. 3. True and estimated parameter curve α1(·).

to the data. The model orders p, K1, . . . , K p are chosen by minimizing the AIC criterion

AIC(p, K1, . . . , K p) = log σ̂ 2(p, K1, . . . , K p)+ 2

p + 1+
p∑

j=1

K j

 / T .

Table 1 shows these values for p = 2 and different K1 and K2. The values for other p
turned out to be larger. Thus, a model with p = 2, K1 = 6, K2 = 0 is fitted. The func-
tion α1(u) and its estimate are plotted in Fig. 3. For â2(u), we obtain 0.71 (a constant is
fitted because of K2 = 0), while the true α2(u) is 0.81. Furthermore, σ̂ 2

= 1.71, while
σ 2
= 1.0. The corresponding (parametric) estimate of the spectrum is the right picture

of Fig. 2, and the difference to the true spectrum is plotted in Fig. 4.
Given the small sample size, the quality of the fit is remarkable. Two negative effects

can be observed. First, the fit of α1(u) becomes rather bad outside u1 = 0.063 and
uM = 0.938. This is not surprising, due to the behavior of a polynomial and the fact
that the use of LBW

T (η) as a distance only punishes bad fits inside the interval [u1, uM ].
This end effect improves if one chooses K1 = 8 instead of K1 = 6. A better way seems
to modify LBW

T (η) and to include periodograms of shorter lengths at the edges. The
second effect is that the peak in the spectrum is underestimated. This bias is in part due
to the nonstationarity of the process on intervals (u j − N/(2T ), u j + N/(2T )), where
IT (u j , λ) is calculated.

We mention that the above estimates can be written in closed form and calculated
without an optimization routine. More generally, this holds for tvAR(p) models if σ 2

is constant and α j (u) =
∑K

k=1 b jk fk(u) with some functions f1(u), . . . , fK (u) (in the
above case, fk(u) = uk−1). For details, see Dahlhaus (1997), Section 4.
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3.0
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T
im

e

Fig. 4. Difference of estimated and true spectrum.

A closer look at the above estimate reveals that it is somehow the outcome of a
two-step procedure, where in the first step, the periodogram is calculated on segments
(which implicitly includes some smoothing with bandwidth b = N/T ), and afterward
the AR(p) process with the above polynomials is fitted to the outcome (instead of a
direct fit of the AR(p) model and the polynomials to the data). We now make this more
precise.

With the above form of the spectrum fη(u, λ) (cf. (5)) and Kolmogorov’s formula,
(cf. Brockwell and Davis, 1991, Theorem 5.8.1), we obtain with R̂T (u j ) and r̂T (u j ) as
defined in (7) after some straightforward calculations

LBW
T (η) =

1

2

1

M

M∑
j=1

[
log 4π2σ 2

η (u j )+
1

σ 2
η (u j )

×

(
ĉT (u j , 0)− r̂T (u j )

′

R̂T (u j )
−1r̂T (u j )

)]
+

1

2

1

M

M∑
j=1

1

σ 2
η (u j )

[(
R̂T (u j )αη(u j )+ r̂T (u j )

)′
R̂T (u j )

−1

×
(
R̂T (u j )αη(u j )+ r̂T (u j )

)]
.

We now plug in the Yule-Walker estimate α̂T (u) = −R̂T (u)−1 r̂T (u) with
asymptotic variance proportional to σ 2(u) R(u)−1 and σ̂ 2

T (u) = ĉT (u, 0)− r̂T (u)′

R̂T (u)−1 r̂T (u) with asymptotic variance 2 σ 2(u). Since log x = (x − 1)− 1
2 (x − 1)2 +

o((x − 1)2), we obtain
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LBW
T (η) =

1

2

1

M

M∑
j=1

1

2 σ 4
η (u j )

[
σ 2
η (u j )− σ̂

2
T (u j )

]2

+
1

2

1

M

M∑
j=1

[(
αη(u j )− α̂T (u j )

)′
σ 2
η (u j )

−1 R̂T (u j )
(
αη(u j )− α̂T (u j )

)]

+
1

2

1

M

M∑
j=1

log 4π2σ̂ 2
T (u j )+

1

2
+ o

(σ 2
η (u j )− σ̂

2
T (u)

σ 2
η (u j )

)2
 .

If the model is correctly specified, then we have for η close to the minimum:
σ 2
η (u j )

−1 R̂T (u j ) ≈ σ
2(u j )

−1 R(u j ) and 2 σ 4
η (u j ) ≈ 2 σ 2(u j ), which means that η̂T

is approximately obtained by a weighted least squares fit of αη(u) and σ 2
η (u) to the

Yule-Walker estimates on the segments. The method works in this case since the
(parametric!) model fitted in the second step is somehow “smoother” than the first
smoothing implicitly induced by using the periodogram on a segment. However, we
would clearly run into problems if the fitted polynomials were of high order or if even
K j = K j (T )→∞ as T →∞.

A good alternative seems to use the quasi-likelihood LGW
T (η) from (89) or (in par-

ticular for AR(p) models) the conditional likelihood estimate from (30) with `t ,T (·) as
in (23) for which the estimator can explicitly be calculated if σ(·) ≡ c. For σ0(·) 6= c,
iterative or approximative solutions are needed. The properties of this estimator have
not been investigated yet. In any case, the benefit of the likelihood LBW

T (η) and even
more of the improved likelihood LGW

T (η) is their generality because they can be
applied to arbitrary parametric models, which can be identified from the second-order
spectrum.

Furthermore, algorithmic issues, such as in-order algorithms (e.g., generalizations
of the Levinson-Durbin algorithm) need to be developed.

2.5. Inference for nonparametric tvAR models – An overview

In the last section, we studied parametric estimates for tvAR(p) models. This is an
important option if the length of the time series is short or if we have specific paramet-
ric models in mind. In general, however, one would prefer nonparametric models. For
nonparametric statistics, a large variety of different estimates are available (local poly-
nomial fits, estimation under shape restrictions, wavelet methods, etc.), and it turns out
that it is not too difficult to apply such methods to tvAR(p) models and, moreover, also
to other possibly nonlinear models (while the derivation of the corresponding theory
may be very challenging). A key role is played by the conditional likelihood at time t
which in the tvAR(p) case is

`t ,T (θ) := − log fθ
(
X t ,T

∣∣X t−1,T , . . . , X1,T
)

(22)

=
1

2
log
(
2π σ 2

)
+

1

2 σ 2

X t ,T +

p∑
j=1

α j X t− j ,T

2

(23)
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where θ =
(
α1, . . . ,αp, σ 2

)′
and its approximation ` ∗t ,T (θ) defined in (96). As a simple

example, consider the estimation of the curve α1(·) of a tvAR(1) process by a local
linear fit given by α̂1(·) = ĉ0, where

(ĉ0, ĉ1) = argmin
c0,c1

1

bT

T∑
t=1

K
(u0 − t/T

b

)(
X t ,T +

[
c0 + c1

( t

T
− u0

)]
X t−1,T

)2

(24)

or more generally (with vectors c0 and c1) given by θ̂(u0) = ĉ0 with

(ĉ0, ĉ1) = argmin
c0,c1

1

bT

T∑
t=1

K
(u0 − t/T

b

)
`t ,T

(
c0 + c1

(
t

T
− u0

))
. (25)

Besides this local linear estimate, many other estimates can be constructed based on
the conditional likelihood `t ,T (θ) from above:

1. A kernel estimate defined by

θ̂(u0) = argmin
θ

1

bT

T∑
t=1

K
(u0 − t/T

b

)
`t ,T
(
θ
)
. (26)

This estimate is studied in Section 3. We are convinced that it is equivalent to the
local Yule-Walker estimate from (7) with K (x) = h(x)2, b = N/T and that all
results from (3) are exactly the same for this estimate.

2. A local polynomial fit defined by θ̂(u0) = ĉ0 with

(ĉ0, . . . , ĉd)
′
= argmin

c0,...,cd

1

bT

T∑
t=1

K
(u0 − t/T

b

)
`t ,T

( d∑
j=0

c j

(
t

T
− u0

) j )
. (27)

Local polynomial fits for tvAR(p) models have been investigated by Kim (2001)
and Jentsch (2006).

3. An orthogonal series estimate (e.g., a wavelet estimate) defined by

β̄ = argmin
β

1

T

T∑
t=1

`t ,T

(J (T )∑
j=1

β jψ j

(
t

T

))
(28)

together with some shrinkage of β̄ to obtain β̂ and θ̂(u0) =
∑J (T )

j=1 β̂ jψ j (u0).
Usually, J (T )→∞ as T →∞. Such an estimate has been investigated for a
truncated wavelet expansion for tvAR(p) models by Dahlhaus et al. (1999).

4. A nonparametric maximum likelihood estimate defined by

θ̂(·) = argmin
θ(·)∈2

1

T

T∑
t=1

`t ,T

(
θ

(
t

T

))
(29)
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where 2 is an adequate function space, for example, a space of curves under
shape restrictions such as monotonicity constraints. In the study by Dahlhaus
and Polonik (2006), the estimation of a monotonic variance function in a tvAR
model is studied, including explicit algorithms involving isotonic regression.

5. A parametric fit for the curves θ(·) = θη(·) with η ∈ Rq defined by

η̂ = argmin
η

1

T

T∑
t=1

`t ,T

(
θη

(
t

T

))
(30)

The resulting estimate has not been investigated yet. It is presumably very close
to the exact MLE studied in Theorem 8.

Remark 3. (i) In the tvAR(p) case, the situation simplifies a lot if σ 2(·) ≡ c. In that
case, the estimates for α(·) and σ 2 “split” and `t ,T (θ) can in all cases be replaced by(
X t ,T +

∑p
j=1 α j X t− j ,T

)2
leading to least squares type estimates. (ii) All estimates

from above can be transferred to other models by using the conditional likelihood (22)
for the specific model. The kernel estimate will be investigated in Section 3. (iii) As
mentioned above, an alternative choice is to replace `t ,T (θ) by the local generalized
Whittle likelihood ` ∗t ,T (θ) from (96). With that likelihood, several estimates from above
have been investigated – see the detailed discussion at the end of Section 5. In that
case, the d-dimensional parameter curve θ(·) =

(
θ1(·), . . . , θd(·)

)′
must be uniquely

identifiable from the time varying spectrum f (u, λ) = fθ(u)(λ). 2

2.6. Shape and transition curves

There exist several alternative models for tvAR processes – in particular models where
specific characteristics of the time series are modeled by a curve. Below, we give four
examples where we restrict ourselves to tvAR(2) models. Suppose, we have a stationary
AR(2) model with complex roots 1

r exp(iφ) and 1
r exp(−iφ), that is, with parameters

a1 = −2r cos(φ), a2 = r2, and variance σ 2. The corresponding process shows a quasi-
periodic behavior with period of length 2π

φ
, that is with frequency φ. The more r gets

closer to 1, the more the shape of the process gets closer to a sine wave. The ampli-
tude is proportional to σ (if σ (say in (2)) is replaced by c · σ , then X t is replaced by
c · X t ).

In the specific tvAR(2) case, we can now consider the following shape and transition
models for quasi-periodic processes:

(i) Model with a time varying amplitude curve:

a1(·), a2(·) constant; σ(·) time varying.

Chandler and Polonik (2006) use this model with a unimodal σ(·) and a
nonparametric maximum likelihood estimate for the discrimination of earth-
quakes and explosions. The properties of the estimator have been investigated
in Dahlhaus and Polonik (2006).
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(ii) Model with a time varying frequency curve:

a1(·) = −2 r cos
(
φ(·)

)
, a2(·) = r2 with r constant and φ(·) time varying,

σ(·) constant.

The model in Fig. 1 is of this form with r = 0.9 and φ(u) = 1.5− cos 4πu.
(iii) Model with a time varying period distinctiveness:

a1(·) = −2 r(·) cos(φ), a2(·) = r(·)2 with r(·) time varying and φ constant,

σ(·) constant.

(iv) Transition models: Amado and Teräsvirta (2011) have recently used the logis-
tic transition function to model parameter transitions in GARCH models. The
simplest transition function is

G
( t

T
; γ , c

)
:=
[
1+ exp

{
− γ

( t

n
− c

)}]−1
.

Since G(0; γ , c) ≈ 0 and G(1; γ , c) ≈ 1, the model

a1(u) = astart
1 + G(u; γ , c)

(
aend

1 − astart
1

)
, a2(u)

= astart
2 + G(u; γ , c)

(
aend

2 − astart
2

)
is a parametric model for a smooth transition from the AR model with param-
eters (astart

1 , astart
2 ) at u = 0 to the model with parameters (aend

1 , aend
2

)
at u = 1.

Here, c and γ are the location and the “smoothness” of transition, respectively.
More general transition models (in particular with more states) may be found
in the study by Amado and Teräsvirta (2011). G(·; γ , c) may also be replaced
by a (nonparametric) function G(·) with G(0) = 0 and G(1) = 0.

It is obvious that all methods from subsection 5 can be applied in cases (i)–(iv) to
estimate the constant parameters and the shape and transition curves. We mention that
the theoretical results for local Whittle estimates of Dahlhaus and Giraitis (1998) apply
to these models (cf. Example 3); the uniform convergence result for the local general-
ized Whittle estimate in Theorem 13; the asymptotic results of Dahlhaus and Neumann
(2001), where the parameter curves are estimated by a nonlinear wavelet method; the
results of Dahlhaus and Polonik (2006) on nonparametric maximum likelihood esti-
mates under shape constraints; and the results for parametric models in Theorem 8 on
the MLE and the generalized Whittle estimator and by Dahlhaus (1997) on the block
Whittle estimator.

3. Local likelihoods, derivative processes, and nonlinear models with time
varying parameters

In this section, we present a more general framework for time series with time vary-
ing finite-dimensional parameters θ(·) and show how nonparametric inference can be
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done and theoretically handled. Typically, such models result from the generalization
of classical parametric models to the time varying case. If we restrict ourselves to lin-
ear processes or even more to Gaussian processes, then a much more general theory
is possible which is developed in the subsequent sections. Large parts of the present
section are based on the ideas presented by Dahlhaus and Subba Rao (2006), where
time varying ARCH models have been investigated.

The key idea is to use at each time point u0 ∈ (0, 1), the stationary approximation
X̃ t (u0) to the original process X t ,T , and to calculate the bias resulting from the use
of this approximation. This will end in Taylor-type expansions of X t ,T in terms of
so-called derivative processes. These expansions play a major role in the theoretical
derivations.

Suppose for example that we estimate the multivariate parameter curve θ(·) by
minimizing the (negative) local conditional log-likelihood, that is

θ̂
C

T (u0) := argmin
θ∈2

LC
T (u0, θ)

with

LC
T (u0, θ) :=

1

T

T∑
t=1

1

b
K

(
u0 − t/T

b

)
`t ,T (θ) (31)

and

`t ,T (θ) := − log fθ
(
X t ,T

∣∣X t−1,T , . . . , X1,T
)

where K is symmetric, has compact support [− 1
2 , 1

2 ], and fulfills
∫ 1/2
−1/2 K (x) dx = 1.

We assume that b = bT → 0 and b T →∞ as T →∞. Two examples for this
likelihood are given below.

We approximate LC
T (u0, θ) with L̃C

T (u0, θ), which is the same function but with
`t ,T (θ) replaced by

˜̀t (u0, θ) := − log fθ
(
X̃ t (u0)

∣∣X̃ t−1(u0), . . . , X̃1(u0)
)
,

which means that X t ,T is replaced by its stationary approximation X̃ t (u0). Usually, this
is the local conditional likelihood for the process X̃ t (u0).

Example 1. (i) Consider the tvAR(p) process defined in (2) together with its sta-
tionary approximation at time u0 given by (3). Under suitable regularity conditions,
it can be shown that X t ,T = X̃ t (u0)+ Op

(∣∣ t
T − u0

∣∣+ 1
T

) (
cf. (51)). In case where

the εt are Gaussian, the conditional likelihood at time t is given by

`t ,T (θ) =
1

2
log
(
2π σ 2

)
+

1

2 σ 2

(
X t ,T +

p∑
j=1

α j X t− j ,T

)2
(32)

where θ = (α1, . . . ,αp , σ 2)′. It is easy to show that the resulting estimate is the
same as in (7) but with r̂T (u0) :=

(
˜̃cT (u0, 0, 1), . . . , ˜̃cT (u0, 0, p)

)′
and R̂T (u0) :=

{ ˜̃cT (u0, i , j)}i , j=1,...,p with the local covariance estimator ˜̃cT (u, i , j) as defined in (10).
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(ii) A tvARCH(p) model where {X t ,T } is assumed to satisfy the representation

X t ,T = σt ,T Z t

where σ 2
t ,T = α0

(
t

T

)
+

p∑
j=1

α j

(
t

T

)
X 2

t− j ,N for t = 1, . . . , N (33)

with Z t being independent, identically distributed random variables with EZ t = 0,
EZ 2

t = 1.
The corresponding stationary approximation X̃ t (u0) at time u0 is given by

X̃ t (u0) = σt (u0) Z t

where σt (u0)
2
= α0(u0)+

p∑
j=1

α j (u0) X̃ t− j (u0)
2 for t ∈ Z. (34)

It is shown by Dahlhaus and Subba Rao (2006) that {X 2
t ,T } as defined above has

an almost surely well-defined unique solution in the set of all causal solutions
and X 2

t ,T = X̃ t (u0)
2
+ Op(|

t
T − u0| +

1
N ). In case where the Z t are Gaussian, the

conditional likelihood is given by

`t ,T (θ) =
1

2
logwt ,T (θ)+

X 2
t ,T

2wt ,T (θ)
with wt ,T (θ) = α0 +

p∑
j=1

α j X 2
t− j ,T (35)

where θ = (α0, . . . ,αp)
′. Dahlhaus and Subba Rao (2006) prove consistency of

the resulting estimate also in case where the true process is not Gaussian. As an
alternative, Fryzlewicz et al. (2008) propose a kernel normalized-least-squares
estimator that has a closed form and thus has some advantages over the above
kernel estimate for small samples.
(iii) Another example is a tvGARCH(p,q) process – see Example 6.

We now discuss the derivation of the asymptotic bias, mean-squared error, consis-
tency and asymptotic normality of θ̂T (u0) for an “arbitrary” local minimum-distance
functionLT (u0, θ) (keeping in mind the above local conditional likelihood). The results
are obtained by approximating LT (u0, θ) with L̃T (u0, θ), which is the same func-
tion but with X t ,T replaced by its stationary approximation X̃ t (u0). Typically, both
LT (u0, θ) and L̃T (u0, θ) will converge to the same limit-function, which we denote by
L(u0, θ). Let

θ0(u0) := argmin
θ∈2

L(u0, θ).

If the model is correctly specified, then, typically, θ0(u0) is the true curve. Further-
more, let

BT (u0, θ) := LT (u0, θ)− L̃T (u0, θ).



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 17-ch13-349-414-9780444538581 2012/4/24 2:03 Page 370 #22

370 R. Dahlhaus

The following two results describe how the asymptotic properties of θ̂T (u0) can be
derived. They should be regarded as a general road map, and the challenge is to prove
the conditions in a specific situation which may be quite difficult.

Theorem 2. (i) Suppose that2 is compact with θ0(u0) ∈ Int(2), the function L(u0, θ)
is continuous in θ and the minimum θ0(u0) is unique. If

sup
θ∈2

∣∣L̃T (u0, θ)− L(u0, θ)
∣∣ P
→ 0, (36)

and

sup
θ∈2

∣∣BT (u0, θ)
∣∣ P
→ 0 (37)

then

θ̂T (u0)
P
→ θ0(u0). (38)

(ii) Suppose in addition that L(u, θ) and θ0(u) are uniformly continuous in u and θ ,
and the convergence in (36) and (37) is uniformly in u0 ∈ [0, 1]. Then

sup
u0∈[0,1]

∣∣θ̂T (u0)− θ0(u0)
∣∣ P
→ 0. (39)

Proof. The proof of (i) is standard – cf. the proof of Theorem 2 in the
study by Dahlhaus and Subba Rao (2006). The proof of (ii) is a straightforward
generalization. 2

Note that in (i), all conditions apart from (37) are conditions on the stationary
process X̃ t (u0) with (fixed) parameter θ(u0) and the stationary likelihood/minimum-
distance function L̃T (u0, θ). These properties are usually known from existing results
on stationary processes. It only remains to verify the condition (37), which can be done
by using the expansion (51) in terms of derivative processes (see the discussion below).
(ii) contains a little pitfall: Usually, the estimate θ̂T (u0) is defined for u0 = 0 or u0 = 1
in a different way due to edge effects. This means that also L̃T (u0, θ) looks different,
that is, one would usually prefer a uniform convergence result for u0 ∈ (0, 1), which is
more difficult to prove.

Even more interesting and challenging is a uniform convergence result with a rate
of convergence. For time varying AR(p) processes, this is stated for a different like-
lihood in Theorem 13. We mention that such a result usually requires an exponential
bound and maximal inequalities which need to be tailored to the specific model at
hand.

We now state the corresponding result on asymptotic normality in case of second-
order smoothness. ∇ denotes the derivatives with respect to the θi , i.e., ∇ :=(
∂/∂θi

)
i=1,...,d .
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Theorem 3. Let θ0 := θ0(u0). Suppose that LT (u0, θ), L̃T (u0, θ), and L(u0, θ) are
twice continuously differentiable in θ with nonsingular matrix 0(u0) := ∇2L(u0, θ0).
Let further

√
b T ∇L̃T (u0, θ0)

D
→ N

(
0, V (u0)

)
with some sequence b = bT , where b→ 0 and b T →∞ (the definition of b is part of
the definition of the likelihood – it is usually some bandwidth) and

sup
θ∈2

∣∣∇2L̃T (u0, θ)−∇2L(u0, θ)
∣∣ P
→ 0.

If in addition

√
bT
(
0(u0)

−1
∇BT (u0, θ0)−

b2

2
µ0(u0)

)
= op(1) (40)

with some µ0(·) (to be specified below – cf. (47)) and

sup
θ∈2

∣∣∇2BT (u0, θ)
∣∣ P
→ 0 (41)

then

√
b T

(
θ̂T (u0)− θ0(u0)+

b2

2
µ0(u0)

)
D
→ N

(
0,0(u0)

−1 V (u0) 0(u0)
−1
)

. (42)

Proof. The usual Taylor expansion of ∇LT (u0, θ) around θ0 yields

√
b T

(
θ̂T (u0)− θ0 + 0(u0)

−1
∇BT (u0, θ0)

)
= −
√

b T 0(u0)
−1
∇L̃T (u0, θ0)+ op(1).

(43)

The result then follows immediately. 2

Remark 4. (i) Again the first two conditions are conditions on the stationary process
X̃ t (u0) with (fixed) parameter θ(u0) and the stationary likelihood/minimum-distance
function L̃T (u0, θ), which are usually known from existing results on stationary
processes.

(ii) Of course, an analogous result also holds under different smoothness conditions
and with other rates than b2 in (40) and (42).

(iii) Under additional regularity conditions, one can usually prove that the same
expansion as in (43) also holds for the moments, leading to

E θ̂T (u0) = θ0(u0)−
b2

2
µ0(u0)+ o(b2) (44)
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and

var
(
θ̂T (u0)

)
=

1

bT
0(u0)

−1 V (u0) 0(u0)
−1
+ o

( 1

bT

)
(45)

(note that (43) is a stochastic expansion which does not automatically imply these
moment relations). The proof of these properties is usually not easy. 2

Example 2 (Kernel-type local likelihoods). We now return to the local condi-
tional likelihood (31) as a special case and provide some heuristics on how to
calculate the above terms (in particular, the bias µ0(u0)). We stress that in the con-
crete situation, where a specific model is given the exact proof usually goes along
the same lines but the details may be quite challenging.

Suppose that the local likelihood of the stationary process X̃ t (u0) converges in
probability to

L(u0, θ) := lim
T→∞

L̃T (u0, θ) = lim
t→∞

E ˜̀t (u0, θ).

Usually, we have X t ,T = X̃ t (t/T )+ Op(T−1) and

E∇`t ,T (θ) = E∇ ˜̀t

(
t

T
, θ

)
+ o

(
(bT )−1/2

)
= ∇L

(
t

T
, θ

)
+ o

(
(bT )−1/2

)
uniformly in t . A Taylor expansion then leads in the case b3

= o((bT )−1/2) with the
symmetry of the kernel K to

E∇LT (u0, θ) =
1

bT

T∑
t=1

K

(
u0 − t/T

b

)
∇L

(
t

T
, θ

)
+ o

(
(bT )−1/2

)

= ∇L(u0, θ)+
[ ∂
∂u
∇L(u0, θ)

] 1

bT

T∑
t=1

K
(u0 − t/T

b

) ( t

T
− u0

)

+
1

2

[ ∂2

∂u2
∇L(u0, θ)

] 1

bT

T∑
t=1

K
(u0 − t/T

b

) ( t

T
− u0

)2

+ o
(
(bT )−1/2

)
= ∇L(u0, θ)+

1

2
b2 dK

∂2

∂u2
∇L(u0, θ)+ o

(
(bT )−1/2

)
(46)

with dK :=
∫

x2 K (x) dx . Since E∇L̃T (u0, θ) = ∇L(u0, θ)+ o
(
(bT )−1/2

)
, this

leads with (40) to the bias term

µ0(u0) = dK 0(u0)
−1 ∂2

∂u2
∇L

(
u, θ 0(u0)

)
cu=u0 =: dk µ(u0) (47)
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Let θ 0 := θ0(u0). If the model is correctly specified, it usually can be shown that
∇ ˜̀t (u0, θ0) is a martingale difference sequence, and the condition of the Lindeberg
martingale central limit theorem is fulfilled leading to

√
b T ∇L̃T (u0, θ 0)

D
→ N

(
0, vK E

(
∇ ˜̀t (u0, θ0)

)(
∇ ˜̀t (u0, θ 0)

)′)
with vK =

∫
K (x)2dx . Furthermore, if the model is correctly specified, we usually

have

E
(
∇ ˜̀t (u0, θ 0)

)(
∇ ˜̀t (u0, θ 0)

)′
= ∇

2L(u0, θ 0) = 0(u0)

that is

√
b T

(
θ̂ T (u0)− θ 0(u0)+

b2

2
dK 0(u0)

−1 ∂2

∂u2
∇L(u0, θ 0)

)
D
→ N

(
0, vK 0(u0)

−1
)

.

(48)

If we are able to prove, in addition, the formulas (44) and (45) on the asymptotic bias
and variance, we obtain the same formula for the asymptotic mean-squared error as
in (11) with τ(u0) = tr{0(u0)

−1
} and µ(u0)

2 replaced by ‖µ(u0)‖
2, where µ(u0) =

0(u0)
−1 ∂2

∂u2∇L(u0, θ 0). As in Remark 1, this leads to the optimal segment length
and the optimal mean-squared error. The implications for nonrescaled processes are
the same as in Remark 2.

We now present three examples where the above results have been proved explicitly.

Example 3 (Local Whittle estimates). The first example are local Whittle esti-

mates on segments θ̂
W

T (u0) obtained by minimizing LW
T (u0, θ) (cf. (18)). In case

of a tvAR(p)process, θ̂
W

T (u0) is exactly the local Yule-Walker estimate defined in
(7) with the covariance-estimates given in (8). LW

T (u, θ) is not exactly a local condi-
tional likelihood as defined in (31), but approximately (in the same sense as ĉT (u0, k)
from (8) is an approximation to the kernel covariance estimate). For that reason, the
above heuristics also applies to this estimate and can be made rigorous.

In Dahlhaus and Giraitis (1998), Theorems 3.1 and 3.2 bias and asymptotic nor-

mality of θ̂
W

T (u0) have been derived rigorously including a derivation of the variance
and the mean-squared error as given in (44) and (45) (i.e., not only the stochastic
expansion in (43)). We mention that, therefore, also the results on the optimal kernel
and bandwidth in (12) and (13) apply to this situation.

In the present situation, we have (cf. Dahlhaus and Giraitis, 1998, (3.7))

L(u, θ) =
1

4π

π∫
−π

{
log 4π2 fθ (λ)+

f (u, λ)

fθ (λ)

}
dλ.

Therefore,

∂2

∂u2
∇L(u0, θ) =

1

4π

π∫
−π

∇ fθ (λ)
−1 ∂

2

∂u2
f (u0, λ) dλ
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and in the correctly specified case where f (u, λ) = fθ0(u)(λ)

0(u0) = ∇
2L(u0, θ 0) =

1

4π

π∫
−π

(
∇ log fθ0

)(
∇ log fθ0

)′
dλ

leading to the asymptotic bias µ(u0) in (47) and the asymptotic variance in the

central limit theorem (48). A uniform convergence result for θ̂
W

T (u0) is stated in
Theorem 13.

Example 4 (tvAR(p) processes). In the special case of a Gaussian tvAR(p) pro-
cess, the exact results for the local Yule-Walker estimates (7) follow as a special case
from the above results on local Whittle estimates (see also Section 2 in Dahlhaus and
Giraitis (1998), where tvAR(p) processes are discussed separately). In that case, we
have with R(u) and r(u) as in (6) that 0(u) = 1/σ 2(u) R(u). Furthermore,

∇L
(
u, θ

)
=

1

σ 2

[
R(u)α + r(u)

]
which implies

µ(u0) = R(u0)
−1
[( ∂2

∂u2
R(u)

)
α(u0)+

( ∂2

∂u2
r(u)

)]
u=u0

.

We conjecture that exactly the same asymptotic results hold for the conditional
likelihood estimate obtained by minimizing

LC
T (u0, θ) :=

1

T

T∑
t=1

1

b
K
(u0 − t/T

b

) [1

2
log
(
2π σ 2

)
+

1

2 σ 2

(
X t ,T +

p∑
j=1

α j X t− j ,T

)2
]

.

We now introduce derivative processes. The key idea in the proofs of Dahlhaus and
Giraitis (1998) is to use at time u0 ∈ (0, 1), the stationary approximation X̃ t (u0) (there
denoted by Yt ) to the original process X t ,T and to calculate the bias resulting from the
use of this approximation. As in Dahlhaus and Subba Rao (2006), we now extend this
idea leading to the Taylor-type expansion (51), which is an expansion of the original
process in terms of (usually ergodic) stationary processes called derivative processes.
This expansion is a powerful tool, since all techniques for stationary processes includ-
ing the ergodic theorem may be applied for the local investigation of the nonstationary
process X t ,T . The use of this expansion and of derivative processes in general leads to
a general structure of the proofs and simplifies the derivations a lot.

We start with the simple example of a tvAR(1) process, since in this case every-
thing can be calculated directly. Then, X t ,T is defined by X t ,T + α1(t/T )X t−1,T =

εt , t ∈ Z and the stationary approximation X̃ t (u0) at time u0 = t0/n by X̃ t (u0)+
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α1(u0)X̃ t (u0) = εt , t ∈ Z. Repeated plug-in yields under suitable regularity conditions
(for a rigorous argument, see the proof of Theorem 2.3 in Dahlhaus (1996a)),

X t ,T =

∞∑
j=0

(−1) j
[ j−1∏

k=0

α1

( t − k

T

)]
εt− j =

∞∑
j=0

(−1) j α1

( t

T

) j
εt− j + Op

( 1

T

)
(49)

= X̃ t

( t

T

)
+ Op

( 1

T

)
= X̃ t (u0)+

( t

T
− u0

) ∂ X̃ t (u)

∂u
cu=u0 + Op

( 1

T

)
. (50)

We have in the present situation

∂ X̃ t (u)

∂u
=

∞∑
j=0

(−1) j ∂α1(u) j

∂u
εt− j =

∞∑
j=0

(−1) j
[

j α1(u)
j−1α1(u)

′
]
εt− j

that is, ∂ X̃ t (u)/∂u is a stationary ergodic process in t with
∣∣∣∂ X̃ t (u)/∂u

∣∣∣ ≤∑
∞

j=1 jρ j−1
|εt− j |, where |ρ| < 1. In the same way, we have

X t ,T = X̃ t (u0)+
( t

T
− u0

)∂ X̃ t (u)

∂u
cu=u0 +

1

2

( t

T
− u0

)2 ∂2 X̃ t (u)

∂u2
cu=u0

+ Op

((
t

T
− u0

)3

+
1

T

)
(51)

with the second-order derivative process ∂2 X̃ t (u)/∂u2
cu=u0 , which is defined analo-

gously. It is not difficult to prove existence and uniqueness in a rigorous sense.
For general tvAR(p) processes, the same results holds – however, it is difficult in

that case to write the derivative process in explicit form. It is interesting to note that the
derivative process fulfills the equation

∂ X̃ t (u)

∂u
+

p∑
j=1

(
α j (u)

∂ X̃ t− j (u)

∂u
+ α′j (u) X̃ t− j (u)

)
=
∂σ(u)

∂u
εt ,

where α′j (u) denotes the derivative of α j (u)with respect to u. This is formally obtained
by differentiating both sides of Eq. (3). Furthermore, it can be shown that this equation
system uniquely defines the derivative process.

We are convinced that the expansion (51) and equation systems like (52) can be
established for several other locally stationary time series models. As mentioned above,
the important point is that (51) is an expansion in terms of stationary processes.

In the next example, we show how derivative processes are used for deriving the
properties of local likelihood estimates.

Example 5 (tvARCH processes). The definition of the processes X t ,T and X̃ t (u0)

has been given above in (33) and (34) and of the local likelihood in (35) and (31).
In the study by Dahlhaus and Subba Rao (2006), Theorems 2 and 3, consistency
and asymptotic normality, have been established for the resulting estimate, and in
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particular, (48) has been proved. Derivative processes play a major role in the proofs,
and we briefly indicate how they are used. First, existence and uniqueness of the
derivative processes have been proved including the Taylor-type expansion for the
process X 2

t ,T :

X 2
t ,T = X̃ t (u0)

2
+

( t

T
− u0

) ∂ X̃ t (u)2

∂u
cu=u0 +

1

2

( t

T
− u0

)2 ∂2 X̃ t (u)2

∂u2
cu=u0

+ Op

((
t

T
− u0

)3

+
1

T

)
(52)

(in this model, we are working with X 2
t ,T rather than X t ,T since X 2

t ,T is uniquely
determined). Furthermore, ∂ X̃ t (u)2/∂u is almost surely the unique solution of the
equation

∂ X̃ t (u)2

∂u
=

α′0(u)+ ∞∑
j=1

α′j (u) X̃ t− j (u)
2
+

∞∑
j=1

α j (u)
∂ X̃ t− j (u)2

∂u

 Z 2
t (53)

which can formally be obtained by differentiating (34). By taking the second deriva-
tive of this expression, we obtain a similar expression for the second derivative
∂2 X̃ t (u)2/∂u2 etc.

A key step in the above proofs is the derivation of (40) and of the bias term µ0(·)

in this situation. We briefly sketch this. We have with θ 0 = θ 0(u0)

∇BT (u0, θ 0) =
1

bT

T∑
t=1

K
(u0 − t/T

b

) (
∇`t ,T (θ 0)−∇ ˜̀t (u0, θ 0)

)
.

First, ∇`t ,T (θ 0) is replaced by ∇ ˜̀t (t/T , θ 0), where we omit details (this works since
X 2

t ,T is approximately the same as X̃ 2
t (t/T )). Then, a Taylor-expansion is applied:

∇ ˜̀t

(
t

T
, θ 0

)
−∇ ˜̀t (u0, θ 0) =

( t

T
− u0

) ∂∇ ˜̀t (u, θ 0)

∂u
cu=u0

+
1

2

( t

T
− u0

)2 ∂2
∇ ˜̀t (u, θ 0)

∂u2
cu=u0

+
1

6

( t

T
− u0

)3 ∂3
∇ ˜̀t (u, θ 0)

∂u3
cu=Ũt

(54)

with a random variable Ũt ∈ (0, 1]. The breakthrough now is that ∂∇ ˜̀t (u, θ 0)/∂u
can be written explicitly in terms of the derivative process ∂ X̃ t (u)2/∂u and of the
process X̃ t (u)2, that is, we obtain with the formula for the total derivative

∂∇ ˜̀t (u, θ 0)

∂u
=

p∑
j=0

(
∂

∂ X̃ t− j (u)2

[
∇wt (u, θ 0)

wt (u, θ 0)
−

X̃ t (u)2∇wt (u, θ0)

wt (u, θ 0)2

]
×
∂ X̃ t− j (u)2

∂u

)
,

where wt (u, θ) = c0(θ 0)+
∑
∞

j=1 c j (θ)X̃ t− j (u)2 (the same holds true for the higher-

order terms). In particular, ∂∇ ˜̀t (u, θ 0)/∂u is a stationary process with constant
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mean. Due to the symmetry of the kernel, we, therefore, obtain after some lengthy
but straightforward calculations

√
bT
(
0(u0)

−1
∇BT (u0, θ 0)−

b2

2
dK 0(u0)

−1 ∂2

∂u2
∇L

(
u, θ 0

)
cu=u0

)
= op(1). (55)

A very simple example is the tvARCH(0) process

X t ,T = σt ,T Z t , σ 2
t ,T = α0

(
t

T

)
.

In this case, ∂ X̃ t (u)2

∂u = α′0(u) Z 2
t and we have

∂2
∇L(u, αu0)

∂u2
cu=u0 = −

1

2

α′′0 (u0)

α0(u0)2
and 6(u0) =

1

2α0(u0)2

that is, µ(u0) = −α
′′

0 (u0). This is another example which illustrates how the bias
is linked to the nonstationarity of the process - if the process were stationary the
derivatives of α0(·) would be zero causing the bias also to be zero. The formula (13)
for the optimal bandwidth leads in this case to

bopt (u0) =

[
2vK

d2
K

]1/5[
α0(u0)

α′′0 (u0)

]2/5

T−1/5

leading to a large bandwidth if α′′0 (u0) is small and vice versa. As in Remark 2, this
can be “translated” to the nonrescaled case.

Example 6 (tvGARCH processes). A tvGARCH(p, q) process satisfies the fol-
lowing representation

X t ,T = σt ,T Z t

where

σ 2
t ,T = α0

(
t

T

)
+

p∑
j=1

α j

(
t

T

)
X 2

t− j ,T +

q∑
i=1

βi

(
t

T

)
σ 2

t−i ,T , (56)

where {Z t } are i.i.d. random variables with EZ t = 0 and EZ 2
t = 1. The correspond-

ing stationary approximation at time u0 is given by

X̃ t (u0) = σt (u0) Z t for t ∈ Z

where

σt (u0)
2
= α0(u0)+

p∑
j=1

α j (u0) X̃ t− j (u0)
2
+

q∑
i=1

βi (u0) σt−i (u0)
2. (57)
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Under the condition that supu

(∑p
j=1 α j (u)+

∑q
i=1 βi (u)

)
< 1, Subba Rao (2006),

Section 5, has shown that X 2
t ,T = X̃ t (u0)

2
+ Op(|

t
T − u0| +

1
T ). To obtain estimators

of the parameters {α j (·)} and {βi (·)}, an approximation of the conditional quasi-
likelihood is used, which is constructed as if the innovations {Z t } were Gaussian.
As the infinite past is unobserved, an observable approximation of the conditional
quasi-likelihood is

`t ,T (θ) =
1

2
logwt ,T (θ)+

X 2
t ,T

2wt ,T (θ)
with wt ,T (θ) = c0(θ)+

t−1∑
j=1

c j (θ)X
2
t− j ,T , (58)

where a recursive formula for c j (θ) in terms of the parameters of interest, {α j } and
{βi }, can be found in Berkes et al. (2003). Given that the derivatives of the time
varying GARCH parameters exist, we can formally differentiate (57) to obtain

∂ X̃ t (u)2

∂u
=
∂σt (u)2

∂u
Z 2

t

∂σt (u)2

∂u
= α′0(u)+

p∑
j=1

(
α′j (u) X̃ t− j (u)

2
+ α j (u)

∂ X̃ t− j (u)2

∂u

)

+

q∑
i=1

(
β ′i (u) σt−i (u)

2
+ βi (u)

∂σt−i (u)2

∂u

)
.

Subba Rao (2006) has shown that one can represent the above as a state-space
representation which almost surely has a unique solution which is the derivative
of X̃ t (u)2 with respect to u. Thus, X 2

t ,T satisfies the expansion in (52). Moreover,
Fryzlewicz and Subba Rao (2011) show geometric α-mixing of the tvGARCH pro-
cess. Using these results and under some technical assumptions, it can be shown
that Theorem 2 (i) and Theorem 3 hold for the local approximate conditional
quasi-likelihood estimator. In particular, a result analogous to (55) holds true, where

L(u, θ)=E
(

log
(
c0(θ)+

∞∑
j=1

c j (θ)X̃ t− j (u)
))
+E

(
X̃ t (u)2

c0(θ)+
∑
∞

j=1 c j (θ)X̃ t− j (u)2

)
.

Amado and Teräsvirta (2011) investigate parametric tvGARCH models, where
the time varying parameters are modeled with the logistic transition function – see
Section 2.6.

Similar methods as described in this section have also been applied in Koo and
Linton (2010) who investigate semiparametric estimation of locally stationary diffu-
sion models. They also prove a central limit theorem with a bias term as in (42).
In their proofs, they use the stationary approximation X̃ t (u0) and the Taylor-type
expansion (51). Vogt (2011) investigates nonlinear nonparametric models allowing for
locally stationary regressors and a regression function that changes smoothly over time.
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4. A general definition, linear processes and time varying spectral densities

The intuitive idea for a general definition is to require that locally around each rescaled
time point U0 the process {X t ,T } can be approximated by a stationary process {X̂ t (u0)}

in a stochastic sense by using the property (4) (cf. Dahlhaus and Subba Rao, 2006).
Vogt (2011) has formalized this by requiring that for each u0 there exists a stationary
process X̂ t (u0) with

‖X t ,T − X̂ t (u0)| ≤

(∣∣∣∣ t

T
− u0

∣∣∣∣+ 1

T

)
Ut ,T (u0) (59)

where Ut ,T (u0) is a positive stochastic process fulfilling some uniform moment condi-
tions. However up to now no general theory exists based on such a general definition. In
the following we now move on toward a general theory for linear locally stationary pro-
cesses. In some cases, we even assume Gaussianity or use Gaussian likelihood methods
and their approximation. In this situation, a fairly general theory can be derived in
which parametric and nonparametric inference problems, goodness of fit tests, boot-
strap procedures, etc, can be treated in high generality. We use a general definition
tailored for linear processes which implies (59).

4.1. Definition of linear locally stationary processes

We give this definition in terms of the time varying MA(∞) representation

X t ,T = µ

(
t

T

)
+

∞∑
j=−∞

at ,T ( j) εt− j , where at ,T ( j) ≈ a

(
t

T
, j

)

with coefficient functions a(·, j), which need to fulfill additional regularity function
(dependent on the result to be proved – details are provided below). In several papers
of the author, instead the time varying spectral representation

X t ,T = µ

(
t

T

)
+

1
√

2π

π∫
−π

exp(iλt) At ,T (λ) dξ(λ), where At ,T (λ) ≈ A

(
t

T
, λ

)
(60)

with the time varying transfer function A(·, λ) was used. Both representations are basi-
cally equivalent – see the derivation of (78). In the results presented below, we will
always use the formulation “Under suitable regularity conditions . . . ” and refer the
reader to the original paper. We conjecture, however, that all results can be reproved
under Assumption 1. We emphasize that this is not an easy task, since in most situ-
ations, it means to transfer the proof from the frequency to the time domain. In that
case, it would be worthwhile to require only martingale differences εt , since also some
nonlinear processes admit such a representation.
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Let

V (g) = sup
{ m∑

k=1

∣∣g(xk)− g(xk−1)
∣∣: 0 ≤ xo < . . . < xm ≤ 1, m ∈ N

}
(61)

be the total variation of g.

Assumption 1. The sequence of stochastic processes X t ,T has a representation

X t ,T = µ

(
t

T

)
+

∞∑
j=−∞

at ,T ( j) εt− j (62)

where µ is of bounded variation and the εt are i.i.d. with Eεt = 0, Eεsεt = 0 for s 6= t ,
Eε2

t = 1. Let

`( j) :=

{
1, | j | ≤ 1

| j | log1+κ
| j |, | j | > 1

for some κ > 0 and

sup
t

∣∣at ,T ( j)
∣∣ ≤ K

`( j)
(with K indep. of T ). (63)

Furthermore, we assume that there exist functions a(·, j) : (0, 1]→ R with

sup
u

∣∣a(u, j)
∣∣ ≤ K

`( j)
, (64)

sup
j

T∑
t=1

∣∣∣at ,T ( j)− a

(
t

T
, j

) ∣∣∣ ≤ K , (65)

V (a(·, j)) ≤
K

`( j)
. (66)

The above assumptions are weak in the sense that only bounded variation is required
for the coefficient functions. In particular for local results, stronger smoothness
assumptions have to be imposed – for example in addition for some i

sup
u

∣∣∣∂ iµ(u)

∂ui

∣∣∣ ≤ K , (67)

sup
u

∣∣∣∂ i a(u, j)

∂ui

∣∣∣ ≤ K

`( j)
for j = 0, 1, . . . (68)

and instead of (65) the stronger assumption

sup
t ,T

∣∣∣at ,T ( j)− a

(
t

T
, j

) ∣∣∣ ≤ K

T `( j)
. (69)
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The construction with at ,T ( j) and a(t/T , j) looks complicated at first glance. The func-
tion a(·, j) is needed for rescaling and to impose necessary smoothness conditions,
while the additional use of at ,T ( j) makes the class rich enough to cover inter-
esting cases such as tvAR-models (the reason for this in the AR(1) case can be
understood from (49)). Cardinali and Nason (2010) created the term close pair for(
a(t/T , j), at ,T ( j)

)
. Usually, additional moment conditions on εt are required.

It is straightforward to construct the stationary approximation and the derivative
processes. We have

X̃ t (u) := µ(u)+
∞∑

j=−∞

a(u, j) εt− j

and

∂ i X̃ t (u)

∂ui
=
∂ iµ(u)

∂ui
+

∞∑
j=−∞

∂ i a(u, j)

∂ui
εt− j

and it is easy to prove (59) and more general the expansion (51). We define the time
varying spectral density by

f (u, λ) :=
1

2π

∣∣A(u, λ)
∣∣2 (70)

where

A(u, λ) :=
∞∑

j=−∞

a(u, j) exp(−iλ j), (71)

and the time varying covariance of lag k at rescaled time u by

c(u, k) :=

π∫
−π

f (u, λ) exp(iλk) dλ =
∞∑

j=−∞

a(u, k + j) a(u, j). (72)

f (u, λ) and c(u, k) are the spectral density and the covariance function of the stationary
approximation X̃ t (u). Under Assumption 1 and (69), it can be shown that

cov
(
X [uT ],T , X [uT ]+k,T

)
= c(u, k)+ O(T−1) (73)

uniformly in u and k – therefore we call c(u, k) also the time varying covariance of
the processes X t ,T . In Theorem 4, we show that f (u, λ) is the uniquely defined time
varying spectral density of X t ,T .

Example 7. (i) A simple example of a process X t ,T which fulfills the above
assumptions is X t ,T = µ(

t
T )+ φ(

t
T )Yt , where Yt = 6 j a( j) εt− j is stationary with

|a( j)| ≤ K/`( j) and µ and φ are of bounded variation. If Yt is an AR(2) process
with complex roots close to the unit circle, then Yt shows a periodic behavior and
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φ(·)may be regarded as a time varying amplitude modulating function of the process
X t ,T . φ(·) may either be parametric or nonparametric.

(ii) The tvARMA(p,q) process

p∑
j=0

α j

(
t

T

)
X t− j ,T =

q∑
k=0

βk

(
t

T

)
σ

(
t − k

T

)
εt−k (74)

where εt are i.i.d. with Eεt = 0 and Eε2
t <∞ and all α j (·), βk(·) and σ 2(·) are of

bounded variation with α0(·) ≡ β0(·) ≡ 1 and
∑p

j=0 α j (u)z j
6= 0 for all u and all

|z| ≤ 1+ δ for some δ > 0, fulfills Assumption 1. If the parameters are differen-
tiable with bounded derivatives, then also (67)–(69) are fulfilled (for i = 1). The
time varying spectral density is

f (u, λ) =
σ 2(u)

2π

|
∑q

k=0 βk(u) exp(iλk)|2

|
∑p

j=0 α j (u) exp(iλ j)|2
. (75)

This is proved by Dahlhaus and Polonik (2006). α j (·) and βk(·) may either be
parametric or nonparametric.

The time varying MA(∞) representation (62) can easily be transformed into a time
varying spectral representation as used, e.g., in the study by Dahlhaus (1997, 2000).
If the εt are assumed to be stationary, then there exists a Cramér representation
(cf. Brillinger, 1981)

εt =
1
√

2π

π∫
−π

exp(iλt) dξ(λ) (76)

where ξ(λ) is a process with mean 0 and orthonormal increments. Let

At ,T (λ) :=
∞∑

j=−∞

at ,T ( j) exp(−iλ j). (77)

Then

X t ,T =
1
√

2π

π∫
−π

exp(iλt) At ,T (λ) dξ(λ). (78)

(69) now implies

sup
t ,λ

∣∣At ,T (λ)− A

(
t

T
, λ

) ∣∣ ≤ K T−1 (79)

which was assumed in the above cited papers. Conversely, if we start with (78) and
(79), then we can conclude from adequate smoothness conditions on A(u, λ) to the
conditions of Assumption 1.
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We now state a uniqueness property of our spectral representation. The Wigner-Ville
spectrum for fixed T (cf. Martin and Flandrin, 1985) is

fT (u, λ) :=
1

2π

∞∑
s=−∞

cov(X [uT−s/2],T , X [uT+s/2],T ) exp(−iλs)

with X t ,T as in (62) (either with the coefficient extended as constants for u /∈ [0, 1] or
set to 0). Below we prove that fT (u, λ) tends in squared mean to f (u, λ) as defined
in (70). Therefore, it is justified to call f (u, λ) the time varying spectral density of the
process.

Theorem 4. If X t ,T is locally stationary and fulfills Assumption 1 and (68) for all j ,
then we have for all u ∈ (0, 1)

π∫
−π

∣∣ fT (u, λ)− f (u, λ)
∣∣2dλ = o(1).

Proof. The result was proved by Dahlhaus (1996b) under a different set of
conditions. It is not very difficult to prove the result also under the present
conditions. 2

As a consequence, the time varying spectral density f (u, λ) is uniquely defined. If in
addition, the process X t ,T is non-Gaussian, then even A(u, λ) and, therefore, also the
coefficients a(u, j) are uniquely determined which may be proved similarly by consid-
ering higher-order spectra. Since µ(t/T ) is the mean of the process, it is also uniquely
determined. This is remarkable, since in the nonrescaled case, time varying processes
do not have a unique spectral density or a unique time varying spectral representation
(cf. Priestley, 1981, Chapter 11.1; Mélard and Herteleer-de-Schutter, 1989). f (u, λ)
from Theorem 4 has been called instantaneous spectrum (in particular for tvAR process
– cf. Kitagawa and Gersch, 1985). The above theorem gives a theoretical justification
for this definition.

There is a huge benefit from having a unique time varying spectral density. We
now give an example for this. We derive the limit of the Kullback-Leibler informa-
tion for Gaussian processes and show that it depends on f (u, λ). Replacing this by a
spectral estimate will lead to a quasi-likelihood for parametric models similar to the
Whittle likelihood for stationary processes. Without a unique spectral density such a
construction were not possible.

Consider the exact Gaussian maximum likelihood estimate

η̂M L
T := argmin

η∈2η

LE
T (η)

where η is a finite-dimensional parameter (as in (20)) and

LE
T (η) =

1

2
log(2π)+

1

2T
log det6η +

1

2T
(X− µη)′6−1

η (X− µη) (80)
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with X = (X1,T , . . . , XT ,T )
′, µη =

(
µη(1/T ), . . . ,µη(T/T )

)′
, and 6η being the

covariance matrix of the model. Under certain regularity conditions η̂M L
T will con-

verge to

η0 := argmin
η∈2η

L(η) (81)

where

L(η) := lim
T→∞

ELE
T (η).

If the model is correct, then typically η0 is the true parameter value. Otherwise, it
is some “projection” onto the parameter space. It is, therefore, important to calcu-
late L(η), which is equivalent to the calculation of the Kullback-Leibler information
divergence.

Theorem 5. Let X t ,T be a locally stationary process with true mean and spectral den-
sity curves µ(·), f (u, λ) and model curves µη(·), fη(u, λ), respectively. Under suitable
regularity conditions, we have

L(η) = lim
T→∞

ELE
T (η)

=
1

4π

1∫
0

π∫
−π

{
log 4π2 fη(u, λ)+

f (u, λ)

fη(u, λ)

}
dλ du +

1

4π

1∫
0

(
µη(u)− µ(u)

)2

fη(u, 0)
du.

Proof. See Dahlhaus (1996b), Theorem 3.4 . 2

The Kullback-Leibler information divergence for stationary processes is obtained from
this as a special case (cf. Parzen, 1983).

Example 8. Suppose that the model is stationary, i.e., fη(λ) := fη(u, λ) and m :=
µη(u) do not depend on u. Then,

L(η) =
1

4π

π∫
−π

{
log 4π 2 fη(λ)+

∫ 1
0 f (u, λ) du

fη(λ)

}
dλ+

1

4π
fη(0)

−1

1∫
0

(
m − µ(u)

)2
du

i.e., m0 =
∫ 1

0 µ(u)du and fη0(λ) give the best approximation to the time integrated

true spectrum
∫ 1

0 f (u, λ) du. These are the values which are “estimated” by the MLE
or a quasi-MLE, if a stationary model is fitted to locally stationary data.
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Given the form of L(η) as in Theorem 5, we can now suggest a quasi-likelihood
criterion

LQL
T (η) =

1

4π

1∫
0

π∫
−π

{
log 4π2 fη(u, λ)

+
f̂ (u, λ)

fη(u, λ)

}
dλ du +

1

4π

1∫
0

(
µη(u)− µ̂(u)

)2

fη(u, 0)
du

where f̂ (u, λ) and µ̂(u) are suitable nonparametric estimates of f (u, λ) and µ(u),
respectively. The block Whittle likelihood LBW

T (η) in (21) and the generalized Whittle
likelihood LGW

T (η) in (89) are of this form.
We now calculate the Fisher information matrix

0 := lim
T→∞

T Eη0

(
∇LE

T (η0)
) (
∇LE

T (η0)
)′

in order to study efficiency of parameter estimates (see also Theorem 8).

Theorem 6. Let X t ,T be a locally stationary process with correctly specified mean
curve µη(u) and time varying spectral density fη(u, λ). Under suitable regularity
conditions, we have

0 =
1

4π

1∫
0

π∫
−π

(
∇ log fη0

)(
∇ log fη0

)′
dλ du

+
1

2π

1∫
0

(
∇µη0(u)

)(
∇µη0(u)

)′
f −1
η0
(u, 0) du.

Proof. See Dahlhaus (1996b), Theorem 3.6. 2

We now briefly discuss how the time varying spectral density can be estimated. Fol-
lowing the discussion in the last section, we start with a classical “stationary” smoothed
periodogram estimate on a segment. Let IT (u, λ) be the tapered periodogram on a seg-
ment of length N about u as defined in (19). Even in the stationary case, IT (u, λ) is
not a consistent estimate of the spectrum and we have to smooth it over neighboring
frequencies. Let, therefore,

f̂T (u, λ) :=
1

b f

∫
K f

(
λ− µ

b f

)
IT (u,µ) dµ (82)

where K f is a symmetric kernel with
∫

K f (x) dx = 1 and b f is the bandwidth in fre-
quency direction. Theorem 5.5 below shows that the estimate is implicitly also a kernel
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estimate in time direction with kernel

Kt (x) :=


1∫

0

h(x)2dx


−1

h(x + 1/2)2, x ∈ [−1/2, 1/2] (83)

and bandwidth bt := N/T , that is, the estimate behaves like a kernel estimates with two
convolution kernels in frequency and time direction. We mention that an asymptotically
equivalent estimate is the kernel estimate

f̃T (u, λ) :=
2π

T 2

T∑
t=1

T∑
j=1

∫
1

bt
Kt

(
u − t/T

bt

)
1

b f
K f

(λ− λ j

b f

)
JT

( t

T
, λ j

)
(84)

with the preperiodogram JT (u, λ) as defined in (88). One may also replace the integral
in frequency direction in (82) by a sum over the Fourier frequencies.

Theorem 7. Let X t ,T be a locally stationary process with µ(·) ≡ 0. Under suitable
regularity conditions, we have

(i) EIT (u, λ) = f (u, λ)+
1

2
b2

t

1/2∫
−1/2

x2 Kt (x) dx
∂2

∂u2
f (u, λ)+ o(b2

t )

+ O

(
log(bt T )

bt T

)
;

(i i) E f̂T (u, λ) = f (u, λ)+
1

2
b2

t

1/2∫
−1/2

x2 Kt (x) dx
∂2

∂u2
f (u, λ)

+
1

2
b2

f

1/2∫
−1/2

x2 K f (x) dx
∂2

∂λ2
f (u, λ)+ o

(
b2

t + b2
f +

log(bt T )

bt T

)
;

(i i i) var
(

f̂T (u, λ)
)
=
(
bt b f T

)−1
2π f (u, λ)2

1/2∫
−1/2

Kt (x)
2dx

1/2∫
−1/2

K f (x)
2dx

(
1+ δλ0

)
.

Proof. A sketch of the proof can be found in Dahlhaus (1996c), Theorem 2.2. 2

Note, that the first-bias term of f̂ is due to nonstationarity, while the second is due to
the variation of the spectrum in frequency direction.

As in Remark 1, one may now minimize the relative mean squared error RMSE( f̂ )
:= E

(
f̂ (u, λ)/ f (u, λ)− 1

)2
with respect to b f , bt (i.e., N ), K f and Kt (i.e., the data
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taper h). This has been done by Dahlhaus (1996c), Theorem 2.3. The result says that
with

1u :=
∂2

∂u2
f (u, λ)

/
f (u, λ) and 1λ :=

∂2

∂λ2
f (u, λ)

/
f (u, λ),

the optimal RMSE is obtained with

b
opt
t = T−1/6(576π)1/6

(
1λ

15
u

)1/12

, b
opt
f = T−1/6(576π)1/6

(
1u

15
λ

)1/12

and optimal kernels K
opt
t (x) = K

opt
f (x) = 6

(
1/4− x2

)
with optimal rate T−2/3.

The relations bt = N/T and (83) immediately lead to the optimal segment length
and the optimal data taper h. The result of Theorem 5.5 is quite reasonable: If the degree
of nonstationarity is small, then 1u is small and bopt

t gets large. If the variation of f is
small in frequency direction, then 1λ is small and bopt

t gets smaller (more smoothing
is put in frequency direction than in time direction). This is another example, how the
bias due to nonstationarity can be quantified with the approach of local stationarity
and balanced with another bias term and a variance term. Of course, the data-adaptive
choice of the bandwidth parameters remains to be solved. Asymptotic normality of the
estimates can be derived from Theorem 11 (cf. Dahlhaus, 2009, Example 4.2).

Rosen et al. (2009) estimate the logarithm of the local spectrum by using a Bayesian
mixture of splines. They assume that the log spectrum on a partition of the data is a
mixture of individual log spectra and use a mixture of smoothing splines with time
varying mixing weights to estimate the evolutionary log spectrum. Guo et al. (2003)
use a smoothing spline ANOVA to estimate the time varying log spectrum.

5. Gaussian likelihood theory for locally stationary processes

The basics of the likelihood theory for univariate stationary processes were laid by
Whittle (1953, 1954). His work was much later taken up and continued by many others.
Among the large number of papers, we mention the results by Dzhaparidze (1971) and
Hannan (1973) for univariate time series, Dunsmuir (1979) for multivariate time series
and, e.g., Hosoya and Taniguchi (1982) for misspecified multivariate time series. A
general overview over this likelihood theory and, in particular, Whittle estimates for
stationary models may be found in the monographs Dzhaparidze (1986) and Taniguchi
and Kakizawa (2000).

From a practical point of view, the most famous outcome of this theory is the Whittle
likelihood

1

4π

π∫
−π

{
log 4π2 fη(λ)+

IT (λ)

fη(λ)

}
dλ (85)

as an approximation of the negative log Gaussian likelihood (80), where IT (λ) is the
periodogram. This likelihood has been used also beyond the classical framework –
for example by Mikosch et al. (1995) for linear processes where the innovations have
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heavy tailed distributions, by Fox and Taqqu (1986) for long-range dependent pro-
cesses, and by Robinson (1995) to construct semiparametric estimates for long-range
dependent processes.

The outcome of this likelihood theory goes far beyond the construction of the
Whittle likelihood. Its technical core is the theory of Toeplitz matrices and, in partic-
ular, the approximation of the inverse of a Toeplitz matrix by the Toeplitz matrix of
the inverse function. It is essentially this approximation which leads from the ordinary
Gaussian likelihood to the Whittle likelihood. Beyond that, the theory can be used
to derive the convergence of experiments for Gaussian stationary processes in the
Hájek-Le Cam sense, construct the properties of many tests, and derive the properties
of the exact MLE and the Whittle estimate (cf. Dzhaparidze, 1986; Taniguchi and
Kakizawa, 2000).

For locally stationary processes, it turns out that this likelihood theory can be gen-
eralized in a nice way such that the classical likelihood theory for stationary processes
arises as a special case. Technically speaking, this is achieved by a generalization of
Toeplitz matrices tailored especially for locally stationary processes (the matrix UT (φ)

defined in (92)).
Some results coming from this theory have already been stated in Section 4, namely

the limit of the Kullback-Leibler information divergence in Theorem 5 and the limit of
the Fischer information in Theorem 6. We now describe further results. We start with a
decomposition of the periodogram leading to a Whittle-type likelihood. We have

IT (λ) =
1

2πT

∣∣∣ T∑
r=1

Xr exp(−iλr)
∣∣∣2

=
1

2π

T−1∑
k=−(T−1)

(
1

T

T−|k|∑
t=1

X t X t+|k|

)
exp(−iλk) (86)

=
1

T

T∑
t=1

1

2π

∑
k

1≤[t+0.5+k/2],[t+0.5−k/2]≤T

X [t+0.5+k/2],T X [t+0.5−k/2],T exp(−iλk)

=
1

T

T∑
t=1

JT

(
t

T
, λ

)
, (87)

where the so-called preperiodogram

JT (u, λ) :=
1

2π

∑
k

1≤[uT+0.5+k/2],[uT+0.5−k/2]≤T

X [uT+0.5+k/2],T X [uT+0.5−k/2],T exp(−iλk)

(88)

may be regarded as a local version of the periodogram at time t . While the ordinary
periodogram IT (λ) is the Fourier transform of the covariance estimator of lag k over the
whole segment

(
see (86)), the preperiodogram just uses the pair X [t+0.5+k/2] X [t+0.5−k/2]

as a kind of “local estimator” of the covariance of lag k at time t
(
note that [t + 0.5+
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k/2]− [t + 0.5− k/2] = k
)
. The preperiodogram was introduced by Neumann and

von Sachs (1997) as a starting point for a wavelet estimate of the time varying spectral
density. The above decomposition means that the periodogram is the average of the
preperiodogram over time.

If we replace IT (λ) in (85) by the above average of the preperiodogram and after-
ward replace the model spectral density fη(λ) by the time varying spectral density
fη(u, λ) of a nonstationary model, we obtain the generalized Whittle likelihood

LGW
T (η) :=

1

T

T∑
t=1

1

4π

π∫
−π

{
log 4π2 fη

( t

T
, λ
)
+

JT (
t
T , λ)

fη(
t
T , λ)

}
dλ. (89)

If the fitted model is stationary, i.e., fη(u, λ) = fη(λ), then (due to (87)) the above
likelihood is identical to the Whittle likelihood and we obtain the classical Whittle
estimator. Thus, the above likelihood is a true generalization of the Whittle likelihood
to nonstationary processes. In Theorem 9, we show that this likelihood is a very close
approximation to the Gaussian log-likelihood for locally stationary processes. In partic-
ular (we conjecture that), it is a better approximation than the block Whittle likelihood
LBW

T (η) from (21).
We now briefly state the asymptotic normality result in the parametric case. An

example is the tvAR(2) model with polynomial parameter curves from Section 2.4. Let

η̂GW
T := argmin

η∈2η

LGW
T (η) (90)

be the corresponding quasi-likelihood estimate, η̂M L
T be the Gaussian MLE defined in

(80), and η0 as in (81), i.e., the model may be misspecified.

Theorem 8. Let X t ,T be a locally stationary process. Under suitable regularity condi-
tions we have in the case µ(·) = µη(·) = 0

√
T
(
η̂GW

T − η0
) D
→ N

(
0,0−1V0−1

)
and

√
T
(
η̂M L

T − η0
) D
→ N

(
0,0−1V0−1

)
with

0i j =
1

4π

1∫
0

π∫
−π

(
f − fη0

)
∇i j f −1

η0
dλ du +

1

4π

1∫
0

π∫
−π

(
∇i log fη0

)(
∇j log fη0

)
dλ du

and

Vi j =
1

4π

1∫
0

π∫
−π

f
(
∇i f −1

η

)
f
(
∇j f −1

η

)
dλ du.

If the model is correctly specified, then V = 0 and 0 is the same as in Theorem 6
– that is both estimates are asymptotically Fisher efficient. Even more the sequence
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of experiments is locally asymptotically normal (LAN) and both estimates are locally
asymptotically minimax.

Proof. See Dahlhaus (2000), Theorem 3.1. LAN and LAM have been proved for the
MLE in Dahlhaus (1996b), Theorem 4.1 and 4.2, – these results together with the LAM
property of the generalized Whittle estimate also follow from the technical lemmas by
Dahlhaus (2000) (cf. Remark 3.3 in that paper). 2

The corresponding result in the multivariate case and in the case µ(·) 6= 0 or
µη(·) 6= 0 can be found in the study by Dahlhaus (2000), Theorem 3.1.

A deeper investigation of LGW
T (η) reveals that it can be derived from the Gaus-

sian log-likelihood by an approximation of the inverse of the covariance matrix. Let
X =

(
X1,T , . . . , XT ,T

)′
, µ =

(
µ( 1

T ), . . . ,µ(
T
T )
)′

, and 6T (A, B) and UT (φ) be T×T
matrices with (r , s)-entry

6T (A, B)r ,s =
1

2π

π∫
−π

exp
(
iλ(r − s)

)
Ar ,T (λ) Bs,T (−λ)dλ (91)

and

UT (φ)r ,s =

π∫
−π

exp
(
iλ(r − s)

)
φ
( 1

T

[r + s

2

]∗
, λ
)

dλ (92)

(r , s = 1, . . . T ), where the functions Ar ,T (λ), Br ,T (λ), and φ(u, λ) fulfill certain regu-
larity conditions

(
Ar ,T (λ) Br ,T (λ) are transfer functions or their derivatives as defined

in (77)). [x]∗ = [x] denotes the largest integer less or equal to x (we have added the *
to discriminate the notation from brackets). Direct calculation shows that

LGW
T (η)=

1

4π

1

T

T∑
t=1

π∫
−π

log

[
4π2 fη

(
t

T
, λ

)]
dλ+

1

8π2T

(
X − µ

η

)′
×UT

(
f −1
η

) (
X − µ

η

)
. (93)

Furthermore, the exact Gaussian likelihood is

LE
T (η) :=

1

2
log(2π)+

1

2T
log det6η +

1

2T

(
X − µ

η

)′
6−1
η

(
X − µ

η

)
(94)

where 6η = 6T (Aη, Aη).
Proposition 1 below states that UT (

1
4π2 f −1

η ) is an approximation of 6−1
η . Together

with the generalization of the Szegö identity in Proposition 2, this implies that LGW
T is

an approximation of LE
T (see Theorem 9). If the model is stationary, then Aη is constant

in time and 6η = 6T (Aη, Aη) is the Toeplitz matrix of the spectral density fη(λ) =
1

2π |Aη|
2, whereas UT (

1
4π2 f −1

η ) is the Toeplitz matrix of 1
4π2 f −1

η . This is the classical
matrix-approximation leading to the Whittle likelihood (cf. Dzhaparidze, 1986).
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Proposition 1. Under suitable regularity conditions we have for each ε > 0 for the
Euclidean norm

1

T

∥∥6T (A, A)−1
−UT

(
{2π AĀ′}−1

)∥∥2
2 = O(T−1+ε) (95)

and

1

T

∥∥UT (φ)
−1
−UT

(
{4π2φ}−1

)∥∥2
2 = O(T−1+ε).

Proof. See Dahlhaus (2000), Proposition 2.4. 2

By using the above approximation, it is possible to prove the following general-
ization of the Szegö identity (cf. Grenander and Szegö, 1958, Section 5.2) to locally
stationary processes.

Proposition 2. Under suitable regularity conditions, we have with f (u, λ) =
1

2π |A(u, λ)|2 for each ε > 0

1

T
log det6T (A, A) =

1

2π

1∫
0

π∫
−π

log
[
2π f (u, λ)

]
dλ du + O(T−1+ε).

If A = Aη depends on a parameter η, then the O(T−1+ε) term is uniform in η.

Proof. See Dahlhaus (2000), Proposition 2.5. 2

In certain situations, the right-hand side can be written in the form
∫ 1

0 log(
2πσ 2(u)

)
du, where σ 2(u) is the one-step prediction error at time u.

The mathematical core of the above results consists of the derivation of proper-
ties of products of matrices 6T (A, B), 6T (A, A)−1, and UT (φ). These properties are
derived by Dahlhaus (2000) in Lemmas A.1, A.5, A.7, and A.8. These results are gen-
eralizations of corresponding results in the stationary case proved by several authors
before.

We now state the properties of the different likelihoods.

Theorem 9. Under suitable regularity conditions, we have for k = 0, 1, 2

(i) supη∈2η
∣∣∇k

{
LGW

T (η)− LE
T (η)

}∣∣ P
→ 0,

(ii) supθ∈2η
∣∣∇k

{
LGW

T (η)− L(η)
}∣∣ P
→ 0,

(iii) supη∈2η
∣∣∇k

{
LE

T (η)− L(η)
}∣∣ P
→ 0.

Proof. See Dahlhaus (2000) Theorem 3.1. 2

Under stronger assumptions one may also conclude that η̂GW
T − η̂

M L
T = Op(T−1+ε),

which means that η̂GW
T is a close approximation of the MLE. A sketch of the proof is

given in Dahlhaus (2000), Remark 3.4.
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Remark 5. It is interesting to compare the generalized Whittle estimate η̂GW
T and its

underlying approximation UT (
1

4π2 f −1
η ) of 6−1

η with the block Whittle estimate η̂BW
T

defined in (21). There some overlapping block Toeplitz matrices are used as an approx-
imation which we regard as worse. A similar result as in Proposition 2 has been proved
in Lemma 4.7 of Dahlhaus (1996a) for this approximation. We conjecture that also
a similar result as in Theorem 9 with LBW

T (η) can be proved and even more that
η̂BW

T − η̂
M L
T = Op

(
N

T 1−ε +
1
N

)
(this is more a vague guess than a solid conjecture), which

means that the latter approximation and presumably also the estimate η̂BW
T are worse. It

would be interesting to have more rigorous results and a careful simulation study with
a comparison of both estimates. 2

We now remember the generalized Whittle likelihood from (89), which was

LGW
T (η) =

1

T

T∑
t=1

1

4π

π∫
−π

{
log 4π2 fη

( t

T
, λ
)
+

JT (
t
T , λ)

fη(
t
T , λ)

}
dλ.

Contrary to the true Gaussian likelihood, this is a sum over time and the summands can
be interpreted as a local log-likelihood at time point t . We, therefore, define

` ∗t ,T(θ) :=
1

4π

π∫
−π

{
log 4π2 fθ (λ)+

JT (
t
T , λ)

fθ (λ)

}
dλ. (96)

(to avoid confusion we mention that we use the notation η for a finite-dimensional
parameter which determines the whole curve, that is θ(·) = θη(·) and fη(u, λ) =
fθη(u)(λ)). We now can construct all nonparametric estimates (26)–(30) with `t ,T

(
θ
)

replaced by ` ∗t ,T
(
θ
)

leading in each of the five cases to an alternative local quasi-
likelihood estimate.

The parametric estimator (30) with this local likelihood is the estimate η̂GW
T from

above. The orthogonal series estimator (28) with ` ∗t ,T
(
θ
)

has been investigated for a
truncated wavelet series expansion together with nonlinear thresholding by Dahlhaus
and Neumann (2001). The method is fully automatic and adapts to different smoothness
classes. It is shown that the usual rates of convergence in Besov classes are attained up
to a logarithmic factor. The nonparametric estimator (29) with ` ∗t ,T

(
θ
)

is studied by
Dahlhaus and Polonik (2006). Rates of convergence, depending on the metric entropy
of the function space, are derived. This includes in particular maximum likelihood
estimates derived under shape restriction. The main tool for deriving these results is
the so-called empirical spectral processes discussed in the next section. The kernel
estimator (26) with ` ∗t ,T

(
θ
)

has been investigated in Dahlhaus (2009), Example 3.6.
Uniform convergence has been proved by Dahlhaus and Polonik (2009), Section 4 (see
also Example 9 and Theorem 13 below). The local polynomial fit (27) has not been
investigated yet in combination with this likelihood.

The whole topic needs a more careful investigation – both theoretically and from a
practical point including simulations and data-examples.
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6. Empirical spectral processes

We now emphasize the relevance of the empirical spectral process for linear locally
stationary time series. The theory of empirical processes not only plays a major role
in proving theoretical results for statistical methods but also provides a deeper under-
standing of many techniques and the arising problems. The theory was first developed
for stationary processes (cf. Dahlhaus, 1988; Mikosch and Norvaisa, 1997; Fay and
Soulier, 2001) and then extended to locally stationary processes in Dahlhaus and
Polonik (2006, 2009) and Dahlhaus (2009). The empirical spectral process is indexed
by classes of functions. Basic results that later lead to several statistical applications are
a functional central limit theorem, a maximal exponential inequality and a Glivenko-
Cantelli type convergence result. All results use conditions based on the metric entropy
of the index class. Many results stated earlier in this article have been proved by using
these techniques.

The empirical spectral process is defined by

ET (φ) :=
√

T
(

FT (φ)− F(φ)
)

where

F(φ) :=

1∫
0

π∫
−π

φ(u, λ) f (u, λ)dλ du (97)

is the generalized spectral measure and

FT (φ) :=
1

T

T∑
t=1

π∫
−π

φ

(
t

T
, λ

)
JT

(
t

T
, λ

)
dλ (98)

the empirical spectral measure with the preperiodogram as defined in (88).
We first give an overview of statistics that can be written in the form FT (φ) - several

of them have already been discussed earlier in this article (KT always denotes a kernel
function).

1. φ(u, λ) = KT (u0−u) cos(λk) local covariance (9) a.s.; Remark 9
estimator

2. φ(u, λ) = KT (u0−u) KT (λ0−λ) spectral density (84) a.s.; Remark 9
estimator

3. φ(u, λ) = KT (u0−u)∇ fθ0(u, λ)−1
∇LGW

T (u0, θ0), Example 9
θ0 = θ0(u0)

4. φ(u, λ) ≈ KT (u0−u)∇ fθ0(u, λ)−1 local least Example 1; Remark 9
squares

5. φ(u, λ) = ∇ fη0(u, λ)−1 param. Whittle Example 5 in
estimator Dahlhaus and Polonik

(2009)
6. φ(u, λ) =

(
I[0,u0](u)−u0

)
I[0,λ0](λ) testing stationarity Example 10

7. φ(u, λ) = cos(λk) stationary Remark 6
covariance



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 17-ch13-349-414-9780444538581 2012/4/24 2:03 Page 394 #46

394 R. Dahlhaus

8. φ(u, λ) = ∇ fη0(λ)
−1 stat. Whittle Remark 6

estimator
9. φ(u, λ) = KT (λ0−λ) stationary spectral Remark 6

density

Examples1–4 and 9 are examples with index functions φT depending on T . More
complex examples are nonparametric maximum likelihood estimation under shape
restrictions (Dahlhaus and Polonik, 2006), model selection with a sieve estimator
(Van Bellegem and Dahlhaus, 2006) and wavelet estimates (Dahlhaus and Neumann,
2001). Moreover, FT (φ) occurs with local polynomial fits (Jentsch, 2006, Kim, 2001)
and several statistics suitable for goodness of fit testing. These applications are quite
involved.

However, applications are limited to quadratic statistics, that is the empirical spectral
measure is usually of no help in dealing with nonlinear models. Furthermore, for linear
processes, the empirical process only applies without further modification to the (score
function and the Hessian of the) likelihood LGW

T (η) and its local variant LGW
T (u, θ)

and the local Whittle likelihood LW
T (u, θ). It also applies to the exact likelihood LE

T (η)

after proving ∇LGW
T (η0)−∇LE

T (η0) = op(T−1/2) (see also Theorem 9 (i)) and the
conditional likelihoods LC

T (η) and LC
T (u, θ) in the tvAR case (see Remark 9 – in the

general case this is not clear yet). For the block Whittle likelihood LBW
T (η), it may also

be applied after establishing ∇LGW
T (η0)−∇LBW

T (η0) = op(T−1/2). However, this is
also not clear yet.

We first state a central limit theorem for ET (φ) with index functions φ that do
not vary with T . We use the assumption of bounded variation in both components
of φ(u, λ). Besides the definition in (61), we need a definition in two dimensions. Let

V 2(φ) = sup


`,m∑

j ,k=1

|φ(u j , λk)− φ(u j−1, λk)− φ(u j , λk−1)+ φ(u j−1, λk−1)| :

0 ≤ u0 < . . . < u` ≤ 1; −π ≤ λ0 < . . . < λm ≤ π ; `, m ∈ N

.

For simplicity, we set

‖φ‖∞,V := sup
u

V
(
φ(u, ·)

)
, ‖φ‖V ,∞ := sup

λ

V
(
φ(·, λ)

)
,

‖φ‖V ,V := V 2(φ) and ‖φ‖∞,∞ := sup
u,λ
|φ(u, λ)|.

Theorem 10. Suppose Assumption 1 holds and let φ1, . . . ,φd be functions with
‖φ j‖∞,V , ‖φ j‖V ,∞, ‖φ j‖V ,V and ‖φ j‖∞,∞ being finite ( j = 1, . . . , d). Then

(
ET (φ j )

)
j=1,...,d

D
→
(
E(φ j )

)
j=1,...,d
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where
(
E(φ j )

)
j=1,...,d is a Gaussian random vector with mean 0 and

cov
(
E(φ j ), E(φk)

)
= 2π

1∫
0

π∫
−π

φ j (u, λ) [φk(u, λ)+ φk(u,−λ)] f 2(u, λ) dλ du

+ κ4

1∫
0

 π∫
−π

φ j (u, λ1) f (u, λ1) dλ1


×

 π∫
−π

φk(u, λ2) f (u, λ2)dλ2

 du. (99)

Proof. See Dahlhaus and Polonik (2009), Theorem 2.5. 2

Remark 6 (Stationary processes/model mis-specification by stationary models). The
classical central limit theorem for the weighted periodogram in the stationary case can
be obtained as a corollary: If φ(u, λ) = φ̃(λ) is time invariant, then

FT (φ) =

π∫
−π

φ̃(λ)
1

T

T∑
t=1

JT

(
t

T
, λ

)
dλ =

π∫
−π

φ̃(λ)IT (λ) dλ (100)

(see (87)), that is, FT (φ) is the classical spectral measure in the stationary case with the
following applications:

(i) φ(u, λ) = φ̃(λ) = cos λk is the empirical covariance estimator of lag k;
(ii) φ(u, λ) = φ̃(λ) = 1/4π∇ f −1

θ (λ) is the score function of the Whittle likelihood.

Theorem 10 gives the asymptotic distribution for these examples - both in the station-
ary case and in the misspecified case where the true underlying process is only locally
stationary. If φ(u, λ) = φ̃(λ) is a kernel, we obtain an estimate of the spectral den-
sity whose asymptotic distribution is a special case of Theorem 11 below (also in the
misspecified case). 2

We now state a central limit theorem for FT (φT )− F(φT ) with index functions φT

depending on T . In addition, we extend the hitherto definitions to tapered data

X (hT )
t ,T := hT

( t

T

)
· X t ,T

where hT : (0, 1]→ [0,∞) is a data taper (with hT (·) = I(0,1](·) being the nontapered
case). The main reason for introducing data tapers is to include segment estimates - see
the discussion below. As before the empirical spectral measure is defined by

FT (φ) = F (hT )
T (φ) :=

1

T

T∑
t=1

π∫
−π

φ

(
t

T
, λ

)
J (hT )

T

(
t

T
, λ

)
dλ (101)
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now with the tapered preperiodogram

J (hT )
T

(
t

T
, λ

)
=

1

2π

∑
k:1≤[t+1/2±k/2]≤T

X (hT )

[t+1/2+k/2],T X (hT )

[t+1/2−k/2],T exp(−iλk) (102)

(we mention that in some cases, a rescaling may be necessary for J (hT )
T (u, λ) to become

a pre-estimate of f (u, λ) – an obvious example for this is hT (u) = (1/2) I(0,1](u)).
F(φ) is the theoretical counterpart of FT (φ)

F(φ) = F (hT )(φ) :=

1∫
0

h2
T (u)

π∫
−π

φ(u, λ) f (u, λ)dλ du. (103)

Note that (87) also holds with a data taper, that is

1

T

T∑
t=1

J (hT )
T

(
t

T
, λ

)
=

H2,T

T
I (hT )

T (λ)

with the tapered periodogram

I (hT )
T (λ) :=

1

2πH2,T

∣∣∣∣ T∑
s=1

X (hT )
s exp(−iλs)

∣∣∣∣2, where H2,T :=
T∑

t=1

hT

( t

T

)2
. (104)

An important special case is h(u0)
T (tT ) := k

( u0−t/T
bT

)
with bandwidth bT and k having

compact support on [− 1
2 , 1

2 ]. If bT := N/T then I (hT )
T (λ) = IT (u0, λ) with IT (u0, λ) as

in (19). If in addition φ(u, λ) = ψ(λ), we obtain

FT (φ) =

π∫
−π

ψ(λ)

(
1

T

T∑
t=1

J (hT )
T

(
t

T
, λ

))
dλ =

H2,T

T

π∫
−π

ψ(λ)I (hT )
T (λ)dλ.

For example for ψ(λ) := exp iλk, this is exactly H2,T /T ĉT (u0, k) with the tapered
covariance estimate from (8). In this case, H2,T /T is proportional to bT .

The last example suggests to use 1/H2,T instead of 1/T in (101) as a norming con-
stant. However, this is not always the right choice (as can be seen from case (ii) in
Remark 8).

It turns out that in the above situation, the rate of converge of the empirical spectral
measure becomes

√
T /ρ(hT )

2 (φT ), where

ρ
(hT )
2 (φ) :=

 1∫
0

h4
T (u)

π∫
−π

φ(u, λ)2 dλ du

1/2

.

Therefore, we can embed this case into the situation treated in the last section by
studying the convergence of

E (hT )
T

(
φT

ρ
(hT )
2 (φT )

)
=

√
T

ρ
(hT )
2 (φT )

(
FT (φT )− F (hT )(φT )

)
.
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Furthermore, let

c(hT )
E (φ j ,φk) := 2π

1∫
0

h4
T (u)

π∫
−π

φ j (u, λ)
[
φk(u, λ)+ φk(u,−λ)

]
f 2(u, λ)dλ du

+ κ4

1∫
0

h4
T (u)

 π∫
−π

φ j (u, λ1) f (u, λ1)dλ1

 π∫
−π

φk(u, λ2) f (u, λ2)dλ2

du.

(105)

Theorem 11. Suppose that X t ,T is a locally stationary process and suitable regularity
conditions hold. If the limit

6 j ,k := lim
T→∞

c(hT )
E (φT j ,φT k)

ρ
(hT )

2 (φT j ) ρ
(hT )

2 (φT k)
(106)

exists for all j , k = 1, . . . , d then

( √
T

ρ
(hT )

2 (φT j )

(
FT (φT j )− F (hT )(φT j )

))
j=1,...,d

D
→ N (0,6). (107)

Remark 7 (Bias). In addition, we have the bias term

√
T

ρ
(hT )

2 (φT )

(
F (hT )(φT )− lim

T→∞
F (hT )(φT )

)
.

The magnitude of this bias depends on the smoothness of the time varying spectral
density. In this section, we usually require conditions such that this bias is of lower
order. This is different in Section 3, where the bias has explicitly been investigated. 2

Remark 8 (Typical applications). A typical application of this result is the case of ker-
nel type local estimators, which can be constructed by using kernels, data tapers or a
combination of both:

(i) φT (u, λ) = 1
bT

K
(

u0−u
bT

)
ψ(λ) hT (·) = I(0,1](·)

(ii) φT (u, λ) = 1
bT

K
(

u0−u
bT

)
ψ(λ) hT (u) = I[u0−bT /2,u0+bT /2](u)

(iii) φT (u, λ) = ψ(λ) hT (
t
T ) = k

( u0−t/T
bT

)
where K (·) and k(·) are kernel functions and bT is the bandwidth. If K (·) = k(·)2, then
the resulting estimates all have the same asymptotic properties – see below. Dependent
on the function ψ(λ), this leads to different applications: If we set ψ(λ) = cos(λk), the
estimate (iii) is the estimate ĉT (u0, k) from (8) and (i) is “almost” the estimate c̃T (u0, k)
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from (9) (for k even it is exactly the same, for k odd the difference can be treated with
the methods mentioned in Remark 5).

We now show how Theorem 11 leads to the asymptotic distribution for these
estimates:

(i) If K (·) and ψ(·) are of bounded variation and bT → 0, bT T→∞, then the reg-
ularity conditions of Theorem are fulfilled (see Dahlhaus (2009), Remark 3.4).
Furthermore,

ρ
(hT )

2 (φT ) = ρ2(φT ) =
( 1

bT

∫
K 2(x) dx

∫
|ψ(λ)|2 dλ

)1/2
≈ b−1/2

T . (108)

For f (·, λ) continuous at u0, we have

c(hT )
E (φT j ,φT k) ∼

1

bT

∫
K 2(x) dx

2π

π∫
−π

ψ j (λ)
[
ψk(λ)+ ψk(−λ)

]

× f 2(u0, λ) dλ+ κ4

 π∫
−π

ψ j (λ1) f (u0, λ1) dλ1



×

 π∫
−π

ψk(λ2) f (u0, λ2) dλ2

 =:
1

bT
0 jk

that is (106) is also fulfilled, and we obtain from Theorem 11√
bT T

(
FT (φT j )− F (hT )(φT j )

)
j=1,...,d

D
→ N (0,0). (109)

(ii) The additional taper hT (u) = I[u0−bT /2,u0+bT /2](u) implies that we use only data
from the interval [u0 − bT /2, u0 + bT /2]. We obtain in this case

ρ
(hT )

2 (φT ) =

 1∫
0

1

b2
T

K

(
u0 − u

bT

)2

du

π∫
−π

|ψ(λ)|2 dλ

1/2

,

i.e., we have the same ρ(hT )

2 (φT ) as above. Furthermore, c(hT )
E (φT ,φT ) is the

same. Thus, we obtain the same asymptotic distribution and the same rate of
convergence.

(iii) If K (·) = k(·)2, we obtain in this case

1

bT
ρ
(hT )

2 (φT ) =

 1∫
0

1

b2
T

K
(u0 − u

bT

)2
du

π∫
−π

|ψ(λ)|2 dλ

1/2

i.e., we obtain again the same expression. Furthermore, 1/b2
T c(hT )

E (φT j ,φT k) is
the same as c(hT )

E (φT j ,φT k) above. Thus, we have again the same asymptotic
distribution and the same rate of convergence. 2
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Example 9 (Curve estimation by local quasi-likelihood estimates). Local
Whittle estimates on a segment were defined in (17) and discussed in Example 3
(the bias was heuristically derived in Example 2). We now consider the presumably
equivalent local quasi-likelihood estimate defined by

θ̂
GW

T (u0) := argmin
θ∈2

LGW
T (u0, θ) (110)

with

LGW
T (u0, θ) :=

1

4π

1

T

T∑
t=1

1

bT
K
(u0 − t/T

bT

) π∫
−π

{
log 4π2 fθ (λ)+

JT (
t
T , λ)

fθ (λ)

}
dλ.

(111)

(this is a combination of (26) and (96)). The asymptotic normality of the estimate

θ̂
GW

T (u0) is derived in Dahlhaus (2009), Example 3.6. Key steps in the proof are the
fact that both the score function and the Hessian matrix can be written in terms of
the empirical spectral process leading to a rather simple proof. For example

√
bT T ∇iLT

(
u0, θ 0(u0)

)
=

√
bT T

(
FT (φT ,u0 ,i )− F(φT ,u0 ,i )

)
+ op(1) (112)

where φT ,u0 ,i (v, λ) := 1
bT

K (u0 − v/bT )
1

4π∇i f −1
θ (λ)|θ=θ0(u0). Theorem 11 then im-

mediately gives the asymptotic normality of the score function and after some

additional considerations also asymptotic normality of θ̂
GW

T (u0). For details, see
Dahlhaus (2009), Example 3.6.

The above estimate corresponds to case (i) in Remark 8. Case (iii) in Remark 8

leads instead to the tapered Whittle estimate θ̂
W

T (u0) on the segment, since for
h(u0)

T (t/T ) := k(u0 − t/T /bT ), we have I (hT )
T (λ) = IT (u0, λ) with IT (u0, λ) as in

(19). This estimate has the same asymptotic properties provided k(·)2 = K (·). It’s
asymptotic properties can now also be derived by using Theorem 11.

Remark 9 (Related estimates). Many estimates are only approximately of the form
discussed above, for example, the sum statistic

F6
T (φ) :=

2π

T 2

T∑
t=1

T∑
j=1

φ
( t

T
, λ j

)
J (hT )

T

( t

T
, λ j

)
(113)

where λ j = 2π j/T – or representations in terms of the Fourier-coefficients. Impor-
tant examples of related estimates are the spectral density estimate (84), the covariance
estimates (9) and (10) and the score function of the local least squares tvAR(p) esti-
mate from Example 1. We mention that the central limit theorem in Theorem 11 also
holds for several modified estimators. Details and proofs can be found in Dahlhaus
(2009), Section 4.
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We now briefly mention the exponential inequality. Since this is a nonasymp-
totic result, it holds regardless whether φ depends on T . Let ρ2,T (φ) :=

(
1/T

∑T
t=1∫ π

−π
φ(t/T , λ)2dλ

)1/2
.

Theorem 12 (Exponential inequality). Under suitable regularity conditions, we have
for all η > 0

P
( ∣∣∣√T

(
FT (φ)− EFT (φ)

)∣∣∣ ≥ η) ≤ c1 exp
(
− c2

√
η

ρ2,T (φ)

)
(114)

with some constants c1, c2 > 0 independent of T .

This result is proved in Dahlhaus and Polonik (2009), Theorem 2.7. There exist
several versions of this result – for example in the Gaussian case, it is possible to omit
the
√
· in (114) or to prove a Bernstein-type inequality which is even stronger (cf.

Dahlhaus and Polonik, 2006, Theorem 4.1).
Subsequently, a maximal inequality, i.e., an exponential inequality for

supφ∈8 |ET (φ)| has been proved in Dahlhaus and Polonik (2009), Theorem 2.9
under conditions on the metric entropy of the corresponding function class8. We refer
to that paper for details.

With the maximal inequality, tightness of the empirical spectral process can be
proved leading to a functional central limit theorem for the empirical spectral process
indexed by a function class (cf. Dahlhaus and Polonik, 2009, Theorem 2.11). Further-
more, a Glivenko Cantelli type result for the empirical spectral process can be obtained
(Theorem 2.12).

Other applications of the maximal inequality are for example uniform rates of con-
vergence for different estimates. As an example, we now state a uniform convergence

result for the local quasi-likelihood estimate θ̂
GW

T (u0) from (110).

Theorem 13. Let X t ,T be a locally stationary process with µ(·) ≡ 0. Under suitable
regularity conditions (in particular under the assumption that fθ (λ) is twice dif-
ferentiable in θ with uniformly Lipschitz continuous derivatives in λ), we have for
bT T >> (log T )6

sup
u0 ∈ [bT /2 , 1−bT /2]

∥∥θ̂GW

T (u0)− θ0(u)
∥∥

2 = Op

( 1
√

bT T
+ b2

T

)
,

that is for bT ∼ T−1/5 we obtain the uniform rate Op

(
T−2/5

)
.

Proof. The result has been proved in Dahlhaus and Polonik (2009), Theorem 4.1. 2

Example 10 (Testing for stationarity). Another application of the maximal in-
equality is the derivation of a functional central limit for the empirical spectral
process. A possible application is a test for stationarity. We briefly present the idea –
although we clearly mention that the construction below is finally not successful.
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The idea for a test of stationarity is to test whether the time varying spectral density
f (u, λ) is constant in u. This is for example achieved by the test statistic

√
T sup

u∈[0,1]
sup
λ∈[0,π ]

∣∣∣FT (u, λ)− u FT (1, λ)
∣∣∣ (115)

where

FT (u, λ) :=
1

T

[uT ]∑
t=1

λ∫
0

JT

(
t

T
,µ

)
dµ

is an estimate of the integrated time frequency spectral density F(u, λ) :=∫ u
0

∫ λ
0 f (v,µ) dµdv, and

u FT (1, λ) = u

λ∫
0

IT (µ)dµ

is the corresponding estimate of F(u, λ) under the hypothesis of stationarity, where
f (v,µ) = f (µ). Under the hypothesis of stationarity, we have

F(u, λ)− u F(1, λ) =

1∫
0

λ∫
0

(
I[0,u](v)− u

)
f (µ) dµ dv = 0

and, therefore,

√
T
(

FT (u, λ)− u FT (1, λ)
)
= ET (φu,λ)

with φu,λ(v,µ) =
(
I[0,u](v)− u

)
I[0,λ](µ). We now need functional convergence

of ET (φu,λ). Convergence of the finite-dimensional distributions follows from
Theorem 10 above. Tightness and, therefore, the functional convergence follows
from Theorem 2.11 of Dahlhaus and Polonik (2009). As a consequence, we obtain
under the null hypothesis

√
T
(

FT (u, λ)− u FT (1, λ)
)

u∈[0,1],λ∈[0,π ]

D
→ E

(
u, λ

)
u∈[0,1],λ∈[0,π ]

where E
(
u, λ

)
is a Gaussian process. If κ4 = 0 (Gaussian case) and f (µ) = c, it

can be shown that this is the Kiefer-Müller process. However, for general f , it is
a difficult and unsolved task to calculate or estimate the limit distribution and, in
particular, the distribution of the test statistic in (115). This may be done by transfor-
mations (like Up - or Tp - type transforms) and/or by finding an adequate bootstrap
method.

We mention that Paparoditis (2009, 2010) has given two different solutions of
this testing problem.
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7. Additional topics and further references

This section gives an overview over additional topics with further references. We con-
centrate on work which uses the infill asymptotic approach of local stationarity. Even
in this case, it is not possible to give a complete overview.

7.1. Locally stationary wavelet processes

There exists a large number of papers on the use of wavelets for modeling locally
stationary processes. The first type of application is to estimate the parameter curves
via the use of wavelets. This has been mentioned a few times in the above presentation
(cf. (28)).

A breakthrough for the application of wavelets to nonstationary processes was the
introduction of “locally stationary wavelet processes” by Nason et al. (2000). This class
is somehow the counterpart to the representation (60) for locally stationary processes. It
also uses a rescaling argument – thus making all methods for these processes accessible
to a meaningful asymptotic theory. Locally stationary wavelet processes are processes
with the wavelet representation

X t ,T = µ

(
t

T

)
+

∞∑
j=1

∞∑
k=−∞

w j ,k;T ψ j ,k−t ξ j ,k (116)

where {ξ j ,k} are a collection of uncorrelated random variables with mean 0 and vari-
ance 1, the {ψ j ,t } are a set of discrete nondecimated wavelets (compactly supported
oscillatory vectors with support proportional to 2 j ), and {w j ,k;T } are a collection of
amplitudes that are smooth in a particular way as a function of k. The smoothness of
{w j ,k;T } controls the degree of local stationarity of X t ,T . The spectrum is linked to the
process by {w j ,k;T } ≈ S j

(
k
T

)
. Nason et al. (2000) also define the “evolutionary wavelet

spectrum” and show how this can be estimated by a smoothed wavelet periodogram.
In addition, this leads to an estimate of the local covariance. An introduction to LSW
processes and an overview on early results for such processes can be found in Nason
and von Sachs (1999). Fryzlewicz and Nason (2006) suggest the use of a Haar-Fisz
method for the estimation of evolutionary wavelet spectra by combining Haar wavelets
and the variance stabilizing Fisz transform. Van Bellegem and von Sachs (2008) con-
sider wavelet processes whose spectral density function changes very quickly in time.
By using a wavelet-type transform of the autocovariance function with respect to so-
called autocorrelation wavelets, they propose a pointwise adaptive estimator of the time
varying autocovariance and the time varying spectrum.

Furthermore, several papers mentioned below use the framework of LSW processes.

7.2. Multivariate locally stationary processes

We first mention that, in particular, the Gaussian likelihood theory for locally stationary
processes from Section 5 also holds for multivariate processes – see Dahlhaus (2000).

Beyond that Chiann and Morettin (1999, 2005) investigate the estimation of time
varying coefficients of a linear system where the input and output are locally stationary
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processes. They study different estimation techniques in the frequency and time
domain.

Ombao et al. (2001) analyze bivariate nonstationary time series. They use SLEX
functions (time-localized generalization of the Fourier waveform) and propose a
method that automatically segments the time series into approximately stationary
blocks and selects the span to be used to obtain the smoothed estimates of the time
varying spectra and coherence. Ombao et al. (2005) use the SLEX framework to build
a family of multivariate models that can explicitly characterize the time varying spec-
tral and coherence properties of a multivariate time series. Ombao and Van Bellegem
(2008) estimate the time varying coherence by using time-localized linear filtering.
Their method automatically selects via tests of homogeneity the optimal window width
for estimating local coherence.

Motta et al. (2011) propose a locally stationary factor model for large cross-section
and time dimensions. Factor loadings are estimated by the eigenvectors of a nonpara-
metrically estimated covariance matrix. Eichler et al. (2011) investigate dynamic factor
modeling of locally stationary processes. They estimate the common components of the
dynamic factor model by the eigenvectors of an estimator of the time varying spectral
density matrix. This can also be seen as a time varying principal components approach
in the frequency domain.

Cardinali and Nason (2010) introduce the concept of costationary of two locally
stationary time series where some linear combination of the two processes is sta-
tionary. They show that costationarity imply a error-correction type of formula in
which changes in the variance of one series are reflected by simultaneous balancing
changes in the other. Sanderson et al. (2010) propose a new method of measuring the
dependence between nonstationary time series based on a wavelet coherence between
two LSW processes.

7.3. Testing of locally stationary processes – In particular tests for stationarity

Among the large literature on testing, there is a considerable part devoted to test-
ing of stationarity. Tests of stationarity have already been proposed and theoretically
investigated before the framework of local stationarity was created. In that cases,
the theoretical investigations mainly consisted in the investigation of the asymptotic
distribution of the test statistics under the hypothesis of stationarity.

Priestley and Subba Rao (1969) proposed testing the homogeneity of a set of evolu-
tionary spectra evaluated at different points of time. For Gaussian processes and for the
purpose of a change-point detection, Picard (1985) developed a test based on the differ-
ence between spectral distribution functions estimated on different parts of the series
and evaluated using a supremum type statistic. Giraitis and Leipus (1992) generalized
this approach to the case of linear processes. von Sachs and Neumann (2000) developed
a test of stationarity based on empirical wavelet coefficients estimated using localized
versions of the periodogram. Paparoditis (2009) developed a nonparametric test for sta-
tionarity against the alternative of a smoothly time varying spectral structure based on
a local spectral density estimate. He also investigated the power under the fixed alter-
native of a locally stationary processes. Paparoditis (2010) tested the assumption of
stationarity by evaluating the supremum over time of an L2-distance between the local
periodogram over a rolling segment and an estimator of the spectral density obtained
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using the entire time series at hand. The critical values of a supremum type test are
obtained using a stationary bootstrap procedure. Dwivedi and Subba Rao (2011) con-
struct a Portmanteau type test statistic for testing stationarity of a time series by using
the property that the discrete Fourier transforms of a time series at the canonical fre-
quencies are asymptotically uncorrelated if and only if the time series is second-order
stationary.

Tests of general hypothesis are derived in Sakiyama and Taniguchi (2003) who test
parametric composite hypothesis by the Gaussian likelihood ratio test, the Wald test,
and the Lagrange multiplier test. Sergides and Paparoditis (2009) develop tests of the
hypothesis that the time varying spectral density has a semiparametric structure. The
test introduced is based on a L2-distance measure in the spectral domain. As a special
case, they test for the presence of a tvAR model. A bootstrap procedure is applied to
approximate more accurately the distribution of the test statistic under the null hypoth-
esis. Preuß et al. (2011) also test semiparametric hypotheses. Their method is based on
an empirical version of the L2-distance between the true time varying spectral density
and its best approximation under the null hypothesis.

Zhou and Wu (2010) construct simultaneous confidence tubes for time varying
regression coefficients in functional linear models. Using a Gaussian approximation
result for nonstationary multiple time series, they show that the constructed simultane-
ous confidence tubes have asymptotically correct nominal coverage probabilities.

7.4. Bootstrap methods for locally stationary processes

Bootstrap methods are in particular needed to derive the asymptotic distribution of test
statistics. A time domain local block bootstrap procedure for locally stationary pro-
cesses has been proposed by Paparoditis and Politis (2002) and Dowla et al. (2003).
Sergides and Paparoditis (2008) develop a method to bootstrap the local periodogram.
Their method generates pseudolocal periodogram ordinates by combining a parametric
time and nonparametric frequency domain bootstrap approach. They first fit locally a
time varying autoregressive model to capture the essential characteristics of the under-
lying process. A locally calculated nonparametric correction in the frequency domain
is then used so as to improve upon the locally parametric autoregressive fit. Kreiss and
Paparoditis (2011) propose a nonparametric bootstrap method by generating pseudo-
time series which mimic the local second- and fourth-order moment structures of the
underlying process. They prove a bootstrap central limit theorem for a general class of
preperiodogram based statistics.

7.5. Model mis-specification and model selection

Model selection criteria have been heuristically suggested many times for time varying
processes – cf. Ozaki and Tong (1975), Kitagawa and Akaike (1978), and Dahlhaus
(1996b, 1997), among others – in all papers AIC-type criteria have been suggested for
different purposes.

Van Bellegem and Dahlhaus (2006) consider semiparametric estimation and esti-
mate the Kullback-Leibler distance between the semiparametric model and the true
process. They use this estimate then as a model selection criterion. Hirukawa et al.
(2008) propose a generalized information criterion based on nonlinear functionals
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of the time varying spectral density. Chandler (2010) investigates how time varying
parameters affect order selection.

Another interesting aspect is that many results of this paper also hold under model –
misspecification – for example Theorem 8 and the corresponding result for the Block
Whittle estimate from (20). An important example is the case where a stationary model
is fitted and the underlying process in truth is only locally stationary – see Example 8
and the more detailed discussion for stationary Yule-Walker estimates in Dahlhaus
(1997) Section 5.

7.6. Likelihood theory and large deviations

LAN is derived in the parametric Gaussian case by Dahlhaus (1996b, 2000) (cf.
Remark 3.3 in that paper). A nonparametric LAN result is derived by Sakiyama and
Taniguchi (2003) and a LAN result under non-Gaussianity in Hirukawa and Taniguchi
(2006). In both papers, the results are applied to asymptotically optimal estimation
and testing. For some statistics, also the asymptotic distribution under contiguous
alternatives is derived. Tamaki (2009) studies second-order asymptotic efficiency of
appropriately modified maximum likelihood estimators for Gaussian locally stationary
processes.

Large deviations principles for quadratic forms of locally stationary processes are
derived in Zani (2002) including applications to local spectral density and covari-
ance estimation. Wu and Zhou (2011) obtain an invariance principle for nonstationary
vector-valued stochastic processes. They show that the partial sums of nonstationary
processes can be approximated on a richer probability space by sums of independent
Gaussian random vectors.

7.7. Recursive estimation

Recursive estimation algorithms are of the form

θ̂t = θ̂t−1 + λt ψ(X t , θ̂t−1) (117)

where X t = (X1, . . . , X t )
′. The recursive structure yields an update of the estimate as

soon as the next observation becomes available, and the estimate, therefore, is particu-
larly of importance in an online situation. For stationary processes, the algorithm is used
with λt ∼ 1/t , while in nonstationary situations, one uses a nondecreasing λ (constant
step-size case) that is the estimate puts stronger weights on the last observations.

Adaptive estimates of the above type have been investigated over the last 30 years in
different scientific communities: by system theorists under the name “recursive iden-
tification methods” (cf. Ljung, 1977; Ljung and Söderström, 1983), in the stochastic
approximation community (cf. Benveniste et al., 1990; Kushner and Yin, 1997), in the
neural network community under the name “back-propagation algorithm” (cf. White
(1992) or Haykin (1994)), and in applied sciences, particularly for biological and
medical applications (cf. Schack and Grieszbach, 1994).

The properties of recursive estimation algorithms have rigorously been investi-
gated in many papers under the premise that the underlying true process is stationary.
However, for nonstationary processes and the constant step-size case, there did not
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exist for a long time a reasonable framework to study theoretically the properties of
these algorithms. This has changed with the concept of locally stationary processes
with it’s infill asymptotics which now allows for theoretical investigations of these
algorithms.

In Moulines et al. (2005), the properties of recursive estimates of tvAR processes
have been investigated in the framework of locally stationary processes. The asymp-
totic properties of the estimator have been proved including a minimax result. In
Dahlhaus and Subba Rao (2007), a recursive algorithm for estimating the parameters of
a tvARCH process has been proposed. Again, the asymptotic properties of the estimator
have been proved.

7.8. Inference for the mean curve

Modeling the time varying mean of a locally stationary process is an important task
which has not been discussed in this overview. In principle, nearly all known tech-
niques from nonparametric regression may be used such as kernel estimates, local
polynomial fits, wavelet estimates, or others. The situation is, however, much more
challenging, since the “residuals” are in this case a locally stationary process which
usually is modeled at the same time.

In general, the topic needs more investigation. Dahlhaus (1996a,b, 1997, 2000) and
Dahlhaus and Neumann (2001) contain also results where the mean is time varying
and/or estimated. A more detailed investigation is contained in Tunyavetchakit (2010)
in the context of time varying AR(p) processes, where the mean curve is estimated in
parallel and the optimal segment length is determined similar to (16).

7.9. Piecewise constant models

Davis et al. (2005) consider the problem of modeling a class of nonstationary time
series using piecewise constant AR processes. The number and locations of the piece-
wise AR segments, as well as the orders of the respective AR processes, are determined
by the minimum description length principle. The best combination is then determined
by a genetic algorithm. In Davis et al. (2008) to general parametric time series models
for the segments and illustrate the method with piecewise GARCH models, stochastic
volatility, and generalized state-space models.

Locally constant parametric models have also been considered in a nonasymptotic
approach by Mercurio and Spokoiny (2004) and others where the so-called small mod-
eling bias condition is used to determine the length of the interval of time homogeneity
and to fit the parameters – for more details see also Spokoiny (2010).

7.10. Long-memory processes

Beran (2009) and Palma and Olea (2010) have extended the concept of local station-
arity to long-range dependent processes. Whereas Beran (2009) uses a nonparametric
approach with a local least-squares estimate similar to (26). Palma and Olea (2010)
use a parametric approach and use the block Whittle likelihood from (21). Both papers
then investigate the asymptotic properties. Roueff and von Sachs (2011) use a local
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log-regression wavelet estimator of the time-dependent long-memory parameter and
study it’s asymptotic properties.

7.11. Locally stationary random fields

Fuentes (2001) studies different methods for locally stationary isotropic random fields
with parameters varying across space. In particular, she uses local Whittle estimates.
Eckley et al. (2010) propose the modeling and analysis of image texture by using an
extension of a locally stationary wavelet process model for lattice processes. They
construct estimates of a spatially localized spectrum and a localized autocovariance
which are then used to characterize textures in a multiscale and spatially adaptive
way. Anderes and Stein (2011) develop a weighted local likelihood estimate for the
parameters that govern the local spatial dependency of a locally stationary random field.

7.12. Discrimination analysis

Discrimination analysis for locally stationary processes based on the Kullback-Leibler
divergence as a classification criterion has been investigated in Sakiyama and Taniguchi
(2004) and for multivariate processes in Hirukawa (2004). Huang et al. (2004) pro-
pose a discriminant scheme based on the SLEX-library and a discriminant criterion
that is also related to the Kullback-Leibler divergence. Chandler and Polonik (2006)
develop methods for the discrimination of locally stationary processes based on the
shape of different features. In particular, they use shape measures of the variance
function as a criterion for discrimination and apply their method to the discrimina-
tion of earthquakes and explosions. Fryzlewicz and Ombao (2009) use a bias-corrected
nondecimated wavelet transform for classification in the framework of LSW processes.

7.13. Prediction

Fryzlewicz et al. (2003) address the problem of how to forecast nonstationary time
series by means of nondecimated wavelets. Using the class of LSW processes, they
introduce a new predictor based on wavelets and derive the prediction equations as
a generalization of the Yule-Walker equations. Van Bellegem and von Sachs (2004)
apply locally stationary processes to the forecasting of several economic data sets such
as returns and exchange rates.

7.14. Finance

There is a growing interest in finance for models with time varying parameters. An
overview on locally stationary volatility models is given in Van Bellegem (2011). A
general discussion on local stationary in different areas of finance can be found in
the study by Guégan (2007) – see also Taniguchi et al. (2008). For example, many
researchers are convinced that the observed slow decay of the sample autocorrelation
function of absolute stock returns is not a long-memory effect but due to nonstationary
changes in the unconditional variance (cf. Fryzlewicz et al., 2006; Mikosch and Stărică,
2004; Stărică and Granger, 2005) leading for example to GARCH models with time
varying parameters.
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References for work on tvGARCH models have been given in Section 3. Other
work on applications of locally stationary processes in finance is, for example, the
work on optimal portfolios with locally stationary returns of assets by Shiraishi and
Taniguchi (2007). Hirukawa (2006) uses locally stationary processes for a clustering
problem of stock returns. Fryzlewicz (2005) models some stylized facts of financial log
returns by LSW processes. Fryzlewicz et al. (2006) consider a locally stationary model
for financial log-returns and propose a wavelet thresholding algorithm for volatility
estimation, in which Haar wavelets are combined with the variance-stabilizing Fisz
transform.

7.15. Further topics

Robinson (1989) uses also the infill asymptotics approach in his work on nonparametric
regression with time varying coefficients. Orbe et al. (2000) estimate nonparametrically
a time varying coefficients model allowing for seasonal and smoothness constraints.
Orbe et al. (2005) estimate the time varying coefficients under shape restrictions
over and for locally stationary regressors. Chiann and Morettin (2005) investigate the
estimation of coefficient curves in time varying linear systems.

Estimation of time varying quantile curves for nonstationary processes has been
done in Draghicescu et al. (2009) and Zhou and Wu (2009). Specification tests of time
varying quantile curves have been investigated in Zhou (2010).
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Abstract

Using the SLEX library as the primary tool, we develop a systematic, flexible,
and computationally efficient procedure for analyzing multivariate nonstationary
time series. The SLEX library is a collection of bases; each of which consists of
localized Fourier waveforms. In the problem of signal representation and spectral
estimation, one can select, from the set of bases in the SLEX library, the one that
best represents the underlying process. Moreover, in discrimination and classifica-
tion of nonstationary time series, one can select the basis that gives the maximal
separation between classes of nonstationary time series. We illustrate the SLEX
methods by analyzing multichannel EEGs recorded during an epileptic seizure
and during a visual-motor experiment.

Keywords: Coherence, discrimination, fourier transform, nonstationary time
series, smooth localized complex exponentials, spectral analysis, spectral matrix.

1. Introduction

Many brain science experiments collect multivariate time series from animal and
human subjects to study brain electrical, magnetic, and hemodynamic activity. In this
chapter, we present methods for analyzing multivariate time series based on the local
Fourier library. One example of multivariate time series is electroencephalograms
(EEGs) that are measures of brain electrical activity recorded from many sensors on
a scalp. Here, we shall analyze the multichannel EEGs recorded during an epileptic
seizure and during a visual-motor task experiment in which the participant moved the
joystick either to the left or to the right in response to the stimulus presented.

415
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1.1. Goals in the chapter

In the first data set (see Fig. 1), our goal is to study how the composition of wave-
forms evolve during an episode of an epileptic seizure. Here, we present a method for
estimating the spectra (which measure variance decomposition) and coherence (which
measures dynamic cross-relationships in the multivariate time series). The second data
set (see Fig. 2) was recorded in an experiment in which participants performed a sim-
ple voluntary movement that required quick displacements of a hand-held joystick
from a central position either to the right or to the left. It is likely that the nature of
interactions between brain regions differs between the “right” and “left” conditions.
Here, we present a method for selecting spectral features that discriminate between pre-
sumed brain connectivity occurring during leftward and rightward movements, aiming
to predict intentions to move by assessing the information evident in an electroen-
cephalogram (EEG) time series recorded contemporary with the voluntary movements.
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Fig. 1. Electroencephalogram recorded during an epileptic seizure. T = 8192. Sampling rate is 100 Hz.
Only eight EEG plots are shown although the analysis was conducted on the data set that consists of p = 18
channels. The EEG plots on the left column are recordings from the left side of the brain: T3 (left temporal
lobe); F3 (left frontal); C3 (left central); and P3 (left parietal). The plots on the right column are recordings
from the right side of the brain: T4 (right temporal lobe); F4 (right frontal); C4 (right central); and P4 (right

parietal).
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Fig. 2. Left: representative 11-channel EEG recorded from one trial for the left condition. Right: representa-
tive 11-channel EEG recorded from one trial for the right condition.

Most brain time series data are typically nonstationary – their statistical properties
and spectral content evolve over time. Such signals cannot be adequately studied using
classical Fourier analysis. In this chapter, we shall analyze these brain signals using
a library of localized Fourier waveforms. This library consists of several bases: for
the first goal, we shall estimate the evolutionary spectra and coherence by selecting the
basis that gives the best representation for the nonstationary time series, and for the
second goal, we select the basis that gives the maximal discrimination or separation
between the two classes of signals (leftward vs. rightward movements).

1.2. Overview of spectral representations

We first give a brief background on the spectral representations of time series. Let
X(t) = [X1(t), . . . , X P(t)]′ be a zero-mean P-variate time series. Under stationarity,
X(t) can be expressed as a randomly weighted sine and cosine waveform via the
Cramér (spectral) representation

X(t) =

1/2∫
−1/2

A(ω) exp( i2πωt)dZ(ω), (1)

where A(ω) is the transfer function matrix of dimension P × P and dZ(ω) is a
zero-mean orthonormal increment random process, i.e., Cov[dZ(ω), dZ(λ)] = 0 when
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ω 6= λ and Var[dZ(ω)] = 1dω where 1 is the P × P identity matrix. The spectral
density matrix of X(t) is f(ω) = A(ω)A∗(ω), which is complex-valued Hermitian with
dimension P × P .

The relevant spectral quantities are as follows: the autospectrum at frequency ω for
X p(t) is the pth element of the diagonal denoted f pp(ω); the cross-spectrum between
the pth and qth components is the (p, q) element of the spectral matrix denoted f pq(ω);
and the coherence between the pth and qth components is defined to be ρpq(ω) =

| f pq(ω)|
2/
[

f pp(ω) fqq(ω)
]
. Coherence is a measure of linear association between the

ω-oscillatory activity at the p and q components. In fact, Ombao and Van Bellegem
(2008) demonstrate that when one applies a linear filter on X p(t) and Xq(t), so that the
resulting filtered signals have spectra concentrated on ω, coherence is approximately
equal to the squared cross-correlation between these filtered signals.

Coherence cannot differentiate between direct versus indirect linear association. For
example, X p(t) and Xq(t) may be strongly coherent at some frequency ω but that
association may be due to another component Xr (t). Thus, to measure the direct linear
associations, one uses partial coherence that is characterized as follows. Define G(ω) =
f−1(ω) and denote its diagonal elements to be gpp(ω) and define the matrix H(ω) to be
a diagonal P × P matrix whose elements are h pp(ω) = 1/

√
gpp(ω). Further, define

the matrix 3(ω) = −H(ω)f−1(ω)H(ω). Partial coherency between the pth and qth
components is then defined to be the (p, q)th element of the matrix 3(ω), denoted by
3pq(ω), and partial coherence is the square modulus |3pq(ω)|

2.
Note that for stationary processes: (a) the representation uses the Fourier complex

exponentials as the building blocks; (b) the transfer function depends only on frequency
and does not vary across time, and consequently, (c) the spectral matrix and all spectral
quantities remain constant in time. For nonstationary multivariate time series, Dahlhaus
(2001) developed a representation that also uses the Fourier waveforms as building
blocks but allows the transfer function to change over time. Here, to present ideas, we
use its approximate representation

Xt ,T ≈

1/2∫
−1/2

A(t/T ,ω) exp( i2πωt)dZ(ω), (2)

where A(t/T ,ω) is the transfer function matrix that is defined on rescaled time t/T .
Under this representation, the ingredients are still the Fourier waveforms but the ran-
dom coefficients A(t/T ,ω)dZ(ω) depend both on time and on frequency. The spectral
matrix, defined on rescaled time u ∈ [0, 1] and frequency ω ∈ (−0.5, 0.5), is defined to
be f(u,ω) = A(u,ω)A∗(u,ω). The Dahlhaus model provides a asymptotic framework
under which one can establish consistency of the estimator for the time-varying spectral
matrix.

In this chapter, we shall introduce a complementary approach that utilizes the library
of localized Fourier waveforms. The remainder of this chapter is organized as follows.
The basic ideas on the SLEX waveforms and transform are given in Section 2. The
method for fitting the SLEX model and estimating the time-varying spectral proper-
ties is given in Sections 3 and 4; we present the procedure for discriminating between
classes of nonstationary time series by finding the best SLEX basis that gives the largest
separation between the classes.
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2. Overview of SLEX analysis

2.1. The SLEX waveforms

The Fourier waveforms are not ideal for analyzing nonstationary time series data
because they cannot directly capture the time-localized spectral features of the sig-
nal. One standard approach to study nonstationary time series uses windowed Fourier
waveforms (Daubechies, 1992) φF (u) = 9(u) exp(i2πωu), where 9 is a taper with
compact support and ω ∈ (−1/2, 1/2]. Windowed Fourier waveforms are localized
in time but are generally nonorthogonal due to the Balian–Low theorem that states
that no smooth window exists so that the windowed Fourier basis functions are
simultaneously orthogonal and localized (Wickerhauser, 1994). Orthogonality is a
desirable property because it provides elegant representations and gives a unique time–
frequency decomposition. Orthogonal transforms preserve the energy of the time series
and allow the use of the best basis algorithm (BBA) of Coifman and Wickerhauser
(1992) which is computationally efficient and hence facilitates the analysis of massive
data sets.

While there exist many localized and orthonormal basis functions that could be used
for analyzing nonstationary time series (e.g., wavelets and wavelet packets), there is
a strong rationale for using time-localized generalizations of the Fourier waveforms.
Here, following Ombao et al. (2001), we analyze nonstationary time series data using
the SLEX (Smooth Localized Complex EXponential) waveforms

φω(u) = 9+(u) exp(i2πωu)+9−(u) exp(−i2πωu), (3)

where ω ∈ (−1/2, 1/2], and u ∈ I = [−η, 1+ η], 0 < η < 0.5. The windows, plotted
in Fig. 3, come in pairs. That is, once 9+ is specified, 9− is determined. Moreover,
these windows can be compressed or dilated so that the rescaled support B ⊂ I. Plots
of the SLEX waveforms are given in Fig. 4. The SLEX waveforms are simultaneously
orthogonal and smooth. Unlike the smooth-windowed Fourier complex exponentials,
the SLEX waveforms evade the Balian–Low obstruction because they are constructed
using a projection operator rather than a single window. Details on the construction of
waveforms from projection operators are provided in the study by Auscher et al. (1992).
A comparison of the SLEX and the other transforms is briefly discussed in Section 2.6.
The SLEX library is appealing for modeling time series because it naturally cap-
tures the time-lag structure between components of a multivariate time series via the
phases of the time-varying cross-spectra and gives results that are easy to interpret
because they are time-dependent generalizations of Fourier analysis of stationary time
series.

2.2. The SLEX library

The SLEX library is a collection of bases; each basis consists of the SLEX wave-
forms that are localized; thus, they are able to capture the local spectral features of
the time series. Moreover, the SLEX library allows a flexible and rich representation
of the observed time series. To illustrate these ideas, we construct a SLEX library in
Fig. 5 with level J = 2. There are seven dyadic time blocks in this library. They are
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Fig. 3. Smooth window pairs 9+,B(u) and 9−,ω,B(u). These windows can be stretched or compressed. In
the top picture, B is approximately the rescaled interval (500/1000, 900/1000); in the bottom picture, B is

approximately (500/1000, 750/1000).

S(0, 0) that covers the entire time series, S(1, 0) and S(1, 1), which are the two half
blocks, and S(2, b), b = 0, 1, 2, 3, which are the four quarter blocks. Note that in gen-
eral, for each resolution level j = 0, 1, . . . , J , there are 2 j time blocks, each having
length T/2 j . We will adopt the notation S( j , b) to denote the block b on level j where
b = 0, 1, . . . , 2 j

− 1. The time blocks S( j , b) correspond to the rescaled blocks B( j , b)
in the following manner: S(0, 0) corresponds to [0, 1]; S(1, 0) corresponds to (0, 1/2);
S(2, 3) corresponds to [3/4, 1].

There are five possible bases from this particular SLEX library. One particular basis
is composed of blocks S(1, 0), S(2, 2), S(2, 3) that correspond to the shaded blocks in
Fig. 5. We point out that each basis is allowed to have multiresolution scales, i.e.,
a basis can have time blocks with different lengths. This is ideal for processes whose
regimes of stationarity have lengths that also vary with time. In choosing the finest time
scale (or deepest level) of the transform J , the statistician will need some advice from
collaborators who can give some guidance regarding an appropriate time resolution
of EEGs. In general, the blocks should be small enough so that we can be confident
that the time series is stationary in these blocks. At the same time, the blocks should
not be smaller than what is necessary in order to control the variance of the spectral
estimator.
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Fig. 4. Examples of the SLEX waveforms at different scales and locations. The SLEX waveforms can be
dilated or compressed and then shifted.
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S(1, 0) S(1, 1)

S(2, 0) S(2, 1) S(2, 2) S(2, 3)

Fig. 5. A SLEX library with level J = 2. The shaded blocks represent one basis from the SLEX library.

2.3. Computing the SLEX transform

The SLEX transform is a collection of coefficients corresponding to the SLEX wave-
forms in the SLEX library. First, we define the SLEX vector defined on the discretized
time block S( j , b) consisting of time points {α0, . . . ,α1 − 1}. Furthermore, define
|S| = α1 − α0 and the overlap ε = [η |S|], where [.] denotes the greatest integer func-
tion. Since the SLEX waveforms provide smooth transitions across blocks, the SLEX
vector is actually defined on an “expanded” block {α0 − ε, . . . ,α1 − 1+ ε}. The SLEX
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vector on S oscillating at frequency ωk takes the form

φS,ωk (t) = 9+

(
t − α0

|S|

)
exp(i2πωk(t − α0))+9−

(
t − α0

|S|

)
exp(−i2πωk(t − α0)),

where ωk = k/|S|, k = − |S|2 − 1, . . . , |S|2 .
Next, we show that the SLEX coefficients can be computed using the fast Fourier

transform (FFT). Let X`(t) be one component of a P-channel time series X(t)
of length T . The SLEX coefficients (corresponding to X`(t)) on block S( j , b) are
defined as:

d`j ,b(ωk) = (M j )
−1/2

∑
t

X`(t)φ j ,b,ωk (t)

= (M j )
−1/2

∑
t

9+

(
t − α0

|S|

)
X`(t) exp[−i2πωk(t − α0)]

+ (M j )
−1/2

∑
t

9−

(
t − α0

|S|

)
X`(t) exp[i2πωk(t − α0)],

where M j = |S( j , b)| = T/2 j . In the implementation, the “edge” blocks in each
level j , namely S( j , 0) and S( j , 2 j

− 1), are padded with zeros when we compute
the SLEX transform. Finally, by using the FFT, the number of operations needed to
compute the SLEX transform has order of magnitude O[T (log2 T )2].

2.4. Computing the SLEX periodogram matrix

Denote d j ,b(ωk) to be a P × 1 vector of SLEX coefficients at block S( j , b) and
frequency ωk , d j ,b(ωk) = [d1

j ,b(ωk), . . . , d P
j ,b(ωk)]′. The SLEX periodogram matrix is

I j ,b(ωk) = d j ,b(ωk)d∗j ,b(ωk), where d∗ is the complex conjugate transpose of d. The
diagonal elements of I j ,b are the SLEX autoperiodograms I ``j ,b(ωk) = |d`j ,b(ωk)|

2, while
off-diagonal elements are the SLEX cross-periodograms I pq

j ,b (ωk) = d p
j ,b(ωk)d

q∗
j ,b(ωk).

Analogous to the Fourier periodogram matrices, we also smooth the SLEX peri-
odogram matrices across frequency Ĩ j ,b(ωk) =

1
2L+1

∑L
r=−L I j ,b(ωk+r ) to produce a

mean-squared consistent estimator.

2.5. Best basis algorithm

As already noted, the SLEX library forms a collection of SLEX bases. Depending on
the problem at hand, we would like to choose an optimal basis for the purpose of
signal representation and another optimal basis for the purpose of signal discrimina-
tion. In both cases, we compute some criterion at each time block S( j , b) or rescaled
block B( j , b) and denote the value of the criterion to be C( j , b). Here, we will describe
the best basis algorithm (BBA) developed in the study by Coifman and Wickerhauser
(1992).
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Algorithm

Set maximal level J . Note that the blocks at the finest level will have length T/2J .

Mark the terminal blocks S(J , 0), . . . , S(J , 2J
− 1).

For j = J − 1, . . . , 0

For b = 0, 1, . . . , 2 j
− 1

Compare the cost at the mother block S( j , b) with that at the children blocks
S( j + 1, 2b) and S( j + 1, 2b + 1).

If C( j , b) < C( j + 1, 2b)+ C( j + 1, 2b + 1) then

Mark the block S( j , b).

Else

Mark the blocks B( j + 1, 2b) and B( j + 1, 2b + 1) and

Replace C( j , b) with C( j + 1, 2b)+ C( j + 1, 2b + 1).

End b

End j

Finally, the best basis consists of the marked blocks whose ancestors are unmarked.

2.6. The SLEX and other localized waveforms

Wavelets are mathematical functions with localized oscillatory features. They are com-
monly utilized to estimate functions that have sudden bursts and peaks at localized
regions. See the study by Donoho and Johnstone (1994, 1995) for seminal work on
nonparametric function estimation using wavelets. Moreover, wavelets have also been
developed in Nason et al. (2000) for representing time series with time-varying spec-
tral and scale decompositions. For a comprehensive treatment on the applications of
wavelets to various statistical problems, see the study by Vidakovic (1999).

Wavelet packets form another class of localized waveforms. Wavelet packets are a
generalization of wavelets. Analogously to SLEX, wavelet packets also form a library
of orthonormal bases, which contains the wavelet basis. Due to their generality, wavelet
packets offer more flexibility in representing signals that exhibit oscillatory or periodic
behavior. One distinction between wavelet packets and SLEX is the manner in which
they segment the time–frequency plane. Although the SLEX library is obtained by
generating waveforms whose time support dyadically divides the time axis, the wavelet
packet library consists of waveforms whose spectral power or frequency support dyadi-
cally divides the frequency axis. The best wavelet packet orthonormal basis can also be
selected using the best basis algorithm. Detailed discussion on the construction of the
wavelet packets is given in the study by Wickerhauser (1994).
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Cosine packets are also another time and frequency localized waveforms (Auscher
et al., 1992). The cosine packet transform (CPT) shares common features with the
SLEX transform: both are time-localized trigonometric functions and both dyadically
divide the time axis (rather than the frequency axis, as in WPT) of the time–frequency
plane. Moreover, both waveforms are obtained by applying the same window pairs.
An application of 9+ and 9− (see Fig. 3) on the complex exponential function pro-
duces the SLEX waveform, whereas an application of the same windows on the cosine
functions gives the cosine packet waveforms.

There are a number of advantages to using the SLEX rather than the wavelet pack-
ets or the cosine packets for analyzing multivariate time series. The SLEX waveforms
are complex valued and hence can be directly used to estimate the lag between com-
ponents of a multivariate time series. Moreover, the SLEX waveforms are time- and
frequency-localized generalizations of the Fourier waveforms. Thus, the SLEX meth-
ods parallel classical spectral analysis of stationary processes that are based on the
Fourier functions. Using the SLEX library, one can develop a family of models that is
a time-dependent analog of the Cramér spectral representation for stationary processes.
This family of SLEX representations can be used to study time-evolving coherence
and to select time–frequency spectral features for classification and discrimination of
nonstationary time series.

3. Selecting the best SLEX signal representation

Our ultimate task here is to estimate the time-varying spectra and coherence of mul-
tivariate time series. We shall accomplish this by selecting the model, from a family
of SLEX models, that best represents the data. The first step is to build a family
of SLEX models where each of which explicitly characterizes the evolutionary spec-
tral features of the multivariate time series and each has a spectral representation
in terms of a unique SLEX basis. The second step is to select the model that best
represents the time series data. This is equivalent to selecting the optimal dyadic seg-
mentation of the multivariate time series. We use the penalized log energy criterion
that was demonstrated in the study by Ombao et al. (2005) to be the sum of (1) the
Kullback–Leibler (KL) discrepancy between a SLEX model and the unknown pro-
cess that generated the time series data set and (2) the complexity penalty term that
is needed to control the probability of splitting stationary time blocks. After the best
model (or the best segmentation) is selected, estimates for the time-varying spectral
matrix, coherence and partial coherence are extracted at the blocks that define the best
segmentation.

As part of the model selection step, we address the problem of high dimensionality
and multicollinearity in the multivariate time series. This problem is seen very often
in brain signals. We discourage the approach of performing many separate pairwise
bivariate analyses – especially when there are many channels – because this does not
accurately capture how all components of the multivariate time series simultaneously
interact with each other. Here, we promote the approach of systematically extracting a
set of nonredundant spectral information that will be used in model selection and further
analysis. We apply a time-varying eigenvalue–eigenvector decomposition of the SLEX
spectral density matrix that generalizes the frequency-domain principal components
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analysis (PCA) in the study by Brillinger (1981). The output of this step is the zero
coherency (uncorrelated) SLEX principal components with time-varying spectra. The
SLEX components will be utilized in the model selection step.

3.1. Building a family of SLEX models

Let X(t) = [X1(t), . . . , X P(t)]′ be a P-dimensional nonstationary time series observed
on discrete time t = 1, . . . , T . Our immediate goal is to find the SLEX model that best
represents this time series using the complexity-penalized Kullback–Leibler criterion
that is essentially a measure of divergence between the candidate SLEX model and the
true unknown process that generated the observed data.

The family of SLEX models consists of signal representations, each of which uses
a unique basis from the SLEX library. Thus, each model corresponds to a unique
dyadic segmentation of the time series. The primary elements of each SLEX model
are the following: (a) unique SLEX basis where each waveform is defined on the unit
interval [0, 1]; (b) corresponding SLEX transfer function; and (c) zero-mean orthonor-
mal increment random process. These elements are shared in other representations
of stochastic processes such as the locally stationary processes (Dahlhaus, 2001) and
locally stationary wavelet processes (Nason et al., 2000).

Let B be a collection of rescaled time blocks in [0, 1] for one particular segmenta-
tion and denote {φB,ω(t), B ∈ B} to be one particular basis. Note that the blocks B are
rescaled analogues of the blocks of time series S and also characterized by the scale
or level j and shift b. Define 2B(ω) as the transfer function defined on block B and
dZB(ω) to be an orthonormal increment random process that satisfies

EdZB(ω) = 0 (4)

Cov[dZB(ω), dZB ′(λ)] = 0 (5)

Cov[dZB(ω), dZB(λ)] = δ(ω − λ)1dωdλ. (6)

The SLEX model that corresponds to the segmentation B is

X(t) =
∑
B∈B

0.5∫
−0.5

2B(ω)φB,ω(t)dZB(ω). (7)

Some remarks

(i) While the time series is defined on the discrete time points t = 1, . . . , T , the
spectral quantities are defined on the time–frequency pair (u,ω), where u
belongs to the rescaled unit interval [0, 1] and ω belongs to (−0.5, 0.5).

(ii) The SLEX spectral density matrix at frequency (u,ω), where u belongs to a
block B is defined to be

f(u,ω) = 2B(ω)2
∗

B(ω),

where 2∗ is the complex-conjugate transpose of the matrix 2. The spectral
matrix f(u,ω) is a P × P Hermitian matrix.
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(iii) The autospectrum of the pth component X p(t) on (u,ω) is the pth element on
the diagonal denoted by f pp(u,ω).

(iv) The cross-spectrum between the pth and qth components on (u,ω) is the (p, q)
element f pq(u,ω).

(v) The cross-coherence between the pth and qth components on (u,ω) is defined
to be

ρpq(u,ω) =
| f pq(u,ω)|2

f pp(u,ω) fqq(u,ω)
.

3.1.1. The complexity-penalized Kullback–Leibler criterion
To select the best SLEX model, we apply the complexity-penalized Kullback–Leibler
criterion that is derived in the study by Ombao et al. (2005). This criterion has two
components: (1) the KL part that measures divergence between the candidate SLEX
model and the process that generated the data and (2) the complexity penalty part that
prevents the unnecessary splitting of a stationary mother block into children blocks.
This complexity-penalized Kullback–Leibler criterion, which we simply denote as KL,
explicitly takes into account both the auto- and cross-correlation information from all
components of the multivariate time series simultaneously.

Consider a candidate model MB where B is a set of rescaled blocks {B( j , b)} that
corresponds to a particular segmentation of the time series. Let B be one block in
the basis B and denote C(B) to be its corresponding KL value. The total KL for the
candidate model MB is added over all blocks C(B) =

∑
B∈B C(B).

We state the complexity-penalty KL criterion derived in the study by Ombao et al.
(2005). Consider the block of time series X(t), where t ∈ S( j , b), which corresponds
to the rescaled block B( j , b) on the [0, 1] interval. In this block, there are a total of
M j = T/2 j time points and thus also a total number of M j discrete frequency values.
The KL value on block B( j , b) is

C( j , b) =
M j /2∑

k=−M j /2+1

log det Ĩ j ,b(ωk)+ β j ,b(p)
√

M j , (8)

where Ĩ j ,b is the smoothed periodogram matrix on S( j , b) (see Section 2.4) and β j ,b(p)
is the data-driven complexity penalty for block S j ,b. Let h j ,b be the bandwidth used
in smoothing the SLEX periodogram matrix. A simple version of the complexity
parameter that we will use is β j ,b(p) = p β j ,b, where β j ,b takes the form

β j ,b = β j ,b(h j ,b) = log10(e)/
√

h j ,b

√
2 log M j . (9)

Finally, the complexity-penalized KL value for the model MB is

C(B) =
∑

B( j ,b)∈B

C( j , b).

As an illustration, the cost for the model defined by the shaded blocks in Fig. 5 is the
sum of the cost at each of these blocks: C(1, 0)+ C(2, 2)+ C(2, 3).
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3.1.2. The algorithm for selecting the best model
The best segmentation B∗ or equivalently the best model MB∗ for the data is the one
that minimizes the complexity-penalized KL criterion, i.e.,

B∗ = argminBC(B).

In the actual implementation, we will utilize the best basis algorithm (BBA) described
in Section 2.5. This is a bottom–up algorithm and the essential idea is to compare the
cost at a parent block and the children blocks. If C( j , b) < C( j + 1, 2b − 1)+ C( j +
1, 2b), then we choose the parent block S( j , b). Otherwise, we choose the children
blocks.

3.1.3. Remarks on model selection
1. On approximating the true process by a SLEX model. The procedure selects,

within the family of Gaussian SLEX processes, the minimizer of the Kullback–
Leibler divergence between the candidate models and the true underlying
process that generated the data. This is equivalent to finding the best Kullback–
Leibler approximation of a piecewise stationary covariance SLEX process to
the data.

2. On extracting nonredundant information. The components of many brain signals
are usually highly collinear and consequently the estimated spectral matrix may
be close to singular and hence could introduce complications in computing the
KL criterion in Eq. (8). High multicollinearity in the data suggests that one should
perform reduction in the dimensionality by, for example, extracting the compo-
nents that give nonredundant information and account for a significant portion of
the total variation in the multivariate time series. One way to accomplish this is
via SLEX principal components analysis (discussed in Section 3.1.4). In the com-
putation of the complexity-penalized KL criterion, we replace the multivariate
time series by the SLEX principal components. Thus, the model selection proce-
dure is conducted by taking into account the full information on the multivariate
spectra.

3. On the necessity of the complexity penalty term. The penalty term is added in
the criterion to prevent the method from choosing a model with unnecessarily
too many blocks. For example, when the mother block is stationary, the penalty
is expected to increase the probability of choosing the mother block instead of
the children blocks. The form of this penalty term being proportional to

√
M j ,

the root of the length of block S( j , b), is motivated in the study by Ombao et al.
(2005) and Donoho et al. (2000) to be the correct normalization following argu-
ments that the sum

∑M j /2
k=−M j /2+1 log det f j ,b(ωk) can be viewed as a projection

onto a Haar wavelet vector with norm
√

M j . In practice, we use the smoothed
periodogram matrices Ĩ j ,b(ωk), and various simulation studies suggest that they
tend to prevent the unnecessary split of stationary blocks.

4. On the complexity penalty parameter β j ,b. This will be determined from the data.
The search algorithm for the best segmentation (or block partitions) can be con-
sidered as a variant of the Dyadic CART algorithm as in the study by Donoho
(1997). In this algorithm, the act of excluding or including a block is analo-
gous to Haar-wavelet thresholding of the coefficients in this block S( j , b) (with
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length M j ). One possibility is to use the universal threshold that is proportional
to the standard deviation of these coefficients, times the well-known factor of√

2 log M j . This yields

β j ,b = P × log10(e)×
√
(h j ,b)−1 2 log(M j ),

where hj ,b is the bandwidth applied when smoothing all auto- and cross-
periodograms to ensure that our spectral matrix estimates are non-negative
definite.

3.1.4. SLEX principal components analysis
For stationary multivariate time series, Brillinger (1981) motivates frequency-domain
PCA in the following way. Let X(t) be a P-variate zero-mean time series with spectral
density matrix f(ω). Suppose now that we want to approximate X(t) by a Q−variate
process (Q ≤ P) U(t) whose components have zero coherency, defined to be

U(t) =
∞∑

`=−∞

c′t−`V`,

where {cr } is a P × Q filter matrix satisfying
∑
∞

r=−∞ |cr | <∞. We now sum-
marize how the filter coefficients {cr } are derived via a reconstruction criterion.
Suppose that, from the reduced time series U(t), we want to be able to recon-
struct the original time series X(t) by X̂(t) =

∑
∞

`=−∞ bt−`U(`), where the filter
br is a P × Q matrix that satisfies

∑
∞

r=−∞ |br | <∞. Here, we want X̂(t) to be
such that the mean square approximation error E[

(
X(t)− X̂(t)

)∗ (
X(t)− X̂(t)

)
] is

minimized. To simplify the discussion, suppose that the eigenvalues of f(ω) are
unique and we let v1(ω) > v2(ω) > . . . ,> vQ(ω) be the eigenvalues with cor-
responding eigenvectors are V 1(ω), V 2(ω), . . . , V Q(ω). The solution is to choose
c` =

∫ 1/2
−1/2 c(ω)exp(i2π`ω)dω, where c(ω) is the matrix consisting of eigenvectors

V 1(ω), . . . V Q(ω). It turns out that the spectrum of the mth principal component Um(t)
at frequency ω is the mth largest eigenvalue vm(ω). For an excellent discussion on the
applications of frequency-domain PCA in stationary time series, we refer the reader to
the work done by Shumway and Stoffer (2006).

These ideas are extended to the nonstationary case by allowing the filter coefficients
{cr } above vary over time. Here, we decompose the multivariate nonstationary time
series into the SLEX principal components, which are nonstationary components that
have zero coherency. The time-varying filter and SLEX PC spectra defined on rescaled
block B( j , b) are obtained by performing an eigenvalue–eigenvector decomposition
of the estimated spectral density matrix Ĩ j ,b(ωk) for each ωk on the time block S( j , b).
The best model (or best segmentation) is obtained by applying the penalized log energy
criterion on the SLEX PC. The spectra of the SLEX PCs are simply the eigenvalues
of the spectral density matrix. Denote v1

j ,b(ωk), . . . , v
p
j ,b(ωk) to be the p eigenvalues

arranged in decreasing magnitude. If the reduced dimension q ≤ p is known, then the
penalized log energy criterion (8) at block S( j , b) can be defined in terms of the q
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SLEX PCs to be

C( j , b) =
M j /2∑

k=−M j /2+1

q∑
d=1

log(vd
j ,b(ωk))+ q β j ,b

√
M j . (10)

In practice, however, q is rarely known and there is no consensus on the best approach
to selecting q even in the stationary situation. We propose a data-adaptive approach that
does not require the user to specify q . The basic idea is to assign a weight to each SLEX
component that is proportional to its variance (spectrum). Essentially, SLEX PCs with
larger eigenvalues are given more weight and those with smaller eigenvalues are given
smaller weights. The weight wd

j ,b(ωk) of the SLEX PC with the dth largest eigenvalue
is defined to be

wd
j ,b(ωk) = v

d
j ,b(ωk)/

p∑
c=1

vc
j ,b(ωk). (11)

At block S( j , b), the penalized log energy cost is defined to be

C( j , b) =
M j /2∑

k=−M j /2+1

p∑
d=1

wd
j ,b(ωk) log vd

j ,b(ωk)+ β j ,b

√
M j , (12)

where, as before, log(vd
j ,b(ωk)) is the logarithm of the spectrum of the dth princi-

pal component at frequency ωk in block S( j , b) having applied PCA to the opti-
mally smoothed periodogram matrix. Note that this cost is based on the “weighted”
eigenvalues. Hence, we do not need the factor q in the complexity penalty term.

One advantage of the approach of weighting the eigenvalues is that the “optimal”
number q need not be explicitly specified as it implicitly renders irrelevant to those
components that do not contribute much to the variance. From a numerical point of
view, it also avoids computational problems since the term wd log(vd) is assigned the
value “zero” when vd and wd are both close to 0, i.e., when the absolute and relative
contribution to variance, respectively, are small.

3.2. Obtaining the spectral estimates

Let B∗ be the basis that corresponds to the best model. To estimate the time-varying
spectral matrix f(u,ω) at rescaled time u and frequency ω, suppose that B( j , b) is the
time block in the basis B∗ that corresponds to the rescaled time u. The estimate of the
SLEX spectral density matrix at (u,ω) is defined to be

f̂(u,ω) = Ĩ j ,b(ω),

which is the kernel smoothed periodogram matrix. The autospectral estimate of the pth
component X p(t) defined on (u,ω) is f̂ pp(u,ω); the cross-spectral estimate between
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the pth and qth components is f̂ pq(u,ω); and the cross-coherence estimate between
the pth and qth components is

ρ̂pq(u,ω) =
| f̂ pq(u,ω)|2

f̂ pp(u,ω) f̂qq(u,ω)
.

To compute the confidence intervals for the SLEX autospectra, we state the
asymptotic results in the study by Ombao et al. (2002). For ω ∈ (0, 1/2),

f̂ p,p(u,ω)/ f p,p(u,ω) ∼̇ χ2
2M j h j ,b

/(2M j h j ,b),

where h j ,b is the smoothing bandwidth and M j h j ,b is the number of frequency indices
in the smoothing span. To obtain the confidence intervals for the SLEX coherence,
define

r̂p,q(u,ω) = tanh−1[ρ̂p,q(u,ω)].

Then r̂p,q(u,ω) is asymptotically normal with mean and variance approximately equal
to rp,q(u,ω) and 1/[2(2M j h j ,b − P)], respectively. This follows readily from the study
by Goodman (1963) and Brillinger (1981, Section 8.6).

3.3. An example: Multichannel EEG

The data set is an 18-channel EEG recorded from a patient of Dr. Malow (neurologist
at the University of Michigan). Each EEG time series has length T = 8192; recorded
for about 82 s and then sampled at the rate of 100 Hz. The first step in our method
was to build the family of SLEX models and then select the one that is best according
to our penalized log energy criterion. As suggested by the neurologist, levels J = 6 or
J = 7 were used and both resulted in identical best models. Prior to model selection,
the SLEX PCs were obtained via the time-varying eigenvalue–eigenvector decompo-
sition of the SLEX matrix (see Section 3.1.4). The best model has change points that
occur at approximately 20, 30, 36, 38, 40, 61, 72, 73, 74, and 77 s from the starting time.
According to the neurologist, the physical manifestations of seizure became evident
at around 40 s from the start of recording. However, prior to this, the SLEX analysis
revealed that changes in the electrical activity of the brain were already begun to take
place even before the physical symptoms were observed.

The SLEX PCA method was able to systematically filter the nonredundant informa-
tion. Note that in the absence of any patient information, one would have to examine all

18!
2!16! = 153 pairwise cross-correlations, which can be overwhelming. The SLEX PCA
method guided the user to focus on the most interesting channels (which are T 3 and
T 4 in this particular example). The first and second SLEX PCs altogether account for
approximately 70% of the variance in the EEGs. Here, we focus our attention only to
the first two SLEX PCs.

The time-varying spectra of the first SLEX PC (left side in Fig. 6) account primar-
ily for the increase in power in the lower frequencies after the onset of seizure. The
second SLEX PC (right side in Fig. 6), on the other hand, accounts for the spread of
power from the delta band (0–4 Hz) to the alpha band (8–12 Hz). We further exam-
ined the magnitudes of the components of the eigenvectors at the delta, alpha, and beta
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Fig. 6. Time-varying spectra of the first and second SLEX principal components.

bands (see Figs. 7 and 8), which are interpreted as the time-varying weights at the EEG
channels. The SLEX method, even without using any patient information, was able to
identify the T 3 (left temporal) as one of the important channels – which is the location
of a brain lesion that is believed to be implicated in seizure for this particular patient.
Here, we report only the eight largest weights. We observe that, for the first SLEX PC,
most of the weights are concentrated on the T 3 (left temporal lobe) and T 4 (right tem-
poral lobe). For the second SLEX PC, the weights are quite diffused at the temporal
and frontal lobe areas.

The estimates of the SLEX time-varying spectra at the 8 channels are in Fig. 9. The
primary information that is conveyed in the spectral plots is that the distribution of
power over frequency indeed evolves during the seizure process. We see that power
at the lower frequencies is increased and that power is spread to middle and higher
frequencies during seizure. It is important to note that features of the 18-channel EEGs
were captured by the first and second SLEX PCs.

One primary goal in our analysis was to study connectivity between active brain
areas, i.e., how the neuronal activity in one brain area may influence another. As
suggested by the first eigenvector, two networks were examined, namely, (i) coherence
between T 3 and the other channels and (ii) coherence between T 4 and the other chan-
nels. In Figs. 10 and 11, the connectivity between brain areas changes throughout the
duration of the epileptic seizure. It is fascinating that in Fig. 10, the coherence between
T 3 and those at the left side of the brain, namely, left parietal (P3), left frontal (F3),
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Fig. 7. Time-varying weights of the first SLEX PC at the delta frequency band (1–4 Hz), alpha frequency
band (8–12 Hz), and higher beta frequency band (25–30 Hz). Darker shades represent larger weights.

and left central (C3) are very similar to each other. Moreover, coherence between T3
and the counterparts on the right side (P4, F4, and C4 respectively) are quite different –
suggesting that connectivity between brain areas on the same side of the brain behave
in a similar manner in the duration of the seizure. Moreover, one observes in Fig. 11 the
bilaterality (symmetry) of the coherence, i.e., the coherence pattern on T4 is similar to
that on T3. Bilateral synchrony is quite fascinating, though not completely well under-
stood. It suggests rapid propagation of seizure from the left to the right temporal lobe.
In addition, the existence of bilateral synchrony of the temporal lobe is not uncommon
and has been observed in experimental paradigms (see the study by Grunwald et al.
(1999)).

4. Classification and discrimination of time series

The extension of classical pattern-recognition techniques to nonstationary multivari-
ate time series is a problem of great interest especially in the neuroscience community.
Here, we present the SLEX method for discriminating and classifying multivariate non-
stationary signals and apply this to an electroencephalogram (EEG) data set collected
to study a brain network that mediates voluntary movement. In this experiment, partic-
ipants performed a simple voluntary movement that required quick displacements of a
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Fig. 8. Time-varying weights of the second SLEX PC at the delta frequency band (1–4 Hz), alpha frequency
band (8–12 Hz), and higher beta frequency band (25–30 Hz). Darker shades represent larger weights.

hand-held joystick from a central position either to the right or to the left in response
to visual cues that appeared on a computer monitor. The SLEX method is designed
to discriminate between presumed brain connectivity occurring during leftward versus
rightward movements, aiming to predict intentions to move by assessing the informa-
tion evident in an electroencephalogram (EEG) time series recorded contemporary with
the voluntary movements.

From a montage of 64 scalp electrodes, a set of 10 channels was preselected for
further analysis (see Fig. 12). These channels were selected since they overlay regions
involved in motor output (C3, C4) or visual input (O1, O2), regions that receive projec-
tions from primary neocortical visual regions (P3, P3), or regions that have involvement
in action planning and have projections to neocortical motor regions (FC3, FC4, FC5,
FC6). The selected sensors approximately overlay neocortical structures that have been
shown to be involved in visual-motor transformations and action planning (Marconi
et al., 2001). Figure 2 illustrates time-amplitude plots of the EEG obtained from a rep-
resentative participant during leftward (Fig. 2, left) and rightward (Fig. 2, right) joystick
movements.

Discrimination and classification of time series have a long history. Shumway and
Unger (1974) and Shumway (1982) developed the framework for discrimination in time
series that has been adopted in most subsequent work. Shumway and colleagues applied
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Fig. 9. SLEX autospectral estimates at the eight most important channels (chosen from the set of 18).

their work to discriminate between different seismic activities (e.g., earthquake vs.
explosion). Kakizawa et al. (1998) concatenated the P-arrival and S-phases of the seis-
mic signals into a bivariate time series and developed classification and discrimination
methods for stationary multivariate time series.

For nonstationary time series, Shumway (2003) developed an information-theoretic
classification method that treats the time series as realizations of the Dahlhaus (2001)
model of locally stationary processes. Sakiyama and Taniguchi (2004) showed con-
sistency of the classification procedure using the Kullback–Leibler criterion, whereas
Fryzlewicz and Ombao (2009) developed a consistent classification method using
stochastic wavelet representations. Saito (1994) developed another approach that
selects one basis, from a collection of many bases in a library, that gives maximal
separation between classes of time series.

There are a number of localized libraries that could be used for discriminating
nonstationary time series. Here, we shall use the SLEX library. Huang et al. (2004),
inspired by the ideas in the study by Saito (1994) and Shumway (1982), developed
a procedure using the SLEX library to select the best time–frequency spectral fea-
tures for discriminating between classes of univariate nonstationary time series. When
extending the discrimination problem to multivariate time series, we are confronted
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Fig. 10. Left: SLEX coherence estimates between T3 and channels on the left side of the brain namely F3,
C3, P3. Right: SLEX coherence estimates between T3 and the channels on the right side of the brain namely

F4, C4, P4, T4.

with two major challenges. First, most EEG datasets are massive and require compu-
tationally efficient transforms that can capture localized features of the data. Second,
estimates of the multivariate spectra can be poorly conditioned (i.e., the ratio of the
maximum to the minimum eigenvalue can be extremely large leading to close-to-
singular spectral estimators). This is a consequence of the fact the sample maximum
eigenvalues of a covariance (or spectral) matrix tend to over estimate the true maximum
eigenvalue and the sample minimum eigenvalues tend to be negatively biased. These
result in a large matrix condition number. Thus, inverting the spectral matrix estimates
may give imprecise results thereby adversely impacting predictive ability especially
when using information-based classification criteria such as the Chernoff criterion in
Eq. (15).

A standard approach to handling highly multicollinear data entails reducing dimen-
sionality via, for example, principal components analysis. PCA may not be ideal in
discrimination and classification applications since the eigenvalue–eigenvector decom-
position of the spectral matrix is invariant to (spatial) permutations of the time series.
Consider a pair of channels R1 and R2 (located on the right of the scalp topography)
that have a cross-dependence structure during the right-movement condition which is
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identical to that between a pair L1 and L2 on the left side of the scalp topography during
the left movement condition. PCA is unable to distinguish the location of the sources,
thereby rendering it ineffective to discriminating between the functional connectivity
occurring during the leftward- and rightward-movement conditions.

Another approach to regularize the estimators is to smooth the periodogram matrices
across frequency using a large enough bandwidth to prevent numerical close-to-
singularity. Smoothing is a standard approach whose primary purpose is to reduce the
well-known high variability of the periodogram as discussed in the study by Parzen
(1961) for univariate time series and Brillinger (1981) for multivariate time series.
However, unless the smoothing spans are significantly larger than the dimension P ,
this approach still tends to give spectral matrix estimates that are near singular. On the
other hand, if the span (bandwidth) is too large, the spectral estimates will have poor
frequency resolution that can dull the predictive ability, especially when the differences
between conditions are present in very narrow frequency bands. Therefore, a different
regularizing method that would still allow to use sufficiently small bandwidths is called
for: spectral shrinkage.

Here, we present the classification and discrimination method for multivariate time
series using the SLEX library to extract the localized cross-dependence structure
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Fig. 12. The most highly discriminant network feature is the alpha band (8–12 Hz) coherence between the C3
and FC3 channels, which is significantly greater (p-value of .079 in a paired t-test) for the leftward-movement

condition than the rightward-movement condition.

(brain connectivity) and the shrinkage method to estimate the spectral density matrix.
This method is developed in the study by Böhm et al. (2010). The spectral shrinkage
estimator is a linear combination of a mildly smoothed periodogram matrix and the
identity matrix. The spectral shrinkage procedure was developed in the study by Böhm
(2008) and Böhm and von Sachs (2009) for the stationary case and was further refined
in the study by Fiecas et al. (2010) and Fiecas and Ombao (2011) for coherence esti-
mation. Here, we extend this procedure to the nonstationary setting. The shrunken
spectral estimator retains excellent frequency resolution, has good condition numbers,
and is shown to be superior to the standard periodogram smoother in terms of the
squared-error risk. Finally, as demonstrated in the simulation studies in this chapter,
the shrinkage approach gives excellent classification rates.

The specific features of our approach are as follows. First, we use the SLEX library
as a tool for extracting the time localized features of the nonstationary signals. Second,
we estimate the time-varying spectrum via the shrinkage procedure (i.e., the slightly
smoothed periodogram matrix is shrunk toward the identity matrix). In this chapter,
we employ the Chernoff criterion (see Eq. (15)) that measures the divergence between
the observed time series and the classes via the spectral density matrix. Furthermore,
this criterion requires the computation of the inverse and the determinant of the spec-
tral matrices. Naturally, poorly conditioned estimates result in unreliable Chernoff
divergence values and, as demonstrated in this chapter, can lead to unacceptably high
misclassification rates.
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4.1. Overview of the shrinkage procedure for spectral estimation

Here, we summarize the basic ideas of the shrinkage procedure for spectral estimation.

4.1.1. Shrinkage for stationary time series
Let X(t) = [X1(t), . . . , X P(t)]′, t = 1, . . . , T , be a stationary time series with spectral
density matrix f(ω). The classical estimator is the smoothed periodogram (with span
mT ), which we denote as

f̃(ω) =
1

mT

(mT−1)/2∑
k=−(mT−1)/2

I(ω + ωk), where ωk = k/T .

Call the elements of f̃(ω) to be f̃ pq(ω). Define µ̂T (ω) =
1

P

P∑
p=1

f̃ pp(ω) and 1 to be the

P × P identity matrix. The shrinkage estimator for f(ω) takes the form

f̂(ω) =
β̂ 2

T (ω)

δ̂ 2
T (ω)

µ̂T (ω)1+
α̂ 2

T (ω)

δ̂ 2
T (ω)

f̃(ω), (13)

where the weights are chosen as follows in order to minimize the L2 risk in the class of
considered linear combinations of f̃(ω) and the identity matrix.

First, denote ‖ A ‖2 to be the (normalized) Hilbert-Schmidt norm of the matrix A

(i.e., ‖ A ‖2
=

1

P
trace(AA′)). Next, define

δ̂ 2
T (ω) =‖ f̃(ω)− µ̂T (ω)1 ‖2,

which is a measure of empirical divergence (i.e., Hilbert-Schmidt norm) between the

classical smoothed periodogram and the scaled identity matrix. Define β
2
T (ω) to be

β
2
T (ω) =

1

m2
T

(mT−1)/2∑
k=−(mT−1)/2

‖ I(ω + ωk)− f̃(ω) ‖2 ,

which is an estimate of the local variance of the periodogram at frequency ω.
Finally, β̂ 2

T (ω) and α̂ 2
T (ω) are

β̂ 2
T (ω) = min{β

2
T (ω), δ̂

2
T (ω)}

α̂ 2
T (ω) = δ̂

2
T (ω)− β̂

2
T (ω).

These optimal shrinkage parameters are derived using a Pythagorean relationship
for their population counterparts: δ2(ω) = α2(ω)+ β2(ω). As shown in the study by
Böhm and von Sachs (2009), the optimal shrinkage at frequency ω is the projection
of the expectation of f̃T (ω) to the line spanned by the properly scaled identity matrix
and the smoothed periodogram f̃T (ω). It is then sufficient to calculate the side lengths
of the triangle built from this projection and to finally replace the population parameters
δ2,α2,β2 by obvious estimates using the positivity constraint.
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4.1.2. Extension of shrinkage procedure for nonstationary time series
For a given nonstationary time series, the shrinkage estimator of the SLEX spectrum
at rescaled block B and frequency ωk is derived by extending the result above. In the
discussion below, we shall assume that the corresponding time block for B is S( j , b).
Let I j ,b(ωk) be the SLEX periodogram at block S( j , b) and frequency index k. Denote
the smoothed SLEX periodogram to be

f̃(B,ωk) =
1

mT

(mT−1)/2∑
`=−(mT−1)/2

I j ,b(ωk+`)

and whose elements are denoted by f̃ pq(B,ωk). Denote

µ̂T (B,ωk) =
1

P

P∑
p=1

f̃ pp(B,ωk).

The shrinkage estimator for f(B,ωk) takes the form

f̂(B,ωk) =
β̂ 2

T (B,ωk)

δ̂ 2
T (B,ωk)

µ̂T (B,ωk)1+
α̂ 2

T (B,ωk)

δ̂ 2
T (B,ωk)

f̃(B,ωk) (14)

where the weights are derived analogously as follows:

δ̂ 2
T (B,ωk) = ‖ f̃(B,ωk)− µ̂T (B,ωk)1 ‖ 2

β̂ 2
T (B,ωk) = min{β

2
T (B,ωk), δ̂

2
T (B,ωk)}

α̂ 2
T (B,ωk) = δ̂

2
T (B,ωk)− β̂

2
T (B,ωk),

where

β
2
T (B,ωk) =

1

m2
T

(mT−1)/2∑
`=−(mT−1)/2

‖ I j ,b(ωk+`)− f̃(B,ωk) ‖
2 .

4.2. The algorithm for the SLEX-shrinkage discrimination method

For our example, we consider a training data for each of the conditions 1 and 2 (leftward
vs. rightward hand movements), which consists of P-channel time series, each having
length T . There were a total of N trials for each condition and for each trial. In general,
the number of trials need not be identical for the two conditions, but we make them to
be so only for ease in presenting ideas. These time series from the two conditions for
trial n are denoted, respectively, by

• Xn(t) = [Xn1(t), . . . , Xn P(t)]′; n = 1, . . . , N ; t = 1, . . . , T ;
• Yn(t) = [Yn1(t), . . . , Yn P(t)]′; n = 1, . . . , N ; t = 1, . . . , T .
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Suppose that the data generated under these two conditions are modeled as zero-mean
multivariate nonstationary processes that are characterized by their spectral matrix
denoted, respectively, as f1(u,ω) and f2(u,ω). The first task is to identify the time–
frequency features (autospectra, cross-spectra, coherence) that can best separate the two
conditions. This is accomplished using the SLEX library as the primary tool for extract-
ing the localized cross-dependence features and identifying the set of time blocks and
frequencies that give the largest separation between f1(u,ω) and f2(u,ω). The second
task is to use these selected features to classify a future signal whose group membership
is not known.

The algorithm of the SLEX-shrinkage method

Consider two multivariate nonstationary processes that are characterized by the spectra
denoted as f1(u,ω) and f2(u,ω), where fg(u,ω) is the P × P time-varying spectral
density matrix of condition g.

Goal A: Feature extraction and selection

Step A.1 Compute the spectral matrix estimate at rescaled time block B and
frequency-index k for time series in the training data.

Let Xn(t) = [Xn1(t), . . . , Xn P(t)]′; n = 1, . . . , N ; t = 1, . . . , T ; be the
multivariate time series in the training data set recorded from N trials for
condition 1. The SLEX-shrinkage spectral estimate at time block B and
frequency ωk is

f̂ 1(B,ωk) =
1

N

N∑
n=1

f̂ 1
n (B,ωk),

where f̂ 1
n (B,ωk) is the SLEX-shrinkage spectral estimate for the nth trial of

condition 1. Let Yn(t) = [Yn1(t), . . . , Yn P(t)]′; n = 1, . . . , N ; t = 1, . . . , T ;
be the multivariate time series recorded from N trials for condition 2. The
SLEX-shrinkage spectral estimate at time block B and frequency ωk is
denoted as f̂ 2

n (B,ωk) and is computed similarly to that for condition 1.
Step A.2 Compute the Chernoff divergence in the spectra between the two conditions

at time block B and frequency ωk :

D(B,ωk) = ln
|λ̂f 1(B,ωk)+ (1− λ)̂f 2(B,ωk)|

|̂f 2(B,ωk)|
− λ ln

|̂f 1(B,ωk)|

|̂f 2(B,ωk)|
, (15)

where |G| denotes the determinant of the matrix G and λ ∈ (0, 1) is the reg-
ularization parameter. Thus, the total Chernoff divergence at time block B is

D(B) =
MB∑
k=1

D(B,ωk),

where MB is the number of coefficients in block B.
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Step A.3 Select the most discriminant basis.
Select the best discriminant basis using the best basis algorithm outlined in
Section 2.5 and denote the best basis to be the collection of blocks that we
denote by B∗.

Goal B: Classification

Consider a new time vector-valued series to be Z = [Z(1), . . . , Z(T )] with estimated
spectral matrix f̂Z. The goal is to classify Z to the condition (either 1 or 2) to
which it is least dissimilar according to the Chernoff divergence criterion. The Cher-
noff divergence between Z and conditions 1 and 2, denoted D1 and D2 respecti-
vely, is

D1 =
∑
B∈B∗

∑
k

ln
|λ̂f 1(B,ωk)+ (1− λ)̂fZ(B,ωk)|

|̂fZ(B,ωk)|
− λ ln

|̂f 1(B,ωk)|

|̂fZ(B,ωk)|

D2 =
∑
B∈B∗

∑
k

ln
|λ̂f 2(B,ωk)+ (1− λ)̂fZ(B,ωk)|

|̂fZ(B,ωk)|
− λ ln

|̂f 2(B,ωk)|

|̂fZ(B,ωk)|
.

If D1 > D2, then we classify Z into condition 2. Otherwise, it is classified to
condition 1. In our analysis, we used λ = 0.50.

4.3. Application on the visual-motor EEG data set

Electroencephalograms (EEGs) were recorded in an experiment for which five partic-
ipants moved the joystick from a central position to the right when a cursor flashed
on the right side of a computer monitor (or left, accordingly). There were N = 100
trials for each condition (right and left), and the EEG trace for each trial is a 500 ms
interval with time 0 as the stimulus onset. In our analysis, we focused on the P = 10
channels that are believed to be most highly involved in brain motor networks engaged
in visual-motor actions. These channels are (A) P3, C3, FC3, FC5, which are on the
left side of the scalp topography; (B) P4, C4, FC4, FC5 on the right side; and (C) the
occipital channels O1 and O2.

Our analysis showed that the best discriminant basis gives the partition (0, 250)
∪ (250, 500)milliseconds. This is equivalent to the segmentation S(1, 0) ∪ S(1, 1) that
is the union of two halves. The difference between the right and left conditions is best
captured by the partial coherence between C3 and FC3 channels at the alpha frequency
band on the interval (0, 250) ms, which is significantly larger in magnitude for the left
condition than the right condition (see Fig. 12). This difference appears to be consistent
across all five participants. We evaluated the predictive ability of the best discriminant
features via a leave-one-out procedure, comparing the SLEX with shrinkage versus
without shrinkage procedures. The obtained classification rates correctly identifying
leftward or rightward movements are shown in the table below.
The results are very promising – shrinkage in general gives a better classification rate
than nonshrinkage.
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Participant With Shrinkage (%) Without Shrinkage (%)

1 71 65
2 72 67
3 74 66
4 74 66
5 68 71

5. Summary

We presented a systematic, flexible, and computationally efficient procedure for
analyzing multivariate nonstationary time series using the SLEX library. The SLEX
library is a collection of bases consisting of localized Fourier waveforms. This tool
could be potentially applied to various problems in time series analysis. The SLEX
waveforms are ideal for representing nonstationary time series and also for identifying
time-spectral features that separate classes of time series.

Our approach to estimating the time-varying spectral features selects the basis, from
the SLEX library, that best represents the time-varying auto- and cross-spectral features
of the signal. The criterion for signal representation balances two important compo-
nents: (a) model fit as measured by the Kullback–Leibler divergence and (b) model
complexity that helps prevent unnecessary over-splitting of stationary blocks. On the
problem of discrimination and classification, we select the SLEX basis that gives the
maximal separation between classes as measured by the Chernoff divergence. Both
the Chernoff and Kullback–Leibler divergence depend on the cross-spectral structure of
the time series and thus explicitly take into account the time-varying cross-dependence
between components of the time series.

These methods were illustrated for analyzing multichannel EEGs: the first appli-
cation was for characterizing changes in brain electrical activity during an epileptic
seizure and the second application was to discriminate between brain networks for two
distinct experimental conditions.
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catholique de Louvain, Institut de statistique.
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Abstract

The classical multiple regression model plays a very important role in statistical
analysis. The typical assumption is that changes in the response variable, due to
a small change in a given regressor, is constant over time. In other words, the
rate of change is not influenced by any unforeseen external variables and remains
the same over the entire time period of observation. This strong assumption may,
sometimes, be unrealistic, for example, in areas such as social sciences, environ-
mental sciences, etc. To account for variable dependence, the stochastic coefficient
regression model was proposed, and there exists several articles that consider sta-
tistical inference for this type of model. Most of these methods use the underlying
assumption of Gaussianity. In this chapter, we revisit the stochastic coefficient
regression model and compare it with some statistical models that have recently
been developed. We show that there is an interesting connection between stochas-
tic coefficient regression models and locally stationary time series, which suggests
that stochastic coefficient regression models can be fitted to time series whose
covariance structure changes slowly over time. We consider methods of testing
for randomness of the coefficients and develop parameter estimation methods that
require no assumptions on the distribution of the stochastic coefficients, in partic-
ular do not require the Gaussianity assumption. Using these methods, we fit the
stochastic coefficient regression model to two real data sets and their predictive
performances are also examined.

Keywords: Gaussian maximum likelihood, frequency domain, locally stationary
time series, multiple linear regression, nonstationarity, stochastic coefficients.
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1. Introduction

The classical multiple linear regression model is ubiquitous in many fields of research.
However, in situations where the response variable {Yt } is observed over time, it is not
always possible to assume that the influence the regressors {xt , j } exert on the response
Yt is constant over time. A classical example, given by Burnett and Guthrie (1970),
is when predicting air quality as a function of pollution emission. The influence the
emissions have on air quality on any given day may depend on various factors such as
the meteorological conditions on the current and previous days. Modeling the variable
influence in a deterministic way can be too complex and a simpler method could be
to treat the regression coefficients as stochastic. In order to allow for the influence
of the previous regression coefficient on the current coefficient, it is often reason-
able to assume that the underlying unobservable regression coefficients are stationary
processes and each coefficient admits a linear process representation. In other words,
a plausible model for modeling the varying influence of regressors on the response
variable is

Yt =

n∑
j=1

(a j + αt , j )xt , j + εt :=
n∑

j=1

a j xt , j + X t , (1)

where {xt , j } are the deterministic regressors, {a j } are the mean regressor coefficients,
E(X t ) = 0 and satisfies X t =

∑n
j=1 αt , j xt , j + εt , {εt } and {αt , j } are jointly station-

ary linear time series with E(αt , j ) = 0, E(εt ) = 0, E(α2
t , j ) <∞, and E(ε2

t ) <∞. We
observe that this model includes the classical multiple regression model as a special
case, with E(αt , j ) = 0 and var(αt , j ) = 0. The above model is often referred to as a
stochastic coefficient regression (SCR) model. Such models have a long history in
statistics (see Burnett and Guthrie (1970), Breusch and Pagan (1980), Duncan and
Horn (1972), Fama (1977), Franke and Gründer (1995), Hildreth and Houck (1968),
Newbold and Bos (1985), Pfeffermann (1984), Rosenberg (1972, 1973), Swamy (1970,
1971), Swamy and Tinsley (1980), Stoffer and Wall (1991), and Synder (1985)). For
a review of this model the reader is referred to Newbold and Bos (1985). In recent
years, several other statistical models have been proposed to model temporal changes;
examples of such models include varying coefficient models and locally stationary pro-
cesses. In this chapter, our aim is to revisit the SCR model, comparing the SCR model
with these alternative models, we show that there is a close relationship between them
(see Section 2). Having demonstrated that SCR models can model a wide range of
time-varying behaviors, we consider methods of testing for randomness of the regres-
sion coefficients and develop parameter estimation methods that do not require any
assumptions on the distribution of the stochastic coefficients.

In the aforementioned literature, it is usually assumed that {αt , j } satisfies a linear
process with structure specified by a finite number of parameters estimated by Gaussian
maximum likelihood (GML). In the case {Yt } is Gaussian, the estimators are asymptot-
ically normal and the variance of these estimators can be obtained from the inverse of
the Fisher information matrix. Even in the situation {Yt } is non-Gaussian, the Gaussian
likelihood is usually used as the objective function to be maximized, in this case
the objective function is often called the quasi-Gaussian likelihood (quasi-GML).The
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quasi-GML estimator is a consistent estimate of the parameters (see Ljung and Caines
(1979), Caines (1988), Chapter 8.6, and Shumway and Stoffer (2006)), but when {Yt }

is non-Gaussian, obtaining an expression for the standard errors of the quasi-GML esti-
mators seems to be extremely difficult. Therefore, implicitly it is usually assumed that
{Yt } is Gaussian, and most statistical inference is based on the assumption of Gaussian-
ity. In several situations the assumption of Gaussianity may not be plausible, and there
is a need for estimators that are free of distributional assumptions. In this chapter we
address this issue.

In Section 3, two methods to estimate the mean regression parameters and the
finite number of parameters that are characterizing the impulse response sequences
of the linear processes are considered. The suggested methods are based on taking
the Fourier transform of the observations, this is because spectral methods usually do
not require distributional assumptions, are computationally fast, and can be analyzed
asymptotically (see Dzhapharidze (1971), Dahlhaus (2000), Dunsmuir (1979), Giraitis
and Robinson (2001), Hannan (1971, 1973), Shumway and Stoffer (2006), Taniguchi
(1983), Whittle (1962), and Walker (1964)). Both of the proposed methods offer an
alternative perspective of the SCR model and are free of any distributional assump-
tions. In Sections 5.2 and 5.3, we consider the asymptotic properties of the proposed
estimators. A theoretical comparison of our estimators with the GML estimator, in most
cases, is not possible, because it is usually not possible to obtain the asymptotic vari-
ance of the GML estimator. However, if we consider a subclass of SCR models, where
the regressors are smooth, then the asymptotic variance of the GML estimator can be
derived. Thus, in Section 5.4, we compare our estimator with the GML estimator for
the subclass SCR models with smooth regressors, and show that both estimators have
asymptotically equivalent distributions.

In Section 6 we consider two real data sets. The two time series are taken from the
field of economics and environmental sciences. In the first case, the SCR model is used
to examine the relationship between monthly inflation and nominal T-bills interest rates,
where monthly inflation is the response and the T-bills rate is the regressor. We confirm
the findings of Newbold and Bos (1985), who observe that the regression coefficient
is stochastic. In the second case, we consider the influence man-made emissions (the
regressors) have on particulate matter (the response variable) in Shenandoah National
Park, USA. Typically, it is assumed that man-made emissions linearly influence the
amount of particulate matter and a multiple linear regression model is fitted to the data.
We show that there is clear evidence to suggest that the regression coefficients are
random, hence the dependence between man-made emissions and particulate matter is
more complicated than previously thought.

The proofs can be found in the technical report.

2. The stochastic coefficient regression model

2.1. The model

Throughout this chapter we will assume that the response variable {Yt } satisfies (1),
where the regressors {xt , j } are observed and the following assumptions are satisfied.
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Assumption 1.
(i) The stationary time series {αt , j } and {εt } satisfy the following MA(∞) repre-

sentations

αt , j =

∞∑
i=0

ψi , jηt−i , j , for j = 1, . . . , n, εt =

∞∑
i=0

ψi ,n+1ηt−i ,n+1, (2)

where for all 1 ≤ j ≤ n + 1,
∑
∞

i=0 |ψi , j | <∞,
∑
∞

i=0 |ψi , j |
2
= 1, E(ηt , j ) = 0,

E(η2
t , j ) = σ

2
j ,0 <∞, for each j , {ηt , j } are independent, identically distributed

(i.i.d.) random variables, they are also independent over j .
The parameters {ψi , j } are unknown but have a parametric form, that is there

is a known functionψi , j (·), such that for some vector θ0 = (ϑ0,60),ψi , j (ϑ0) =

ψi , j and 60 = diag(σ 2
1,0, . . . , σ 2

n+1,0) = var(η
t
), where η

t
= (ηt ,1, . . . , ηt ,n+1).

(ii) We define the compact parameter spaces � ⊂ Rn , 21 ⊂ Rq and 22 ⊂ diag
(Rn+1), we have

∑
∞

i=0 |ψi , j (ϑ)|
2
= 1. We shall assume that a0 = (a1, . . . , an),

ϑ0 and 60 (which are defined in (i), above) lie in the interior of �, 21, and22,
respectively.

Define the transfer function A j (ϑ ,ω) = (2π)−1/2∑∞
k=0 ψk, j (ϑ) exp(ikω),

and the spectral density f j (ϑ ,ω) = |A j (ϑ ,ω)|2. Using this notation the spec-
tral density of the time series {αt , j } is σ 2

j ,0 f j (ϑ0,ω). Let c j (θ , t − τ) =

σ 2
j

∫
f j (ϑ ,ω) exp(i(t − τ)ω)dω (hence cov(αt , j ,ατ , j ) = c j (θ0, t − τ)).

It should be noted that it is straightforward to generalize (2), such that the vector
time series {αt = (αt ,1, . . . ,αt ,n)}t has a vector MA(∞) representation. However, using
this generalization makes the notation quite cumbersome. For this reason, we have
considered the simpler case (2).

Example 1. If {αt , j } and εt are autoregressive processes, then Assumption 1 is
satisfied. That is, {αt , j } and εt satisfy

αt , j =

p j∑
k=1

φk, jαt−k, j + ηt , j j = 1, . . . , n and εt =

pn+1∑
k=1

φk,n+1εt−k + ηt ,n+1,

where ηt , j are i.i.d. random variables with E(ηt , j ) = 0 and var(ηt , j ) = σ
2
j and

the roots of the characteristics polynomial 1−
∑p j

k=1 φk, j zk lie outside unit
circle. In this case, the true parameters are ϑ0 = (φ1,1, . . . ,φpn+1 ,n+1) and 60 =

diag
(

σ 2
1

(
∫

g1(ω)dω)
, . . . ,

σ 2
n+1

(
∫

gn+1(ω)dω)

)
, where g j (ω) =

1
2π |1−

∑p j
k=1 φk, j exp(ikω)|−2.

2.2. A comparison of the SCR model with other statistical models

In this section, we show that the SCR model is closely related to several popular statis-
tical models. Of course, the SCR model includes the multiple linear regression model
as a special case, with var(αt , j ) = 0 and E(αt , j ) = 0.
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2.2.1. Varying coefficient models
In several applications, linear regression models with time-dependent parameters are
fitted to the data. Examples include the varying coefficient models considered by
Martinussen and Scheike (2000), where {Yt } satisfies

Yt =

n∑
j=1

α j

(
t

T

)
xt , j + εt , t = 1, . . . , T (3)

and {α j (·)} are smooth, unknown functions and {εt }t are i.i.d. random variables with
E(εt ) = 0 and var(εt ) <∞. Comparing this model with the SCR model, we observe
that the difference between the two models lies in the modeling of the time-dependent
coefficients of the regressors. In (3) the coefficient of the regressor is assumed to be
deterministic, whereas the SCR model treats the coefficient as a stationary stochastic
process. In some sense, one can suppose that the correlation in {αt , j } determines the
“smoothness” of {αt , j }. The higher the correlation of {αt , j }, the smoother the coeffi-
cients are likely to be. Thus the SCR model could be used as an alternative to varying
coefficient models for modeling “rougher” changes.

2.2.2. Locally stationary time series
In this section, we show that a subclass of SCR models and the class of locally sta-
tionary linear processes defined by Dahlhaus (1996) are closely related. We restrict
the regressors to be smooth, and assume there exists functions {x j (·)} such that the
regressors satisfy xt , j = x j (

t
N ) for some value N (setting 1

T

∑
t x2

t , j = 1) and {Yt ,N }

satisfies

Yt ,N =

n∑
j=1

a j x j

(
t

N

)
+ X t ,N , where X t ,N =

n∑
j=1

αt , j x j

(
t

N

)
+ εt t = 1, . . . , T .

(4)

A nonstationary process can be considered locally stationary process, if in any neigh-
borhood of t , the process can be approximated by a stationary process. We now show
that {X t ,N } (defined in (4)) can be considered as a locally stationary process.

Proposition 1. Suppose Assumption 1(i,ii) is satisfied, and the regressors are bounded
(sup j ,v |x j (v)| <∞), let X t ,N be defined as in (4) and define the unobserved stationary
process X t (v) =

∑n
j=1 αt , j x j (v)+ εt . Then we have

|X t ,N − X t (v)| = Op

(∣∣∣∣ t

N
− v

∣∣∣∣) .

Proof. Using the Lipschitz continuity of the regressors the proof is straightforward,
hence we omit the details. 2

The above result shows that in the neighborhood of t , {X t ,N } can locally be approxi-
mated by a stationary process. Therefore the SCR model with slowly varying regressors
can be considered as a “locally stationary” process.
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We now show the converse, that is the class of locally stationary linear processes
defined by Dahlhaus (1996), can be approximated to any order by an SCR model with
slowly varying regressors. Dahlhaus (1996) defines locally stationary process as the
stochastic process {X t ,N }, which satisfies the representation

X t ,N =

∫
At ,N (ω) exp(it ω)d Z(ω), (5)

where {Z(ω)} is a complex-valued orthogonal process on [0, 2π ] with Z(λ+ π) =
Z(λ), E(Z(λ)) = 0, and E{d Z(λ)d Z(µ)} = η(λ+ ν)dλdµ, η(λ) =

∑
∞

j=−∞ δ(λ+

2π j) is the periodic extension of the Dirac delta function. Furthermore, there exists
a Lipschitz continuous function A(·), such that supω,t |A(

t
N ,ω)− At ,N (ω)| ≤ K N−1,

where K is a finite constant that does not depend on N .
In the following lemma we show that there always exists a SCR model that can

approximate a locally stationary process to any degree.

Proposition 2. Let us suppose that {X t ,N } is a locally stationary process that satisfies
(5) and supu

∫
|A(u, λ)|2dλ <∞. Then for any basis {x j (·)} of L2[0, 1], and for every

δ there exists an nδ ∈ Z, such that X t ,N can be represented as

X t ,N =

nδ∑
j=1

αt , j x j

(
t

N

)
+ Op(δ + N−1), (6)

where {αt } = {(α1, . . . ,αt ,nδ )}t is a second-order stationary vector process.

Proof. In the technical report. 2

One application of the above result is that if the covariance structure of a time
series is believed to change smoothly over time, then a SCR model can be fitted to
the observations.

In the sections below, we will propose a method of estimating the parameters in
the SCR model and use the SCR model with slowly varying parameters as a means of
comparing the proposed method with existing Gaussian likelihood methods.

3. The estimators

We now consider two methods to estimate the mean regression parameters a0 =

(a1,0, . . . , an,0) and the parameters θ0 in the time series model (defined in Assump-
tion 1).

3.1. Motivating the objective function

To motivate the objective function, consider the “localized” finite Fourier transform of
{Yt }t centered at t , that is JY ,t (ω) =

1
√

2πm

∑m
k=1 Yt−m/2+k exp(ikω) (where m is even).
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We can partition JY ,t (ω) into the sum of deterministic and stochastic terms, JY ,t (ω) =∑n
j=1 a j ,0 J ( j)

t ,m (ω)+ JX ,t (ω), where J ( j)
t ,m (ω) =

1
√

2πm

∑m
k=1 xt−m/2+k, j exp(ikω), JX ,t (ω)

=
1

√
2πm

∑m
k=1 X t−m/2+k exp(ikω), and (Yt , X t ) are defined in (1). Let us consider the

Fourier transform JY ,t (ω) at the fundamental frequencies ωk =
2πk
m and define the

m(T − m)-dimensional vectors JY ,T = (JY ,m/2(ω1), . . . , JY ,T−m/2(ωm)) and Jx ,T (a0)

= (
∑n

j=1 a j ,0 J ( j)
m/2,m(ω1), . . . ,

∑n
j=1 a j ,0 J ( j)

T−m/2,m(ωm)). In order to derive the objective
function, we observe that JY ,T is a linear transformation of the observations Y , thus
there exists a m(T − m)× T -dimensional complex matrix, A, such that JY ,T = AY .
Regardless of whether {Yt } is Gaussian or not, we treat JY ,T as if it were a multivariate
complex normal and define the quantity that is proportional to the quasi-likelihood of
JY ,T as

`T (θ0) = ((JY ,T − Jx ,T (a0))
H )1T (θ0)

−1((JY ,T − Jx ,T (a0))+ log(det1T (θ0)),

where 1T (θ0) = E((JY ,T − Jx ,T (a0)(JY ,T − Jx ,T (a0))
H ) = AE(X T X ′T )A

H (X T =

(X1, . . . , XT )
′ and H denotes the transpose and complex conjugate (see Picinbono

(1996), Eq. (17)). Evaluating `T (θ0) involves inverting the singular matrix 1T (θ0).
Hence it is an unsuitable criterion for estimating the parameters a0 and θ0. Instead let
us consider a related criterion, where we ignore the off-diagonal covariances in1T (θ0)

and replace it with a diagonal matrix which shares the same diagonal as 1T (θ0).
Straightforward calculations show that when the 1T (θ0) in `T (θ0) is replaced by its
diagonal, what remains is proportional to

˜̀T (θ0) =
1

Tmm

T−m/2∑
t=m/2

m∑
k=1

(
|JY ,t (ωk)−

∑n
j=1 a j ,0 J ( j)

t ,m (ωk)|
2

Ft ,m(θ0,ωk)
+ logFt ,m(θ0,ωk)

)
,

(7)

where Tm = (T − m),

Ft ,m(θ0,ω) =
1

2π

m−1∑
r=−(m−1)

exp(irω)
n+1∑
j=1

c j (θ0, r)×
1

m

m−|r |∑
k=1

xt−m/2+k, j xt−m/2+k+r , j

=

n∑
j=1

σ 2
j ,0

π∫
−π

I ( j)
t ,m (λ) f j (ϑ0,ω − λ)dλ+ σ 2

n+1,0

π∫
−π

I (n+1)
m (λ) fn+1(ϑ0,ω − λ)dλ,

(8)

letting xt ,n+1= 1 for all t , I ( j)
t ,m (ω)= |J

( j)
t ,m (ω)|

2 and I (n+1)
m (ω)= 1

2πm |
∑m

k=1

exp(ikω)|2. It is worth noting that if {Yt } were a second-order stationary timeseries,
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then its DFT is almost uncorrelated and 1T (θ0) would be close to a diagonal matrix
(this property was used as the basis of a test for second-order stationarity by Dwivedi
and Subba Rao (2011)).

3.2. Estimator 1

We use (7) to motivate the objective function of the estimator. Replacing the summand
1
m

∑m
k=1 in (7) with an integral yields the objective function

L(m)T (a, θ) =
1

Tm

T−m/2∑
t=m/2

π∫
−π

{
It ,m(a,ω)

Ft ,m(θ ,ω)
+ logFt ,m(θ ,ω)

}
dω, (9)

where m is even and

It ,m(a,ω) =
1

2πm

∣∣∣∣∣∣
m∑

k=1

(Yt−m/2+k −

n∑
j=1

a j xt−m/2+k, j ) exp(ikω)

∣∣∣∣∣∣
2

. (10)

We recall that θ = (ϑ ,6), hence L(m)T (a, θ) = L(m)T (a,ϑ ,6). Let a ∈ � ⊂ Rn and θ ∈
21 ⊗22 ⊂ Rn+q+1. We use âT and θ̂T = (ϑ̂T , 6̂T ) as an estimator of a0 and θ0 =

(ϑ0,60), where

(âT , ϑ̂T , 6̂T ) = arg inf
a∈�,ϑ∈21,6∈22

L(m)T (a,ϑ ,6). (11)

We choose m, such that Tm/T → 1 as T →∞ (thus m can be fixed, or grow at a rate
slower than T ).

3.3. Estimator 2

In the case that the number of regressors is relatively large, the minimization of L(m)T is
computationally slow and has a tendency of converging to local minimums rather than
the global minimum. We now suggest a second estimator that is based on estimator 1,
but estimates the parameters a, θ = (6,ϑ) in two steps. Empirical studies suggest that
it is less sensitive to initial values than estimator 1. In the first step of the scheme we
estimate 60 and in the second step obtain an estimator of a0 and ϑ0, thereby reducing
the total number parameters to be estimated at each step. An additional advantage of
estimating the variance of the coefficients in the first stage is that we can use it to
determine whether a coefficient of a regressor is fixed or random.

3.3.1. The two-step parameter estimation scheme
Step 1: In the first step, we ignore the correlation of the stochastic coefficients

{αt , j } and errors {εt } and estimate the mean regressors {at , j } and variance of
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the innovations 6T = {σ
2
j ,0} using weighted least squares with (āT , 6̃T ) =

arg mina∈�,6∈22 LT (a,6), where

LT (a ,6) =
1

T

T∑
t=1


(

Yt −
∑n

j=1 a j xt , j

)2

σt (6)
+ log σt (6)

 (12)

and σt (6) =
∑n

j=1 σ
2
j x2

t , j + σ
2
n+1.

Step 2: We now use 6̃T to estimate ãT and ϑ0. We substitute 6̃T into L(m)T , keep
6̃T fixed and minimize L(m)T with respect to (a,ϑ). We use (ãT , ϑ̃T ) as an
estimator of (a0,ϑ0) where

(ãT , ϑ̃T ) = arg min
a∈�,ϑ∈21

L(m)T (a,ϑ , 6̃T ). (13)

We choose m, such that Tm/T → 1 as T →∞.

4. Testing for randomness of the coefficients in the SCR model

Before fitting a SCR model to the data, it is of interest to check whether there is any
evidence to suggest the coefficients are random. Breusch and Pagan (1980) have pro-
posed a test, based on the score statistic, to test the possibility that the parameters of
a regression model are fixed against the alternative that they are random. Their test
statistic is constructed under the assumption that the errors in the regression model are
Gaussian and are identically distributed. Newbold and Bos (1985, Chapter 3) argue that
the test proposed by Breusch and Pagan (1980) can be viewed as the sample correlation
between the squared residuals and the regressors (under the assumption of Gaussianity).
In this section, we suggest a distribution free version of the test given by Newbold and
Bos (1985), to test the hypothesis that the parameters are fixed against the alternative
that they are random. Further, we propose a test to test the hypothesis the parameters
are random (i.i.d.) against the alternative that they are stochastic (and correlated).

To simplify notation we will consider simple regression models with just one
regressor, the discussion below can be generalized to the multiple regression case.
Let us consider the null hypothesis H0 : Yt = a0 + a1xt + εt , where {εt } are i.i.d. ran-
dom variables with E(εt ) = 0 and var(εt ) = σ

2
ε <∞ against the alternative HA : Yt =

a0 + a1xt + εt , where εt = αt xt + εt and {αt } and {εt } are i.i.d. random variables with
E(αt ) = 0, E(εt ) = 0, var(αt ) = σ

2
α <∞, and var(εt ) = σ

2
ε <∞. If the alternatives

were true, then var(εt ) = x2
t σ

2
α + σ

2
ε , hence plotting var(εt ) against xt should give

a clear positive slope. The following test is based on this observation. Suppose we
observe {(Yt , xt )} and use OLS to fit the model a0 + a1xt to Yt , let ε̂t denote the
residuals. We use as the test statistic the sample correlation between {x2

t } and {ε̂2
t }:

S1 =
1

T

T∑
t=1

x2
t ε̂

2
t −

(
1

T

T∑
t=1

x2
t

)(
1

T

T∑
t=1

ε̂2
t

)
. (14)
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To understand how S1 behaves under the null and alternative, we rewrite S1 as

S1 =
1

T

T∑
t=1

(
ε̂2

t − E
(
ε2

t

)) (
x2

t −
1

T

T∑
s=1

x2
s

)
︸ ︷︷ ︸

op(1)

+R1,

where R1 =
1

T

T∑
t=1

x2
t

(
E
(
ε2

t

)
−

1

T

T∑
s=1

E
(
ε2

s

))
.

We observe that in the case that the null is true, then E(ε2
t ) is constant for all t and

S1 = op(1). On the other hand, when the alternative is true we have S1 → E(R1),
noting that in this case

R1 =
1

T

T∑
t=1

x2
t σ

2
α

(
x2

t −
1

T

T∑
t=1

x2
s

)
. (15)

In the proposition below we derive the distribution of the test statistic S1, under the null
and the alternative.

Proposition 3. Let S1 be defined in (14), and suppose the null is true and

E(|εt |
4+δ) <∞ (for some δ > 0) then we have

√
T0−1/2

1,T S1
D
→ N

(
0, 1

)
, where 01,T =

var(ε2
t )

T

∑T
t=1

(
x2

t −
1
T

∑T
s=1 x2

s

)2
.

Suppose the alternative is true and {εt } and {εt } are i.i.d. random variables,
E(|εt |

4+δ) <∞ and E(|αt |
4+δ) <∞ (for some δ > 0) then we have

√
T0−1/2

2,T

(
S1 − R1

) D
→ N

(
0, 1

)
,

where R1 is defined as in (15) and 02,T =
1
T

∑T
t=1 var((αt xt + εt )

2)
(
x2

t −

1
T

∑T
s=1 x2

s

)2
.

Proof. In the technical report. 2

We mention that in the case that the parameters in the regression model are fixed, but
the variance of the errors vary over time (independent of xt ) the test statistic, S1, may
mistakenly lead to the conclusion that the alternative were true (because in this case
R1 will be nonzero). However, if the variance varies slowly over time, it is possible to
modify the test statistic S1 to allow for a time-dependent variance, we omit the details.

We now adapt the test above to determine whether the parameters in the regressor
model are random against the alternative there is correlation. More precisely, consider
the null hypothesis that the coefficients are random H0 : Yt = a0 + a1xt + εt , where
εt = αt xt + εt and {αt } are i.i.d. random variables and {εt } is a stationary time series
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with cov(ε0, εk) = c(k) against the alternative that the coefficients are stochastic and
correlated HA : Yt = a0 + a1xt + εt , where εt = αt xt + εt and {αt } and {εt } are sta-
tionary random variables with cov(ε0, εk) = c(k) and cov(ε0, εk) = ρ(k). We observe
that if the null were true E(εtεt−1) = c(1), whereas if the alternative were true then
E(εtεt−1) = xt xt−1ρ(1)+ c(1), hence plotting εtεt−1 against xt xt−1 should give a clear
line with a slope. Therefore, the empirical correlation between {ε̂t ε̂t−1} and {xt xt−1} can
be used as the test statistic, and we define

S2 =
1

T

T∑
t=2

xt xt−1ε̂t ε̂t−1 −

(
1

T

T∑
t=2

xt xt−1

)(
1

T

T∑
t=2

ε̂t ε̂t−1

)
. (16)

Rewriting S2 we have

S2 =
1

T

T∑
t=2

(
ε̂t ε̂t−1 − E(εtεt−1)

) (
xt xt−1 −

1

T

T∑
s=2

xs xs−1

)
︸ ︷︷ ︸

op(1)

+R2, (17)

where R2=
1
T

∑T
t=2 xt xt−1

(
E(εtεt−1)−

1
T

∑T
s=2 E(εsεs−1)

)
. It is straightforward to see

that if the null were true S2 = op(1), but if the alternative were true then E(S2)
P
→ R2,

noting that R2 =
1
T

∑T
t=2 xt xt−1

(
xt xt−1cov(αt ,αt−1)−

1
T

∑T
s=2 xs xs−1cov(αs ,αs−1)

)
.

Below we derive the distribution of S2 under the null and alternative.

Proposition 4. Let S2 be defined in (16), and suppose the null is true, that is
Yt = a0 + a1xt + εt , where εt = αt xt + εt , and {αt } are i.i.d. random variables
E(|αt |

4+δ) <∞ and {εt } is a stationary time series which satisfies εt =
∑
∞

j=0 ψ jηt− j

and
∑

j |ψ j | <∞ and E(|η j |
4+δ) <∞. Then we have

√
T1−1/2

1,T S2
D
→ N

(
0, 1

)
,

where 11,T =
1

T 2

∑n
t1,t2=1 cov(εt1εt1−1, εt2εt2−1)vt1vt2 and vt =

(
x2

t −
1
T

∑T
s=2 x2

s

)2
.

On the other hand suppose the alternative were true, that is Yt = a0 + a1xt + εt ,
where εt = αt xt + εt , and {αt } and {εt } are stationary time series, which sat-
isfies εt =

∑
∞

j=0 ψ jηt− j , αt =
∑
∞

j=0 ψ j ,1ηt− j ,1,
∑

j |ψ j | <∞,
∑

j |ψ j ,1| <∞,

E(|η j |
8) <∞ and E(|η j ,1|

8) <∞. Then we have
√

T1−1/2
2,T (S2 − R2)

D
→ N

(
0, 1

)
,

where 12,T = var(S2).

Proof. Similar to Proposition 3. 2

It is worth noting, it is not necessary to limit the test statistic to testing for correlation
at lag one (as was done in S2). The test can be generalized to test for correlations at
several lags by adapting the Portmanteau test statistic in an appropriate way.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 19-ch15-445-474-9780444538581 2012/4/24 1:59 Page 456 #12

456 S. Subba Rao

5. Asymptotic properties of the estimators

5.1. Some assumptions

We now consider the asymptotic sampling properties of estimators 1 and 2. We need
the following assumptions on the stochastic coefficients and the regressors, which we
use to show consistency and the sampling distribution.

Let | · | denote the Euclidean norm of a vector or matrix.

Assumption 2. On the stochastic coefficients

(i) The parameter spaces 21 and 22 are such that, there exists a δ > 0, where
inf6∈22 σ

2
n+1 ≥ δ and infϑ∈21

∫ π
−π

(∑m−1
r=−(m−1)(

m−|r |
m ) exp(irλ)

)
· f0(ϑ ,ω −

λ)dλ ≥ δ.
(ii) The parameter spaces �, 21, and 22 are compact.

(iii) The coefficients ψi , j of the MA(∞) representation given in Assumption 1,
satisfy supϑ∈21

∑
∞

i=0 |i | · |∇
k
ϑψi , j (ϑ)| <∞ (for all 0 ≤ k ≤ 3 and 1 ≤ j ≤

n + 1).
(iv) The innovation sequences {ηt , j } satisfy sup1≤ j≤n+1 E(η8

t , j ) <∞.

Assumption 3. On the regressors

(i) supt , j |xt , j | <∞ and 1
T

∑T
t=1

X t X ′t
var(Yt )

is nonsingular for all T (X ′t =
(xt ,1, . . . , xt ,n)).

(ii) Suppose that θ0 is the true parameter. There does not exist another θ∗ ∈ 21 ⊗

22 such that for all 0 ≤ r ≤ m − 1 and infinite number of t we have

n∑
j=1

(
c j (θ0, r)− c j (θ

∗, r)
) m−|r |∑

k=0

xt−m/2+k, j xt−m/2+k+r , j = 0.

Let JT ,m(ϑ ,ω)′ =
∑T−m/2

t=m/2 Ft ,m(ϑ ,ω)−1(J (1)t ,m (ω), . . . , J (n)t ,m (ω)). For all T and
ϑ ∈ 21,∫
JT ,m(ϑ ,ω)JT ,m(ϑ ,ω)′dω is nonsingular and the smallest eigenvalue is

bounded away from zero.
(iii) For all T , E(∇2

θL
(m)
T (a0, θ0)) and E(∇2

aL
(m)
T (a0, θ0)) are nonsingular matrices

and the smallest eigenvalue is bounded away from zero.

Assumption 2(i) ensures that Ft ,m is bounded away from zero and thus
E|L(m)T (a, θ)| <∞, similarly Assumption 2(iii) implies that sup j

∑
∞

r=−∞ |r ·

∇
kc j (θ , r)| <∞, therefore E|∇k

θL
(m)
T (a, θ)| <∞. Assumption 3(i,ii) ensures that the

estimators converge to the true parameters.

5.2. Sampling properties of estimator 1: α̂T and θ̂T

We first show consistency of (âT , θ̂T ).
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Proposition 5. Suppose Assumptions 1, 2(i,ii), and 3 are satisfied and the estimators

âT , θ̂T are defined as in (11). Then we have âT
P
→ a0 and θ̂T

P
→ θ0, as Tm →∞ and

T →∞.

Proof. In the technical report. 2

We now obtain the rate of convergence and asymptotic normality of the esti-
mator, this requires a bound for the variance of L(m)T (a, θ) and its derivatives. To
do this we rewrite L(m)T (a, θ) and its derivatives as a quadratic form. Substituting
JX ,T (ω) = JY ,T (ω)−

∑n
j=1 a j J ( j)

t ,m (ω) into L(m)T (a, θ) gives

L(m)T (a, θ) =
1

Tm

{
VT
(
F−1
θ

)
+ 2

n∑
j=1

(a j ,0 − a j )D
( j)
T

(
F−1
θ

)

+

n∑
j1, j2=1

(a j1,0 − a j1)(a j2,0 − a j2)H
( j1, j2)
T

(
F−1
θ

)

+

T−m/2∑
t=m/2

∫
logFt ,m(θ ,ω)dω

}
,

where for a general function {G t (ω)}t we define

VT (G) =
T−m/2∑
t=m/2

∫
Gt (ω)|JX ,t (ω)|

2dω =
1

2πm

m∑
k=1

T−m+k∑
s=k

m−k∑
r=−k

Xs Xs+r gs+m/2−k(r),

(18)

H ( j1, j2)
T (G) =

T−m/2∑
t=m/2

∫
Gt (ω)J

( j1)
t ,m (ω)J

( j2)
t ,m (−ω)dω

=
1

2πm

m∑
k=1

T−m+k∑
s=k

m−k∑
r=−k

xs, j1 xs+r , j2 gs+m/2−k(r),

D( j)
T (G) =

T−m/2∑
t=m/2

∫
Gt (ω)<{JX ,t (ω)J

( j)
t ,m (−ω)}dω

=
1

2πm

m∑
k=1

T−m+k∑
s=k

m−k∑
r=−k

Xs xs+r , j g̃s+m/2−k(r),

gs(r) =
∫

Gs(ω) exp(irω)dω and g̃s(r) =
∫

Gs(ω) cos(rω)dω. A similar expansion
also holds for the derivatives of L(m)T (which can be used to numerically minimize
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L(m)T ). Let ∇ =
(

∂
∂a1

, . . . , ∂
∂θq

)
and ∇L(m)T = (∇aL(m)T ,∇θL(m)T ), where

∇θL(m)T (a, θ) =
1

Tm

{(
VT (∇θF−1)+ 2

n∑
j=1

(a j ,0 − a j )D
( j)
T (∇θF−1)

)

+

n∑
j1, j2=1

(a j1,0 − a j1)(a j2,0 − a j2)H
( j1, j2)
T (∇θF−1)

+

T−m/2∑
t=m/2

∫
∇θFt ,m(θ ,ω)

Ft ,m(θ ,ω)
dω

}

∇a jL
(m)
T (a, θ) =

−2

Tm

D( j)
T (F−1)+

n∑
j1=1

(a j1,0 − a j1)H
( j , j1)
T (F−1)

 (19)

and the second derivatives are

∇a j∇θL
(m)
T (a, θ) =

−2

Tm

{
D( j)

T (∇θF−1)+

n∑
j1=1

(a j1,0 − a j1)H
( j , j1)
T (∇θF−1)

}

∇a j1
∇a j2

L(m)T (a, θ) =
2

Tm
H ( j1, j2)

T (∇θF−1) (20)

∇
2
θL

(m)
T (a, θ) =

1

Tm

[
VT (∇

2
θF−1)+ 2

n∑
j=1

(a j ,0 − a j )D
( j)
T (∇2

θF−1)

+

n∑
j1, j2=1

(a j1,0 − a j1)(a j2,0 − a j2)H
( j1, j2)
T (∇2

θF−1)

+
1

Tm

T−m/2∑
t=m/2

{∫ [
∇

2
θFt ,m(θ ,ω)

Ft ,m(θ ,ω)

−
∇θFt ,m(θ ,ω)∇θFt ,m(θ ,ω)′

Ft ,m(θ ,ω)2

]
dω

}]
.

Since the Fourier coefficients in the quadratic forms ofL(m)T and its derivatives are abso-
lutely summable (under the stated assumptions), it can be shown that the covariance of
the stochastic sequence {Z t .m}, where Z t ,m =

1
2πm

∑m
k=1

∑m−k
r=−k X t X t+r gt+m/2−k(r)}s

is absolutely summable. This implies that the variance of L(m)T and its derivatives
do not depend on m (so long as m = o(T )). We use this observation in the lemma
below.
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Lemma 1. Suppose Assumptions 1, 2(i–iii) (and sup j E(η4
t , j ) <∞), and 3(i) are sat-

isfied. Let VT (G) and D( j)
T (G) be defined as in (18), where sups

∑
r |gs(r)| <∞ and

sups

∑
r |g̃s(r)| <∞. Then we have E(D( j)

T (G)) = 0,

E(VT (G)) =
T−m/2∑
t=m/2

∫
Gt (ω)Ft ,m(θ0,ω)dω, (21)

var(VT (G)) ≤ T (n + 1) sup
s

∑
r

|gs(r)|

2

(∑
r

ρ2(r)

)2

+

∑
k1,k2,k3

ρ4(k1, k2, k3)


(22)

and

var
(

D( j)
T (G)

)
≤ T (n + 1) sup

s

(∑
r

|g̃s(r)|

)(∑
r

ρ2(r)

)
, (23)

where

ρ2(k) = κ
2
2 sup

j

∑
i

|ψi , j | · |ψi+k, j |,

ρ4(k1, k2, k3) = κ4 sup
j

∑
i

|ψi , j | · |ψi+k1, j | · |ψi+k2, j | · |ψi+k3, j |, (24)

κ2 = sup j var(η0, j ) and κ4 = sup j cum(η0, j , η0, j , η0, j , η0, j ).

Proof. See the technical report. 2

Applying the mean value theorem pointwise to ∇L(m)T (a0, θ0) and using the uniform

convergence supa,θ |∇
2L(m)T (a, θ)− E(∇2L(m)T (a, θ))|

P
→ 0, we have

(
âT − a0

θ̂T − θ0

)
= E

(
∇

2L(m)T (a0, θ0)
)−1

(
∇aL(m)T (a0, θ0)

∇θL(m)T (a0, θ0)

)
+ op

(
1
√

T

)
. (25)

Thus by using the above, if Assumption 3(iii) holds and m = o(T ), then we have

(âT − a0, θ̂T − θ0) = Op

(
1
√

T

)
.

In the following theorem, we use the above expansion to show asymptotic normality of
(âT , θ̂T ). This requires us to evaluate E(∇2L(m)T (a0, θ0)) and var(∇L(m)T (a0, θ0)). The
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submatrices of E(∇2L(m)T (a0, θ0)) are E(∇θ∇aL(m)T (a0, θ0) = 0,

E(∇2
aL

(m)
T (a0, θ0))c j1, j2 =

1

Tm

T−m/2∑
t=m/2

∫
Ft ,m(θ0,ω)−1 J ( j1)

t ,m (ω)J
( j2)
t ,m (−ω)dω, (26)

E(∇2
θL

(m)
T (a0, θ0)) =

1

Tm

T−m/2∑
t=m/2

∫
∇Ft ,m(θ0,ω)∇Ft ,m(θ0,ω)′

(Ft ,m(θ0,ω))2
dω,

In order to compare the limiting distributions of estimator 1 and 2, we rewrite
var(∇L(m)T (a0, θ0)) in terms of a block matrix

WT =T var(∇L(m)T (a0, θ0))

=

 W1,T T cov(∇βL(m)T (a0, θ0),∇6L(m)T (a0, θ0))

T cov(∇βL(m)T (a0, θ0),∇6L(m)T (a0, θ0)) T var(∇6L(m)T (a0, θ0))


(27)

with β = (a,ϑ) and

W1,T = var

√T∇aL(m)T (a0,ϑ0, σ 0)

√
T∇ϑL(m)T (a0,ϑ0, σ 0)

 . (28)

Theorem 1. Suppose Assumptions 1, 2, and 3 hold, then we have

√
T B−1/2

T

(
âT − a0

θ̂T − θ0

)
D
→ N (0, I ), (29)

as Tm/T → 1 and T →∞, where BT = V−1
T WT V−1

T , WT is defined in (27) and

VT =

(
E(∇2

aL
(m)
T (a0, θ0)) 0

0 E(∇2
θL

(m)
T (a0, θ0))

)
.

Proof. In the technical report. 2

We observe that VT is a block diagonal matrix, this is because straightforward
calculations show E(∇a∇θL(m)T (a0, θ0)) = 0.

Remark 1. Examining WT we observe that the only parameters in WT , which we need
to estimate (in addition to (a0, θ0)) are the cumulants cum(ηt , j , ηt , j , ηt , j) and
cum(ηt , j , ηt , j , ηt , j , ηt , j). We estimate the cumulants using the estimated moments.
To estimate the moments, we group the observations {Yt } in (n + 1) blocks, each of



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 19-ch15-445-474-9780444538581 2012/4/24 1:59 Page 461 #17

An Alternative Perspective on Stochastic Coefficient Regression Models 461

length M = T/(n + 1), and evaluate the empirical third moment within each block.
If the size of each block M = T/(n + 1) is large, we obtain the following approximate
equations

1

M

M∑
s=1

Y 3
Mr+s ≈

1

M

n+1∑
j=1

E(η3
t , j )

M∑
s=1

x3
Mr+s, j

∞∑
i=0

ψi , j (ϑ0)
3.

Obviously, this equation is true for r = 1, . . . , (n + 1). Therefore, we have (n + 1)
linear simultaneous equations in the unknown {E(η3

t , j)}, which, if we replace ϑ0 with

ϑ̂T , we can solve for. Thus we have an estimator of E(η3
t , j ). Using a similar method,

the empirical fourth moment can be used to obtain an estimator of the fourth-order
cumulants.

5.3. Sampling properties of estimator 2: 6̃T , ãT , ϑ̃T

We now obtain the sampling properties of estimator 2. We first consider the properties
of the variance estimator 6̃T .

Proposition 6. Suppose Assumptions 1, 2, and 3 are satisfied, let LT (a,6) and 6̃T be
defined as in (12). Then we have

var(∇6LT (a0,60))
−1/2
∇6LT (a0,60)

D
→ N (0, I ) (30)

C−1/2
T (6̃T −60)

D
→ N (0, I ),

as T →∞, where CT = E
(
∇

2
6LT (a0,60)

)−1
var(∇6LT (a0,60))E

(
∇

2
6LT (a0,60)

)−1
.

We now consider the properties of (ãT , ϑ̃T ), which are obtained in step 2 of
estimator 2.

Theorem 2. Suppose Assumptions 1, 2, and 3 hold, then we have

√
T (Ṽ (m)

T )1/2(W̃ (m)
T )−1/2(Ṽ (m)

T )1/2
(

ãT − a0

ϑ̃T − ϑ0

)
D
→ N (0, I ), (31)

for m = o(T ) as T →∞, CT = Ṽ−1
T W̃T Ṽ−1

T , where

W̃T = WT ,1 +

(
0 41

4′1 42

)
,

Ṽ (m)
T =

(
E(∇2

aL
(m)
T (a0,ϑ0,60)) 0

0 E(∇2
ϑL

(m)
T (a0,ϑ0,60))

)
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with WT ,1 defined as in (28) and

41 = cov

(
√

T∇aL(m)T (a0,ϑ0,60),
√

T∇6LT (a0,60)

)
Q′T

42 = 2cov

(
√

T∇ϑL(m)T (a,ϑ0,60),
√

T∇6LT (a0,60)

)
Q′T

+QT var
(√

T∇6LT (a0,60)
)
Q′T ,

QT is a q × (n + 1)-dimensional matrix defined by

QT =

 1

Tm

∫ T−m/2∑
t=m/2

(
∇ϑFt ,m(ϑ0,60,ω)−1

)
⊗ H (t ,m)(ω)dω


× E

(
∇

2
6LT (a0,60)

)−1

h(t ,m)j (ω) =

π∫
−π

I ( j)
t ,m (λ) f j (ϑ0,ω − λ)dλ,

(32)

H (t ,m)(ω) = (h
(t ,m)
1 (ω), . . . , h(t ,m)n+1 (ω)) and noting that ⊗ denotes the tensor product.

Remark 2. It is unclear which of the two estimators have the smallest variance. How-
ever, comparing the variances of the two estimators in (29) and (31), we observe that
they are similar. In particular ṼT is a submatrix of VT . The terms 41 and 42 in W̃T , are
due to the estimation of 60 in the first stage of the scheme. 2

5.4. The Gaussian likelihood and asymptotic efficiency of estimator 1

In this section, we compare the asymptotic properties of the frequency domain estima-
tor (âT , θ̂T ) with the Gaussian maximum likelihood estimator (GMLE). We recall the
GMLE is constructed as if the stochastic coefficients {αt , j } and errors {εt } were Gaus-
sian. However, unlike the frequency domain estimators, in general there does not exist
an explicit expression for the asymptotic variance of the Gaussian maximum likelihood.
Instead we will consider a subclass of SCR models, where the regressors vary slowly
over time and do the comparison over this subclass. We will show that for this subclass
an asymptotic expression for the asymptotic distributional variance of the GMLE can
be derived. We will assume that the regressors are such that there exists a “smooth”
function, x j (·), such that xt , j = x j (

t
N ) and Yt := Yt ,N satisfies

Yt ,N =

n∑
j=1

(a j ,0 + αt , j )x j

(
t

N

)
+ εt t = 1, . . . , T . (33)

In the following lemma, we obtain the asymptotic distribution of the GMLE under the
asymptotic framework that both T and N →∞.
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Lemma 2. Let us suppose that {Yt ,N } satisfies (33), where the {αt , j } and {εt } are
Gaussian and satisfy Assumption 1. Let

F(v, θ0,ω) =
n∑

j=1

x j (v)
2σ 2

j ,0 f j (ϑ0,ω)+ σ 2
n+1,0 fn+1(ϑ0,ω). (34)

We assume that there does not exist another θ ∈ 21 ⊗22 such that F(v, θ0,ω) =
F(v, θ0,ω) for all v ∈ [0, T/N ] and the matrix N

T

∫ T/N
0 x(v)x(v)′dv, (with x(v)′ =

(x1(v), . . . , xn(v))) has eigenvalues which are bounded from above and away from zero.
Suppose (amle, θmle) is the Gaussian maximum likelihood estimator of the parameters
(a0, θ0). Then we have

√
T

(
amle − a0

θmle − θ0

)
D
→ N

(
0,

(
1−1

1 0

0 1−1
2

))

with N →∞ as T →∞, where

(11) j1, j2 =
N

T

T/N∫
0

x j1(v)x j2(v)F(v, θ0, 0)−1dv,

12 = 2
N

T

T/N∫
0

2π∫
0

∇θF(v, θ0,ω)(∇θF(v, θ0,−ω))′

|F(v, θ0,ω)|2
dωdv,

a(v, k) =
∫

1

F(v, θ0,ω)
exp(ikω)dωb(v, k) =

∫
∇θF(v, θ0,ω)−1 exp(ikω)dω

a(v) = {a(v, k)} and b̄(v) = {b(v,−k)}.

In practice, for any given set of regressors {xt , j }, N will not be known, but a lower
bound for N can be obtained from {xt , j }. To ensure the magnitude of the regressors do
not influence N , we will assume that the regressors satisfy 1

T

∑T
t=1 x2

t , j = 1 (for all j).
To measure the smoothness of the regressors define

N̂ =
1

supt , j |xt , j − xt−1, j |
. (35)

Clearly if N̂ is large, this indicates that the regressors are smooth.
We now compare the asymptotic variance of the GMLE and estimator 1.

Proposition 7. Suppose Assumptions 1, 2, and 3 hold and

sup
j

∫ ∣∣∣∣d2 f j (ϑ0,ω)

dω2

∣∣∣∣2dω <∞ and sup
j

∫ ∣∣∣∣d2
∇ϑ f j (ϑ0,ω)

dω2

∣∣∣∣2dω <∞. (36)
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Let V (m)
T , W (m)

T , 1T ,N ,1, 1T ,N ,2 and N̂ be defined as in (26), (27), Lemma 2, and (35),
respectively. Then we have∣∣∣∣W (m)

T −

((
11 0
0 12

)
+

(
0 01,2

0′1,2 02

)) ∣∣∣∣ ≤ K

{
1

N̂
+

1

m
+

1

Tm
+

m

N̂

}
(37)

∣∣∣∣V (m)
T −

(
11 0
0 12

) ∣∣∣∣ ≤ K
m

N̂
, (38)

where K is a finite constant,

02 =
N

T

T/N∫
0

2π∫
0

2π∫
0

∇θF(v, θ0,ω1)∇θF(v, θ0,ω1)
′

F(v, θ0,ω1)2F(v, θ0,ω2)2

× F4(v,ϑ0,ω1,ω2,−ω1)dω1dω2dv,

01,2 =
N

T

T/N∫
0

x(v)

2π∫
0

2π∫
0

∇θF(v, θ0,ω2)
′

F(v, θ0,ω1)F(v, θ0,ω2)2

× F3(v,ϑ0,ω1,ω2) exp(irω2)ω1dω2dv, (39)

x(v)′ = (x1(v), . . . , xn(v)), with F(v, θ ,ω) defined as in (34),

F3(v,ϑ ,ω1,ω2) =

n+1∑
j=1

κ j ,3x j (v)
3 A j (ϑ ,ω1)A j (ϑ ,ω2)A j (ϑ ,−ω1 − ω2)

F4(v,ϑ ,ω1,ω2,ω3) =

n+1∑
j=1

κ j ,4x j (v)
4 A j (ϑ ,ω1)A j (ϑ ,ω2)A j (ϑ ,ω3)

× A j (ϑ ,−ω1 − ω2 − ω3),

κ j ,3 = cum(η0, j , η0, j , η0, j ) and κ j ,4 = cum(η0, j , η0, j , η0, j , η0, j ).

Remark 3 (Selecting m). Let us consider the case that {αt , j } and {εt } are Gaussian, in
this case 01,2 = 0 and 02 = 0. Comparing the asymptotic variances of the GMLE and
(âT , θ̂T ) we see that if we let N̂ →∞, m →∞, and m/N̂ → 0 (noting that we have
replaced N̂ with N ) as T →∞, then the GMLE ((amle, θmle)) and (âT , θ̂T ) both have
the same asymptotic distribution. Hence within this framework, the relative efficiency
of the frequency domain estimator compared with the GMLE is one.

Furthermore, in the case that {αt , j } and {εt } are Gaussian, (37) suggests a method
for selecting m. Since in this case the GMLE is efficient, by using (37) we have

∣∣(V (m)
T )−1W (m)

T (V (m)
T )−1

− diag(1−1
1 ,1−1

2 )
∣∣ = Op

(
1

N̂
+

1

m
+

1

Tm
+

m

N̂

)
.

Hence the above difference is minimized when m = N̂ 1/2.
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6. Real data analysis

We now consider two real data examples.

Example 1. Application to financial time series: modeling of T-bills and inflation
rates in the US

There are many possible applications of stochastic coefficient regression models in
econometrics. One such application is modeling the influence of the nominal interest
rate of 3-month (short term) Treasury bills (T-bills) on monthly inflation. Fama (1977)
argues that the relationship between the T-bills and inflation rate determines whether
the market for short-term Treasurey bills is efficient or not. In this section, we will
consider 3-month T-bills and monthly inflation data observed monthly between
January 1959 to December 2008, the data can be obtained from the US Federal reserve,
http//www.federalreserve.gov/releases/h15/data.htm#fn26 and http:
//inflationdata.com/inflation/Inflation Rate/HistoricalInflation.
aspx, respectively. A plot of the time series of both sets of observations is given in
Fig. 1. The estimated correlation coefficient between the 3-month T-bills and monthly
inflation is 0.72. Let Yt and xt denote monthly inflation and T-bills interest rate at
time t , respectively. Fama (1977) and Newbold and Bos (1985) consider the nominal
interest rate of 3-month T-bills and inflation rate data observed every 3 months between
1953–1980. Fama (1977) fitted the linear regression model Yt = a1xt + εt ({εt } are
i.i.d.) to the data, and showed that there was not a significant departure of a1 from one,
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Fig. 1. The top plot is 3-month T-bill nominal interest rate taken monthly and lower plot is the monthly
inflation rate.

http://www.federalreserve.gov/releases/h15/data.htm#fn26
http://inflationdata.com/inflation/Inflation_Rate/HistoricalInflation.aspx
http://inflationdata.com/inflation/Inflation_Rate/HistoricalInflation.aspx
http://inflationdata.com/inflation/Inflation_Rate/HistoricalInflation.aspx
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he used this to argue that the T-bills market was efficient. However, Newbold and Bos
(1985) argue that the relationship between T-bills and inflation is more complex and
suggest that the SCR may be a more appropriate model, where the coefficient of xt is
stochastic and follows an AR(1) model. In other words

Yt = a0 + (a1 + αt ,1)xt + εt , αt ,1 = ϑ1αt−1,1 + ηt (40)

where {εt } and {ηt } are i.i.d. random variables with E(εt ) = 0, E(ηt ) = 0, var(εt ) =

σ 2
ε <∞, and var(ηt ) = σ

2
η <∞. Using the GMLE they obtain the parameter estimates

a0 = −0.97, a1 = 1.09, ϑ1 = 0.89, σ 2
ε = 1.41, and σ 2

η = 0.013. We now fit the same
model to the T-bills data observed monthly from January 1959 to December 2008 (600
observations), and use the two-step estimator 2 to estimate the parameters a0, a1,ϑ1,
σ 2
α = var(αt ,1), and σ 2

ε = var(εt ) using estimator 2. The variances σ 2
α and σ 2

ε are esti-
mated in the first step of estimator 2, the estimates with their standard errors are given
in Table 1. Note that comparing the estimates with their standard errors, we observe
that both parameters σ 2

ε and σ 2
α appear significant. In the second stage of the scheme,

we estimate a0, a1, and ϑ1 (we note that because the intercept a0 appears to be insignif-
icant and we also do the estimation excluding the intercept), these estimates are also
summarized in Table 1. The estimates for different m are quite close. The model found

Table 1
We fit the model Yt = a0 + (a1 + αt ,1)xt + εt , where αt ,1=ϑ1αt−1,1 + ηt , with and without the intercept a0

a0 a1 ϑ1 σα σε

OLS 0.088 0.750
(s.e.) (0.18) (0.029)

Stage 1 0.088 0.74 0.285 1.083
(s.e.) (0.011) (0.059)

m = 10 (with intercept) 0.618 0.625 0.981
(s.e.) (0.325) (0.069) (0.042)
m = 10 (without intercept) 0.741 (0.971)
(s.e.) (0.0325) (0.05)

m = 50 (with intercept) 0.309 0.687 0.969
(s.e.) (0.35) (0.069) (0.026)
m = 50 (without intercept) 0.743 0.957
(s.e.) (0.032) (0.038)

m = 200 (with intercept) 0.223 0.7327 0.96088
(s.e.) (0.44) (0.022) (0.024)
m = 200 (without intercept) 0.765 0.951
(s.e.) (0.029) (0.030)

m = 400 (with intercept) 0.367 0.725 0.963
(s.e.) (0.48) (0.070) (0.023)
m = 400 (without intercept) 0.773 0.957
(s.e.) (0.029) (0.026)

The estimates using least squares and the frequency domain estimator for different m are given. The values
in the brackets are the corresponding standard errors.
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to be most suitable for the above data when m = 200 is

Yt = (0.73+ αt ,1)xt + εt , αt ,1 = 0.960αt−1,1 + ηt ,

where σ 2
ε = 1.0832 and σ 2

α = 0.2852 (hence σ 2
η = 0.0792). We observe that the AR(1)

parameter estimate of the stochastic coefficient {αt ,1} is 0.96. This value is close to
one, suggesting that the stochastic coefficients {αt ,1} could come from a unit root
process.

To assess the validity of this model, we obtain one-step ahead best linear predictors
of Yt , given {Ys}

t−1
s=1 and the current T-bills rate xt , every month in the year 2008. In

order to do the prediction we re-estimate the parameters α1, θ , σ 2
ε , and σ 2

α using the
observations from 1959 to 2007. We use the two-step estimator 2 with m = 200 to
obtain

Yt = (0.77+ αt ,1)xt + εt , αt ,1 = 0.965αt−1,1 + ηt , (41)

with σ 2
ε = 0.792 and σ 2

α = 0.302 (hence σ 2
η = 0.182). We also fit the linear regres-

sion model Yt = a1xt + εt to the data and use OLS to obtain the model Yt = 0.088+
0.75xt + εt . The predictor using the usual multiple linear regression model and one-
step ahead predictor using the SCR model are given in Fig. 2. To do the one-step
ahead prediction we use the Kalman filter (using the R package ss1.R (see Shumway
and Stoffer (2006), Chapter 6 for the details). The mean squared prediction errors over
the 12 months using the multiple regression and the SCR model are 8.99 and 0.89,
respectively. We observe from the plots in Fig. 2 that the multiple regression model
always underestimates the true value and the mean square error is substantially larger
than the SCR model.
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Fig. 2. We compare the true inflation rates with their predictions. The continuous thick line − is the true
inflation rate. The broad dashed line −− is SCR one step ahead predictor given in (41). The fine dashed

line · · · is the linear regression predictor Ŷt = 0.088+ 0.750xt .
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Example 2. Application to environmental time series: modeling of visibility
and air pollution

It is known that air visibility quality depends on the amount of particulate matter (par-
ticulate matter negatively effects visibility). Furthermore, air pollution is known to
influence the amount of particulate matter (see Hand and Malm (2008)). To model
the influence of air pollution on particulate matter, Hand and Malm (2008) (see
Eq. (6)) fit a linear regression model. However, Burnett and Guthrie (1970) argue
that the influence of air pollution on air visibility may vary each day, depending
on meteorological conditions, and suggest that a SCR model may be more appro-
priate than a multiple linear regression model. In this section we investigate this
possibility. We consider the influence of man-made emissions on particulate matter
(PM2.5-10) in Shenandoah National Park, Virginia, USA. The data we consider is
ammonium nitrate extinction (ammNO3f), ammonium sulfate (ammSO4f), carbon ele-
mental total (ECF), and particulate matter (PM2.5-10) (ammNO3f, ammSO4f, and
ECF are measured in µg/m3), which has been collected every 3 days between 2000
and 2005 (600 observations). We obtain the data from the VIEWS Web site http://
vista.cira.colostate.edu/views/Web/Data/DataWizard.aspx. We men-
tion that the influence of man-made emissions on air visibility is of particular impor-
tance to the US national parks service (NPS), who collected and compiled this data. An
explanation of the data and how air pollution influences visibility (light scattering) can
be found in the study by Hand and Malm (2008).

The plots of both the air pollution and PM2.5-10 data is given in Figs 3 and 4,
respectively.

There is a clear seasonal component in all the data sets as seen from their plots.
Therefore, to prevent spurious correlation between the PM2.5-10 and air pollution,
we detrended and deseasonalized the PM2.5-10 and emissions data. To identify the
dominating harmonics, we used the maximum periodogram methods suggested by
Quinn and Fernandes (1991) and Kavalieris and Hannan (1994). To the detrended and
deseasonalized PM2.5-10 and air pollution data we fitted the following model

Yt = (a1 + αt ,1)xt ,1 + (a2 + αt ,2)xt ,2 + (a3 + αt ,3)xt ,3 + εt ,

where {xt ,1}, {xt ,2}, {xt ,3} and {Yt } are the detrended and deseasonalized ammNO3f,
ammSO4f, ECF and Particulate Matter (PM2.5-10), and {αt , j } and εt satisfy

αt , j = ϑ jαt−1, j + ηt , j , for and j = 1, 2, 3, εt = ϑ4εt−1 + ηt ,4,

{ηt ,i } i.i.d. random variables. Let σ 2
ε = var(εt ), σ 2

α,1 = var(αt ,1), σ 2
α,2 = var(αt ,2), and

σ 2
α,3 = var(αt ,3).

We used estimator 2 to estimate the parameters a1, a2, a3, αt ,1,αt ,2,αt ,3,αt ,4, σ 2
ε , σ 2

α,1,
σ 2
α,2, and σ 2

α,3. As initial values in the minimization scheme, we gave the least squares
estimates of a0 for the mean regression coefficients and 0.1 for all the other unknown
parameters. In the first stage of the scheme we estimated a1, a2, a3 and σ 2

ε , σ 2
α,1, σ 2

α,2

and σ 2
α,3. We also fitted a more parsimonious model where some of the coefficients

were kept fixed rather than stochastic. The results are summarized in Table 2 (step 1).

http://vista.cira.colostate.edu/views/Web/Data/DataWizard.aspx
http://vista.cira.colostate.edu/views/Web/Data/DataWizard.aspx
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Fig. 3. The top plot is 3-day ammonium nitrate extinction (fine), middle plot is 3-day ammonium sulfate
(fine), and lower plot is 3-day carbon elemental total (fine).
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Fig. 4. The plot is 3-day particulate matter (PM2.5 - PM10).
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Table 2
In stage 1 we fitted the model Yt = (a1 + αt ,1)xt ,1 + (a2 + αt ,2)xt ,2 + (a3 + αt ,3)xt ,3 + εt , and various subsets (here we did not model any
dependence in the stochastic coefficients)

a1 a2 a3 ϑ2 ϑ3 ϑ4
√

var(αt ,1)
√

var(αt ,2)
√

var(αt ,3)
√

var(εt ) minL

OLS 0.29 4.57 1.76
(0.078) (0.088) (0.0908)

Stage 1 0.38 4.53 1.58 7.10−7 1.25 0.84 1.29 2.102
(s.e.) (0.048) (0.079) (0.076) (0.07) (0.097) (0.098) (0.046)
Stage 1 0.56 3.28 −3.09 0.75 3.315 4.496 4.09
(s.e.) (0.170) (0.181) (0.29) (0.042) (0.159) (0.049)
Stage 1 0.387 4.53 1.58 1.157 0.84 1.296 2.102
(s.e.) (0.048) (0.080) (0.076) (0.009) (0.009) (0.002)
Stage 1 0.287 3.52 −3.11 3.00 3.83 3.99
(s.e.) (0.139) (0.171) (0.27) (0.164) (0.07)
Stage 1 0.521 5.09 −2.93 4.42 4.15
(s.e.) (0.131) (0.145) (0.65) (0.011)

m = 10 0.393 4.47 1.630 0.883 −0.144 2.066
(s.e.) (0.048) (0.079) (0.076) (0.095) (0.351)
m = 10 0.39 4.47 1.63 −0.13 2.066
(s.e.) (0.05) (0.077) (0.071) (0.34)
m = 10 0.388 4.467 1.661 0.94 2.084
(s.e.) (0.039) (0.061) (0.058) (0.029)

(Continued)
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Table 2
(Continued)

a1 a2 a3 ϑ2 ϑ3 ϑ4
√

var(αt ,1)
√

var(αt ,2)
√

var(αt ,3)
√

var(εt ) minL

m = 50 0.327 4.55 1.75 0.617 −0.235 2.199
(s.e.) (0.056) (0.070) (0.071) (0.30) (0.659)
m = 50 0.324 4.54 1.746 −0.32 2.22
(s.e.) (0.055) (0.073) (0.070) (0.54)
m = 50 0.308 4.55 1.764 0.244 2.21
(s.e.) (0.049) (0.062) (0.062) (0.127)

m = 200 0.261 4.595 1.770 0.538 0.9722 2.111
(s.e.) (0.06) (0.067) (0.070) (0.322) (0.042)
m = 200 0.261 4.60 1.77 −0.087 2.124
(s.e.) (0.06) (0.068) (0.068) (1.2)
m = 200 0.255 4.58 1.797 0.458 2.1339
(s.e.) (0.051) (0.058) (0.058) (0.145)

m = 400 0.2531 4.597 1.793 0.979 0.932 2.116
(s.e.) (0.061) (0.068) (0.070) (0.032) (0.143)
m = 400 0.25 4.59 1.79 0.92 2.128
(s.e.) (0.06) (0.068) (0.068) (0.167)
m = 400 0.250 4.580 1.807 0.478 2.139
(s.e.) (0.051) (0.0583) (0.059) (0.148)

In the second stage (for m = 10, 50, 200, and 400) we fitted AR(1)models to {αt ,2}, {αt ,3}, and {εt }, that is αt ,2=ϑ2αt−1,2 + ηt ,2, αt ,3=ϑ3αt−1,3 +

ηt ,3 and εt = ϑ4εt−1 + ηt ,4. The value of the frequency domain likelihood at the minimal value is also given in the column minL. The standard
errors of the estimates are given below each estimate in brackets.
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We observe that the estimate of σα,1 is extremely small and insignificant, and that the
minimum value of the objective function LT is about the same when the coefficient of
ammNO3f {xt ,1} is fixed and random (it is 2.012). This suggests that the coefficient
of ammNO3f {xt ,1} is deterministic. This may indicate that the relative contribution
of NO3f ({xt ,1}) to the response is constant throughout the period of time and is not
influenced by any other extraneous factors. We re-did the minimization systematically
removing σα,2 and σα,3, but the minimum value of LT , changed quite substantially
(compare the minimum of the objective functions 2.012 with 4.09, 3.99 and 4.15).
Hence the most appropriate model appears to be

Yt = a1xt ,1 + (a2 + αt ,2)xt ,2 + (a3 + αt ,3)xt ,3 + εt ,

where {αt ,1} and {αt ,2} are stochastic coefficients. It is of interest to investigate
whether the coefficients of ammSO4f and ECF are purely random or correlated, and
we investigate this in the second stage of the frequency domain scheme, where we
modeled {αt ,2} and {αt ,3} both as i.i.d. random variables and as the AR(1) model
αt , j = ϑ jαt−1, j + ηt , j , for j = 2, 3. The estimates for various different models and dif-
ferent values of m are given in Table 2. If we compare the minimum of the objective
function where {αt ,2} and {αt ,3} are modeled as both i.i.d. and satisfying an AR(1)
model, we see that there is very little difference between them. Moreover, the standard
errors for the estimates of ϑ2 and ϑ3 are large. Altogether, this suggests that ϑ2 and
ϑ3 are not significant and {αt ,2} and {αt ,3} are uncorrelated over time. Hence, it seems
plausible that the coefficients of ammSO4f and ECF are random, but independent. To
check the possibility that the errors {εt } are correlated, we fitted an AR(1) model to the
errors. However we observe from Table 2, that the AR(1) parameter does not appear
to be significant. Moreover, comparing the minimum of the objective function L(m)600
(for different values of m) fitting i.i.d. {εt } and an AR(1) to {εt } gives almost the same
value. This suggests that the errors are independent. In summary, our analysis suggests
that the influence of ammNO3f on PM2.5-10 is fixed over time, whereas the influence
of ammSO4f and ECF varies purely randomly over time. Using the estimator obtained
when m = 200 this suggests the model

Yt = 0.255xt ,1 + (4.58+ αt ,2)xt ,2 + (1.79+ αt ,3)xt ,3 + εt ,

where {αt ,2} and {αt ,3} are i.i.d. random variables, with σα,2 = 1.157, σα,3 = 0.84,
and σε = 1.296. Based on our analysis it would appear that the coefficients of pollutants
are random, but there is no linear dependence between the current coefficient and the
previous coefficient. On possible explanation for the lack of dependence is that the data
is taken every 3 days and not daily. This could mean that the meteorological conditions
from 3 days ago has little influence on today’s particulate matter. On the other hand
if we were to analyze the daily pollutants and daily PM2.5-10 the conclusions could
have been different. But this daily data is not available. It is likely that since the data
is aggregated (smoothed) over a 3-day period any possible dependence in the data was
removed.
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Abstract

Recent successful developments in Bayesian modeling and computation for large
and complex data sets have led to a step change in the analysis of space–time air
pollution data. Accurate predictions and inferences, as a result of joint modeling of
spatial and temporal dependence, are being made even for summaries and aggre-
gates in time and/or space. Modelers are increasingly benefiting from their ability
to reducing uncertainty in the inference statements for the aggregates, in addition,
by combining information from several sources in a hierarchical Bayesian frame-
work. The information sources may include actual observed data from several
heterogeneous monitoring networks, outputs of community numerical models,
meteorological observations, land use surfaces, and power station emission vol-
umes. The best statistical model for the particular problem at hand recognizes the
relative contribution of the available sources and decides on their optimum role
in it. In this chapter, we develop a hierarchical autoregressive Bayesian model
for space–time air pollution data and illustrate the benefits of modeling with a
real data example on monitoring ozone pollution. We report substantial gains in
predictive mean square error for the proposed model over some other currently
available competing modeling methods.

Keywords: Auto-regressive models, Criteria pollutants, Monitoring compliance,
Ozone concentration modeling, Spatial interpolation.

1. Introduction

The clean air act, amended in 1990 by the legislators in the United States, requires
two types of air quality standards to be maintained for six most important air pol-
lutants: ozone, particulate matter, carbon monoxide, nitrogen oxides, sulfur dioxide,
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and lead. The first, primary standards, set limits to protect public health, including
the health of “sensitive” populations such as asthmatics, children, and the elderly.
The secondary standards set limits to public welfare, provide protection against
decreased visibility, damage to animals, crops, vegetation, and buildings. The Website
http://epa.gov/air/criteria.html provides the current values of these standards. Out of
the six pollutants, particulate matter and ozone have received the most attention in the
literature and these two are the focus of this chapter, although the modeling methods
are applicable to other pollutants as well.

To monitor compliance to the air quality standards and to evaluate exposure to air
pollution the United States Environmental Protection Agency (USEPA) has developed
several sparse networks of monitoring stations covering the whole of the United States.
Data obtained from these sparse networks must be processed using stochastic spatial
and spatio-temporal models to make valid inference for air pollution levels at particular
sites, such as urban areas, based on rigorous statistical methods. In fact, the demand
for spatial models to assess regional progress in air quality has grown rapidly over
the past decade. For improved environmental decision making, it is imperative that
such models enable spatial prediction to reveal important gradients in air pollution,
offer guidance for determining areas in nonattainment with air quality standards, and
provide air quality input to models for determining individual exposure to air pollution.
Spatial prediction has the potential to suggest new perspectives in the development
of emission control strategies and to provide a credible basis for resource allocation
decisions, particularly with regard to network design.

Particulate matter is a complex mixture of extremely small particles and liquid
droplets, and is harmful to human health when inhaled. There are two variations of
particulate matter. Particles with diameters less than 10 micrometers (µm) are called
PM10 and those with diameters less than 2.5 µm are called PM2.5. PM10 are found
near roadways and dusty industries, and PM2.5 are found in smoke and haze. A lot
of modeling effort has gone into analyzing spatio-temporal behavior of particulate
matter, below we provide a brief review. Cressie et al. (1999) compare kriging and
Markov-random field models in the prediction of PM10 concentrations around the
city of Pittsburgh. Sun et al. (2000) develop a spatial predictive distribution for the
space–time response of daily ambient PM10 in Vancouver, Canada. Kibria et al. (2002)
develop a multivariate spatial prediction methodology in a Bayesian context for the
prediction of PM2.5 in the city of Philadelphia. This approach used both PM2.5 and
PM10 data at monitoring sites with different start-up times. Shaddick and Wakefield
(2002) propose short term space–time modeling for PM10. Zidek et al. (2002) develop
predictive distributions on nonmonitored PM10 concentrations in Vancouver. Smith
et al. (2003) propose a spatio-temporal model for predicting weekly averages of PM2.5

and other derived quantities such as annual averages within three southeastern states
in the US. Sahu and Mardia (2005) present a short-term forecasting analysis of PM2.5

data in New York City during 2002. Sahu et al. (2006) consider modeling of PM2.5 by
mixing two processes: one for the rural background areas and the other for the urban
areas. Cocchi et al. (2007) develop hierarchical Bayesian model for daily average PM10

concentration levels. Pollice and Lasinio (2010) develop a Bayesian kriging-based
method for estimating daily PM10 surfaces.

Ground-level ozone is a pollutant that is a significant health risk, especially for chil-
dren with asthma and vulnerable adults with respiratory problems. It also damages

http://epa.gov/air/criteria.html
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crops, trees, and other vegetation. It is a main ingredient of urban smog. Some early ref-
erences on ozone modeling include Cox and Chu (1992), Brown et al. (1994), Guttorp
et al. (1994), Carroll et al. (1997), and Thompson et al. (2001). Porter et al. (2001)
report on the estimation of trends in ozone concentrations adjusted for meteorolo-
gical variables at individual monitoring sites. Zhu et al. (2003) relate ambient ozone
and pediatric asthma emergency room visits in Atlanta using hierarchical regression
methods for spatially misaligned data. Huerta et al. (2004) model hourly readings
of concentrations of ozone jointly with air temperature for data from Mexico City.
Cocchi et al. (2005) follow the approach of Huang and Smith (1999) by using a tree-
based partitioning of daily maxima ozone concentrations and assumed these maxima
are Weibull distributed. McMillan et al. (2005) propose a regime-switching model for
ozone forecasting using meteorological variables as covariates and they illustrate using
data from April to September in 1999 over a spatial domain covering Lake Michi-
gan. Sahu et al. (2007) deal with misalignment between ozone data and meteorological
information. Sahu et al. (2009b) develop a hierarchical space–time model for daily 8-h
maximum ozone concentration data covering much of the eastern United States. Dou
et al. (2010) compare two Bayesian methods for modeling hourly ozone concentra-
tion levels. Berrocal et al. (2010, 2011) propose various downscaling approaches by
regressing the observed point level ozone concentration data on grid cell level com-
puter model output with spatially varying regression coefficients specified through a
Gaussian process.

Several authors have developed generic models for analyzing spatio-temporal data.
Research in this area dates back to Cressie (1994), Goodall and Mardia (1994), and
Mardia et al. (1998). More recent articles in this area include: Kyriakidis and Journal
(1999), Stroud et al. (2001), Wikle and Cressie (1999), Wikle (2003), Gelfand et al.
(2005), and Cressie et al. (2010). A recent book, Cressie and Wikle (2011), provides
a very comprehensive review of both classical and Bayesian methods for analysing
space–time data.

The format of the remainder of this chapter is as follows. In Section 2, we develop
the hierarchical autoregressive model based on our recent work. We also provide an
introduction to Gaussian processes. Spatial prediction and forecasting methods, includ-
ing their estimation in an iterative Markov chain Monte Carlo (MCMC) computation
setup, are provided in Section 3. An illustration of the modeling methods is given in
Section 4 using daily maximum 8-hour average ozone concentration levels observed
in three mid-western states namely, Illinois, Indiana, and Ohio in 2006. A few sum-
mary remarks are provided in Section 5. The Appendix outlines the full conditional
distributions needed for setting up the MCMC.

2. Hierarchical models

2.1. Models for data

Point level air pollution data at location s and at time t is denoted by Z(s, t), after any
transformation, if necessary. Air pollution data are often modeled on the square-root
scale, which encourages normality and stabilizes the variance, see, e.g., Sahu et al.
(2007), although the log transformation is also used sometimes. Model fitting statistics,
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i.e., goodness-of-fit, model diagnostics, parameter estimates and their uncertainty
measures are reported on the modeled scale. However, the validations and predictions
are reported on the original scale for ease of communication to the practitioners and the
end users.

We assume that Z(s, t) is univariate and the spatial reference vector s is two-
dimensional describing the latitude–longitude pair (or its equivalent Northing and
Easting coordinates for example) and the time index t is discrete. We also assume
that Z(s, t) is observed at n monitoring sites denoted by si , i = 1, . . . , n, say and at T
time points so that t = 1, . . . , T . The time unit is typically an hour or a day, although
coarser units such as month or year are also used depending on the specific modeling
objectives.

The first stage of the hierarchy assumes the measurement error model:

Z(si , t) = Y (si , t)+ ε(si , t), i = 1, . . . , n, t = 1, . . . , T , (1)

where Y (si , t) is the true underline spatio-temporal process and the error term ε(si , t)
is a white noise process, assumed to follow the N (0, σ 2

ε ) distribution. In the spatial
statistics literature, σ 2

ε is often called the nugget effect that quantifies variation of the
data points measured at locations that are very small distances apart. In principle, σ 2

ε

could evolve in time but in many applications it is treated as a constant for the sake of
parsimony. This first stage specification is advantageous in handling missing data in the
Bayesian modeling setup with MCMC computation, since any missing data Z(si , t) is
simply simulated from the N (Y (si , t), σ 2

ε ) distribution as implied by (1) at each MCMC
iteration. The specification for Y (si , t) is provided in the next stage.

The space–time process Y (si , t) is assumed to have a systematic mean component,
µ(si , t) that may depend on past values and relevant covariates. A first-order autore-
gressive model given by ρY (si , t − 1) can be used to model dependence on past values.
This model will be appropriate when there is high autocorrelation present between
the successive temporal values at any particular site. Additional autoregressive terms
can also be considered if the first order model is inadequate in modeling the tempo-
ral dependence. Those terms, however, may not remain significant when other model
components such as the covariate effects are introduced. In this chapter, we will only
consider the first-order autoregressive process for the sake of parsimony.

The mean function, µ(si , t), can be further enriched by a set of p, say, relevant spa-
tially and temporally varying covariates x(si , t) = (x1(si , t), . . . , x p(si , t))′. Note that
some of these can only vary spatially and some others may only vary temporally. The
covariate effect can be assumed to be spatially varying by assuming a spatially varying
p-dimensional coefficient process β(s). This model allows the possibility of particu-
lar covariates making local adjustments to the mean function. A suitable prior process
must be specified for β(s). Below we discuss a Gaussian process prior often used in
practical problems. In our illustration in Section 4, however, we will use a fixed β for
all sites s.

The third and final component in Y (si , t) is assumed to be a residual random
intercept, w(si , t), varying in both space and time. Having modeled the temporal
dependence by an autoregressive process, we can assume w(si , t) to be a temporally
independent zero-mean Gaussian process with a specified covariance function. This
independence assumption simplifies the computation since covariance matrices of only
order n × n need to be worked with instead of the full nT × nT matrices. Wikle and
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Cressie (1999) suggest an alternative specification for w(si , t) using orthonormal basis
functions in space and random mean zero variables in time.

In summary, the second-stage model specification is given by:

Y (si , t) = ρY (si , t − 1)+ x(si , t)′β + w(si , t). (2)

Note that the autoregressive component in time and the regression term compete against
each other to provide alternative explanations of data. These together also compete
against the explanation provided by the assumed spatial correlation structure. Because
of this, a practical model fitting exercise can be thought to weigh-up these three
alternative sources of information for choosing the best possible mixture of model
components for explaining the data. Of course, formal Bayesian model choice crite-
ria can be adopted to compare specific models of interest, i.e., the model without the
regressors and so on. For models based on a top-level Gaussian distribution there are
several predictive Bayesian model choice criteria such as the predictive model choice
criteria (PMCC), see, e.g., Sahu et al. (2009b) for an illustration with the PMCC. In
this chapter, however, we do not consider such model choice criteria any further and
instead use the significance of parameter estimates to decide whether to include them
in the model.

The autoregressive model requires a specification for the initial condition Y′0 =
(Y (s1, 0), . . . , Y (sn , 0)). There are two possible alternative specifications for Y0, e.g.,
(i) treat it as a fixed constant where Y (si , 0) is set at the overall mean of location si ,
(ii) assign a prior distribution with mean µ0 and covariance matrix 60. In the latter
case, the elements of µ0 can be taken as the sitewise means, but there may be several
possibilities for treating 60. For example, it may be assumed to be a diagonal matrix
with a large value 104, say for each diagonal entry corresponding to the assumption of
a flat prior. Alternatively, elements of 60 can be specified using a Gaussian covariance
function discussed in the next subsection. In our illustration, we treat Y0 as fixed for
convenience and simplicity.

2.2. Gaussian processes

Often Gaussian processes are assumed as components in spatial and spatio-temporal
modeling. These stochastic processes are defined over a continuum, e.g., a spatial study
region and specifying the resulting infinite dimensional random variable is often a chal-
lenge in practice. Gaussian processes are very convenient to work in these settings since
they are fully defined by a mean function, say µ(s) and a valid covariance function,
say C(s, s∗) = Cov(w(s),w(s∗)), which is required to be positive definite. A covari-
ance function is said to be positive definite if the covariance matrix, implied by that
covariance function, for a finite number of random variables belonging to that process
is positive definite. Below we provide a family of valid positive definite covariance
functions.

Gaussian processes are often preferred in spatial modeling because of the attrac-
tive distribution theory associated with them. All finite dimensional distributions of
Gaussian processes are multivariate normals. Hence, joint distribution of data observed
at any finite set of locations (or the associated random effects) is multivariate normal.
Moreover, kriging or spatial prediction at yet unobserved locations conditionally on the
observed data is facilitated by means of a conditional distribution, which is also normal.
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This convenient distribution theory is very attractive for spatial prediction in the con-
text of modern, fully model-based spatial analysis within a Bayesian framework. The
spatial predictive distributions are easy to compute and simulate from in an iterative
MCMC framework.

We now turn to the specification of a valid covariance function. There is a substan-
tial literature on this. Chapter 2 of Banerjee et al. (2004) provides a thorough discussion
on this topic and the related concepts of stationarity, isotropy, and separability. Briefly,
a process is defined to be weakly stationary if the covariance between a pair of ran-
dom variables depends only on the separation vector between the two locations and
not on the actual locations where those are observed. An isotropic covariance function
only depends upon the distance between any two locations and not on the direction.
Thus any pair of random variables observed at any two locations will have the same
covariance as any other pair of random variables observed at any other locations sepa-
rated by same distance. Separability is a concept used in modeling multivariate spatial
data including spatio-temporal data. A separable covariance function in space and
time is simply the product of two covariance functions: one for space and the other
for time.

The Matérn family of covariance functions provides a very general choice and is
given by:

C(u) = σ 2 1

2ν−10(ν)
(2
√
νuφ)νKν(2

√
νuφ), φ > 0, ν ≥ 1, u > 0, (3)

where Kν(·) is the modified Bessel function of second kind and of order ν, see,
e.g., Abramowitz and Stegun (1965, Chapter 9). Popular special cases of the Matérn
family are: (i) ν = 1/2 corresponding to the exponential model C(u) = σ 2 exp(−φu)
and (ii) ν = 3/2 which leads to C(u) = σ 2(1+ φu) exp(−φu) and (iii) Gaussian,
C(u) = σ 2 exp(−φ2u2) when ν →∞.

The minimum value of u for which C(u) ≈ 0 is defined as the range in spatial
statistics literature. Note that, for the exponential covariance function, C(u) can be
exactly 0 only when u is very large, in other words∞. To avoid this value of infinite
range when our study region is a finite domain (in the sense that the maximum distance
between any two locations is finite), we often calculate the range as that value of the
distance u for which C(u) is very small, i.e., 0.01 or 0.05. In this chapter, we shall
illustrate with the exponential covariance function for which we define the range as
− log(0.05)/φ ≈ 3/φ.

2.3. Joint posterior distribution

Define Zt = (Z(s1, t), . . . , Z(sn , t))′, and Yt = (Y (s1, t), . . . , Y (sn , t))′. Let X t denote
the n × p matrix having the i th row as x(si , t)′. It is convenient to write the joint
posterior distribution using Zt , Yt , and X t . To facilitate this, we now rewrite the hierar-
chical model specifications using these vectors and matrices as follows. The first model
equation is obtained from (1):

Zt = Yt + εt , (4)
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for t = 1, . . . , T , where εt = (ε(s1, t), . . . , ε(sn , t))′. From (2) we have:

Yt = ρ Yt−1 + X tβ + wt , (5)

for t = 1, . . . , T , where wt = (w(s1, t), . . . , w(sn , t))′.
For the measurement error model in (4) we have that εt ∼ N (0, σ 2

ε In), t = 1, . . . , T ,
independently, where 0 is the vector with all elements zero and In is the identity
matrix of order n. For the spatially correlated error we assume that wt follows the
GP independently with the covariance function σ 2

wρw(si − s j ;φw). We take ρw(si −

s j ;φw) = exp
(
−φwd(si , s j )

)
, where d(si , s j ) is the distance between sites si and s j ,

i , j = 1, . . . , n. This GP assumption implies that wt ∼ N (0,6w), t = 1, . . . , T , where
6w has elements σw(i , j) = σ 2

w exp
(
−φwd(si , s j )

)
. For future use, we define Sw by

the relation 6w = σ 2
wSw.

Let ϑ t = ρ Yt−1 + X tβ, for t = 1, . . . , T . Further, let θ denote all the parameters, β,
ρ, σ 2

ε ,φw, and σ 2
w. Let v denote all the augmented data, Yt and the missing data, denoted

by z∗(si , t), for i = 1, . . . , n, t = 1, . . . , T , and z denote all the observed non-missing
data z(si , t), for i = 1, . . . , n, t = 1, . . . , T . The log of the posterior distribution,
denoted by logπ(θ , v|z), can be written as

−
nT

2
log(σ 2

ε )−
1

2σ 2
ε

T∑
t=1
(Zt − Yt )

′(Zt − Yt )

−
nT

2
log(σ 2

w)−
T

2
|Sw| −

1

2σ 2
w

T∑
t=1
(Yt − ϑ t )

′S−1
w (Yt − ϑ t )

+ log
(
π(ρ,β, σ 2

ε , σ 2
w,φw)

)
,

where π(ρ,β, σ 2
ε , σ 2

w,φw) denotes the prior distribution, and |Sw| denotes the deter-
minant of Sw. We assume that a priori β ∼ N (0, σ 2

β Ip), and to have a flat prior
distribution we take σ 2

β = 104. The autoregressive coefficient ρ is also specified as
the N (0, 104) distribution, but restricted in the interval I (0 < ρ < 1), so that this dis-
tribution is essentially flat. The inverse of the variance components, 1/σ 2

ε , 1/σ 2
w, are

assumed to follow G(a, b) independently, where the distribution G(a, b) has mean a/b.
In our implementation, we take a = 2 and b = 1 to have a proper prior specification
for each of these variance components, since improper prior distributions may lead to
improper posterior distributions.

For the correlation decay parameter, φw we assume an independent uniform prior
distribution in the interval (0.001, 1). This corresponds to a value of spatial range
between 3 and 3000 distance units (often taken as kilometers or miles). This prior
distribution is appropriate for modeling air pollution data observed in a variety of study
regions, e.g., a city where the maximum distance between any two locations is only
a few kilometers or a substantial part of the eastern US where the maximum distance
is approximately 3000 km. Clearly, the endpoints of the prior interval can be changed
to accommodate the spatial range taking any meaningful value in a particular practical
problem.
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3. Prediction details

We first develop the methods for spatial interpolation of the air pollution levels at a
new location s0 and any time t , t = 1, . . . , T . Details for one-step ahead forecasting at
time t = T + 1 are given at the forecasting subsection below. Spatial interpolation at
location s0 and time t is based upon the predictive distribution of Z(s0, t) given in the
model Eqs (1) and (2). According to (1), Z(s0, t), has the distribution:

Z(s0, t) ∼ N
(
Y (s0, t), σ 2

ε

)
(6)

and

Y (s0, t) = ρ Y (s0, t − 1)+ x(s0, t)′β + w(s0, t).

It is easy to see that Y (s0, t) can only be sequentially determined using all the previous
Y (s0, t), including Y (s0, 0), up to time t . Hence, we introduce the notation Y(s, [t])
to denote the vector (Y (s, 1), . . . , Y (s, t))′ for t ≥ 1. Note that a value of Y (s0, 0) is
required for this prediction problem. This value should be taken according to the prior
distribution assumed for the initial condition on Y0. If, however, Y0 has been taken to
be a fixed constant, then Y (s0, 0) can also be taken as that same constant, as has been
done in our illustration here.

The posterior predictive distribution of Z(s0, t) is obtained by integrating over the
unknown quantities in (6) with respect to the joint posterior distribution, i.e.,

π (Z(s0, t)|z) =
∫
π
(
Z(s0, t)|Y (s0, [t]), σ 2

ε

)
π (Y (s0, [t])|θ , v)

× π(θ , v|z) dY (s0, [t]) dθ dv. (7)

When using MCMC methods to draw samples from the posterior, the predictive distri-
bution (7) is sampled by composition. Draws from the posterior distribution π(θ , v|z)
facilitates evaluation of the above integral, details are provided below.

We draw Y (s0, t) from its conditional distribution given θ , v and Y (s0, [t − 1]).
Analogous to (5), we obtain for t ≥ 0(

Y (s0, t)
Yt

)
∼ N

[(
ρ Y (s0, t − 1)+ x(s0, t)′β

ρ Yt−1 + X tβ

)
, σ 2

w

(
1 Sw,12

Sw,21 Sw

)]
,

where Sw,12 is 1× n with the i th entry given by exp(−φwd(si , s0)) and Sw,21 = S′w,12.
Hence,

Y (s0, t)|Yt , θ , v ∼ N (χ , 3) (8)

where 3 = σ 2
w

(
1− Sw,12S−1

w Sw,21
)

and

χ = ρ Y (s0, t − 1)+ x(s0, t)′β + Sw,12S−1
w (Yt − ρ Yt−1 − X tβ) .

In summary, we implement the following algorithm to predict Z(s0, t), t = 1,
. . . , T .
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1. Draw a sample θ ( j), v( j), j ≥ 1 from the posterior distribution.
2. Draw Y( j)(s0, [t]) sequentially using (8). Note that the initial value Y ( j)(s0, 0) is

a constant for all s0 in our implementation.
3. Finally draw Z ( j)(s0, t) from N (Y ( j)(s0, t), σ 2

ε

( j)
).

The air pollution concentration on the original scale is the square of Z ( j)(s0, t). If we
want the predictions of the smooth pollution process without the nugget term, we sim-
ply omit the last step in the above algorithm and square the realizations Y( j)(s0, t). We
use the median of the MCMC samples and the lengths of the 95% intervals to sum-
marize the predictions. The median as a summary measure preserves the one-to-one
relationships between summaries for Y and Z , and for Y 2 and Z2.

3.1. Calculating summaries

We now develop methodology for obtaining temporal summaries of air pollution. We
illustrate by detailing methodologies for calculating the annual fourth highest ozone
concentration at any site s0.

The true annual fourth highest daily maximum 8-hour average ozone concen-
tration, denoted by f (s0), is given by the fourth highest value of the series
Y 2(s0, 1), . . . , Y 2(s0, T ). (Note that we model ozone on the square-root scale.) At each
MCMC iteration, j , we calculate f ( j)(s0) and then the summaries of these posterior
predictive realizations f ( j)(s0) are used for predictions of the annual fourth highest
daily maximum 8-hour average ozone concentration (and to obtain their uncertainties).

3.2. Forecasting

The one-step ahead Bayesian forecast at a location s0 is given by the posterior pre-
dictive distribution of Z(s0, T + 1), which is determined by Y (s0, T + 1). Note that
using (8), we already have the conditional distribution of Y (s0, T ) given Yt , θ , and
v. We use model equation (2) to advance this conditional distribution one unit of
time in future. The mean of the one-step ahead forecast distribution is given by
ρ Y (s0, T )+ x(s0, T + 1)′β, according to (2), and Y (s0, T + 1) should be equal to this
if we are interested in forecasting the mean. If, however, we want to forecast an obser-
vation at location s0, we simulate Y (s0, T + 1) from the marginal distribution, which
has the above mean and variance σ 2

w. We work with this marginal distribution rather
than the conditional distribution like (8) above since conditioning with respect to the
observed information (i.e., kriging) up to time T at the observation locations s1, . . . , sn

has already been done to obtain Y (s0, T ), and at the future time T + 1 there is no
new available information to condition on except for the new values of the regres-
sor, x(s0, T + 1). Then we follow the above algorithm to obtain the forecasts and their
uncertainty estimates using ergodic averages of MCMC output.

4. An example

We illustrate with the daily maximum 8-hour average ozone concentration levels in
2006 observed in 117 monitoring sites in the three mid-western states namely, Illinois,
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Fig. 1. A map of Illinois, Indiana, and Ohio with the 105 ozone monitoring sites plotted as points. The
validation sites are labeled 1, . . . , 12.

Indiana, and Ohio. This study region (see Fig. 1) provides a good mix of developed
industrial areas in Ohio and large cities like Chicago separated by vast rural areas.
We use data from 12 randomly selected sites for validation purposes. The data from
remaining 105 sites are used for model fitting.

Our analysis uses daily data for the T = 153 days in the high ozone season between
May and September. This is a moderately large data set rich in both space and time with
16,065 observations (= 105× 153); 291 (= 1.8%) of these are missing. The mean
value is 47.62 parts per billion (ppb) and the range is 6.75–131.38 ppb. A sitewise
boxplot (see Fig. 2) shows much spatial variation in the average levels between the
sites. However, the variability within the sites is seen to be roughly constant, which
can be explained by the fact that the daily observations are all based on eight hourly
averages. A time series plot of the data for two randomly selected sites, provided in
Fig. 3, shows high ozone values during the three hottest months of June, July, and
August. The plot also shows the presence of moderate temporal dependence.

Following Sahu et al. (2009b), we include the output of a computer simulation model
known as the CMAQ (Community Multiscale Air Quality), see http://www.cmaq-
model.org/, as the single covariate in the model. The CMAQ model is based on
emission inventories, meteorological information, and land use, and it produces aver-
age ozone concentration levels at each cell of a 12-km2 grid covering the whole of
the continental US, retrospectively, although there is a version of the model known as
Eta-CMAQ that produces forecasts up to two days in advance. In this chapter, we use
the retrospective daily maximum 8-hour average CMAQ ozone concentration for the
grid cell covering the monitoring site. We provide a scatterplot of the ozone concen-
tration values and the corresponding CMAQ values in Fig. 4. The plot shows a strong
linear relationship between the two, but clearly CMAQ values are upwardly biased.
This points to the need for a more accurate empirical model as is done here. Note that
for this plot and also for modeling we have adopted the square-root scale. The spatial

http://www.cmaqmodel.org
http://www.cmaqmodel.org
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Fig. 2. Boxplots of the 153 daily maximum 8-hour ozone concentration levels in 2006 for each of the 105
sites located in Illinois and Indiana.
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Fig. 3. Time series plot of daily ozone values from two randomly selected sites.

predictions at the unmonitored sites are performed using the CMAQ output at the corre-
sponding grid cells. We have also attempted to include other meteorological covariates
such as the daily maximum temperature, but none of those turned out to be significant
in the presence of the CMAQ output.
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Fig. 4. A scatterplot of daily maximum 8-hour ozone concentration levels for the 105 sites in 2006 against
the corresponding CMAQ values on the square-root scale.

In addition to the CMAQ output, we include an overall intercept β0 in the model.
Thus the mean of the true process Y (s, t) is given by ρY (s, t − 1)+ β0 + βx(s, t),
where x(s, t) denotes the CMAQ output at the grid cell that includes the location s.
The model also contains the two variance components σ 2

ε and σ 2
w, and the spatial decay

parameter, φw. Of course, all the Y (si , t) and the missing Z(si , t) are also need to be
simultaneously estimated. We implement the Gibbs sampler with a Metropolis step for
φw to simulate these parameters from their conditional distributions provided in the
Appendix.

We tune the variance of the proposal distribution in the Metropolis step for the decay
parameter φw to have a reasonable acceptance rate in the range (0.15, 0.40). The tuning
parameter finally adopted gave us an acceptance rate of 27.35% from 25,000 iterations.
As is usual in MCMC computation, we have run the chains with many different starting
values and monitored convergence by plotting traces of the parameters ρ,β0,β, σ 2

ε , σ 2
w,

and φw. We have also examined the autocorrelation plots of these parameters and found
those to be reasonable, i.e., the autocorrelations die down for moderate values of the
lag parameter. There is, however, high crosscorrelation between the parameters σ 2

w and
φw and the MCMC chain mixes somewhat slowly because of this. This mixing prob-
lem occurs due to weak identifiability of the parameters and has been noted by many
authors, see, e.g., Zhang (2004) and Stein (1999). The problem disappears if φw is not
estimated and kept at a fixed value chosen by out of sample validations, see, e.g., Sahu
et al. (2007). Here, we decide to sample φw for making inference using a large number
of MCMC iterations, 20,000 after discarding the first 5000.
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Fig. 5. A plot of the validation predictions against the observations along with 95% prediction intervals. The
y = x line is superimposed.

We use out of sample data from the 12 sites to validate the model. Out of the 1836
(12× 153) validation ozone values, 32 are missing in our data. Figure 5 provides a plot
of the 1804 out of sample predictions against the corresponding observations. The 95%
prediction intervals are superimposed along with the y = x line. The figure shows a
very slight over and under prediction at the two ends of the ozone scale, otherwise, there
is a good agreement between the observations and predictions. The nominal coverage
of the 95% prediction intervals is 96.2%, which confirms the adequacy of the model.
The validation mean square errors (VMSE) calculated for the 12 sites are between
8.91 to 114.68; the overall VMSE calculated using all the 1804 observations and their
predictions is 38.02. These compare very favorably against CMAQ since the overall
VMSE for CMAQ output is 144.18 and the sitewise CMAQ VMSEs range between
58.39 and 451.88. The overall VMSE value, 38.02, for the model-based predictions is
also smaller than the same, 48.5, for a downscaler model recently proposed by Berrocal
et al. (2011) for a similar data set.

The point and interval estimates of the model parameters are given in Table 1.
We found moderate temporal dependence among successive day ozone concentra-
tions (estimate of ρ = 0.2687). There is also strong spatial correlation, since the point
estimate of φw is 0.0027 implying an approximate range of 1109 km. In addition to
these strong spatial and temporal dependencies, the ozone concentrations also enter-
tain the CMAQ output as a significant predictor, since the point estimate is 0.4976
and the 95% credible interval does not include zero. A direct interpretation of this
estimate is difficult due to the square-root transformation used in modeling. Note that
both autoregressive and the regression terms are significant predictors and hence their
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Table 1
Estimation of the parameters. CI stands for equal-tailed
credible intervals

Mean SD 95% CI

ρ 0.2687 0.0108 (0.2469, 0.2890)
β0 1.4152 0.0667 (1.2885, 1.5485)
β 0.4976 0.0081 (0.4820, 0.5136)
σ 2
ε 0.2165 0.0042 (0.2085, 0.2248)
σ 2
w 0.4246 0.0229 (0.3848, 0.4738)
φw 0.0027 0.0002 (0.0024, 0.0031)
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Fig. 6. Model-based predictions of the true annual fourth highest daily maximum 8-h average ozone levels
in 2006. The 105 fitting sites are plotted as points and the validation sites are labeled 1, . . . , 12 as in Fig. 1.

inclusion will provide better model fitting and prediction and hence are retained in
the model. Finally, the estimates of the variance components σ 2

ε and σ 2
w show that

more variation is explained by the spatio-temporal effects than the pure error process
ε(s, t).

We now plot the annual fourth highest daily maximum 8-hour average true ozone
values by linearly interpolating the predictions at the centers of the 900 randomly
selected CMAQ grid cells in the study region (see Fig. 6). We find very good agreement
among the predicted and observed maximum values. In fact, to quantify this with set
aside data from the 12 validation sites, we provide the observed, the model predicted
and the CMAQ output for the annual fourth highest daily maximum 8-hour average
ozone concentration values in Table 2. The mean square error for the model-based
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Table 2
Annual fourth highest daily maximum 8-hour average
ozone concentrations in ppb units

Validation Site Observed Predicted CMAQ

1 71.13 64.38 67.86
2 60.25 62.08 70.59
3 72.75 70.03 72.16
4 76.63 76.64 70.98
5 70.75 71.02 70.55
6 75.50 79.36 78.59
7 81.00 78.68 83.96
8 72.25 74.90 76.43
9 70.80 75.61 72.51

10 70.25 73.81 72.78
11 73.00 73.42 69.62
12 67.38 69.59 68.48
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Fig. 7. Lengths of 95% prediction intervals for the true annual fourth highest daily maximum 8-hour ozone
ozone levels in 2006.

predictions for these 12 validation sites is 10.4 while the same for the CMAQ out-
put is 17.3. Thus, the model provides even more accurate predictions than the very
accurate CMAQ output and the model is predicting the annual fourth highest value
within a range of 3.2 (=

√
10.4) ppb on average. Figure 7 shows the uncertainties in

the model predictions by providing a map of the lengths of the 95% prediction inter-
vals. As expected, these intervals are larger in nonmonitored areas compared with
monitored areas. No such uncertainty map is possible for the deterministic CMAQ
output.
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5. Further discussion

The modeling methods discussed in this chapter are suited for monitoring compli-
ance with respect to air regulatory standards. High resolution spatial and fine scale
temporal modeling allows inference on aggregated spatial (e.g. regional) and tempo-
ral summaries (e.g. annual). The Bayesian computation methods also enable accurate
assessment of uncertainties in the aggregated summaries.

There are several other important areas of research in air pollution modeling. A
number of papers are devoted to assessing exposure to air pollution and to fuse moni-
toring data with computer model output, see, e.g., Gelfand and Sahu (2010) for a recent
review. Important modeling developments are also taking place in analyzing other pol-
lutants such as sulfate and nitrate oxides. Deposition of these through precipitation is
also of very much interest to researchers, see, e.g., Sahu et al. (2010) and the refer-
ences therein. Forecasting of air pollution both for short-term and long-term periods
also provide challenging statistical problems to the modeling community. Sahu et al.
(2009a,b) develop methods for instantaneous forecasting of hourly and daily ozone
levels.
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Appendix: Conditional Distributions for Gibbs sampling

1. Sampling Missing Data. Any missing value, Z(s, t) is to be sampled from
N (Y (s, t), σ 2

ε ), t = 1, . . . , T .
2. Sampling σ 2

ε and σ 2
w. Straightforward calculation yields the following complete

conditional distributions:

1

σ 2
ε

∼ G

(
nT

2
+ a, b + 1

2

T∑
t=1
(Zt − Yt )

′(Zt − Yt )

)
,

1

σ 2
w

∼ G

(
nT

2
+ a, b +

1

2

T∑
t=1
(Yt − ϑ t )

′S−1
w (Yt − ϑ t )

)
.

3. Sampling Yt . Let Qw = 6
−1
w . The full conditional distribution of Yt is

N (3tχ t , 3t ), where

Case 1: For 1 ≤ t < T − 1:

3−1
t =

In

σ 2
ε

+ (1+ ρ2)Qw,

χ t =
Zt

σ 2
ε

+ Qw {ρYt−1 + X tβ + ρ (Yt+1 − X t+1β)}.
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Case 2: For t = T

3−1
t =

In

σ 2
ε

+ Qw,

χ t =
Zt

σ 2
ε

+ Qw (ρYt−1 + X tβ).

4. Sampling ρ. The full conditional distribution of ρ is N (3χ , 3) where

3−1
=

T∑
t=1

Y′t−1 QwYt−1 + 10−4, χ =
T∑

t=1

Y′t−1 Qw(Yt − X tβ),

restricted in the interval (0, 1).
5. Sampling β. The full conditional distribution of β is N (3χ , 3), where

3−1
=

T∑
t=1

X ′t QwX t +6
−1
β , and

χ =

T∑
t=1

X ′t Qw(Yt − ρYt−1).

6. Sampling φw. The full conditional distribution of φw is nonstandard and must be
calculated from the prior and likelihood terms involving φw and is given by:

log(π(φw| · · · ) = −
1

2
|Sw| −

1

2σ 2
w

T∑
t=1

(Yt − ϑ t )
′S−1
w (Yt − ϑ t )+ log(π(φw))

up to a normalizing constant, where · · · denotes all the data and parameters
except for φw. We adopt a Metropolis–Hastings step to obtain sample from this
full conditional distribution as follows. Let φ(p)w denote a sample from a proposal

distribution q
(
φ
(p)
w |φ

(c)
w

)
where the current value is φ(c)w . The sampled value, φ(p)w

is accepted with probability

α
(
φ(p)w , φ(c)w

)
= min

1,
π(φ

(p)
w | · · · ) q

(
φ(c)w |φ

(p)
w

)
π(φ

(c)
w | · · · ) q

(
φ
(p)
w |φ

(c)
w

)
 .

This acceptance probability simplifies considerably when q
(
φ
(p)
w |φ

(c)
w

)
is taken

to be symmetric in its arguments φ(p)w and φ(c)w , i.e., when q
(
φ
(p)
w |φ

(c)
w

)
=

q
(
φ(c)w |φ

(p)
w

)
. In this case, the ratio of densities in the acceptance probability is

simply calculated by the ratio π
(
φ
(p)
w | · · · )/π(φ

(c)
w | · · ·

)
. The resulting algorithm

is known as the Metropolis algorithm.
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We implement the Metropolis algorithm by taking the proposal distribution as
the normal distribution with the mean at the current value and the variance σ 2

p ,
which we tune to have an acceptance rate between 15% and 40%, see Gelman
et al. (1996) for theoretical justifications. Moreover, we implement the Metropo-
lis algorithm on the log-scale for φw, i.e., we work with the density of log(φw)
instead of φw since the support of the normal proposal distribution is the real line.
Keeping φw within a range is trivial since any proposal value outside the range
is rejected forthwith.
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Abstract

In this chapter, we describe the Karhunen–Loéve expansion (KLE) of temporal
and spatio-temporal processes. KLE is one of the most frequently used statisti-
cal techniques for data mining of continuous stochastic processes. In its discrete
formulation, it is simply empirical orthogonal function (EOF) analysis or princi-
pal component analysis (PCA). Hence, both KLE and EOF are useful to achieve
efficient dimension reduction of huge data sets.

There are several references that discuss the use of EOF, or KLE, in the climato-
logical sciences. Because their applications are not only restricted to atmospheric
sciences, the aim of this chapter is to frame KLE in a more general setting by
addressing various recent developments.

Keywords: temporal processes, spatial processes, spatio-temporal processes,
biomedical time series, Karhunen–Loéve expansion, empirical orthogonal func-
tions, principal component analysis.

1. Introduction

Temporal and spatio-temporal models have received widespread popularity and have
been largely developed through applications in many scientific fields such as engineer-
ing, economics, environmental sciences, climate prediction, and meteorology. More
recent activities in the area also include tracking, functional MRI, and health data
analysis.

The theory and practice of time series analysis have developed rapidly since the
publication of the book by Box and Jenkins (1970). Development and research in the
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spatio-temporal area started only in the last 20 years, when management and manip-
ulation of data, relating to both spatial and temporal changes, were recognized as
an indispensable assignment. In the nineties, several researchers independently began
looking at the potential of having a dynamic temporal aspect in space–time statistical
modeling. However, until recently, there has not been a theory of spatio-temporal pro-
cesses separate from the already well-established theories of spatial statistics and time
series analysis. The books by Banerjee et al. (2004) and Sherman (2011) provide a good
starting point for researchers in this area.

Motivated by different applications, various modeling strategies have been adopted;
the choice of the approach is generally dictated by the objective of the study, whether it
be obtaining forecasts, estimating trends, or increasing the scientific understanding of
the underlying mechanisms.

A key challenge of many research studies is the extraction of information from
large temporal or spatio-temporal data sets now available. These data sets often com-
prise observations of extremely complicated underlying processes. Hence, methods of
analysis must be able to account for multiscale dynamical variability across different
dynamical variables in space and time, account for various sources of error, and pro-
vide efficient dimension reduction. Scientists have developed or borrowed and refined
many descriptive statistical techniques that aid in the summary and interpretation of
these data. The focus here is on the Karhunen–Loéve (KL) expansion, which is one of
the most frequently used statistical techniques for data mining of continuous stochas-
tic processes. Note that, in its discrete formulation, KL analysis is simply empirical
orthogonal function (EOF) analysis or principal component analysis (PCA). Since the
introduction by Lorenz (1956), we can find an extensive use of EOFs in the atmospheric
sciences. For example, they have been used for describing climate, comparing simula-
tions of general circulation models, developing regression forecast techniques, weather
classification, map typing, the interpretation of geophysical fields, and the simulation
of random fields, particularly nonhomogeneous processes. For a general discussion of
EOFs in meteorology, see, for example, Craddock (1973).

The interested reader should note that there are several excellent reference books
(see, for example, Jolliffe (2002) and von Storch and Zwiers (1999)) and review papers
(Hannachi et al., 2007; Monahan et al., 2009) that discuss the use of EOF or KL in
the climatological sciences. However, the applications of KL and EOF are restricted to
atmospheric sciences, and thus, the subject has not been systematically reviewed in a
more general literature to address the various recent developments. This chapter is a
contribution to fill in this gap, but is by no means exhaustive.

The plan of this chapter is as follows. In Section 2, we introduce the theory of
Karhunen–Loéve analysis for one-dimensional continuous stochastic process; we show
that the analysis consists of two complementary stages, and we describe them through
EOF analysis. In Section 3, we describe a multiresolution version of KL and show
its usefulness for the analysis of biomedical signals. Sections 4 and 5, instead, extend
the KL theory to coupled one-dimensional processes and spatio-temporal processes,
respectively. Section 6 concludes the chapter with a discussion.

2. Karhunen–Loéve expansion of one-dimensional processes

A random process can be represented as a series expansion involving a complete set of
deterministic functions with corresponding random coefficients. There are several such



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 21-ch17-497-520-9780444538581 2012/4/24 1:57 Page 499 #3
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series expansions that are widely in use. A commonly used one is the Fourier series in
which the coefficients are real numbers and the expansion basis consists of sinusoidal
functions. Zhang and Ellingwood (1994) proposed another orthogonal series expansion
using Legendre polynomials as the deterministic basis function. However, the random
coefficients in the expansion are correlated random variables. Other polynomials have
also been used (Li and Der-Kiureghian, 1993). The use of Karhunen–Loéve expansion
with orthogonal deterministic basis functions and uncorrelated random coefficients has
generated interest because of its biorthogonal property, that is, both the deterministic
basis functions and the corresponding random coefficients are orthogonal. This allows
for the optimal encapsulation of the information contained in the random process into
a set of discrete uncorrelated random variables (Ghanem and Spanos, 1991).

Let Y (t) be a random process defined on a probability space (�; A; P) and indexed
on a bounded domain T . Assume that Y (t) has a mean µ(t), such that X (t) = Y (t)−
µ(t) is a zero-mean process with finite variance, E

[
X (t)2

]
, that is bounded for all

t ∈ T , and continuous covariance function, R(t , t ′) = E
[
X (t)X (t ′)

]
. The mean-value

function µ(t) is usually unknown but can be estimated from the data when some priori
knowledge is available concerning the functional form ofµ(t). For example, when Y (t)
is nonstationary, µ(t) may be well approximated by a polynomial of degree k > 0.

It is well known (see, for example, Loève (1978), Shorack and Wellner (1986)
and Karhunen (1947)) that there exist constants, λ1 ≥ λ2 ≥ . . . ≥ 0, together with
continuous functions φ1(t),φ2(t), . . ., such that the following properties are fulfilled:

P.1 The set {φi , i ≥ 1} forms a complete orthogonal system in the space of a square
integrable function L2(T ), that is,∫

T

φi (t)φ j (t)dt = δi j ,

where δi j is the Kronecker-delta function.
P.2 The set {(λi ,φi ), i ≥ 1} forms a complete set of solutions of the Fredholm-type

equation in (λ,φ)∫
T

R(t , t ′)φi (t)dt = λiφi (t
′) and

∫
T

φ2
i (t)dt = 1. (1)

P.3 From Mercer’s theorem (Riesz and Sz-Nagy, 1955), we have the following
spectral or eigen-decomposition

R(t , t ′) =
∞∑

i=1

λiφi (t)φi (t
′), (2)

which is a series absolutely and uniformly convergent in (t , t ′).
P.4 There exists a sequence, {zi , i ≥ 1}, of zero-mean uncorrelated random

variables with variance E
[
z2

i

]
= σ 2

zi
= λi , given by the inner product

zi =

∫
T

X (t)φi (t)dt , (3)
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such that the following KL expansion holds

Y (t) = µ(t)+
∞∑

i=1

zi φi (t). (4)

Note that if Y (t) is restricted to a Gaussian process, then the zi are also uncor-
related Gaussian random variables. It is also customary to standardize the zi

to unit variance, but in what follows we assume that they are unstandardized
unless specified otherwise.

The series expansion in (4), which is known to converge in the mean square sense for
any distribution of Y (t), is referred to as the KL expansion (KLE) and provides a second
moment characterization in terms of uncorrelated random variables and deterministic
orthogonal functions.

For practical implementation, the series (2) and (4) are approximated by a finite
number of terms, say M , giving

R(t , t ′) =
M∑

i=1

λiφi (t)φi (t
′)

and

Y (t) = µ(t)+
M∑

i=1

zi φi (t). (5)

In the study by Grenander (1976) and Ghanem and Spanos (1991), it is shown
that this truncated series is optimal. That is, ordering the terms of the expansion in
decreasing order of the variances, λi , of the coefficients, zi , the KLE gives an optimal
expansion in the sense that the series truncated at any point minimizes the integrated
mean square error between the actual and approximated random function. In other
words, if we approximate the random process in terms of M basis functions, the optimal
basis functions for the truncated expansion correspond to the eigenvectors of the covari-
ance matrix, R, with the M largest eigenvalues. Hence, for any other set of coefficients,
di 6= zi , we have the inequality

∫
T

[
X (t)−

M∑
i=1

zi φi (t)
]2

dt ≤
∫
T

[
X (t)−

M∑
i=1

di φi (t)
]2

dt .

Also, the expansion (2) minimizes the entropy measure

Iλ =
M∑

i=1

λi ln(λi ).

Thus, the KLE is optimal in the sense of simultaneously minimizing a mean-squared
criterion and maximizing information content.
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Depending on the application, the Karhunen–Loéve analysis is usually used in a
diagnostic mode to find principal (in terms of explanation of variance) temporal struc-
tures and to reduce the dimension in large data sets while simultaneously reducing
noise. Hence, an objective of KL analysis is to make a decomposition of the original
series into the sum of a small number of independent and interpretable components

Y (t) = T (t)+ C(t)+ S(t)+ E(t),

where T (t) is a polynomial trend, C(t) is a cycle, generally possessing variable ampli-
tude, and S(t) denotes seasonal or periodic within-year movements. For economic
time series, T (t), C(t), and S(t) are typically viewed as long-, medium-, and short-
term movements, respectively. The E(t) is a structureless noise assumed to be a
zero mean stationary random process with variance σ 2

e , uncorrelated with the signal
component,

V (t) = T (t)+ C(t)+ S(t), (6)

which is an unobservable process “smoother” than Y (t).
Without specifying any parametric model for the observed time series, the

Karhunen–Loéve analysis is thus useful for solving the following problems: (1) finding
trends of different resolution, (2) smoothing, (3) extraction of seasonality components,
(4) simultaneous extraction of cycles with small and large periods, (5) extraction of
periodicities with varying amplitudes, (6) simultaneous extraction of complex trends
and periodicities, (7) finding structures in short time series, and (8) change-point
detection.

The Karhunen–Loéve technique consists of two complementary stages: decompo-
sition and reconstruction, both of which include two separate steps. These will be
discussed in the next sections.

2.1. Decomposing discrete time series

2.1.1. Embedding
Consider the zero-mean time series X (t). The embedding step is associated with the
construction of the so-called trajectory matrix. Several approaches can be followed
to define this matrix, and some examples can be found in the study by Basilevsky
and Hum (1979), Golyandina et al. (2001), and Hannachi et al. (2007). Here, we fol-
low Fontanella et al. (2010) and define the trajectory matrix as N time delayed and
decimated copies of the observed time series, x =

(
x(1), . . . , x(n)

)′
. Thus, embedding

can be regarded as a projection of the one-dimensional series onto an N -dimensional
hyperspace. Without loss of generality, it is assumed that both the length of the signal,
n, and the number of its time delayed copies, N , are power of two; that is, n = 2J and
N = 2K . Hence, the (2J−K+1

× N ) trajectory matrix X has generic X (i , j) element
given by

X (i , j) = 2−1/2x
(

j + 2K−1(i − 1)
)

; i = 1, . . . , 2J−K+1 j = 1, . . . , N . (7)
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For example, assuming J = 4 and K = 2, the X matrix shows the following
structure

X =
1
√

2



x(1) x(2) x(3) x(4)
x(3) x(4) x(5) x(6)
x(5) x(6) x(7) x(8)
x(7) x(8) x(9) x(10)
x(9) x(10) x(11) x(12)
x(11) x(12) x(13) x(14)
x(13) x(14) x(15) x(16)
x(15) x(16) x(1) x(2)


,

where, for simplicity, “circular boundary conditions” are imposed on the signal but
other solutions can be considered. Circular boundary conditions are easily dealt with
and have been found useful in biomedical applications (see, for example, Fontanella
et al. (2010)). We also note that the N delayed copies of the original signal are deci-
mated with a sampling rate of 2K−1 steps and that the last 2K−1 elements of each row
vector equals the first 2K−1 entries of its immediate neighbor, with each observation
thus repeated twice. Then, to ensure that data matrix preserves the energy of the orig-
inal signal, Eq. (7) multiplies each elements in X by 1/

√
2. This, in fact, ensures that

‖X‖F = (x′x)1/2, where ‖ · ‖F is the Frobenius norm.

2.1.2. Eigenvalue decomposition
The second step deals with the eigenvalue decomposition of the estimated covariance
matrix

R̂ = 2−(J−K+1)X′X.

Note that the estimator above is largely motivated by the requirements of the prin-
cipal components model and intuitive appeal, rather than because they are best in any
known sense. For a different approach, see, for example, Section 5 and the discussion
in the study by Basilevsky and Hum (1979). Denote with λ̂1, . . . , λ̂N the eigenval-
ues of R̂ sorted in decreasing order (i.e., λ̂1 ≥ λ̂2, . . . , λ̂N ≥ 0) and with φ̂1, . . . , φ̂N

the associated eigenvectors. Then it follows that,
∑N

i=1 λ̂i = tr
(
R̂
)
= 2K−1σ̂ 2

x , where
σ̂ 2

x = 2−J (x′x).
Let ẑi = Xφ̂i , then the trajectory matrix can be written as

X = X1 + X2 + · · · + XN , (8)

where Xi = ẑi φ̂
′

i , i = 1, . . . , N . The matrices Xi have rank 1 and are therefore
elementary matrices; the φ̂i are also known as “empirical orthogonal functions” or
simply EOFs, whereas the ẑi are the principal components or the right eigenvectors

of the trajectory matrix. The collection
(√
λ̂i , φ̂i , ẑi

)
is called the i th eigentriple of the

matrix X,
√
λ̂i are the singular values of the matrix X, and the set

{√
λ̂i
}

is called the
spectrum of X.

Note that the rows and columns of the trajectory matrix X are subseries of the origi-
nal time series. Therefore, the left eigenvectors, φ̂i , and principal components, ẑi , also
have a temporal structure and hence can also be regarded as time series.
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2.1.3. The window length
The window length, N = 2K , is the only parameter one needs to choose at this stage.
Selection of the proper window length depends on the problem in hand and on pre-
liminarily information about the time series. For a deeper discussion on this point, the
reader is referred to Golyandina et al. (2001). In general, if we know that the time
series may have a periodic component with an integer period (e.g., if this component is
a seasonal component), then to get better separability of this periodic component, it is
advisable to take the window length proportional to that period. It is also worth noting
that the choice of K determines the maximum temporal lag within the autocovariance
matrix R̂, and the support length of the estimated basis functions φi (t), i = 1, . . . , N .
In general, the larger is K , the smaller are the size fluctuation values produced by the
KLE trasform. For example, for two values of K , say K1 and K2, with K1 > K2, if the
goal is compression of a signal, then a KL based on K1 will generally perform better
than KL based on K2; on the other hand, if the goal is identifying features of the signal
that are related to turning points in its graph, then the KL based on K2 can identify the
locations of these turning points more clearly.

2.2. Reconstruction

2.2.1. Aggregation
In practice, one cannot always identify the time series components with corresponding
unique orthogonal variables (time functions) zi . For example, the cycle effect C(t)may
be represented by several independent time functions. The grouping step corresponds
to aggregating the elementary matrices Xi into m groups and summing the matrices
within each group. Hence, for a set of p indices, { j1, . . . , jp}, we define the aggregated
matrix, X̃g , as

X̃gk = X j1 + X j2 + · · · + X jp , k = 1, . . . , m,

so that the clustering of the set of indices, i = {1, . . . , N }, into m disjoint subsets, G =
{g1, . . . , gm}, corresponds to the representation

X = X̃g1 + X̃g2 + · · · + X̃gm .

The procedure of choosing the sets g1, . . . , gm , is called the eigentriple clustering.
For a given group, gk , the contribution of the component X̃gk into the expansion (8) is
measured by the share of the corresponding eigenvalues,

∑
i∈gk

λ̂i/
∑N

j=1 λ̂ j .
For purposes of interpretation, however, one may prefer to represent similar time

behavior by a single component. Therefore, our application of KL analysis to time
series data does not escape the identification problem, which is well known in the fac-
tor analysis literature. Basilevsky and Hum (1979) suggest the following two-stage
procedure by which the zi can be aggregated into T (t), C(t), and S(t):

1. Plot the random variables zi against time to allow a visual inspection of their
temporal pattern. Usually the first few zi , which correspond to large eigenvalues,
will reveal the presence of trend, cycle, and seasonality, if these terms exist at
all in X (t). Pairwise scatterplots of the time series zi and z j , for i 6= j , may also
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help one to visually identify those eigentriples that corresponds to the harmonic
components of the series;

2. When more than one zi exhibits similar time behavior, for example, a cyclic with
a given period, a χ2 criterion can be used to test which of the zi are to be clustered
into a common cyclic term C(t) and which are to be retained as distinct cycles.
For practical purposes, it is sufficient to test for equality of the eigenvalues alone,
and this may be done conveniently by Anderson’s (1963) large sample statistic

χ2
= − c

r∑
i=1

ln(λi )+ c r ln

(
r∑

i=1

λi

r

)

with 1
2r(r + 1)− 1 degrees of freedom, where r is the number of roots to be

tested.

In addition, further strategies may be considered for the identification of the eigen-
triples of the matrix X. For example, it happens in practice that the singular values
of the two eigentriples of a harmonic series are often very close to each other, thus,
simplifying their clustering. The periodogram analysis of the series zi may also reveal
important features and can help in making the clustering. In fact, as shown in the study
by Fontanella et al. (2010), this approach has been found helpful in identifying specific
latent components of biomedical time series. Coli et al. (2005) also show that inves-
tigation of the spectral features of the basis functions is helpful for the estimation of
short- and long-memory parameters of ARF I M A(p, d , q) models.

2.2.2. Averaging
The signal, X (t), is reconstructed exactly by averaging the elements that are repeated
twice:

x(t) =
√

2 mean
{

X (i , j) : 1 ≤ i ≤ 2J−K+1, 1 ≤ j ≤ N ,

t = j + 2K−1(i − 1)
}
, t = 1, . . . , n.

According to the truncated expansion (5), if only a limited number M < N of eigen-
vectors are considered, the matrix X̂ =

∑M
i=1 Xi provides the best approximation to the

trajectory matrix X, so that ‖X− X̂‖ is minimum and v̂(t) = µ̂(t)+ x̂(t) represents an
estimate of the latent process V (t).

Note that ‖X‖2
=
∑N

i=1 λ̂i and ‖Xi‖
2
= λ̂i , for i = 1, . . . , N . Thus, we can con-

sider the ratio, λ̂i/
∑N

j=1 λ̂ j , as the characteristic of the contribution of matrix Xi to

expansion (8). Accordingly, the sum of the first M ratios,
∑M

i=1 λ̂i/
∑N

j=1 λ̂ j , is the
characteristic of the optimal approximation of the trajectory matrix by the matrix of
rank M .

2.3. The monthly energy consumption in Italy (1978–1995)

To show a simple example of eigentriple clustering, we consider the series of monthly
energy consumption in Italy for the period 1978–1995. The time series shows a lin-
ear trend but a constant mean can be assumed for the residual series after removing
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Table 1
Monthly energy consumption in Italy – Identification of temporal patterns and
eigentriple aggregation

Frequencies Period Harmonics Eigentriple Explained Test
(months) components subsets variance (%) statistics

0.524 12 S(t) 1st–2nd 35.0 0.019
3.142 2 S(t) 3rd 17.9 –
2.094 3 S(t) 4th–5th 17.4 0.005
1.571 4 S(t) 7th–8th 12.2 0.006
1.047 6 S(t) 10th–11th 5.3 0.008
0.058 108 C(t) 6th–9th 4.5 0.001
2.618 2.5 S(t) 12th–13th 2.6 0.010
0.087 72 C(t) 14th 1.2 –

the trend by ordinary least squares. The residual series clearly shows the presence of
harmonic components, and, in fact, both Whittle’s and Hartley’s tests (Priestley, 1981)
confirm that eight periodogram ordinates are significantly large. By exploring the fre-
quency content of the estimated principal components, we have then found that there
are 14 eigentriples whose frequencies coincide with those of the residual series. The
frequencies of the eight harmonics, the clustering of the eigentriples, their explained
variance, and the values of the χ2 test for each subset, gk , are shown in Table 1.
Note that taking α = 0.1, for pairs of eigentriples (i.e., r = 2), we have two degrees
of freedom and the critical value for the χ2 test is 9.21.

3. Multiresolution Karhunen–Loéve

There are some cases of interest in which the components of a signal reside in nonover-
lapping scales; in these cases, a multiresolution analysis is useful to highlight the latent
features of the signal. The multiresolution Karhunen–Loéve (MR-KL) essentially com-
putes the KL transform for successive levels of resolution. The MR-KL is applied
similarly to a wavelet packet transform (WPT) (Mallat, 1998), in the sense that the
KL transform is applied for each of the subsignals of the preceding level. The top level
is the time representation of the signal. For ease of presentation, we summarize the
hierarchical structure of the procedure in the following steps.

Step 1: For a signal x of length n, choose J and K to define the trajectory matrix X by
equation (7). Since rank(R̂) ≤ min(2J−K+1, 2K ), it is reasonable to choose,
K ≤

⌊
J+1

2

⌋
, to ensure that 2J−K+1

≥ 2K . Then, also define the maximum res-
olution level, L ≤ J−K

K−1 , so that for each level of resolution, l, the number of
the lagged vectors is greater or at least equal to the dimension of the trajectory
space.

Step 2: Compute the covariance matrix, R̂, and obtain the (2J−K+1
× N ) estimated

principal component matrix, Z̃(1) = X8, where8 =
(
φ̂1 . . . φ̂N

)
is the matrix

of eigenvectors obtained by the eigen-decomposition of R̂.
Step 3: For the resolution levels, l = 2, 3, . . . , L , repeat the following steps:

(a) Set z(l)p = z̃(l−1)
p , for p = 1, . . . , 2(l−1)K , where z̃(l−1)

p denotes the pth

column of Z̃(l−1);
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(b) Following Eq. (7), obtain the Z(l)p matrix, with generic element given by

Z (l)p (i , j) = 2−1/2z(l)p

(
j + 2K−1(i − 1)

)
,

i = 1, . . . , 2J−l(K−1), j = 1, . . . , N ;

(c) Perform the spectral decomposition, R̂(l)
p = 8

(l)
p 3

(l)
p 8

(l)′
p , where R̂(l)

p =

2−J+l(K−1)Z(l)
′

p Z(l)p . Notice that at this stage, the following relationships
hold for the eigenvalues:

2K∑
j=1

λ̂
(l)
p, j = 2K−1λ̂(l−1)

p ,
2(l−1)K∑

p=1

2K∑
j=1

λ̂
(l)
p, j = 2l(K−1)σ 2

x ;

(d) Obtain the (2J−l(K−1)
× 2K ) principal component matrix Z̃(l)p =

Z(l)p 8
(l)
p ;

(e) Define the matrix of KL coefficients, Z̃(l) =
[
Z̃(l)1 . . . Z̃(l)p . . . Z̃

(l)
2(l−1)K

]
.

At each level, l = 1, . . . , L , the signal x (l)p (h) can be reconstructed as

x (l)p (h) =
√

2 mean
{

X (l)
p (i , j) : j + 2K−1(i − 1) = h

}
,

i = 1, . . . , 2J−l(K−1), j = 1, . . . , N ;

where X (l)
p (i , j) is the (i , j)th element of X(l)

p = Z̃(l)p 8
(l)′
p . Furthermore, let z̃(l) =

vec
(
Z̃(l)

)
, then it can be shown (Fontanella et al., 2010) that at each level, l, the KL

coefficients preserve the energy of the residual signal, that is, ‖z̃(l)‖2
= ‖x‖2.

A summary scheme of MR-KL for J = 6, L = 2 and K = 2 is shown in Fig. 1.
We notice that compared to the classical scheme of a discrete wavelet transform, where
only the approximation space is decomposed, the full tree contains redundancy. This
is not optimal for data compression but it is helpful to emphasize key structures in a
signal. In fact, by decomposing the whole subsignal, z(l)p , at the resolution level l, we
can separate the frequency band uniformly and allow for a better frequency localiza-
tion of the signal features. This also explains why the wavelet packet approach has
been largely used to produce features suited to detection and discrimination (see, for
example, Learned and Willsky (1995), Walczak et al. (1996), and references therein).

3.1. Noise filtering

Since all signals obtained as instrumental response of analytical apparatus are affected
by noise, once the KL coefficients are available, a nonlinear approximation can be
applied to recover the noise-free signal, V (t) in Eq. (6) (Mallat, 1998). To allow for
the splitting of the subspaces of signal and noise, all the KL coefficients defined at the
highest resolution level, Z̃(L), are subject to a thresholding procedure based on their
magnitude. We consider a hard procedure in which the threshold is defined as τ

√
2L σ̂ε ,

where σ̂ 2
e is the estimate of the noise variance provided at the first resolution level and

τ is a suitable constant.
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J = 6 (n = 64); K = 2(N = 4) ; L = 2

x = z1
(0) (64,1)

(16,1) (16,1) (16,1) (16,1) (16,1) (16,1) (16,1)(16,1)

(32,1) (32,1)(32,1)(32,1)

X1
(1) (32,4)

Z1
(1) (32,4)

l = 1

l = 2

Z1
(1) Z2

(1)

Z1
(2) Z5

(2) Z8
(2) Z9

(2) Z12
(2) Z13

(2) Z16
(2)Z4

(2)

Z3
(1) Z4

(1)

X1
(2) (16,4)

Z1
(2) (16,4)

X2
(2) (16,4)

Z2
(2) (16,4)

X3
(2) (16,4) X4

(2) (16,4)

Z3
(2) (16,4) Z4

(2) (16,4)

Fig. 1. Scheme of MR-KL for J = 6 and K = 2.

Different methods can be used to estimate σ 2
e , and for a discussion, see, for example,

Ippoliti et al. (2005). One possibility is to estimate σ 2
e as an average of the last r ordered

eigenvalues, where r can be defined through Akaike’s information theoretic criterion
(AIC) as described by Fontanella et al. (2010). Then, since V (t) is independent of
E(t), we may write σ̂ 2

x = σ̂
2
v + σ̂

2
e , and in terms of the principal components, it fol-

lows σ̂ 2
z̃(L) = σ̂

2
z̃(L)v

+ σ̂ 2
z̃(L)e

; then, since σ̂ 2
z̃(L) = 2−L σ̂ 2

x , we also have σ̂ 2
z̃(L)e
= 2−L σ̂ 2

e . If we

assume, z̃(L)e ∼ W N (0, 2−Lσ 2
e ), then we have a probability equal to 1− ατ to observe

values in the interval ±τ
√

2L σ̂e. As a rule of thumb, simulation results discussed by
Kostantinides and Yao (1988) show that the simple threshold, τ = 3, performs more
stably under a variety of noise levels. Values close to 3 for τ are also suggested in the
study by Walker (1999, Section 2.6).

3.2. MR-KL Analysis of Infrared signals

The multiresolution Karhunen–Loéve analysis has been found useful in describing the
dynamics of biomedical time series (see, for example, Fontanella et al. (2010)). In this
section, we consider a psychophysiological study of the response of two subjects who
underwent an emotional induction experiment. The sympathetic response to the exter-
nal stimuli is analyzed through an infrared thermal (IR) signal, which gives a measure
of the thermoregulatory actions in the forehead (for more information on thermal imag-
ing see, for example, Shastri et al. (2009)). The experiment is described in the study
by Fontanella et al. (2010), and we refer the interested reader to this work for full
details. Suffice to say here that an audio and visual paradigm is used to elicit a startle
response. A series of five different grey-tone images of human faces with a light grey
background is used for visual stimulation. The inter-image interval lasts 18 s and each
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image becomes visible for 2 s. The series of the face images is repetitively presented for
a total of 11 cycles. The auditory stimulus is a 90 dB white noise burst lasting 200 ms,
which is delivered along with the presentation of the fifth face of the series during the
third, fourth, fifth, sixth, ninth, and tenth cycles. The thermal recording was done for the
forehead region by means of a digital infrared camera. The objective of the analysis is
the recognition of the features of the experiment by studying the sympathetic response
of the two subjects. Because the IR signal depends on signal components, which in
turn reside in nonoverlapping scales (Shastri et al., 2009), the multiresolution approach
appears appropriate for this study.

The two series, each consisting of 1024 observations (one per second), show nonlin-
ear trends, which are removed by smoothing splines. The original signals, the estimated
trends, and the residual series are shown in Fig. 2.

For each subject, by setting J = 10 and K = 3, a (256× 8) trajectory matrix,
X, is obtained from the residual signal. Then, following the procedure described
above, the expansion coefficients are subject to a nonlinear thresholding to remove
the measurement noise.

For both subjects, the first principal component, which in average accounts for
almost 50% of the variability, appears quite smooth and reconstructs a signal that
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Fig. 2. Original IR series (top panels), estimated trends (centre panels), and residual series (bottom panels)
for two subjects who underwent the emotional induction experiment.
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Fig. 3. Signals reconstructed by the first principal component (top panels) and the corresponding
log-periodograms (bottom panels) smoothed by a Daniell window with truncation points (7, 7).

closely resembles the pattern of the residual series; also, it shows clear frequencies
of interest. As a confirmatory analysis, the estimated spectra of the reconstructed
signals shows the largest peak at a frequency corresponding to a period of 90 s, which
in turn, represents the interstimuli interval within the third and sixth recurrences.
Figure 3 shows the residual series reconstructed by the first principal component and
the corresponding log-periodograms smoothed by a Daniell window with truncation
points (7, 7).

The remaining principal components are much more “irregular” with a higher fre-
quency content. Figure 4 shows the residual series reconstructed by the second principal
component for which, in average, the explained variability is around 25%. We note
that the corresponding log-periodograms, smoothed by a Daniell window with trun-
cation points (7, 7), show the most significant peaks at the same period of the image
sequences. Specifically, for both subjects, we have found that the estimated period is
around 17.96 s, which is clearly associated to the inter-image interval. However, the
possibility of detecting the effect of a specific image of the series appears difficult at
this stage.

The residual signals reconstructed by the remaining components are characterized
by even higher frequencies and smaller amplitudes. In average, we have observed that
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Fig. 4. Signals reconstructed by the second principal component (top panels) and the corresponding
log-periodograms (bottom panels) smoothed by a Daniell window with truncation points (7, 7).

the first three components explain around 86% of the variability, and quite interestingly,
the fifth and sixth components clearly carry on frequencies corresponding to a period of
3.3 s, presumably representing the breathing activity, which, as known, is characterized
by 15–22 cycles per minute.

4. Karhunen–Loéve expansion of coupled one-dimensional processes

There are also cases of interest where coupled (correlated) stochastic processes are
available. In these cases, it is possible to exploit the correlation between the two pro-
cesses in the framework of simultaneous decomposition techniques, hence, extending
the KL expansion to cases in which two kernels, R1 and R2, are defined. Let R1(t , t ′)
and R2(t , t ′) denote two real, symmetric, and square integrable functions, and let R1

and R2 be the integral operators with kernels R1(t , t ′) and R2(t , t ′). Also assume
that R1 and R2 are positive definite and non-negative definite, respectively, and that
R = R−1/2

1 R2 R−1/2
1 is densely defined, bounded, and its extension to the whole of

L2(T ) has eigenfunctions that span L2(T ). Then, if λi and ψi are the eigenvalues and
the orthonormalized eigenfunctions of R, we have the following expansions (Kadota,
1967):

R1(t , t ′) =
∑

i

wi (t)wi (t
′) and R2(t , t ′) =

∑
i

λiwi (t)wi (t
′),
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where wi (t) = R1/2
1 ψi (t). The wi (t) also satisfies the following integral equation∫

T

R2(t , t ′)wi (t)dt = λi

∫
T

R1(t , t ′)wi (t)dt , (9)

which represents an extension of the Fredholm integral (1). In fact, if R1 and R2

commute, then (9) reduces to (1).
In practice, for two matrices, R1 and R2, the simultaneous diagonalization of the

two kernels can be approximated as

M∑
i=1

R2(t , t ′)wi (t) = λi

M∑
i=1

R1(t , t ′)wi (t)

or in matrix formulation

R2wi = λi R1wi . (10)

Equation (10) constitutes a generalized eigenvalue decomposition – GED – (Golub
and Van Loan, 1993).

If R2 and R1 are symmetric and R1 is positive definite, then the eigenvalues λi and
the eigenvectors wi are real. Furthermore, if the eigenvalues are distinct, the different
eigenvectors are orthogonal in the metrics R2 and R1

W′R1W = I, and W′R2W = 3,

where the columns of W consist of the eigenvectors wi and 3 is the diagonal matrix
of eigenvalues, λi . If the matrix R1 is positive definite, Eq. (10) can be handled by the
equivalent expression

R−1
1 R2wi = λi wi .

In this case, the matrix R−1
1 R2 is generally not symmetric, but it is possible to recover

a symmetric eigenvalue problem using, for example, the Cholesky decomposition,
R1 = LL′, and considering the eigenvalue decomposition of the symmetric matrix
R = L−1R2(L−1)′. Its eigenvalues are the same of the original problem, whereas its
eigenvectors are obtained as ψ i = L′wi .

4.1. Types of kernels

In the following, we shall present three different criteria that emerge as solutions to
special cases of the generalized eigenproblem (10). In all these cases, the following
hold. Assume that X1(t) and X2(t) are two processes with mean zero and let X1 and
X2 be the trajectory matrices obtained from the observed time series. Also denote with
Rx1 and Rx2 the autocovariance matrices and with Rx1x2 the cross-covariance matrix.
Finally, let wi =

[
w′i x1

w′i x2

]′
.
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4.1.1. Partial Least Square
The goal of Partial Least Square (PLS) is to find the two directions of maximal data
covariation (Naes and Martens, 1985); that is, the directions wxi and wyi , such that the
expansion coefficients, zi x1 = X1wi x1 and zi x2 = X2wi x2 , have maximum covariance.
Then, it can be shown (Fontanella et al., 2005) that the patterns wi can be found through
the generalized eigenvalue decomposition (10) with

R2 =

[
0 Rx1x2

Rx2x1 0

]
and R1 =

[
I 0
0 I

]
.

4.1.2. Canonical correlation analysis
The goal of canonical correlation analysis (CCA) is to find the two directions of max-
imal data correlation, that is, the directions wxi and wyi , such that the expansion
coefficients, zi x1 = X1wi x1 and zi x2 = X2wi x2 , have the largest possible correlation
(Mardia et al., 1979). Then, it can be shown (see Fontanella et al. (2005)) that the
patterns wxi can be found through the generalized eigenvalue decomposition (10) with

R2 =

[
0 Rx1x2

Rx2x1 0

]
and R1 =

[
Rx1 0
0 Rx2

]
.

4.1.3. Redundancy analysis
Given the two processes, X1 and X2, if the aim is to predict X2 as well as possible in the
least square error sense, the patterns wxi must be chosen, so that this error measure is
minimized. This corresponds to a low-rank approximation of multivariate linear regres-
sion, which is also known as reduced rank regression (Izenman, 1975) or as redundancy
analysis (RA) (van de Wollenberg, 1977).

Different from CCA and PLS, RA treats the two processes asymmetrically. In par-
ticular, RA seeks to find pairs of predictor and predictand patterns that maximize
the predictand variance, and this is directly addressed by identifying patterns that are
strongly related through the most efficient multivariate regression on X2.

To measure the degree to which X1 can predict X2, the redundancy index can be
used

R2
=

tr(Rx̂2)

tr(Rx2)
=

tr(Rx2x1 R−1
x1

Rx1x2)

tr(Rx2)
,

where tr denote the trace of the matrix. This index represents the proportion of the total
variance in X2 that can be accounted for by the linear regression of X2 on X1.

In practice, it can be shown that the maximization of the redundancy index, and
hence the identification of the best predicted and predictor patterns, is related to the
solution of the generalized eigenvalue decomposition (10) with

R2 =

[
0 Rx1x2

Rx2x1 0

]
and R1 =

[
Rx1 0
0 I

]
.

For a comparison of these techniques in atmospheric sciences, see, for example,
Bretherton et al. (1992).
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5. Karhunen–Loéve expansion of spatio-temporal processes

We conclude the chapter by showing the relevant theory of KL for spatio-temporal
processes, which are continuous in space and discrete in time. Consider a spatio-
temporal process Y (sk , t), where sk = {sk1, sk2} ∈ D, with D some spatial domain in
two dimensional Euclidean space <2 and t ∈ {1, 2, . . . , T } a discrete index of times.
At each time point, t , assume also that X (sk , t) = Y (sk , t)− µ(sk , t) is a zero-mean
second-order spatial stochastic process with covariance function R(sk , s j ). Then, par-
alleling results shown in Section 2, X (sk ; t) can be expanded in any set of orthonormal
basis functions, φi (sk), which are the eigenfunctions of the covariance function. Given
a spatio-temporal process, KL analysis thus finds a set of orthogonal spatial patterns
along with a set of associated uncorrelated time series. However, the difficulties of the
approach are considerable for a continuous domain when data are collected only from
a sparse and irregular network. The fact that we are considering a process observed at
discrete points is a practical limitation to the numerical solution of (1). Accordingly,
if there are p sample points in the domain, only p eigenfunctions can be estimated
while, indeed, there are a denumerable infinity for a continuous process. Thus, the
geometrical relations involving the domain of integration and the relations between
the sites sk , k = 1, . . . , p, are completely ignored in a discrete matrix formulation of
(1). However, this limitation should be recognized as a restriction on the accuracy of
the solution, but not as a part of the problem formulation. Hence, the numerical prob-
lem encountered in practice is to estimate R(sk , s j ) and attempt to solve Eqs (1)–(4).
Obled and Creutin (1986) proposed a general approach based on a set of functions,{
e1(si ), e2(si ), . . . , ep(si )

}
, having a vector space structure over D. This approach leads

to the following finite formulation of the Fredholm integral

p∑
j=1

p∑
m=1

R(sk , s j )E jmφi (sm) = λiφi (sk), i , k = 1 . . . , p, (11)

where E jm =
∫

D e j (s)em(s)ds, which is the quadrature factor. A finite solution of
Eq. (4) is also

zi (t) =
p∑

k=1

p∑
j=1

X (sk , t)Ek jφi (s j ), i = 1 . . . , p. (12)

The major difference between Eqs (11) and (1) is that in (11) we have to solve the
problem of choosing a set of appropriate generating functions. From a practical point of
view, the problem is limited to the evaluation of the integral of the Ejm term. In the two-
dimensional case, Cohen and Jones (1969) and Buell (1972) suggested using piecewise
constant functions. Following this approach, a set of areas of influence,

{
δ(sk)

}
, k =

1, . . . , p, for each site sk , is defined and, em(sk), is assumed to be constant and equal
to one over the area and zero elsewhere. One possibility is that the areas of influence
are obtained by applying a Voronoi tessellation (Okabe et al., 1992) of D and each area
can be taken to approximate the integral of the Ejm term. These areas compensate for
the effects due to the variable density of the network. As a consequence, the numerical
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Fig. 5. Voronoi tessellation. The figure shows the areas of influence for the monitoring network used in the
Milan district.

approximation of the Fredholm integral is

p∑
j=1

R(sk , s j )δ(s j )φi (s j ) = λiφi (sk),

which can be rewritten in its symmetric form as

p∑
j=1

R∗(sk , s j )θi (s j ) = λiθi (sk),

where θi (s j ) = φi (s j )
√
δ(s j ) and R∗(sk , s j ) = R(sk , s j )

√
δ(sk)δ(s j ).

As an example, Fig. 5 shows the Voronoi tessellation for some of the sites of
the monitoring network used in the Milan district. The coordinate system is the Ital-
ian national grid system (Gauss–Boaga), which is based on the Universal Transverse
Mercator (UTM) projection.

Note that when regular gridded fields are considered, then the quadrature factors are
not needed and all follows as in Section 2.

5.1. Computational details

Assuming that the field is observed at p different sites and n temporal instants, and that
the observed process can be represented by a (n × p) data matrix, Y, von Storch and
Zwiers (1999), Jolliffe (2002), and Wilks (2006) provide detailed descriptions of how
to obtain EOFs through the singular value decomposition of the centred data matrix.

Here, we discuss a model-based approach that, essentially, represents a popu-
lation approach to EOF. As in geostatistical analyses, we assume that the spatial
covariance function is parameterized according to a valid spatial covariance function
(Cressie, 1993). Assuming gaussianity, the spatial parameters can be estimated by
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minimizing the deviance, minus twice the log-likelihood, over the valid parameter
space

D(β) ∝ −
T

2
log |R(β)| −

1

2

T∑
t=1

x(t)′R(β)−1x(t).

where R(β) is the (p × p) spatial covariance matrix and, x(t) = y(t)− µ(t), is the
(p × 1) spatial series observed at time t . Note that estimation based on variogram
functions is also possible and an example is described in the study by Sahu and Mardia
(2005). Once the covariance function has been estimated, the eigen-decomposition of
R̂(β) provides the set of singular values, λ̂i , and eigenvectors (spatial patterns), φ̂i (sk),
i = 1, . . . , p.

5.2. State-Space formulation

The linear Gaussian state-space model (Hamilton, 1994), combined with the KL (EOF)
theory, provides a convenient way to produce spatial and spatio-temporal predictions of
the field. The model we consider is described by the following state and measurement
equations

z(t) = 8 z(t − 1)+ ε(t)

y(t) = H z(t)+ u(t),
(13)

where z(t) is the state vector, 8 is the nonsingular transition matrix, y(t) is the mea-
surement vector, and H is a constant output matrix. The sequences, ε(t) and u(t),
are assumed to be mutually independent, normally distributed random variables and
represent the state and measurement errors, respectively.

To provide an example of model specification, assume for simplicity that, at each
time t , the process shows a spatial linear trend. Also, assume that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p

and that the corresponding eigenvectors, φ̂i (sk), are sorted accordingly. Then, using the
first M � p eigenvectors, the measurement matrix, H, appears as follows

H =


1 s11 s12 φ̂1(s1) φ̂2(s1) · · · φ̂M(s1)

1 s21 s22 φ̂1(s2) φ̂2(s2) · · · φ̂M(s2)
...

...
...

...
... · · ·

...
1 sp1 sp2 φ̂1(sp) φ̂2(sp) · · · φ̂M(sp)


and the measurement Eq. (14) thus represents a truncated expansion as in (4). Note that
the first three columns of H specify the regressors for the trend. Following Mardia et al.
(1998), the columns of hk , H, are known as common fields, and since they have a spatial
structure, they can be regarded as spatial series. To provide an example, assume that the
field is observed on a (16× 16) regular lattice. Assume also that the spatial covariance
function is “spherical” (Cressie, 1993) with parameters: range 10, partial sill 5, and
nugget 0.1. Then, the eigendecomposition of the spatial covariance matrix provides a
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Fig. 6. The spatial patterns of the first 16 eigenvectors obtained from the eigendecomposition of a “spherical”
covariance matrix. The parameters of the covariance function are range 10, partial sill 5, and nugget 0.1.

series of 256 eigenvectors that are ordered according to the magnitude of the corre-
sponding eigenvalues. Figure 6 shows the spatial patterns of the first 16 eigenvectors.
The figure suggests that the first eigenvectors, corresponding to the largest eigenval-
ues, are smooth and show a low frequency content; they are thus able to capture the
large-scale variation of the process. On the other hand, we note that as the eigenvalues
decrease, the spatial patterns of the corresponding eigenvectors become much more
irregular. Thus, the last eigenvectors provide information on the small-scale variation
of the field. Thus, M acts as a regularization parameter and for M being sufficiently
small, only a few number of expansion coefficients, z(t), have to be estimated through
the recursion of the Kalman filter (Hamilton, 1994).

This model specification, initially used in the study by Fontanella and Ippoliti
(2003), represents a simple version of the models discussed by Mardia et al. (1998),
Wikle and Cressie (1999), and Sahu and Mardia (2005) with applications in environ-
mental sciences.

5.2.1. Spatial and spatio-temporal predictions
For t ≤ T , the state-space formulation can be used to fit the data or, eventually, to
reconstruct missing data. Interpolation at an unobserved spatial location, s0, is also
possible. A straightforward approach is to use the following equation

ŷ(s0, t) =
3+M∑
k=1

hk(s0)zk(t), (14)
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which essentially requires the interpolation of the M spatial patterns, φi (s0), at site s0.
This prediction is not a difficult task, and, ensuring orthogonality, we could apply rela-
tively simple interpolation schemes, such as thin-plate splines. Mardia and colleagues
(1998) and Wikle and Cressie (1999) discuss two alternative approaches.

Temporal predictions of Y are ensured by the dynamic of the state equation; in fact,
k-step ahead forecasts of the expansion coefficients, z(t), can be obtained as

ẑ(t + k|T ) = 8k z(t), t ≥ T

and forecasts of Y are obtained by plugging in ẑ(t + k|T ) in the measurement equation

ŷ(t + k|T ) = H ẑ(t + k|T ) (15)

with prediction variance

V ar
(

z(t)− ẑ(t + k|T )
)
= H(8kPT |T8

k ′
+6ε)H′ +6u,

where 6ε and 6u are the covariance matrices of ε(t) and u(t), respectively, and PT |T

is the variance prediction error (computed by the Kalman filter) of the state vector. By
combining Eqs (14) and (15), we can finally obtain spatio-temporal predictions.

6. Discussion

This chapter has illustrated that the KL technique performs well in the extraction of
specific features of temporal and spatio-temporal data. We have also shown that KL
(and EOF) analysis is a useful tool for dimensionality reduction. We began by review-
ing the conventional KL method for one-dimensional processes; then, we described the
decomposition and reconstruction phases to illustrate the specific steps of the analy-
sis. Of course, a common goal of time series analysis is extrapolating past behavior
into the future. Here, we have not considered the forecasting problem but specific
details, including how to specify forecast confidence bounds, are given in the study
by Golyandina et al. (2001, Section 2.4).

An important part of data modeling is the specification of the trajectory matrix and
its parameter K , which defines the window length and, hence, the number N of the
delayed copies of the series. The numerical value of K is determined experimentally,
because in practice, its choice is guided by both the length of the signal and the number
of components thought to be present in V (t). The choice of K is also very much like
to the choice of the length of the support of the wavelets, for example in a Daubechies
wavelet transform.

A multiresolution version of the KL was also discussed. MR-KL allows for a non-
linear approximation, which is better suited for denoising purposes. The link between
the MR-KL and other well-known multiresolution decompositions, including wavelets,
may be examined by employing the system approach proposed by Unser (1993). How-
ever, MR-KL is characterized by basis functions, which are data adaptive. In contrast
with wavelets and Fourier analysis, the KL model does not require an advance speci-
fication of the functional form of the eigenfunctions leaving it to be freely determined
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by the structure of the data. As shown in Section 4, the possibility of deriving the
basis functions from the covariance structure of the data allowed us to extend the the-
ory within the generalized eigendecomposition. For example, this is particularly useful
when two signals are available as described, for example, in the study by Merla et al.
(2004) and Shastri et al. (2009).

The chapter also discussed the application of KLE in a spatio-temporal context.
The expansion of the process has been defined within a state-space framework that
allows to estimate the expansion coefficients through the Kalman recursions. Note
that this approach contrasts with that described by Hannachi et al. (2007), where the
spatial patterns and the expansion coefficients are obtained through the singular value
decomposition of the spatio-temporal matrix.

Obviously, it is difficult to provide a total overview of a field that is too broad for us
to be exhaustive. For example, we have not discussed some other extensions of EOFs
including cyclostationary, PXEOFs, the S-mode EOF analysis, trend EOFs, and non-
linear extensions of PCA. Also, we have not used this chapter to fully describe the use
of KL (EOF) in atmospheric sciences. For all these points, there are several reference
books and review papers and we refer the interested reader to them for specific details.
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Abstract

In this chapter, we briefly review existing literature on Kriging of spatial random
processes. In order to define a nonlinear type of Kriging estimator, we introduce
measures of nonlinear dependence from the point of view of Kriging. Although
we propose a methodology for testing, the distribution theory of the test statis-
tics need to be investigated. We consider spatio-temporal processes at several
locations and defining discrete Fourier transforms taken over the time series data
at each location, we define simultaneous autoregressive spatio-temporal autore-
gressive (SAST) models and conditional spatio-temporal autoregressive models
(CAST) in terms of these complex-valued random processes. These are similar to
simultaneous autoregressive models of Whittle (Whittle, P., 1954. On stationary
processes in the plane. Biometrika 49, 305–314) and conditional autoregressive
models considered by Bartlett (Bartlett, M.S., 1978. Nearest neighbour models in
the analysis of field experiments. J. R. Stat. Soc. Ser. B 40, 147–174) and Besag
(Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems.
J. R. Stat. Soc. Ser. B 36, 192–225). We outline an approach for the estimation
of the models. We describe recent results by the authors and their co-authors on
Space–time autoregressive models.
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predictors, discrete Fourier transforms, SAST and CAST models, space time
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1. Introduction and basic ideas

Let
{

Z(s), s ∈ D ⊂ Rd
}

be a real-valued random process, where D is a fixed domain
and an open set. Let {Z(si ); i = 1, 2, . . . , n} be a sample from the random process,
where the locations (s1, s2, . . . , sn) are fixed. The process {Z(s)} is also defined as a
random field. Let us assume that the random process is spatially covariance stationary.
Further conditions of spatial stationarity for defining higher order moments will be
needed when we consider nonlinear Kriging. We say the process {Z(s)} is second-order
covariance stationary if

1. E(Z(si )) = µ, for all i ,
2. V ar(Z(si ) = E(Z(si )− µ)

2 <∞, for all i ,
3. Cov(Z(si ), Z(s j )) = C(si − s j ), is a function of the lag difference of the

locations.

The covariance function C(si − s j ) is non-negative definite. If C(si − s j ) =

R
(
‖si − s j‖

)
, where ‖si − s j‖ is the Euclidean distance, the spatial process is said to

be isotropic. For the process to be isotropic, the process must be second-order station-
ary. Let us define the set N (h) =

{
(si , s j ); si − s j = h

}
. In other words, the set N (h)

contains all the pairs (si , s j ) such that si − s j = h. Let ‖N (h)‖ be the total number of
such pairs in the set, i.e., its cardinality. If µ, σ 2, and C(si − s j ) are unknown, they can
be estimated by

µ̂ = Z =
1

n

∑
Z(si ), σ̂ 2

=
1

n

∑
(Z(si )− Z)2

and the covariance function of lag difference “h” is estimated by

Ĉ(h) =
1

‖N (h)‖

∑
i

∑
j

(Z(si )− Z)(Z(s j )− Z),

where the summation is taken overall pairs defined in the set N (h). The sampling prop-
erties of the estimators were discussed by Cressie (1993) (see references therein). In
real spatial data analysis, the autocovariances C(h) of the process play a role similar
to sample autocovariances in time series analysis, for example, for model identifica-
tion, diagnostic checking, etc. However, in contrast to time series, another important
function that is often used in spatial analysis is “variogram” (or semi-variogram). The
semi-variogram is defined as follows,

γ (si , s j ) =
1

2
E
[
Z(si )− Z(s j )

]2
.

Here 2γ (si , s j ) is known as the “variogram”, and it is known that it must be condi-
tionally non-negative definite, see Cressie (1993). From now onward, for convenience,
we assume the mean µ = 0. If γ (si , s j ) = γ (si − s j ), then the random process {Z(s)}
is said to be intrinsically stationary. It is widely believed in spatial literature that
the assumption that the process is stationary is unrealistic, but differenced process is
stationary. If the random process is stationary, then

γ (si , s j ) = γ (si − s j ) = C(0)− C(h),
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where C(h) = C(si − s j ). If the covariance C(h), a function of the distance “h”, is a
function of the Euclidean distance ‖h‖ , then we say the process is said to be isotropic.
This isotropic covariance function is denoted by R (‖h‖). If it is not isotropic, the pro-
cess is said to be anisotropic. One of the classical differences between classical time
series and spatial processes is that in time series (defined on the real line) one can define
directionality, i.e., past, present, and future and this is not that obvious in general space.
This lack of directionality is a serious problem and a stumbling block in modeling
spatial processes.

Briefly we summarize the topics we considered in the following sections. In
Section 1.1, we briefly outline various methods of estimation (prediction) of an obser-
vation at a known location. These predictors also called Kriging predictors. In view
of the fact that these predictors may not be optimal in non-Gaussian situations, in
Section 1.4 we have introduced quadratic predictors. We also pointed out that the per-
formance of these new quadratic predictors need to be investigated. The sampling
distribution of the test statistics for testing hypothesis need also investigation. We
define measures of nonlinear dependence in Section 2. A brief outline of the frequency
domain approach to random processes on lattices is given in Section 4, and the models
defined in this section using discrete Fourier transforms are extended to include tempo-
ral dimension as well, and these are considered in Section 5. In Section 6, space–time
linear ARMA models and their extension to nonlinear situations, leading to bilinear
space–time models, are briefly discussed in Section 6.

1.1. Linear kriging (linear simple Kriging predictor)

One of the important objects of spatial process is the estimation of Z(s0), where
the location s0 is known, given a sample {Z(si ); i = 1, 2, . . . , n} from {Z(s)}.
Let Z′(s)= (Z(s1), Z(s2), . . . , Z(sn)), σ ′(s0, s)= (E(Z(s0)Z(s1)), E((Z(s0)Z(s2)), . . . ,
E((Z(s0)Z(sn)), and further let us define a matrix of order n × n,

C =
(
C
(
si , s j

))
=
(
C
(
si − s j

))
.

In view of our assumption of spatial stationarity, each element of the matrix is a
function of the spatial difference only, not location dependent. Let the estimate of Z(s0)

be a linear combination of all the elements of Z(s), i.e., Ẑ(s0) = β
′Z(s). The object is

to find the vector β such that the mean square error is minimum.
Let us minimize

Q(β) = E
(
Z(s0)− β

′Z(s)
)2

with respect to β.

It can easily be shown that β must satisfy the equation Cβ = σ(s0, s) and, if
we assume that C is nonsingular, then we obtain β = C−1σ(s0, s). Hence, the linear
estimate of Z(s0) is

Ẑ(s0) = σ
′(s0, s)C−1Z(s),

and the minimum is MinQ(β) = σ 2
− σ ′(s0, s)C−1σ(s0, s). We shall denote this min-

imum by Qlin . In order to estimate Z(s0), we need estimators of σ 2, σ(s0, s), and C.
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The usual way is to define a parametric function for the spatial covariance, and estimate
its parameters and use this estimated function to estimate Z(s0). We believe that, alter-
natively, one can estimate the elements of C and σ(s0, s) directly from the data as the
elements of this vector depend on the difference of spatial locations rather than loca-
tions itself. Thus, we do not need observations at the location s0. In view of this, we
can consider those covariances with these differences as the elements of σ(s0, s). In
other words, the lag or the Euclidean distances are important rather than locations. We
note that the above predictor is linear, and if the process is Gaussian it is optimal. It
is well known that the linear predictors are optimal only in Gaussian case. In other
non-Gaussian cases, one has to consider nonlinear predictors to see whether we get
better Kriging estimator. We mention here that the kriging estimator can be expressed
in terms of valid variogram as well; for asymptotic sampling properties of this predictor
and related references, see Lahiri et al. (2002).

1.2. Linear ordinary kriging estimator

In the above derivation, we assumed that the mean µ = 0. If µ 6= 0, then the modified
predictor would be,

Ẑ(s0) = µ+ σ
′(s0, s)C−1(Z(s)− µ1),

where 1
′

= (1, 1, . . . .1), and the minimum mean square error remains the same since
the mean is assumed to be known, i.e., Qlin . The above predictor is usually known as
the ordinary Kriging estimator.

1.3. Linear universal kriging estimator

A more realistic situation is to assume that the mean is a function of the location, i.e.,
E Z(s) = µ(s), possibly to accommodate the trend. A specific function that is often
used is a polynomial (for d = 2)

µ(si ) =
∑∑

αll ′ x
l
i yl ′

i , l + l ′ ≤ p, (i = 1, 2, . . . , n),

and in this case µ(s) is dependent on location coordinates si = (xi , yi ) (Cartesian coor-
dinates) in terms of polynomial up to order p. In other words µ(si ) = x (si ) α, where
x (si ) is a set of explanatory variables. The coefficients α are same for all locations. Of
course, the regression parameters α = {αlm}, need to be estimated as well. With this
choice of the mean, the universal Kriging estimator will be of the form

Ẑ(s0) = µ(s0)+ σ
′(s0, s)C−1(Z(s)− µ(s))

As before, the minimum mean square error remains the same, provided no estimation
is done.
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1.4. General comments

As pointed out earlier, the above estimators depend on the knowledge of σ(s0, s) and C.
Since we do not have any observations at s0, the estimation of σ(s0, s) does not seem to
be possible. But we believe that since elements of the vector depends only on distances,
we could, as a first approximation, replace these elements by the sample covariances
of the same lag differences. However, the usual practice is to assume a parametric
form for the covariances (or variograms) and use these for the estimation purposes.
These parametric forms depend on some unknown parameters, such as range param-
eters, smoothness parameters, etc. One of the important problems that is receiving
considerable attention recently is finding the best set of methods for the estimation
of these parameters. Briefly, we describe some approaches recently advocated for the
estimation. By choosing an appropriate function for the variogram, we are reducing the
parameters to be estimated. However, this leads to an important problem, namely, how
to choose the best parametric function? One way to choose is to use cross validation
methodology (see Cressie (1993) and Das (2011)). Several of the functions proposed
in the literature belong to Matern (1986) class, which are briefly described below. Let
R(‖h‖) denote the covariance between random processes defined at two locations with
lag difference “h ∈ Rd”. The Matern class of covariance function is

R(‖h‖) = σ 2(0(ν))−1

(
θ ‖h‖

2

)ν
2Kν(θ ‖h‖),

ν > 0, θ > 0, where Kν(θ ‖h‖ ) is a modified Bessel function of second order, and
θ govern the range of spatial dependence. Here the parameter ν is the smoothness
parameter governing the smoothness of the random process. To get some preliminary
idea of the range parameter, usually one inspects the sample semi-variogram

γ̂ (h) =
1

‖N (h)‖

∑
i

(Z (si + h)− Z (si ))
2 ;

and is based on the observation that as ‖h‖→ ∞, R(‖h‖)→ 0 and hence γ (h)→
C(0) implying that γ̂ (h) must stabilize at some lag h ≥ h1. Of course, this requires lot
of subjective judgment.

The function chosen involves some parameters that must be estimated from the data.
Several methods of estimation have been proposed in the literature (see Cressie (1993),
Gaetan and Guyon (2010), and Diggle and Ribeiro (2007)). If one assumes the process
is Gaussian, likelihood approach can be used and advocated by Diggle and Ribeiro
(2007). The general procedure is to consider the quadratic function

Q(θ) =
∑[

2γ̂ (hi )− 2γ (hi )
]2
wi (θ),

where wi (θ) is a weight function chosen a priori. Cressie (1993) suggested one such
function, namely,

wi (θ) = ‖N (h)‖ /2[2γ (hi , θ)]
2.
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The derivation of the above weight function is a bit heuristic, but seems to produce
good set of estimates of the concerned parameters, and thus a good Kriging estimator.
Alternate weight functions have been suggested recently by Das (2011) in his Ph.D.
Thesis submitted to the University of Manchester, UK. The proposed estimators by Das
(2011) seem to be more robust against departure from Gaussianity and on the basis of
empirical evidence seems to have smaller mean square errors.

1.5. Non-linear quadratic kriging predictor

In the following, we suggest a simple quadratic predictor. Let

Ẑquad(s0) =

n1∑
i=1

a1i (s1i )Z(s1i )+

n2∑
j=1

b2 j (s2 j )(Z
2(s2 j )− σ

2) = β ′Y(s),

where β ′ = (a11, a12, . . . , a1n; b21, b22, . . . , b2n2), Y′(s) = (Z(s11), Z(s12), . . . , Z(s1n1);
q(s21), . . . , q(s2n2)), and q(s2s j ) = Z2(s2s j )− σ

2, j = 1, 2, . . . , n2.
The second part of the above coefficient vector and the variable vector Y(s) corre-

sponds to the nonlinear terms. Here the number of terms in each summation, n1 and n2,
are chosen on the basis of prior knowledge. We describe briefly how these integers are
chosen.

For convenience, we partition each of the two vectors β and Y(s), into two sub-
vectors, one part corresponding to the linear terms and the other due to nonlinear
terms (quadratic terms). Let β

′

= (β
′

1 | β
′

2) and Y
′

(s) = (Z
′

lin(s) | Z
′

quad(s)). In order

to estimate Ẑquad(s0) as usual, we minimize

Qquad(β) = E(Z(s0)− β
′

Y(s))2,

with respect to β we then obtain the nonlinear Kriging predictor, which can be
written as

Ẑquad(s0) = σ
′

q(s0, s)D−1Y(s),

where σ ′q(s0, s) =
[

E Z(s0)Z
′

lin(s), E Z(s0)Z
′

quad(s)
]
, the matrix is given by the parti-

tioned matrix

D =
[

D11 D12

D21 D22

]
,

and the minimum of Qquad is σ 2
− σ ′q(s0, s)D−1σq(s0, s). We denote this minimum by

Qmin
quad and the minimum mean square error for the linear predictor by Qmin

lin . In order
to see whether, the inclusion of nonlinear terms gives us a better predictor of Z(s0),
we need to compare these two minima. It is obvious that Qmin

quad will be less than Qmin
lin .

To construct any statistical test for testing such hypothesis, we need to estimate all the
unknown parameters and covariances in these two minima. The sampling distribution
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of the statistics, under the null hypothesis, thus obtained need to be investigated. In a
classical regression context, the difference (under the null hypothesis that the quadratic
terms are absent) will be distributed as a chi-square. In our context, we need to study the
distributional properties of these statistics. Some simplifications can be achieved if we
set D12 = D21 = 0, which can happen if the random process {Z(s)} has a symmetric
distribution about the mean, even though it is non-Gaussian. If the difference of the
minima is significantly large, we would reject the null hypothesis that the linear Kriging
is optimal. In order to assess this null hypothesis, we need the sampling distribution of
the above difference of the minima, and this needs further investigation. In the classical
regression situations, asymptotically, one can show that the difference is distributed as
a chi-square under the null hypothesis of linearity with degrees of freedom equal to n2.

As mentioned before, we need to find the number of terms in each summation,
namely, n1 and n2. The choice of these numbers depend on the measures of linear and
nonlinear dependence among the locations, and these will be discussed below. Here we
are presenting new ideas that will be investigated in later publications.

2. Measures for linear dependence and linearity of stationary spatial process

For convenience, and for ease of exposition, we assume d = 2 (two-dimensional
space), possibly irregular. In spatial literature, several measures were proposed (see,
e.g., Cliff and Ord (1981)). In the following, we are guided by the ideas presently used
in time series literature. Some of these measures we define now, are similar in spirit to
the Moran and Geary’s indices (see Gaetan and Guyon (2010) and Schanbenberger and
Gotway (2005)). For further discussion on the above measures, see Gaetan and Guyon
(2010).

Let us consider the sample {Z(si ); i = 1, 2, . . . , n}, which is a sample from the sta-
tionary random field {Z(s), s ∈ R2

}. We discuss our ideas from Kriging point of view.
Our object is to estimate Z(s0), and in doing so, we would like to know, whether the
sample is purely random in the sense they are completely independent. If there is a
dependence, we would like to know whether it is linear or nonlinear; and if it is nonlin-
ear how far (distance wise) the nonlinearity effect extends. The reason for this reasoning
is that as the distances increase the contributions (linear or nonlinear) these terms make
on the estimation would decrease. In order to understand these concepts, let us consider
a simple example from the area of geo-mining. We would like to estimate the amount of
mineral at a location, say, s0, given the amounts of mineral available at “n” neighboring
locations. In this set up, it is obvious that the inclusion of nearest neighbours will give a
better estimate and will have more influence than far away locations. In order to locate
the nearest neighbours, we proceed as follows: Pictorially, let us represent the locations
in the following form (Fig. 1).

Let us divide the entire domain, say �, into two disjoint sets S1 and S2. Let S1

contain all the neighbours of s0,

S1 = {s j ; j = 1, 2, . . . , n1; ‖s0 − s j‖ ≤ α1}

S2 = {sm ; m,= n1 + 1, . . . , M , α1 < ‖s0 − sm‖ ≤ α2},
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Fig. 1. Random field when d = 2.

where α1and α2 are Euclidean distances chosen a priori. For notational purposes, we
denote the elements of the set by S1 by {Z(soj ); j = 1, 2, . . . , N1}, and similarly the
set S2 by {Z(s1 j ); j = 1, 2, . . . , N2}. We note that there are no overlapping elements
between these two sets. If we wish to test independence between the elements of these
two sets, we consider the correlation coefficient between squares of the elements of
these two sets. This will be zero if these two sets are independent. In a similar way, if we
wish to test complete randomness within a set, instead of testing correlation between
the elements of the two sets, we consider the correlation between the squares of the
elements within the set. This methodology is similar to that is followed in the classical
nonlinear time series literature, where higher order cumulants are used for testing for
Gaussianity and linearity (see Subba Rao and Gabr (1984) and Terdik (1999)). Further,
we note that if we consider the set S1 and if the process is Gaussian, then

Cov(Z2(soj ), Z2(soj )) = V ar(Z2(soj )) = 2[V ar(Z(soj )]
2

One can also use the above property for testing Gaussianity. The usual Gaussianity test
depends on testing measures of skewness and kurtosis. The sampling distribution of the
tests based on the above measures, proposed in the context of spatial processes, need to
be investigated. If the elements of the two sets are not nonlinearly dependent, the linear
kriging predictor is adequate.

2.1. Intrinsic spatial stationary process

If the process is intrinsically stationary, we have to redefine the above measures as
follows. For considering the independence of the elements of the set S1,we now con-
sider the correlation coefficient between the squares of (Z(soj + h)− Z(soj )) and
(Z(sok + h)− Z(sok)), for all h. In the light of our earlier discussion, we say the intrin-
sically stationary process is independent if the correlation coefficient of the squares
is zero.

In a similar way, we can define the independence between the two sets of S1 and S2

by considering correlation between the squares of the differenced series of the two sets.
In a future publication, we wish to consider these measures with possible applications.
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3. Models for spatial processes defined on lattices

Most of the finite parameter models proposed for spatial processes, are defined
on regular lattices. In the following we briefly consider two-dimensional lattices,
though extension to higher dimensions are possible. Let us define the domain
D = {(i , j); i = 1, 2, . . . , N ; j = 1, 2, . . . , M}. Once again, for convenience, we define
Z(s) = Z(i , j), where the sth location is in fact denotes the (i , j)th location defined on
a rectangular finite dimensional lattice. There are two widely used models defined on
lattices. They are

1. Simultaneous autoregressive models introduced by Whittle (1954) (SAR models)
2. Conditional autoregressive models (CAR) popularized by Besag (1974), Bartlett

(1978), and Rozanov (1967).

The conditional autoregressive models are also known as random field models
(Rozanov, 1967). Besag (1974) considered the estimation of the CAR models using
coding technique and likelihood approach based on coding method. A frequency
domain approach for the estimation of Markov random field models have been dis-
cussed by Yuan (1989), and Yuan and Subba Rao (1993), and the frequency domain
method used for these models can also be generalized for all dimensional lattices and
does not depend on the Gaussianity assumption.

3.1. Simultaneous autoregressive models (SAR)

The SAR models defined by Whittle (1954) are similar to the classical time series AR
models. Here the random process Z(s), s ∈ Z2 is assumed to satisfy a finite difference
equation of the form

Z(s) =
∑
u∈S

a(u)Z(s + u)+ e(s)

where the set S is set of all nearest neighbors of the location u ∈ S such that u 6=
0. The errors {e(s)} are often assumed to be a sequence of independent, identically
distributed random variables, possibly each having a normal distribution with mean
zero and variance σ 2

e . The estimation of SAR models have been considered by Ord
(1975).

3.2. Conditional autoregressive models (CAR)

In this formulation, the model is stated in terms of conditional expectations, unlike SAR
models. The model is defined as follows:

E[Z(s)|Z(s + u), u ∈ S, u 6= 0] =
∑
u∈S

a(u)Z(s + u)

which can also be written as Z(s) = 6u∈Sa(u)Z(s + u)+ η(s). The models given
above may look alike, but the fundamental difference is in the SAR model: the sequence
of errors are not independent of 6u∈Sa(u)Z(s + u), but in the case of CAR, because of
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our definition through the conditional expectations, the errors {η(s)} are independent
under the Gaussianity set up as described by Besag (1974, 1975) and Ord (1975). As
pointed out by Besag (1974) and Ord (1975), the ordinary least squares estimates in the
case of SAR models are not consistent, where as in the case of CAR, they are consistent.
This is because of the fact that in the case of CAR models, the conditional expectation
E(η(s) | 6u∈Sa(u)Z(s + u)) = 0. Below we consider the frequency domain approach
for the estimation of CAR models (Markov Random field models). For details, we refer
to Yuan (1989) and Yuan and Subba Rao (1993).

4. Frequency domain approach for the estimation of CAR models

In order to present the details, we need to describe briefly the spectral representations
of stationary random processes and the definition of the spectral density functions.
Since we are considering processes defined on a two-dimensional lattice, we denote
the random process as Z(t), where t ∈ Z2. Here t = (t1,t2). Let Z(t) be a zero mean,
second-order stationary process admitting the spectral representation

Z(t) =
∫ π∫
−π

exp(i t .ω)d Zx (ω)

t .ω = t1ω1 + t2ω2 and d Z X (ω) = d Z(ω1,ω2). Let us define the covariance function of
lag difference “h”, C(h) by

C(h) =
∫ π∫
−π

exp(ih.ω) f (ω)dω,

and the fundamental frequency range is |ωi | ≤ π , i = 1, 2. Here the f (ω) is defined as
the second-order spectral density function of the random process Z(t). By inverting the
above, we get

f (ω) =
1

(2π)2
∑

h

exp(−ih.ω)C(h),

If we define a real-valued Hilbert space spanned by the random variable {Z(t)}, with
norm V ar(Z(t)) = E(Z(t))2, inner product Cov(Z(t1), Z(t2)), a corresponding sub-
Hilbert space spanned by {Z(t + u); uεS, u 6= 0}, then we obtain, for all vεS, v 6= 0,

E[Z(s)−
∑
uεS

a(u)Z(s + u)]Z(v) = 0,

as 6a(u)Z(s + u) is nothing but the projection onto the sub-Hilbert space of {Z(s)}.
The above equation implies, in view of stationarity

C(v − s)−
∑
uεS

a(u)C(v − s − u) = 0,
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In the above equation, if we substitute the spectral representations, we obtain

∫ π∫
−π

exp(i(v − s).ω) f (ω)

[
1−

∑
uεS

a(u) exp(−iu.ω)

]
dω = 0

which implies,

f (ω) = k

[
1−

∑
uεS

a(u) exp(−iu.ω)

]−1

.

If f (ω)>0, f −1(ω) = K
[
1−

∑
uεS a(u) exp(−iu.ω)

]
. This shows, that in the case

of CAR models, defined on lattices, the inverse spectrum is linear in terms of the
coefficients {a(u)}. This suggests that, if we have a Fourier expansion for the inverse
spectrum, the Fourier coefficients of the expansion, are in fact proportional to the coef-
ficients {a(u)}. In his Ph.D. Thesis, Yuan (1989), considered the estimation of the
parameters of the model using the above observation and also studied their sampling
properties. If the coefficients are symmetric in the neighbourhood of u = 0, then

f −1(ω)=K

[
1−

∑
uεS

a(u)cos (u.ω)

]
.

The order of the neighbourhood can also be estimated, by studying the properties
of the inverse autocovariances as they tend to zero as the lags go beyond the defined
neighbourhood.

It is important to note that the above estimation, does not depend on the assumption
of Gaussianity, unlike the estimation procedures considered earlier.

5. Spatio-temporal processes

Let Z(s, t); s ∈Rd , tεZ be a zero mean, spatially and temporally stationary process,
by this we mean, E(Z(s, t)) = 0, V ar(Z(s, t)) = σ 2, Cov(Z(s, t), Z(s + h, t + u)) =
C(h, u), h ∈ Rd , u ∈ Z . Here, “h” denotes the spatial lag and “u” denotes the temporal
lag. If C(h, u) = R(‖h‖ , u), we say the process is spatially isotropic. The literature on
spatio-temporal processes is not as rich as in spatial processes, but a recent book by
Cressie and Wikle (2011) may fill this gap. A special class of processes, widely known
as “separable processes” have been proposed (see Cressie and Huang (1999), Fuentes
(2006), Gneiting (2002), and Ma (2004)) recently. As far as the authors are aware,
literature on finding suitable finite parametric models, methods of estimation, etc., in
the case of spatio-temporal processes are still at an early stage. In this section, we will
try to define some suitable new models, and their estimation, etc., will be considered in
future publications.

We say the random process Z(s, t) is separable if the covariance function can be
represented as product of two covariances as C(h, u) = C1(h)C2(u). This implies that
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the second-order spectral density function defined for spatial processes Z(s, t) can be
written as a product of two second-order spectra: one due to the spatial processes and
the other one is due to the temporal processes.

Consider a separable process with covariance function C(h, u) = C1(h)C2(u).
Taking two dimensional Fourier transforms both sides(over h and u) we get,

f (λ,ω) = f1(λ) f2(ω),

where |ω| ≤ π , |λ| ≤ πd , λ = (λ1, λ2, . . . , λd). From the above equation, we get after
taking logarithms.

ln f (λ,ω) = ln f1(λ)+ ln f2(ω),

which is additive. This decomposition provides us a test for separability of the pro-
cesses (see Fuentes (2006)), in fact this idea of separation of spectral density functions
was used by Priestley and Subba Rao (1969) for constructing a statistical test for second
order stationarity.

5.1. Models for spatio-temporal processes

Here, we briefly describe some ideas that we believe to be new for defining spatio-
temporal processes. The models we suggest below are similar to SAR and CAR models
suggested earlier for purely spatial processes. We define in terms of frequency domain.

5.2. Conditional autoregressive spatio-temporal (CAST) models

Let us assume that Z(s j , t), s j ∈ Z2, : t ∈ Z is the random process defined on a finite
lattice (for each t) i = 1, 2, . . . , M1; j = 1, 2, . . . , M2, and t = 1, 2, . . . , N . We are con-
sidering a finite dimensional lattice with M1 M2 locations. Let us define the discrete
finite Fourier transform of the time series observed at a specific location, say si , by

Js j (ωk) =
1

√
2πN

∑
t

Z(s j , t) exp(−i tωk),

where ωk = 2πk/N , k = 0,±1,±2, . . . ,± [N/2]. It is well known that if the pro-
cess is second-order temporally stationary, the discrete Fourier transforms Js j (ωk) and
Js j (ωk ′) are asymptotically uncorrelated over distinct frequencies if the process is sta-
tionary and asymptotically independent if the process is a Gaussian stationary process.
Further, under the assumption that the mean is zero, we have

E(Js j (ω)) = E

[
1

√
2πN

∑
t

Z(s j , t)exp(−i tω)

]
= 0,

V ar(Js j (ωk)) ' fs j (ωk).

If the process is Gaussian, the discrete Fourier transforms are complex Gaussian.
Now following Rozanov (1967), we define a Hilbert space defined by complex random
variables (the discrete Fourier transforms of the processes at all the locations at a given
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frequency ω), and a suitable sub-Hilbert space spanned by a subset. For convenience
of exposition, we denote each location by si , where i = 1, 2, . . . , M1 M2, i.e., all the
coordinates corresponding to the entire lattice. The inner product of the Hilbert space
spanned by all the discrete Fourier transforms is the covariance between the discrete
Fourier transforms Cov(Jsi (ω), Js j (ω)) = fsi s j (ω), where fsi s j (ω) is the cross-spectral
density function of the spatio-temporal processes defined at two locations si and s j

and in view of our assumption of spatial stationarity is a function of the lag difference
si − s j only. If the process is assumed to be isotropic, the lag difference is the Euclidean
distance “h” only. We note when i = j , h = 0, then the cross-spectral density function
is nothing but the spectral density function at a given location (i or j), and in view
of stationarity, it is same for all locations. For a fixed frequency ω, let us define the
conditional expectation

E[Js(ω) | Js+u(ω); uεS, u 6= 0] =
∑
u∈S

β(u)Js+u(ω),

where the coefficients {β(u)} can be complex valued. From the above conditional
expectation, we get, for all v 6= 0,

E

[
Js(ω)−

∑
u∈S

β(u)Js+u(ω)

]
J ∗v (ω) = 0,

which gives a set of Yule–Walker-type equations in terms of the spectral density func-
tions, which can be solved to obtain the coefficients {β(u)}. The above equations reduce
to (for a given ω),

fv−s(ω)−
∑
u∈S

β(u) fv−s−u(ω) = 0,

for all s = 1, 2, . . . , M1 M2. In the above summations, we should note that u takes all
values belonging to the neighbourhood of S except u = 0.

The estimation of the above coefficients and the sampling properties will be
discussed in future publications. We can formally rewrite the above conditional
expectation in the form of a model using the discrete Fourier transforms;

Js(ω) =
∑

u

β(u)Js+u(ω)+ Js,e(ω),

where {Js,e(ω)} is a sequence of complex-valued Gaussian random variables (for a
fixed ω) independent of each other overall locations {s}. In view of our definition
through the conditional expectations, the two terms on the right-hand side of the above
equation are independent. This is similar to CAR models considered by Besag (1974)
and others for purely spatial processes. The estimation of the parameters and statistical
inference associated with the estimates will be considered elsewhere.

5.3. Simultaneous autoregressive spatio-temporal models (SAST)

We give here a frequency domain formulation of the SAST models. Ali (1979) gen-
eralized SAR models to time series data defined on lattices. Following the notation of
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Ali (1979), let us define Z(l, m; t) as the stationary time series defined at the location
(l, m) for each “t”. The SAR model is defined as

Z(l, m; t) =
∑

i

∑
j

p∑
k=1

φ (i , j ; k) Z(l − i , m − j ; t − k)+ e(l, m; t),

The estimation of the parameters was considered by Ali (1979). The choice of the
orders, nearest neighbourhood S over which the model is defined have to be considered,
and as far as the authors are aware, no studies are available dealing with these problems.
Now we define a frequency domain version of SAST models.

5.4. Frequency domain SAST

As defined earlier when discussing CAST models, we define the discrete Fourier
transforms at each location as before. Now define the SAST model

Js(ω) =
∑
uεS

γ (u)Js+u(ω)+ Js,η(ω)

where {J s,η(ω)} is a sequence of independent complex random variables, independent
over s for a fixed ω. The estimation, sampling properties of the estimators and appli-
cations of these need to be investigated. Some of these will be considered elsewhere.
As stated earlier when discussing CAR and SAR models for spatial processes, the two
terms on the right-hand side of the above model are not orthogonal.

6. Multivariate AR and STAR models

In the following discussions, we do not need to assume that the space is a lattice (either
two dimensions or more than two). We assume here that s ∈ Rd . Let Z(si , t); i =
1, 2, . . . , n, t = 1, 2, . . . , N . In other words, we have a time series of length N at each
of the n locations. Define the vector, for each t,

Z
′

(t) = (Z(s1, t), Z(s2, t), . . . , Z(sn , t)).

Then one can consider the above vector process as a multivariate stationary time
series and use the classical multivariate ARMA models for modeling the spatio-
temporal data. The multivariate ARMA(p, q) can be written as

Z(t) =
p∑

j=1

A( j)Z(t − j)+
q∑

k=0

B(k)e(t − k),

where B(0) = I , and the random vectors {e(t)} are assumed to be mutually indepen-
dent, identically distributed random vectors (usually assumed to be Gaussian, although
not always necessary) with mean zero and variance covariance matrix G. The matrix
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coefficients need to satisfy some conditions in order to satisfy the conditions of second-
order stationarity and invertibility (see Priestley (1981) and Lutkepohl (2008)). These
coefficients can be estimated using maximum likelihood estimation methodology. In
the above, we assumed that the mean of the spatio-temporal process {Z(t)} zero. Sup-
pose the random process, say {Y(t)}, represents the original process with non-zero
mean, say X(t ,ϑ). Then we can write {Y(t)} as

Y(t) = X(t,ϑ)+ Z(t), t = 1, 2, 3, . . . , N

where {Z(t)} is a zero mean spatio-temporal processes. Usually, the mean component
X(t ,ϑ) is a function (linear or nonlinear) of some co-variates.

In many real applications, such as climatology and physical sciences, the mean
component can be a function of time (polynomial in time) representing the trend, sea-
sonality, or both. Such models have been recently considered by Terdik et al. (2007),
Subba Rao and Terdik (2006), and Gao and Subba Rao (2010). Terdik et al. (2007)
and Subba Rao and Terdik (2006) have developed frequency domain methods for esti-
mating the nonlinear regression parameters and studied their sampling properties. As
stated earlier, one of the important objects in environmental time series, such as global
temperatures, etc., is to detect whether there is a global warming and if so, by how
much. Hughes et al. (2007) considered the minimum and maximum monthly temper-
atures at Faraday Station, Antarctic Peninsula and estimated the amount of increase
by estimating the trend under the assumption that the errors are correlated and admit
an ARMA model with innovations having an extreme value distribution. In situations
where such assumptions are not possible, we believe the frequency domain methods
developed by Terdik et al. (2007) and Subba Rao and Terdik (2006) are very useful.
One disadvantage of using multivariate ARMA models given above in spatial con-
text is that as the number of locations n increases, the dimensions of the coefficients
increase. With this increase of dimensionality, we may encounter severe problems in
the maximization of the likelihood functions. As an alternative to these, a class of mod-
els known as space–time autoregressive models (STARMA) were proposed by Pfeifer
and Deutsch (1980). These models are parsimonious that not only include lag terms,
but also take into account the “distances” between the locations. Besides the above
papers, we also refer to recent papers by Subba Rao and Antunes (2004), and Antunes
and Subba Rao (2006). The dependence between the “n” locations is characterized
through a sequence of n × n matrices, specified by the practitioners before hand. Sup-
pose we denote the l th order spatial dependence matrix by Wl , (l = 1, 2, . . . , n), then
the STARMA(pλ1λ2...λp , : qm1m2...mq ) is defined as

Z(t) =−
p∑

k=1

λk∑
l=0

ϕklWl Z(t − k)+ e(t)+
q∑

k=1

mk∑
l=0

θklWle(t − k)

where the coefficients {ϕkl ;θkl} are scalars. Here the random errors {e(t)} are assumed
to be independent normal vectors with zero mean and variance covariance matrix G.
Since the weighting matrices are chosen before hand, the problem is to estimate the
parameters of the above equation given that we have T consecutive observations at
each of the “n” locations. The identification of STARMA are done using space–time
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autocorrelation coefficients and partial autocorrelation coefficients (see Pfeifer and
Deutsch (1980)) similar to the classical time series. The space–time autocovariance
function of lag s between lth and kth-order neighbors is defined by

γlk(s) =E

{
(WlZ(t))

′

(WkZ(t + s))

N

}

and the autocorrelation coefficient can be defined as

ρlk(s) =
γlk(s)

{γll(0)γkk(0)}
1
2

.

These coefficients can be estimated since the weighting matrices are known. As in
time series, the partial space–time autocorrelation coefficients become zero beyond the
order of the STAR model, and space–time autocorrelation coefficients become zero for
STMA models (see Subba Rao and Antunes (2004)).

Under the assumption of Gaussianity and G = σ 2I,we can show that the maximiza-
tion of the log-likelihood function is same as the minimization of

S(ϕ, θ) =
N∑

i=1

T∑
t=1

e2
i (t)

with respect to the parameter vector (ϕ, θ). In order to implement the minimization
algorithm, we need the residuals {ei (t)}. Subba Rao and Antunes (2004) have suggested
using a procedure similar to Hannan and Rissanen (1982). The estimates obtained did
converge. Subba Rao and Antunes (2004) fitted the above models to monthly mean tem-
peratures, recorded in Celsius scale, at nine meteorological stations around the United
Kingdom. The data was accessed through the Web site of the LDEO/IRI Data library
found in http://rainbow.ldeo.columbia.edu/. There are 223 observations available for
the nine sites from January 1951 through to August 1969. In order to save space, we will
not reproduce the results as they can be found in Subba Rao and Antunes (2004). The
object in this chapter was not only to illustrate the method of estimation of STARMA
models, but also to compare the forecasting performance of the STARMA models with
univariate ARMA models fitted using standard software packages and methodology. At
least in this case, it was found that STARMA models gave better forecast than univari-
ate models, and the obvious reason is that in the space–time modeling we have not only
taken temporal correlation into account, but also spatial correlation. Another advantage
is that these STARMA models have less parameters to estimate.

Since multivariate ARMA models STARMA models look similar, a natural question
one would consider is whether one model is nested in the other model. The question
of testing of non-nested hypotheses was considered by Cox (1961) in the case of inde-
pendent, identically distributed random variables. Except for Walker (1967), not much
is known regarding testing non-nested hypotheses in the case of time series. Now
consider a special case of STAR model where only a first-order dependence is taken

http://rainbow.ldeo.columbia.edu/
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into account. The model considered by Antunes and Subba Rao (2006) is of the form

Z(t)+
p∑

k=1

(φkIn + ψkW)Z(t − k) = ε(t),

where the coefficients {φj,ψj; j = 1, 2, . . . , p} are scalars and the first-order weighting
matrix W is assumed to be known. Now consider a n-variate multivariate AR model of
order q of the form

Z(t)+
q∑

j=1

A( j)Z(t − j) = ν(t),

where the random vectors {ε(t)} and {ν(t)} are assumed i.i.d, each having a zero mean
multivariate normal distribution with variance covariance matrices 6ε and 6ν , respec-
tively. Antunes and Subba Rao (2006) have shown that STAR model is nested within
multivariate AR model only if the orders p and q are equal. The above two models
were fitted to 500 hourly carbon monoxide atmospheric concentrations in four differ-
ent locations in London beginning January 01, 2004. The locations are Bloomsbury,
Hillington, Marylebone Road, and Westminster). In both cases, the orders were cho-
sen using Quinn (1980) information criterion. The data considered was logarithmically
transformed and deseasonalized. Using the above criterion, it was found that an order
two STAR model found to be appropriate, and for the multivariate case it was found
AR model of order 3 was found to be most suitable. Though the residual variance–
covariance matrices in both cases look similar, one can easily see that the STAR model
has less number of parameters compared to Multivariate AR models. If one decides to
choose a parsimonious model, in this case at least, one should choose a STAR model.
For further discussion, see Antunes and Subba Rao (2006).

6.1. Non linear space–time models (space–time bilinear models)

In time series context, Granger and Andersen (1978), Subba Rao (1977, 1981), Subba
Rao and Gabr (1984), and Terdik (1999) have defined a class of nonlinear time series
models, and now they are widely known as bilinear models. Let us briefly consider the
univariate case.

Let {X t } be a discrete parameter time series. We say the time series is a bilinear
process, if the time series satisfies the difference equation

X t +

p∑
j=1

a j X t− j =

r∑
j=0

c j e(t − j)+
m∑

l=1

q∑
k=1

blk X t−le(t − k),

where c0 = 1 and {et } are independent, identically distributed random variables with
mean zero and variance σ 2

e . We define the above models as BL(p, r , m, q). The proper-
ties of BL(p, 0, p, 1) have been investigated by Subba Rao (1981), and Terdik (1999).
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The estimation of parameters of bilinear models and subset bilinear models have also
been considered in the above publications. These univariate bilinear models have been
extended to multivariate situations by Stensholt and Tjøstheim (1987), and Subba Rao
and Wong (1999). An interesting property of bilinear models is that the general solution
of these equations (under certain conditions) have Volterra representation, and one can
obtain explicit expressions for higher order cumulants (see Terdik (1999)). As in lin-
ear AR models, bilinear models also satisfy Yule–Walker type difference equations in
terms of higher order cumulants. Another interesting feature of the bilinear models are
that the conditional mean of the process defined by these models is dependent (nonlin-
early) on the past set of data and conditional variance is constant. This is in contrast to
ARCH and GARCH models where the conditional mean is constant (usually assumed
to be zero), but the conditional variance is changing and dependent on the past data.
In view of this property the ARCH and GARCH models are used for representing the
stochastic volatility in the financial markets.

Dai and Billard (1998) have extended the bilinear models described above to spatial
situations. Following earlier notation, we let Z(t) to represent the time series at time
“t” at all n locations. The space–time bilinear model (Dai and Billard, 1998) is

Z(t) =
p∑

i=1

λi∑
m=0

φi
mWmZ(t − i)+

q∑
j=1

η j∑
n=0

θ j
n Wne(t − j)

+

r∑
i=1

s∑
j=1

ξi∑
m=0

µ j∑
n=0

β i j
mn [WmZ(t − i)] # [Wne(t − j)]+ e(t),

where {e(t)} assumed to be i.i.d random vectors and A#B = C = (ci j ), cij = ai j bi j .
The conditions of stationarity, etc., were considered by Dai and Billard (1998). As

far as we are aware, these models have not been used in the analysis of real data. It is
important to study the importance of these models in physical and biological sciences.
In the context of climatology, it would be useful to see how these models can be used to
estimate an observation at a known location given the data at other locations. We hope
these problems will be considered in future publications.

Concluding Remarks

In this review, our object is to show how some of the well-known techniques such as
linear prediction (Kriging) methodology for the estimation of an unknown observation
at a known location can be extended to nonlinear situations and also known spatial pro-
cess models to include temporal dimension. The new spatio-temporal models defined
here are based on discrete Fourier transforms. These methods here defined led us to
several open and interesting problems, and we hope to consider some of these. Also we
hope the readers will also consider these.

The applicability of these methods and new techniques need to be applied and tested
in the case of real data.
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Abstract

The ARCH and GARCH models of Engle (1982) and Bollerslev (1986) respec-
tively have had great success in the modeling of financial time series. Discrete-
time stochastic volatility models have also been found to be very useful in
representing the time variation of volatility observed in such data. In this review,
we discuss Lévy-driven continuous-time versions of these processes and some
related inference questions.

Keywords: Lévy process, Lévy-driven CARMA process, stochastic volatility,
COGARCH process, generalized Ornstein–Uhlenbeck process.

AMS Classification: 62M10, 60H10, 91G70

1. Introduction

The study of time series with continuous-time parameter received great impetus from
the very successful application of such processes in theoretical finance, particularly
with the work of Black, Scholes, and Merton on the pricing of options and the sub-
sequent explosive growth of financial mathematics. An excellent recent overview of
financial time series can be found in the book edited by Andersen et al. (2009). For fur-
ther applications of Lévy processes in finance, we recommend also the books of Cont
and Tankov (2004) and Schoutens (2003).

In this article, we focus attention on some financial time series driven by Lévy
processes, the essential properties of which are introduced in Section 2. Lévy pro-
cesses play a central role for several reasons, one being that their sample paths are
not restricted to be continuous and another that the distributions of their increments
can be any of the very large class of infinitely divisible distributions. In Section 3,
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we discuss Lévy-driven continuous-time autoregressive moving average (CARMA)
processes that play a role in continuous time analogous to their discrete-time coun-
terparts and introduce the stationary Lévy-driven Ornstein–Uhlenbeck process as a
special case. Section 4 deals with the celebrated continuous-time stochastic volatility
model of Barndorff-Nielsen and Shephard (2001) in which the volatility is a sta-
tionary Ornstein–Uhlenbeck process driven by a subordinator (a Lévy process with
nondecreasing sample paths). In Section 5, we consider an extended version of the
Barndorff-Nielsen–Shephard model in which the volatility is a non-negative CARMA
process and discuss parameter estimation for the volatility based on realized integrated
volatility. In Section 6, we introduce the generalized Ornstein–Uhlenbeck (GOU) pro-
cess, which generalizes the Ornstein–Uhlenbeck process in a direction different from
that of the CARMA process. Finally in Section 7, we discuss the COGARCH(1,1) pro-
cess of Klüppelberg et al. (2004), in which the volatility is a GOU process, and the
higher order COGARCH(p, q) process of Brockwell et al. (2006).

2. Lévy processes

A Lévy process with values in Rd (d ∈ N) defined on a probability space (�,F , P)
is a stochastic process M = (Mt )t≥0, Mt : �→ Rd with independent and stationary
increments such that M0 = 0 almost surely and the sample paths are almost surely
right continuous with finite left limits. By independent increments, we mean that for
every n ∈ N and 0 ≤ t0 < t1 < · · · < tn , the random variables Mt0 , Mt1 − Mt0 , and
Mt2 − Mt1 , . . . , Mtn − Mtn−1 are independent, and by stationary increments, we mean
that Ms+t − Ms has the same distribution as Mt for every s, t ≥ 0. We refer to the
books by Applebaum (2004), Bertoin (1996), Kyprianou (2006), and Sato (1999) for
further information about Lévy processes, in which the proofs for the results stated in
this section can also be found.

Elementary examples of Lévy processes M = (Mt )t≥0 with values in Rd include
linear deterministic processes of the form Mt = bt , where b ∈ Rd , d-dimensional
Brownian motion and d-dimensional compound Poisson processes. If M = (Mt )t≥0 is
any Lévy process, then for all t the distribution of Mt is characterized by a unique
triplet (AM , νM , γM) consisting of a symmetric non-negative d × d matrix AM , a
measure νM on Rd satisfying νM({0}) = 0 and

∫
Rd min{|x |2, 1} νM(dx) <∞ and a

constant γM ∈ Rd . This triplet determines the characteristic function of Mt via the
Lévy–Khintchine formula,

Eei〈Mt ,z〉 = exp

i〈γM , z〉 −
1

2
〈z, AM z〉 +

∫
Rd

(ei〈z,x〉
− 1− i〈z, x〉1{|x |≤1}) νM(dx)


(1)

for z ∈ Rd . The measure νM is called the Lévy measure of M and AM the Gaussian vari-
ance. Conversely, if γM ∈ Rd , AM is a symmetric non-negative definite d × d matrix,
and νM is a Lévy measure, then there exists a Lévy process M , unique up to identity in
law, such that (1) holds. The triplet (AM , νM , γM) is called the characteristic triplet of
the Lévy process M .
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For Brownian motion (X t )t≥0 with E X t = µt and Var(X t ) = σ
2t , the characteristic

triplet is (σ 2, 0,µ), and for a compound Poisson process with jump rate λ and jump-size
distribution function F , the characteristic triplet is (0, λdF(·),

∫
[−1,1] λxdF(x)).

A Lévy process M with values in R1 is called a subordinator if it has increas-
ing sample paths. This happens if and only if AM = 0, νM((−∞, 0)) = 0, and∫ 1

0 x νM(dx) <∞. Examples of subordinators include compound Poisson processes
with jump distribution concentrated on (0,∞), the Gamma process, and the inverse
Gaussian process. The Gamma process with parameters c, λ > 0 is the Lévy pro-
cess with characteristic triplet (0, νM ,

∫ 1
0 ce−λx dx) and Lévy measure νM given by

νM(dx) = cx−1e−λx 1(0,∞)(x) dx . For the Gamma process, the distribution of Mt has
Lebesgue density x 7→ (0(ct))−1λct xct−1 e−λx 1(0,∞)(x). The inverse Gaussian process
with parameters a, b > 0 is defined to have characteristic triplet AM = 0, Lévy measure
νM(dx) = (2πx3)−1/2ae−xb2/21(0,∞)(x) dx , and γM = 2ab−1

∫ b
0 (2π)

−1/2e−y2/2 dy. For
the inverse Gaussian process, the distribution of Mt has Lebesgue density x 7→
(2πx3)−1/2ate−

1
2 (a

2t2x−1
−2abt+b2x).

The jump of a Lévy process M at time t is defined as

1X t := X t − X t−,

where X t− denotes the left limit at t > 0 with the convention that X0− := 0. Apart
from Brownian motion with drift, every Lévy process has jumps. The Lévy measure
νM(B) of a Borel set B describes the expected number of jumps of (Mt )t∈[0,1] with size
in B, i.e.,

νM(B) = E
∑

0<s≤1

1B(1Ms).

A Lévy process has only finitely many jumps in finite intervals if and only if the
Lévy measure of the Lévy process is finite. Every one-dimensional Lévy process is a
semimartingale (cf. Applebaum, 2004 or Protter, 2005), and its quadratic variation is
given by [M , M]t = AM t +

∑
0<s≤t 1M2

s . We refer to Applebaum (2004) and Protter
(2005) for further information regarding integration with respect to semimartingales
(and in particular Lévy processes).

Finally, we mention that for κ > 0, a Lévy process M = (Mt )t≥0 satisfies
E |M1|

κ <∞ if and only if E |Mt |
κ <∞ for all t ≥ 0, which is further equiva-

lent to
∫
|x |≥1 |x |

κ νM(dx) <∞. In particular, for κ = 2 and d = 1, Var(Mt ) = t AM +∫
R x2 νM(dx).

3. Lévy-driven CARMA( p, q) processes

If (L t )t≥0 is a Lévy process with values in R, defined as in Section 2, it can be
extended to a process with stationary independent increments, right-continuous sample
paths with finite left limits, L0 = 0 and index set R, by defining L t = −M−t−, t < 0,
where (Mt )t≥0 is an independent version of (L t )t≥0. Assuming this extension has
been made, we define an L-driven CARMA(p, q) process with real coefficients
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{a1, . . . , ap; b1, . . . , bq} and p > q (see the work done by Brockwell, (2001)) as a
strictly stationary solution of the suitably interpreted formal stochastic differential
equation

a(D)Vt = b(D)DL t , t ∈ R, (2)

where D denotes differentiation with respect to t ,

a(z) := z p
+ a1z p−1

+ · · · + ap,

b(z) := zq
+ bq−1zq−1

+ · · · + b0.

Since DL t does not exist in the usual sense, we interpret the differential equation
(2) by means of its state space representation, consisting of the observation and state
equations,

Vt = b′Xt (3)

and

dXt − AXt dt = e dL t , (4)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

 , e =


0
0
...
0
1

 , b =


b0

b1
...

bp−2

bp−1

 , (5)

bq := 1 and b j := 0 for j > q. Every solution of (4) satisfies the relations

Xt = eA(t−s)X(s)+

t∫
s

eA(t−u)e dLu , t > s,

where the integral is a special case of integration with respect to a semimartingale.
Brockwell and Lindner (2009), Theorem 4.1, show that there is no loss of gener-

ality in assuming that a(z) and b(z) have no common factors and that, assuming L is
nondeterministic, necessary and sufficient conditions for (3) and (4) to have a strictly
stationary solution V are that E max(0, log |L1|) is finite and a(z) is nonzero on the
imaginary axis. In this case, the strictly stationary solution is unique and is given by

Vt =

∞∫
−∞

g(t − u) dLu (6)
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with

g(t) =

( ∑
λ:<λ<0

µ(λ)−1∑
k=0

cλk tkeλt 1(0,∞)(t)−
∑
λ:<λ>0

µ(λ)−1∑
k=0

cλk tkeλt 1(−∞,0)(t)

)
, (7)

where the sums are over the distinct zeroes λ of the polynomial a(z) and µ(λ) denotes
the multiplicity of λ. The sum

∑µ(λ)−1
k=0 cλk tkeλt is the residue of z 7→ ezt b(z)/a(z) at

λ, i.e.,

µ(λ)−1∑
k=0

cλk tkeλt
=

1

(µ(λ)− 1)!

[
Dµ(λ)−1

z

(
(z − λ)µ(λ)ezt b(z)/a(z)

)]
z=λ

,

and Dz denotes differentiation with respect to z. (For a zero λ with µ(λ) = 1, the last
sum reduces to b(λ)eλt/a′(λ), where a′ denotes the derivative of a.)

Remark 1 (Causality). The unique strictly stationary solution is causal if and only
if a(z) has no zeroes with positive real part, in which case the second sum in (7)
disappears and g can be expressed as

g(t) =

{
b′eAt

=
1

2π i

∫
ρ

b(z)
a(z)e

t zdz, if t > 0,

0, if t ≤ 0,
(8)

where the subscript ρ indicates integration anticlockwise around a simple closed con-
tour encircling the zeroes of a(z) and contained in the open left half of the complex
plane. If the zeroes all have multiplicity 1, we obtain the very simple representation,

Vt =

p∑
j=1

b(λ j )

a′(λ j )

t∫
−∞

eλ j (t−u)dLu . (9)

From now on, we shall restrict attention to causal CARMA processes. The term sta-
tionary will be used to indicate strict (as opposed to weak or covariance) stationarity,
except when explicitly stated otherwise. 2

Example 1 (The stationary Ornstein–Uhlenbeck process). In the case when
p = 1 (so that q is necessarily zero), V is the CARMA(1,0) process, also written
as CAR(1) (continuous-time autoregression of order 1), and widely known as the
stationary Ornstein–Uhlenbeck process. In this case, the dimension of the state vec-
tor Xt is 1, b(z) = 1, and a(z) = z − a1 where, for causality, a1 = λ1 < 0. Provided
E max(0, log |L1|) <∞, Vt = Xt is the unique stationary solution of the equation,

dVt − a1Vt dt = dL t . (10)

From (9), we immediately find that

Vt =

t∫
−∞

eλ1(t−u)dLu . (11)
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If L is a subordinator, i.e., a Lévy process with nondecreasing sample paths, then
inspection of (11) shows that the process V is non-negative. The subordinator-driven
CAR(1) process is thus a potential model for any non-negative process such as the
stochastic volatility considered later in Section 4.

Example 2 (The CARMA(2,1) process). The CARMA(2,1) process with a(z) =
(z − λ1)(z − λ2), and λ1 6= λ2, has the particularly simple structure,

Vt = α1

t∫
−∞

eλ1(t−u)dLu + α2

t∫
−∞

eλ2(t−u)dLu ,

where

αi =
b(λi )

a′(λi )
=

λi + b0

2λi + a1
, i = 1, 2.

The process is thus a sum of two dependent and possibly complex-valued CAR(1)
processes. (Such a decomposition clearly extends to any CARMA(p, q) process for
which a(z) has distinct zeroes.) If L is a subordinator, then, as in Example 1, Vt

is non-negative provided the kernel g(t) = α1eλ1t
+ α2eλ2t , t ≥ 0, is non-negative.

This is the case if and only if λ1 and λ2 are both real and b0 ≥ max(|λi |) (See the
study by Brockwell and Davis (2001). More general conditions for non-negativity of
a CARMA(p, q) kernel are given in the study by Tsai and Chan (2005)).

3.1. Second-order properties when EL2
1 <∞

If EL2
1 <∞, we define µ := EL1 and σ 2 := Var(L1).

The causal CARMA process defined by (6) and (8) is then covariance stationary
with mean µb0/ap and autocovariance function, which can be calculated as follows.
From (8), noting that g(t) = 0 for t < 0, we see that the Fourier transform of g is

g̃(ω) :=
∫
R

g(t)eiωt dt = −
1

2π i

∫
ρ

b(z)

a(z)

1

z + iω
dz =

b(−iω)

a(−iω)
, ω ∈ R.

Since the autocovariance function γV (·) is the convolution of σg(·) and σg(−·), its
Fourier transform is given by

γ̃V (ω) = σ
2g̃(ω)g̃(−ω) = σ 2

∣∣∣∣b(iω)a(iω)

∣∣∣∣2 , ω ∈ R.

The spectral density of V is the inverse Fourier transform of γV . Thus,

fV (ω) =
1

2π

∫
R

e−iωhγV (h)dh =
1

2π
γ̃V (−ω) =

σ 2

2π

∣∣∣∣b(iω)a(iω)

∣∣∣∣2 , ω ∈ R.
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Substituting this expression into the relation

γV (h) =
∫
R

eiωh fV (ω)dω, h ∈ R

and changing the variable of integration from ω to z = iω gives

γV (h) =
σ 2

2π i

∫
ρ

b(z)b(−z)

a(z)a(−z)
e|h|zdz = σ 2

∑
λ

Resz=λ
(
ez|h|b(z)b(−z)/(a(z)a(−z))

)
,

where the sum is again over the distinct zeroes, λ of a(z). This gives the general
expression

γV (h) = σ
2
∑
λ

1

(µ(λ)− 1)!

[
Dµ(λ)−1

z

(z − λ)mez|h|b(z)b(−z)

a(z)a(−z)

]
z=λ

, (12)

where µ(λ) is the multiplicity of λ. In the case when the roots are distinct, Eq. (12)
simplifies to

γV (h) = σ
2
∑

λ:a(λ)=0

eλ|h|b(λ)b(−λ)

a′(λ)a(−λ)
. (13)

Example 3 (The second-order CAR(1) process). If EL2
1 <∞, then, by (13), the

CAR(1) process defined in Example 1 has the autocovariance function

γV (h) =
σ 2

2|λ1|
eλ1|h| (14)

and autocorrelation function ρV (h) = eλ1|h|.

Example 4 (The second-order CARMA(2,1) process). If EL2
1 <∞, then, by

(13), the CARMA(2,1) process defined in Example 2 with λ1 6= λ2 has the auto-
covariance function,

γV (h) =
σ 2

2λ1λ2(λ
2
1 − λ

2
2)

[
λ2(b

2
0 − λ

2
1)e

λ1|h| − λ1(b
2
0 − λ

2
2)e

λ2|h|
]

.

This is a much broader class of functions than those in Example 3, allowing the
approximation of a wider class of sample autocovariances than is possible when
attention is restricted to CAR(1) models.

4. A continuous-time stochastic volatility model

Let λ be strictly negative and let L be a subordinator. Then the spot volatility process V
in the stochastic volatility model of Barndorff-Nielsen and Shephard (2001) is defined,
apart from a change of time scale, as the strictly stationary solution of the equation

dVt = λVt dt + dL t , (15)
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i.e., as a subordinator-driven CAR(1) process with driving Lévy process L and coef-
ficient λ. Then, by (11), Vt is positive for all t ∈ R. If G t denotes the logarithm of
the asset price at time t , then the process (G t )t≥0 is assumed to satisfy the stochastic
differential equation,

dG t = (m + bVt ) dt +
√

Vt dWt , (16)

where m and b are constants, and (Wt )t≥0 is a standard Brownian motion, independent
of L .

Notation 1. The term volatility is sometimes used to refer to Vt and sometimes to
√

Vt . We shall refer to Vt as the (spot) volatility at time t and to integrals of Vt over
time intervals as integrated volatility. 2

If EL2
1 <∞ and Var(L1)= σ 2, the autocovariance function of V is, by (14), the

exponentially decaying function,

Cov(Vt+h , Vt ) = σ
2eλ|h|/(2|λ|).

If additionally m = b = 0, then (see the work done by Barndorff-Nielsen and Shephard
(2001, Section 4)) nonoverlapping increments of G of length r > 0 are uncorrelated,
i.e.,

Cov(G t − G t−r , G t+h − G t+h−r ) = 0, t , h ≥ r ,

while, if EL4
1 <∞, the squared increments are correlated with the autocovariance

function,

Cov((G t − G t−r )
2, (G t+h − G t+h+r )

2) = Cr e−λh

for strictly positive integer multiples h of r > 0, where Cr > 0 is some constant. The
process ((Grh − Gr(h−1))

2)h∈N thus has the autocovariance structure of an ARMA(1,1)
process. The fact that the increments of the log-price process are uncorrelated while its
squares are not is one of the important stylized features of financial time series. The tail
behavior of the squared volatility process depends on the tail behavior of the driving
Lévy process. In particular, it can be seen that Vt has Pareto tails, i.e., that P(Vt > x)
behaves asymptotically as a constant times x−α for some α > 0 as x →∞ if and only
if L1 has Pareto tails with the same index α (see the study by Fasen et al. (2006); the
converse follows from the monotone density theorem for regularly varying functions;
see, e.g., Theorem 1.7.2 in the study by Bingham et al., 1987).

5. Integrated CARMA processes and spot volatility modeling

In the stochastic volatility model (15) and (16), the spot volatility Vt is represented
by a stationary Lévy-driven Ornstein–Uhlenbeck process. This has the shortcoming



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 23-ch19-541-564-9780444538581 2012/4/24 1:55 Page 551 #11
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that its autocorrelation function is necessarily a decreasing exponential function. Spot
volatility is not an observable quantity, however, the integrated volatility sequence

I1n =

n1∫
(n−1)1

Vt dt , n = 1, 2, . . . (17)

over successive periods of length 1 can be well estimated in the context of the model
(15) and (16) by the so-called realized volatility sequence,

Rn =

k∑
j=1

d 2
n, j , (18)

where

dn, j = (G(n−1+ j/k)1 − G(n−1+( j−1)/k)1)
2,

and k is large. Typically 1 denotes a single trading day and k is such that 1/k is
a 5 min interval. An excellent discussion of realized volatility can be found in the
article by Andersen and Benzoni (2009). Figure 1 shows the realized daily volatility
(kindly supplied by Viktor Todorov) of the Deutsche Mark/US dollar exchange rate
from December 1, 1986, through June 30, 1999. (See the study by Andersen et al.
(2001) for a discussion of the series on which this realized volatility was based.)

0 500 1000 1500 2000 2500 3000
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Fig. 1. The realized daily volatility of the DM/US$ exchange rate, December 1, 1986, through June 30, 1999.
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Fig. 2. The vertical bars represent the sample autocorrelation function of the daily realized volatility of the
DM/US$ exchange rate shown in Fig. 1. The line graph is the autocorrelation function of the integrated
volatility corresponding to a CARMA(2,1) model for spot volatility, estimated as described in Example 5.

The sample autocorrelation function of the series is shown in Fig. 2. Under
the CAR(1) model (15) for the spot volatility Vt , it has been shown in the study
by Barndorff-Nielsen and Shephard (2001) that the daily integrated volatility is an
ARMA(1,1) process so that its autocorrelation function at lags greater than zero is
a decreasing exponential function. It is clear from Fig. 2 that a better fit should be
achievable by modeling V as a higher order CARMA process. Todorov and Tauchen
(2006), Todorov (2010), and Brockwell et al. (2011) fitted CARMA(2,1) models to the
daily realized volatility. In this section, we take a different point of view, the goal being
to replace (15) by a CARMA model for the spot volatility V in such a way that the
corresponding integrated volatility sequence (17) adequately reflects the properties of
the observed realized volatility sequence (18).

If EL2
1 <∞ and V is the L-driven CARMA(p, q) process with autoregressive and

moving-average polynomials a(z) and b(z), respectively, the study by Brockwell and
Lindner (2012) show that the integrated volatility sequence I1 is a weak stationary
solution of the difference equations,

φ(B)I1n = θ(B)εn ,
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where (εn)n∈Z is an uncorrelated constant variance sequence, B is the backward shift
operator (i.e., B j Yn := Yn− j , for all j and n ∈ Z) and φ(z) is the polynomial,

φ(z) :=
∏
λ

(1− eλ1z)µ(λ),

where the product is over the distinct zeroes λ of a(z), andµ(λ) denotes the multiplicity
of λ. The polynomial θ(z) has the form,

θ(z) = 1+ θ1z + · · · + θpz p,

with coefficients θ1, . . . , θp that can be determined from a(z) and b(z) and chosen to
have no zeroes in the interior of the unit disc. For any a(z) and b(z), the corresponding
ARMA polynomials φ(z) and θ(z) for the ARMA process I1 can therefore be deter-
mined and hence the minimum mean-squared-error one-step linear predictors of the
sequence I1. Numerical minimization of the sum of squares of these one-step errors
with respect to the coefficients of the polynomials a(z) and b(z) gives least squares
estimates of the CARMA coefficients for the spot volatility process V .

Example 5. To illustrate the procedure, we consider the daily realized volatility
in Fig. 1. It is clear that a good match between the sample autocorrelation function
in Fig. 2 for lags greater than zero and a single exponential function (as would be
derived from an Ornstein–Uhlenbeck model for spot volatility) is not possible. We
therefore try a CARMA(2,1) model for the spot volatility. Measuring the spot volatil-
ity in units of volatility per day, the realized volatility series corresponds to volatility
integrated over time intervals of length 1, i.e., I1 with 1 = 1.

A simple initial guess at appropriate values of the coefficients can be obtained by
attempting to match the autocorrelation function of I1 with the sample autocorrela-
tion of the realized volatility V1 at selected lags. If, for example, we minimize the
sum of squared differences at lags 1, 2, 10, 20, and 40, we obtain the preliminary
spot volatility model,

(D2
+ 3.09054D + .10983)Vt = (.23302+ D)DL t ,

with corresponding λ1 = −0.035956 and λ2 = −3.05458.
Using these coefficients as initial values, the numerical minimization of the

prediction sum of squares leads to the least-squares model,

(D2
+ 3.07141D + .11793)Vt = (.23938+ D)DL t , (19)

with corresponding λ1 = −0.038890 and λ2 = −3.02152. The autocorrelation func-
tion of the daily integrated volatility corresponding to this model is plotted as the
line graph in Fig. 2.

It remains to identify a subordinator L that yields daily integrated volatilities
compatible with the realized daily volatility series shown in Fig. 1. This was done by
trying several subordinators, each with EL1 = 0.3291 and VarL1 = 0.3954 to match
the mean and variance of the realized volatility series, simulating sample paths of
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the corresponding CARMA(2,1) processes defined by (19), integrating the sample
paths over successive days, and comparing the empirical cumulative distribution
functions and kernel density estimates of the realized volatility series with those of
the integrated volatilities calculated from the models. The results are shown in Fig. 3.

The top graphs were generated by simulating the CARMA(2,1) process (19)
driven by a compound Poisson subordinator with exponentially distributed jumps.
The mean jump rate of the process was 0.5478 and the mean jump size was 0.6008.
The simulation of the CARMA process is greatly simplified by the decomposition
in Example 3, which reduces the simulation to that of two Ornstein–Uhlenbeck
processes with the same driving subordinator. In fact from the simulated jump times
and jump sizes, the complete sample path can be constructed and the daily integrals
can be easily computed. The same is true for compound-Poisson-driven CARMA
processes of any order as long as the zeroes of a(z) are distinct.

The middle graphs are derived from the spot volatility process (19) with inverse
Gaussian subordinator having EL(1) = 0.3291 and VarL(1) = 0.3954. Simulation
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Fig. 3. The empirical cdf (left) and kernel density estimate (right) of the daily realized volatility of the
DM/US$ exchange rate are shown as dotted lines. The solid lines are the corresponding graphs for daily
integrated volatility of three subordinator-driven CARMA(2,1) spot volatility processes. For details see

Example 5.
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in this case was carried out by using an Euler approximation to generate values of
the spot volatility at intervals of 0.01 days and integrating numerically to get 40,000
daily integrated volatility values.

The bottom graphs were derived in the same way, using a gamma subordinator
with EL(1) = 0.3291 and VarL(1) = 0.3954. The empirical cdf and kernel density
estimates were again based on 40,000 daily integrated volatility values.

The reasonable fits by all three subordinators suggest that the distribution of
daily integrated volatilities is rather insensitive to the distribution of L1; however,
in the case of the gamma subordinator, the empirical and simulated distributions are
virtually indistinguishable.

6. Generalized Ornstein–Uhlenbeck processes

The Lévy-driven CARMA processes can be regarded as a higher order generalization
of the Ornstein–Uhlenbeck process. From (10), the Lévy-driven Ornstein–Uhlenbeck
process satisfies the equation,

dVt = λ1Vt−dt + dL t , t ≥ 0.

Another way in which to extend the class of Ornstein–Uhlenbeck processes is to replace
the deterministic function t 7→ λ1t in this equation by a second Lévy process (Ut )t≥0.
This leads to the stochastic differential equation

dVt = Vt− dUt + dL t , t ≥ 0, (20)

or equivalently,

Vt = V0 +

t∫
0

Vs− dUs + L t , t ≥ 0,

where V0 is a starting random variable and (U , L) is a bivariate Lévy process. We
shall always assume that neither U nor L is the zero process. This stochastic differen-
tial equation was considered and solved by Yoeurp and Yor (1977) (cf. Protter, 2005,
Exercise V.27), see also the study by Behme et al. (2011). In particular, it is shown that
if U has no jumps of size −1, i.e., if νU ({−1}) = 0, then the unique solution to (20) is
given by

Vt = E(U )t

V0 +

t∫
0

[E(U )s−]−1 dηs

 , t ≥ 0. (21)

Here, E(U ) denotes the stochastic exponential of U , given by

E(U )t = eUt−tσ 2
U /2

∏
0<s≤t

(1+1Us)e
−1Us , t ≥ 0,
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and η is given by

ηt = L t −
∑

0<s≤≤t

1Us1Ls

1+1Us
− tσU ,L , t ≥ 0,

where σ 2
U and (σU ,L) denote the (1, 1) and (1, 2) elements of the Gaussian variance

A(U ,L) of (U , L), respectively.
When U has no jumps of size less than or equal to −1, i.e., when

νU ((−∞,−1]) = 0, then E(U )t is strictly positive and we can define

ξt := − log E(U )t = −Ut + σ
2
U t/2+

∑
0<s≤t

(1Us − log(1+1Us)), t ≥ 0.

Then (ξ , η) = (ξt , ηt )t≥0 is again a bivariate Lévy process, and the process in (21)
can be written as

Vt = e−ξt

V0 +

t∫
0

eξs− dηs

 , t ≥ 0. (22)

If V0 is additionally independent of (ξ , η) (equivalently, of (U , L)), then the process
given by (22) is called a generalized Ornstein–Uhlenbeck process, driven by (ξ , η).
This terminology is due to de Haan and Karandikar (1989) and Carmona et al. (1997),
who studied various properties of these processes. The process (U , L) can be recovered
from (ξ , η) by(

Ut

L t

)
=

(
−ξt +

∑
0<s≤t

(
e−1ξs − 1+1ξs

)
+ t σ 2

ξ /2
ηt +

∑
0<s≤t (e

−1ξs − 1)1ηs − t σξ ,η

)
, t ≥ 0.

Obviously, if U and L are independent, then so are ξ and η (and conversely), in
which case ηt = L t .

It is clear that if ξt = −Ut = −λ1t , t ≥ 0, then a generalized Ornstein–Uhlenbeck
process reduces to the Lévy-driven Ornstein–Uhlenbeck process defined by (10).

We have already seen that generalized Ornstein–Uhlenbeck processes arise as Lévy-
driven Ornstein–Uhlenbeck processes in the stochastic volatility model of Barndorff-
Nielsen and Shephard (2001). In Section 7, we shall see that generalized Ornstein–
Uhlenbeck processes also arise as volatility processes of continuous-time GARCH(1,1)
processes, when ξ is deterministic and η random in contrast to the situation of the Lévy-
driven Ornstein–Uhlenbeck process. In general, since generalized Ornstein–Uhlenbeck
processes are the natural continuous time analogues of AR(1) processes with random
i.i.d. coefficients (cf. the study by de Haan and Karandikar, 1989), a non-negative gen-
eralized Ornstein–Uhlenbeck process may serve as a stochastic volatility model and
hence has potential applications in finance, even when not restricted to the continuous-
time GARCH situations. The generalized Ornstein–Uhlenbeck process is non-negative
if V0 ≥ 0 and η is a subordinator.

Another branch of finance in which generalized Ornstein–Uhlenbeck processes
make an appearance is insurance mathematics, specifically in the risk model of Paulsen
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(1993). Here, Vt denotes the capital of an insurance company, L t describes the premium
minus the claim process, and U describes the behavior of a financial market in which
the capital of the insurance company is invested. See the study by Paulsen (1993) for
details.

For using a generalized Ornstein–Uhlenbeck process as a volatility model, it is
interesting to know for which bivariate Lévy processes (ξ , η) there exists a starting
random variable V0, independent of (ξ , η), such that the corresponding generalized
Ornstein–Uhlenbeck process becomes strictly stationary. A complete characterization
of this was obtained in the study by Lindner and Maller (2005). Accordingly, a strictly
stationary solution exists if and only if there is k ∈ R \ {0} such that eξ = E(η/k),
in which case Vt = k for all t ≥ 0, or if the integral

∫ t
0 e−ξs− dLs converges almost

surely as t →∞, in which case the marginal stationary distribution is given by the
distribution of

∞∫
0

e−ξs− dLs . (23)

A necessary and sufficient condition for the integral in (23) to converge almost
surely absolutely has been given in the study by Erickson and Maller (2004). A suf-
ficient condition for the convergence of the integral is that E log+ |L1| <∞ and that
ξt converges almost surely to +∞, the latter being implied by Eξ1 > 0 (cf. the study
by de Haan and Karandikar, 1989 and Lindner and Maller, 2005). An extension of the
characterization of stationary solutions of generalized Ornstein–Uhlenbeck processes
to solutions of (20), when U is allowed to have jumps of size less than or equal to
−1 and V0 is allowed also to be dependent of (U , L), hence allowing also noncausal
solutions, has been given in the study by Behme et al. (2011).

The autocorrelation structure of a generalized Ornstein–Uhlenbeck is always of
exponential form. More precisely, if U and L are such that νU ((−∞,−1]) = 0,
EU 2

1 , E L2
1 <∞ and EE(U )21 = Ee−2ξ1 < 1, then EU1 < 0 and a stationary version

with finite second moment of the generalized Ornstein–Uhlenbeck process exists, the
mean of which is given by EV0 = −(EU1)

−1 E L1 and the autocovariance function by

Cov(Vt , Vt+h) =
E(U1 E L1 − L1 EU1)

2

(EU1)2|2EU1 + VarU1|
ehEU1 , t , h ≥ 0;

see also the study by Behme (2011a,b).
Another important feature of generalized Ornstein–Uhlenbeck processes is that they

allow the stationary solution to have Pareto tails for a wide variety of situations, even if
η does not have heavy tails. This follows from the results of Kesten (1973) and Goldie
(1991) on the tail behavior of solutions of random recurrence equations; see the study
by Behme (2011a,b) and Lindner and Maller (2005) for details. Finally, we remark
that multivariate extensions of generalized Ornstein–Uhlenbeck processes have been
recently obtained in the study by Behme (2011b); see also the study by Behme and
Lindner (2012).
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7. Continuous-time GARCH processes

Among the most prominent discrete time models for financial time series are the
ARCH and GARCH processes of Engle (1982) and Bollerslev (1986). Given an i.i.d.
sequence (εn)n∈N0 and constants β > 0, λ1, . . . , λq ≥ 0 and δ1, . . . , δp ≥ 0 with q ∈ N
and p ∈ N0 and λq > 0, a GARCH(q, p) process (Yn)n∈N0 with volatility process
(Vn)n∈N0 is given by

Yn =
√

Vn εn , n ∈ N0, (24)

Vn = β +

q∑
i=1

λi Y
2
n−i +

p∑
j=1

δ j Vn− j , n ≥ max{p, q}, (25)

with Vn independent of (εn+h)h∈N0 and non-negative for every n ∈ N0. For p = 0, the
process is called an ARCH(q) process.

Continuous-time diffusion limits have been obtained in the study by Nelson (1990)
for the GARCH(1,1) process and in the study by Duan (1997) for the GARCH(q , p)
process. By considering GARCH processes on fine grids hN0 and rescaling the param-
eters appropriately as h ↓ 0, Nelson obtained the following diffusion limit (G t , Vt )t≥0

given by

dG t =
√

Vt dB(1)t , t ≥ 0, (26)

dVt = (ω − θVt ) dt + αVt dB(2)t , t ≥ 0, (27)

where B(1) and B(2) are two independent Brownian motions and θ ∈ R, ω ≥ 0, and
α > 0 are parameters. In particular, the volatility process determined by (27) is a gener-
alized Ornstein–Uhlenbeck process driven by (ξt , ηt ) = (−αB(2)t + (θ + α

2/2)t ,ωt).
It should be observed that the diffusion limit of Nelson has two independent sources of
randomness, namely B(1) and B(2), while the GARCH(1,1) process defined by (24)
and (25) is driven by a single noise process (εn)n∈N0 . This motivated Klüppelberg
et al. (2004) to construct a continuous-time GARCH(1,1) process driven by a single
Lévy process, called COGARCH(1,1). Given a driving Lévy process M = (Mt )t≥0

with nonzero Lévy measure, independent of a starting random variable V0 ≥ 0, and
constants β, δ > 0, and λ ≥ 0, they define the COGARCH(1,1) process (G t )t≥0 with
volatility process (Vt )t≥0 by

G0 = 0, dG t =
√

Vt− dMt , t ≥ 0,

where

Vt =

β t∫
0

eξs− ds + V0

 e−ξt , t ≥ 0,

and ξ = (ξt )t≥0 is defined by

ξt := −t log δ −
∑

0<s≤t

log(1+ λδ−1(1Ms)
2), t ≥ 0.
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Then ξ is again a Lévy process and V is a generalized Ornstein–Uhlenbeck process,
driven by the bivariate Lévy process (ξt ,βt)t≥0. The corresponding processes (U , L)
in the differential equation (20) are given by Ut = t log δ + λδ−1∑

0<s≤t (1Ms)
2 and

L t = βt , i.e.,

dVt = Vt−d(t log δ + λδ−1[M , M](d)t )+ βdt , t ≥ 0,

where [M , M](d)t =
∑

0<s≤t (1Ms)
2 denotes the discrete part of the quadratic variation

of M . A multivariate extension of the COGARCH(1,1) process has been obtained in
the study by Stelzer (2010).

It has been shown in the study by Klüppelberg et al. (2004) that a stationary volatility
process of the COGARCH(1,1) equations exists if and only if∫

R

log(1+ λδ−1x2) νM(dx) < − log δ, (28)

which in particular requires M to have finite log-moment and δ < 1. The second
moment structure of Vt can be obtained from those of generalized Ornstein–Uhlenbeck
processes. More precisely, under the condition (28) and defining

9ξ (κ) := log Ee−κξ1 = κ log δ +
∫
R

(
(1+ λδ−1 y2)κ − 1

)
νM(dy) ∈ (−∞,∞]

for κ > 0, the stationary version has the property for k ∈ N that EV k
0 <∞ if and only

if E M2k
1 <∞ and 9ξ (k) < 0, in which case 9ξ (l) < 0 for all l ∈ {1, . . . , k} and

EV k
0 = k!βk

k∏
l=1

(−9ξ (l))
−1.

Further, if E M4
1 <∞ and 9ξ (2) < 0, then

Cov(Vt , Vt+h) = β
2
(
29−1

ξ (1)9−1
ξ (2)−9−2

ξ (1)
)

e−h|9ξ (1)|, t , h ≥ 0.

A detailed proof is given in the study by Klüppelberg et al. (2004).
As is the case for the volatility model of Barndorff-Nielsen and Shephard considered

in Section 4, under certain assumptions, non-overlapping increments of the station-
ary COGARCH(1,1) process G are uncorrelated, while the autocovariance function of
((Grh − Gr(h−1))

2)h∈N is that of an ARMA(1,1) process for any r > 0. More precisely,
restricting to r = 1 for simplicity, if the driving Lévy process M = (Mt )t≥0 satisfies

EM1 = 0, Var(M1) = 1, EM4
1 <∞,

∫
R

x3 νM(dx) = 0

and if

9ξ (2) = 2 log δ +
∫
R

(
λ2δ−2 y4

+ 2λδ−1 y2
)
νξ (dy) < 0,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 23-ch19-541-564-9780444538581 2012/4/24 1:55 Page 560 #20

560 P. Brockwell and A. Lindner

then the increment process (Yn)n∈N with Yn = Gn − Gn−1 satisfies EY 4
1 <∞ and

EY1 = 0, µ := E(Y 2
1 ) =

β

|9ξ (1)|
and Cov(Yt , Yt+h) = 0, t , h ∈ N.

Denoting

ϕ := λδ−1 and τ := − log δ,

the autocorrelation function ρ of Y satisfies

ρ(h) = ke−hp, t , h ∈ N, (29)

where

p := |9ξ (1)|

and

k :=
β2

p3γ (0)
(2τϕ−1

+ 2AM − 1)
(
2|9−1

ξ (2)| − p−1
) (

1− e−p
)
(ep
− 1).

An explicit expression for Var(Y0) can also be obtained. Based on these expressions,
Haug et al. (2007) consider a generalized method of moment estimator for the param-
eters of the COGARCH(1,1) process, by replacing E(Y 2

1 ), Var(Y0), and log ρ(h) by
their empirical counterparts and doing a regression for p and k in (29). Assuming that
the Gaussian variance AM is known (e.g., AM = 0), solving the equations obtained for
µ, Var(Y0), p, k in β,ϕ, τ , and plugging the obtained estimators µ̂, V̂ar(Y0), p̂, and k̂
into these equations gives generalized method of moment estimators (β̂, ϕ̂, τ̂ ) for the
parameters (β,ϕ, τ) and hence for (β, δ, λ) based on observations G0, G1, G2, . . . , Gn .
Details can be found in the study by Haug et al. (2007). There it is also shown that the
estimator is strongly consistent and under further moment assumptions, which require
in particular a finite 8th moment of Y , that the estimator is asymptotically normal.

Other estimation methods for the COGARCH(1,1) include the pseudo-maximum
likelihood estimator of Maller et al. (2008) and the Markov Chain Monte Carlo esti-
mator of Müller (2010). Maller et al. (2008) also fit the COGARCH(1,1) model to the
ASX200 index of the Australian Stock exchange.

Finally, let us introduce the COGARCH(q, p) processes of Brockwell et al. (2006).
From (24) and (25), we see that the volatility (Vn) of a GARCH(q , p) process can be
regarded as a “self-exciting” ARMA(p, q − 1) process driven by (Vn−1ε

2
n−1) together

with the “mean correction” β. This motivates the definition of the volatility process
(Vt )t≥0 of a continuous-time GARCH(q , p) process as a “self-exciting mean corrected”
CARMA(p, q − 1) process driven by an appropriate noise term. Since in discrete time,
the driving noise is defined through the increments of the process (

∑n−1
i=0 Viε

2
i )n∈N, in

continuous time this suggests the use of

Rt =
∑

0<s≤t

Vs−(1Ms)
2
=

t∫
0

Vs−d[M , M](d)s , t ≥ 0,
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as driving noise for the CARMA equations. More precisely, let M = (Mt )t≥0

be a Lévy process with nonzero Lévy measure. With p, q ∈ N such that q ≤ p,
a1, . . . , ap, b0, . . . , bp−1 ∈ R,β > 0, ap 6= 0, bq−1 6= 0, and bq = · · · = bp−1 = 0,
define the p × p matrix A and the vectors b, e ∈ Cp as in (5). Define the volatility
process (Vt )t≥0 with parameters A, b, β and driving Lévy process M by

Vt = β + b′Xt , t ≥ 0,

where the state process X = (Xt )t≥0 is the unique solution of the stochastic differential
equation

dXt = AXt− dt + eVt− d[M , M](d)t = AXt− dt + e(β + b′Xt−) d[M , M](d)t ,

with initial value X0, independent of (Mt )t≥0. If the process (Vt )t≥0 is non-negative
almost surely, then G = (G t )t≥0, defined by

G0 = 0, dG t =
√

Vt− dMt ,

is a COGARCH(q , p) process with parameters A, b, β and driving Lévy
process M .

It can be shown that for p = q = 1, this definition is equivalent to the definition
of the COGARCH(1,1) process given before. The study by Brockwell et al. (2006)
gives sufficient conditions for the existence of a strictly stationary solution (Vt )t≥0

and its positivity and shows that (Vt )t≥0 has the same autocorrelation structure as
a CARMA(p, q − 1) process. Hence, the COGARCH(q , p) process allows a more
flexible autocorrelation structure than the COGARCH(1,1) process. Under suitable
conditions, which among others require M1 to have expectation zero, it is further
shown that nonoverlapping increments of G are uncorrelated, while their squares are
not. More precisely,

Cov((G t − G t−r )
2, (G t+h − G t+h−r )

2) = b′e(A+E M2
1 eb′)h Hr , h ≥ r > 0,

where Hr ∈ Cp is independent of h. In particular, the squared increments have the
covariance structure of a CARMA process.
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Abstract

In many applications, the primary interest is the supremum of some continuous-
time process over a specified period. However, data are usually available over
a discrete set of times and the inference can only be made for the maximum of
the process over this discrete set of times. If we want to estimate the extremes
of the continuous-time process based on discrete time data, we need to under-
stand the relationship between the continuous and discrete extremes. Thus, we
look at asymptotic joint distributions of the maxima of stationary processes and
their discrete versions.
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1. Introduction

In many applications, the primary interest is the supremum of some continuous-time
process over a specified period. However, data are usually available over a discrete set
of times and the inference can only be made for the maximum of the process over this
discrete set of times. The continuous-time maximum will be larger than the maxima
of discrete versions sampled at different frequencies, and if we want to estimate the
extremes of the continuous-time process based on discrete-time data, we need to make
an adjustment to allow for the effect of discrete sampling and provide a measure of
how much smaller it tends to be. In this chapter, we make a review of the most relevant
results.
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Robinson and Tawn (2000) were the first to point out the importance of sampling
spacing on the extremal properties of a process observed at regular discrete-time points.
They showed this effect on the extremal indices of the discrete subsequences based on
the following arguments:

Let X (t), t ≥ 0 be a stationary process with distribution F(x). For any time interval
[0, T ], let Xδ(i) = X (iδ), i = 0, 1, . . , T/δ, be a subsequence observed at spacing δ. Let

M(T ) = sup
t∈[0,T ]

X (t),

Mδ(T ) = max
0≤i≤T/δ

X (iδ),

be the respective maxima of the continuous process and its subsequence sampled at the
δ spacing.

If for any two subsequences sampled at spacings δ and ε, the maxima converge with
suitable normalization, then for large T ,

P(Mδ(T ) ≤ x) ∼ F [T/δ]θδ (x) = Gδ(x),

P(Mε(T ) ≤ x) ∼ F [T/ε]θε (x) = Gε(x),

where θδ ∈ (0, 1] and θε ∈ [0, 1] are extremal indices of the sequences Xδ(iδ) and
Xε( jε). Since

Gε(x) ∼ G(θεδ)/(εθδ)

δ (x), (1)

one can relate the extremal properties of subsamples at different sampling intervals
through the extremal indices. Scotto et al. (2003) obtain more precise limit results
from a point process formulation, which exemplify the findings of Robinson and Tawn
(2000) and offer more details for a particular class of time series.

In order to relate the asymptotic distribution of M(T ) to Mδ(T ), for some fixed
sampling spacing δ, it is tempting to use the above arguments and argue that as
ε → 0, if

lim
ε→0

θε/ε = H ,

then (taking δ = 1 and θδ = θ )

P(M(T ) ≤ x) ∼ G H/θ
1 (x).

In this case, H/θ may be seen as the adjustment needed to allow for using a discrete
subsequence.

Based on the assumption that for most continuous processes, there is a fixed sam-
pling spacing ε, for which Mε(T ) is a sufficiently good approximation to M(T ) over
the time interval [0, T ], Anderson (2003) suggests using

φ =
θεδ

εθδ
, (2)
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as the adjustment for using discrete sampling. He further shows that

1 ≤ φ ≤
1

P(S ≥ δ)
, (3)

where S is the excursion time of the continuous process above a high level, which he
calls the storm period. The probability that appears as the upper bound in (3) cannot be
estimated from the discrete δ-observations, but if one can give a conservative estimate
for the probability of storm duration being longer than the sampling spacing δ, for
example, by eliciting expert opinion, then as Anderson (2003) suggests, the inequality
(3) can help to relate important quantities such as the return levels calculated at different
sampling spacings. If xn,ε , xn,δ are, respectively, n time units return levels based on ε
and δ-observations, then

n(1− Gδ(xn,δ)) = 1,

n(1− Gε(xn,ε)) = n(1− Gφ
δ (xn,ε)) = 1,

and xn,ε = xnφ,δ . Thus, if ε sampling is sufficiently dense so that Mε(h) is a sufficiently
good approximation to M(h), then xnφ,δ can be taken as the n time units return level
from the continuous observations.

The above approximations and bounds suggested by Anderson (2003) depend
strongly on the assumption that one can approximate a continuous maximum in terms
of a discrete maximum over a fixed sampling spacing to a desired level of accuracy.
Therefore, one needs to understand the relation between the maxima of continuous-
and discrete-time processes in order to judge the robustness of the arguments given
by Anderson (2003). Further, such results may help to find sharper bounds for the
adjustment.

The coarsest grid over which continuous and discrete maxima over fixed intervals
have the same asymptotic distribution is fundamental in obtaining limit results. Such
grid is defined as a family of uniformly spaced grids with grid spacing converging
to zero at a specified rate and is called the Pickands’ grid. A standard Pickands’ grid
relating continuous and discrete maxima over fixed intervals is suggested by Leadbet-
ter et al. (1983), see also Albin (1987, 1990) and Piterbarg (2004). Although, this grid
adapted to X (t) requires hard to verify technical conditions, it permits elegant charac-
terization of results. This family of grids (we refer to them by their spacing δ) that will
be defined formally in Section 2, is taken as a function of the high threshold u such that

δa = δ(a, u) = {aq(u) j , j = 0, 1, 2, . . . },

where a > 0 is an arbitrarily small positive real number and q(u) is a sequence typically
converging to 0 as u →∞. Here, a is a constant regulating the rate of convergence of
the grid spacing to 0. As Leadbetter et al. (1983) suggest, one can define a universal
grid δ without the extra parametrization depending on a, but this extra parametrization
brings flexibility in proofs. Note that, as the threshold u tends to infinity, the excursion
times of the continuous process above this high level get shorter and in order to capture
these events by a discrete version of the process, corresponding grid spacing needs to
converge to zero accordingly. q(u) quantifies this relationship.
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We will call any other grid δb = { jbg(u), j = 0, 1, 2, . . .} a sparse or loose grid if
u →∞, q(u) = o(g(u)), Pickands’ grid if q(u) = o(g(u)), and dense grid if g(u) =
o(q(u)). If δa is a Pickands’ grid, then the limit as a→ 0, δa is a dense grid.

Conditions for the existence of the limit over increasing intervals

lim
T→∞

P(M(T ) ≤ uT (x)) = G(x),

with suitable linear normalization uT (x) = aT + bT x and its relation to the distribu-
tion of maximum over a Pickands’ grid are well known. In this case, the high level has
to be chosen as a function of the increasing interval and consequently, the Pickands’
grid is also a function of the increasing time interval; see Leadbetter et al. (1983) for
Gaussian processes, and Albin (1987, 1990) for general stationary processes. However,
the most complete characterization of the relation between discrete- and continuous-
time extremes is given by Piterbarg (2004) for stationary Gaussian processes; see
Husler (2004) for the generalization to locally stationary Gaussian processes. Typically,
for a grid δa with suitable normalizations, the asymptotic joint distribution

P(M(T ) ≤ uT (x), Mδa (T ) ≤ uT ,δa (y)) (4)

as T →∞, is studied for three distinct cases:

• When the sampling is done over a dense grid, then (4) is studied for a Pickands’
grid δa , and as a→ 0, the bivariate limiting distribution given in (4) is degen-
erate, converging to one of the identical marginal distributions of the coinciding
continuous- and discrete-time maxima. Thus

lim
a→0

lim
T→∞

P(M(T ) ≤ uT (x), Mδa (T ) ≤ uT ,δa (y)) = G(z),

where z = min(x , y).
• When the sampling is done over a Pickands’ grid, then the maxima are asymptot-

ically dependent, and the limit of (4) for fixed a is given by

G(x)Gδa (y)G(a, x , y), (5)

where G(x) and Gδa (y) are the respective limiting marginal distributions of the
continuous- and discrete-time maxima and G(a, x , y) is a function explaining the
degree of asymptotic dependence of the respective maxima.

• If the sampling is done over a sparse grid, then typically the maxima of the
continuous- and discrete-maxima grow with different rates, but it is still possible
to find suitable sets of normalization uT ,δa (x) and uT (y), such that the normalized
maxima are asymptotically independent, yet having nondegenerate asymptotic
marginal distributions.

The function G(a, x , y) in (5) is calculated by Piterbarg (2004) for Gaussian pro-
cesses. Specifically, if X (t) is a zero mean stationary Gaussian process with unit
variance and covariance function r(t) satisfying for some α > 0,

r(t) = 1− |t |α + o(|t |α),
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as t → 0 with r(t) < 1 for all t > 0, and further as t →∞, r(t) = o(1/ log t) then,
with suitable normalization

P(M(T ) ≤ uT (x), Mδa (T ) ≤ uT ,δa (y))

= G(x)Gδa (y)G(a, x , y)

= exp(−e−x ) exp(−e−y) exp(−Ga(log H + x , log Ha + y)). (6)

Here, 0 < Ga(x , y) <∞ appears as the limit

Ga(x , y) = lim
T→∞

1

T
Ga(x , y, T ),

with

Ga(x , y, T )=

∞∫
−∞

eυ P

(
max

k:ka∈[0,T ]

√
2Bα/2(ka) > υ, max

k:t∈[0,T ]

√
2Bα/2(t)− tα > υ + y

)
dυ.

(7)

The process Bα/2(t) that appears in the expression (7) is the fractional Brown-
ian motion with variance |t |α , whereas H , Ha are Pickands’ constants that appear
in the marginal limiting distributions, see, for example, Leadbetter et al. (1983) or
Piterbarg (2004).

In the Gaussian case, all asymptotic results on extremes can conveniently be char-
acterized by the covariance function and the proofs are constructed around this tool,
see, for example, Husler (1999). For non-Gaussian processes, different sets of con-
ditions are needed. In Section 2, we report similar results for the joint asymptotic
distribution of continuous–discrete maxima of stationary, but not necessarily Gaussian
processes. These results are constructed on the assumptions and techniques of Albin
(1987, 1990). We will first look at the asymptotic joint distribution of maxima sampled
over a Pickands’ grid δa and any other grid δb, namely

P(Mδa (h) ≤ u, Mδb(h) ≤ u′),

in a fixed interval [0, h], for some suitably chosen and increasing levels u and u′, then
extend the results to increasing time intervals. For relative ease in notation, we report
the results for stationary processes with regularly varying tails, but following Albin
(1990), it is possible to extend the results for other types of tail behavior.

Clearly, the rate at which the Pickands’ grid tends to 0 will depend on sample
path properties of the continuous process as well as the tail behavior of its marginal
distribution. Here we give some examples:

1. If X (t) is a stationary, 0 mean Gaussian process with covariance function

r(t) = 1− C |t |α + o(|t |α),
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for some α ∈ [0, 2], and C > 0, as t → 0, then the Pickands’ grid is chosen as

δa = { jaq(u), j = 0, 1, 2, . .}

with

q(u) = u−2/α ,

so that

lim
a↓0

lim
u→∞
|P(M(h) > u)− P(Mδa (h) > u)| = 0, (8)

see Piterbarg (2004) and Berman (1982).
2. If X (t) is a standardized differentiable stationary Gaussian process satisfying

r(t) = 1+
1

2
r ′′(0)t2

+ o(t2),

as t → 0 and Y (t) is the moving L2-norm process given by

Y (t) =

1+t∫
t

X2(s)ds,

then the grid ε can be chosen with

q(u) = (1 ∨ u)−1/2

(Albin, 2001).
3. If X (t) is an α-stable process with α > 1, then it is possible to take q(u) = 1,

and (8) will hold with a→ 0 (Hsing and Leadbetter, 1998; Samorodnitsky and
Taqqu, 1994).

4. On the other hand, If X (t) is a moving average of an α-stable process, with
α > 1, then (8) will hold for a fixed grid ε, that is, it will hold with q(u) = 1 and
for any a > 0 (Albin, 2001).

5. If X (t) is an α-stable process with α < 1 then (8) holds with

q(u) = (−u)α/[2(1−α)],

as a→ 0 (Albin, 2001).
6. If X i (t) are independent standardized stationary processes with covariance

functions satisfying

1+
1

2
Ci |t |

α
+ o(|t |α),

as t → 0, for some Ci > 0, α ∈ [0, 2],

Z(t) =
m∑

i=1

X2
i (t),
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then (8) will hold with

q(u) = u−1/α ,

as a→ 0 (Albin, 1987).

It is clear that except for some special processes such as the moving average α-
stable process with α > 1, it may not be possible to find a fixed sampling spacing,
for which the discrete maximum approximates the continuous maximum to a desired
level. Note that the continuous maximum is almost surely larger than the discrete maxi-
mum and the function q(u) also quantifies the relative size of each maxima through the
relation

q(u) ∼
P(X (0) > u)

P(M(0, 1) > u)
,

as u →∞, see Hsing and Leadbetter (1998).
In the next section, we state the technical conditions as well as the main results

for the marginal convergence of maxima of stationary process with heavy tailed dis-
tributions, which will help in understanding the asymptotic convergence of the joint
distributions of continuous- and discrete-time extremes. The proofs will be omitted, as
they can be found in the works of Albin (1987, 1990). The conditions and the results
will be grouped under subsections, first for results on finite intervals, then on increas-
ing intervals. The proofs of the new results on the asymptotic joint distributions of
continuous- and discrete-time extremes given in Theorems 2 and 5 are tedious, and
therefore will not be given here. The detailed arguments can be found in the study
by Turkman (2011). In Section 3, we give some asymptotic results on the maxima
of the periodogram of a Gaussian time series, calculated over Fourier frequencies
ω j = 2π j/n, j = 1, 2, . . . , [ 1

2 (n − 1)] and continuous frequencies in [0,π ] to highlight
these technical results.

2. Conditions and main results

2.1. Finite intervals

Assume that the stationary process X (t) satisfies the following sufficient conditions
of Albin (1987, 1990) for the marginal convergence of the continuous maximum over
finite intervals:

1. Condition C1
F belongs to the Frechét domain of attraction so that for any x > 0,

lim
u→∞

1− F(ux)

1− F(u)
= x−c,

for some c > 0.
2. Condition C2
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For a strictly positive function q = q(u), let δa = {aq(u) j , j = 0, 1, 2, . . . ,
[h/aq]} be a grid over the interval [0, h] such that (writing for simplicity
q = q(u))

lim sup
u→∞

q(u)

1− F(u)
P

(
M(h) > u, max

a≤aq j≤h
X (aq j) ≤ u

)
= 0, (9)

as a→ 0. For any fixed, but sufficiently small a > 0, we call δa that makes
the discrete approximations sufficiently accurate in the sense given in (9) as
Pickands’ grid. On the other hand, any Pickands’ grid with a→ 0 will be called
dense grid.

3. Condition C3
Assume that there exist a sequence of random variables {ηa,x (k)}∞k=1, and a
strictly positive function q(u) with limu→∞ q(u) = 0 such that for all x ≥ 1 and
for all a > 0, and for any finite integer N , as u →∞,

(
1

u
X (aq), . . . ,

1

u
X (aq N )|

1

u
X (0) > x

)
→

D (ηa,x (1), . . . , ηa,x (N )).

(10)

4. Condition C4, Short-lasting exceedances

lim sup
u→∞

1

1− F(u)

[h/aq]∑
k=N

P(X (0) > u, X (aqk) > u)→ 0,

as N →∞, For all fixed a > 0.

We refer the reader to the works of Albin (1990) for the details of these assumptions.
Condition C3 is a natural extension of the condition C1 and it is satisfied by most
processes. Albin (1990) gives an alternative condition to C2, which can be verified by
two-dimensional distributions of the process. However, we note that condition C4 is
not always satisfied. We refer to Albin (1987) and Husler et al. (2010) for asymptotic
results when this condition is violated.

Theorem 1. (Marginal convergence of maxima over Pickands’ or denser grids by
Albin (1987))

1. Assume that conditions C1, C3, and C4 are satisfied. Then for any a > 0 fixed,

lim
u→∞

q(u)

1− F(u)
P(Mδ(h) > u) = h Ha,1(1),

and for any x > 0

lim
u→∞

q(u)

1− F(ux)
P(Mδ(h) > ux) = h Ha,x (x)
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where

Ha,x (x) =
1

a
P

(
max
k≥1

ηa,x ≤ x

)
, (11)

and

lim
a→0

Ha,x (x) = Hx (x), (12)

exist with 0 < Hx (x) <∞.
2. If further, condition C2 is satisfied, then

lim
u→∞

q(u)

1− F(u)
P(M(h) > u) = h H1(1), (13)

and

lim
u→∞

q(u)

1− F(ux))
P(M(h) > ux) = h Hx (x),

so that

lim
u→∞

q(u)

1− F(u)
P(M(h) > ux) = h Hx (x)x

−c. (14)

Note that Hx (x) is not a constant, and therefore (14) may indicate that the distri-
bution functions of M(h) and F may not belong to the same domain of attraction.
However, Albin (1990) shows that

q(ux)

q(u)
= x−c∗, (15)

for some c∗ ∈ [0, c), for all x > 0 so that as u →∞,

lim
u→∞

q(u)

1− F(u)
P(M(h) > ux) = h H1(1)x

−(c−c∗),

for some c∗ ∈ [0, c). Hence, the distribution functions of M(h) and F belong to Frechét
domain of attraction, having different shape parameters.

Condition C3 is given in terms of conditioning on the event {X (0) > ux}. However,
an alternative formulation in terms of conditioning on the event {X (0) = ux} can also
be given:

Corollary 1. Assume further that F has a density f satisfying

lim
u→∞

u f (u)

1− F(u)
= c,
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for some c > 0 and assume further that there exists variables {ζa,x (k)}∞k=1 such that(
1

u
X (aq), . . . ,

1

u
X (Naq)|X (0) = ux

)
→

D
{ζa,x (k)}

N
k=1, (16)

for all X > 1 and for all N . Then (13) and (14) hold with

Hx (x) = lim
a→0

1

a

∞∫
1

P

(
max
k≥1

ζa,xy(k) ≤ x

)
cy−(c+1)dy,

and

H1(1) = lim
a→0

1

a

∞∫
1

P

(
max
k≥1

ζa,y(k) ≤ 1

)
cy−(c+1)dy.

Equipped with the results for marginal convergence, we can now state the results for
joint convergence:

Theorem 2. (Joint convergence of maxima over Pickands’ or denser grids)

1. For any a > 0, b > 0 , such that a < b, Let

δa = { jaq(u), j = 0, 1, 2, . . . , [h/aq]}

and

δb = { jbq(u), j = 0, 1, 2, . . . , [h/bq]}

be two Pickands’ grids satisfying conditions C1–C3. Let z = min(x , y)(= x ∧ y)
and v = max(x , y)(= x ∨ y).
Then

lim
u→∞

q(u)

1− F(u)
P({Mδa (h) > ux} ∪ {Mδb(h) > uy}) = h Ha,b,z(x , y)z−c,

where

Ha,b,z(x , y) =
1

a
P

(
max
k≥1

ηa,z(k) ≤ x , max
k≥1

ηb,z(k) ≤ y

)
.

2.

lim
a→0

Hz(a, b, x , y) = Hz(b, x , y),

exists with 0 < Hz(b, x , y) <∞ and

lim
u→∞

q(u)

1− F(u)
P(M(h) > ux ∪ Mδb(h) > uy) = h Hz(b, x , y)z−c,
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where

Hz(b, x , y) = lim
a→0

1

a
P

(
max
i≥1

ηa,z(i) ≤ x , max
j≥1

ηb,z( j) ≤ y

)
.

3. The limit

lim
b→0

Hz(b, x , y) = Hz(z)

exists with 0 < Hz(z) <∞, where

Hz(z) = lim
b→0

1

b
P

(
max
i≥1

ηz,b(i) ≤ z

)
,

and hence

lim
b→0

lim
u→∞

q(u)

1− F(u)
P(M(h) > ux ∪ Mδb(h) > uy) = h Hz(z)z

−c.

The proof is quite tedious and is based on finding asymptotic bounds for the expression

P({Mδa (I0) > uy} ∪ {Mδb(I0) > ux}),

where I0 = [0, aq , 2aq, . . . , Naq) for some integer N . This result extends the proof of
Theorem 1 of Albin (1990), where asymptotic bounds for the expression

P({Mδa (I0) > uy}

are derived, see Turkman (2011) for details.
We now look at the asymptotic independence of maxima calculated over Pickands’

and sparse grids.
For some strictly positive function g = g(u) such that limu→∞ g(u) = 0 and

lim
u→∞

q(u)

g(u)
= 0,

let

δb = {kbg(u), k = 0, 1, 2, . . . , [h/bg]}, (17)

be a sparse grid (with respect to the Pickands’ grid). Let

u′ =

(
q(u)

g(u)

)1/c

u, (18)

so that as u →∞, u′ = o(u)→∞. Further assume that g(u) is such that the
slowly varying function L in the representation 1− F(x) = x−c L(x) satisfies the
condition

lim
u→∞

L(u′)

L(u)
= 1.
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Assume that there exists variables {ζb,y(k)}∞k=1 such that for any y > 0 and for
any N , (

1

u′
X (bg), . . . ,

1

u′
X (Nbg)|

1

u′
X (0) > y

)
→

D (ζb,y(1), . . . , ζb,y(N )).

Theorem 3. (Joint convergence of maxima over Pickands’ and sparse grids)
For any Pickands’ grid δa and sparse grid δb defined in (17) and for any x > 0,

y > 0,

1.

lim
u→∞

q(u)

1− F(u)
P(Mδa (h) ≥ uy, Mδb(h) ≥ u′x) = 0.

2.

lim
u→∞

q(u)

1− F(u)
P(M(h) > uy ∪ Mδb(h) > u′x) = hy−c Hy(y)+ hx−c H ′x (x),

where, 0 < H ′x (x) <∞ is the limit

H ′x (x) = lim
b→0

1

b
P

(
max
k≥1

ζb,x (k) ≤ x

)
,

and Hy(y) is given in (12).

2.2. Increasing intervals

Let

M(T ) = max
t∈[0,T ]

X (t),

Mδ(T ) = max
0≤ jaq≤T

X ( jaq),

and uT be chosen such that as T →∞,

T

q(uT )
(1− F(uT )) = 1.

For simplicity in notation, let q = q(uT ).
Assume that

1. Condition 1(uT ,1(x1), uT ,2(x2))

For 0 < s < t < T and xi , i = 1, 2 write

=
T
s,t (x1, x2) = σ {(X (v) ≤ uT , j (xi ) : xi > 0, s ≤ v ≤ t , i = 1, 2, j = 1, 2},
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the sigma field generated by the respective events and

αT ,l(x1, x2) = sup{|P(AB)− P(A)P(B)| :

A ∈ =T
0,s(x1, x2), B ∈ =T

s+l,t (x1, x2), s ≥ 0, l + s ≤ T }.

1(uT ,1(x1), uT ,2(x2) is said to hold for the process X (t) and the family of pair
of constants {uT ,1(x1), uT ,2(x2)}, if αT ,l(x1, x2)→ 0, as T →∞ for some lT =

o(T ). Note that this is a variation of the usual D(un) condition, adapted to events
generated by two different normalization, see Mladenovic and Piterbarg (2006)
for a similar condition.

2. Assume that the X -process satisfies the No clusters of clusters condition of
Albin (1990): This condition is said to hold for X (t) with respect to the grid
δ = { jaq(u), j = 0, 1, 2, . . . .} if for any finite h > 0

lim sup
u→∞

1

1− F(u)

∑
1
2 h< jaq<εT

P(X (0) > u, X ( jaq) > u)→ 0, (19)

as ε → 0.

Theorem 4. Maxima over increasing intervals
Assume that the X-process satisfies the conditions of the previous section as well as

the conditions 1(uT x , uT y) and (19). Then,

1. For any Pickands’ grid δb given in Theorem 2,

lim
T→∞

P(M(T ) ≤ uT x , Mδb(T ) ≤ uT y) = exp[−z−c Hz(b, x , y)].

2. For any sparse grid δb defined as in Theorem 4, and

u′T =

(
q(uT )

g(uT )

)1/c

uT ,

assume that the process satisfies the 1(uT x,u′T y) condition as well as the no
clusters of clusters condition given by (19). Then

lim
T→∞

P(M(T ) ≤ uT x , Mδb(T ) ≤ u′T y) = exp[−x−c Hx (x)− y−c H ′y(y)]. (20)

It is possible to extend Corollary 1 to joint convergence: If δb is a Pickands’ grid
given in (1) of Theorem 2, then under the alternative conditioning (16).

Corollary 2.

lim
T→∞

P(M(T ) ≤ ux , Mδb(T ) ≤ uy) = exp[−z−c Ĥz(b, x , y)],
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where,

Ĥz(x , y) = lim
a→0

1

a

∞∫
1

P

(
max
k≥1

ζa,zw(k) ≤ x , max
k≥1

ζb,zw(k) ≤ y

)
cw−(c+1)dw.

Further,

lim
b→0

Ĥz(b, x , y) = Ĥz(z). (21)

For ease of notation, we have given the results for distributions in the domain of
attraction of Frechét. However, with some standard changes, it is possible to extend
the results to other domains of attraction, see, for example, Albin (1987, 1990) for
conditions and proofs of marginal convergence.

It is difficult to verify the conditions and the specific expressions given for Hx (x)
and Hz(b, x , y) for processes other than Gaussian processes. However, there are some
processes that are transformations of Gaussian processes such as the Rayleigh process
for which these conditions may be verified and the specific expressions may be cal-
culated, see Albin (1990) for details. Here, we give another example for which it is
possible to obtain specific results.

3. Periodogram

Let {X t }
n
t=1 be a stationary time series with 0 mean and finite variance. The peri-

odogram

In(ω) =
2

n

∣∣∣∣ n∑
t=1

X t e
iωt

∣∣∣∣2
= X2

n(ω)+ Y 2
n (ω), ω ∈ [0,π ] (22)

where

Xn(ω) =
√

2/n
n∑

t=1

X t cos(ωt), (23)

Yn(ω) =
√

2/n
n∑

t=1

Yt sin(ωt), (24)

appears to be the natural estimator of the spectral density function h(ω), yet it is incon-
sistent and its erratic behavior is well known. One reason for this erratic behavior is that
the maximum of the periodogram over any finite interval diverges as n→∞ almost
surely in the order of 2 log n (see, e.g., Turkman and Walker (1990)). Fundamental rea-
son for this erratic behavior is that the correlation functions rn,X (t) and rn,Y (t) of the
processes Xn(ω) and Yn(ω) having the behavior

1−
n2

3
t + o(t2),
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as t → 0. Thus, these processes have second spectral moments that diverge, as n→∞.
The periodogram plays an important role in tests of hypotheses regarding the

jumps in the spectral distribution function. In particular, the maximum of periodogram
ordinates over the Fourier frequencies ω j = 2π j/n, j = 1, 2, . . . , [ 1

2 (n − 1)] given by

Mn,I = max
1≤ j≤[ 1

2 (n−1)]
In(ω j ),

plays a central role in these tests of hypotheses. The convenience of using this test
statistic is that when X t is a zero mean Gaussian process, the periodogram ordinates
over these Fourier frequencies constitute an i.i.d. standard exponential sample, and the
asymptotic distribution of the test statistics is relatively easy to obtain. On the other
hand, when X t is a zero mean, finite variance non-Gaussian process, these ordinates
are neither independent nor uncorrelated, but Davis and Mikosch (1999) show that the
asymptotic distribution of Mn,I still has a similar behavior.

In principle, tests on the jumps should be constructed based on the maxima of the
periodogram over the continuous range of frequencies

MI = max
ω∈[0,π ]

In(ω),

and it is not very clear how much power, if any, one loses by using the discrete maxima
instead of the continuous maxima while constructing these tests. Walker (1965) remarks
that indeed greater power can be achieved by using the continuous maxima, indicating
that the discrete maximum over the Fourier frequencies may not sufficiently approxi-
mate the continuous maximum. In fact, when X t is a Gaussian sequence, a Pickands’
grid for the periodogram can be found using a theorem of Bernstein on trigonometric
polynomials (see Turkman and Walker (1984) or Zygmund (1959)):

Theorem 5. If a trigonometric polynomial of order n,

T (x) =
n∑

k=−n

ckeikx

satisfies |T (x)| ≤ M for every x and for some constant M, then the derivative T ′(x)
satisfies |T ′(x)| ≤ nM.

Clearly, the periodogram is a trigonometric polynomial of order n. If δa = {w j =

jaq(n), j = 0, 1, . . .} is a partition of [0,π ], then for any ω ∈ [ω j ,ω j+1), there exists
another ω∗ ∈ [ω j ,ω j+1) such that

In(ω) = In(ω j )+ (ω − ω j )I
′

n(w
∗).

Denote by Mδa ,I , the maximum of the periodogram over the grid δa . Then, from
Bernstein’s theorem, almost surely

Mδa ,I ≤ MI ≤ Mδa ,I +max
ω1

|ω1 − ω j | max
ω∈[0,π ]

I ′n(ω)

≤ Mδa ,I + πaq(n)nMI .
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Almost surely

lim
n→∞

MI

2 log n
= 1,

(see Turkman and Walker (1990)), hence as n→∞,

0 ≤ MI − Mδa ,I ≤ 2πaq(u)n log n.

Therefore, choosing q(u) = (n log n)−1, we see that almost surely

lim
a→0

lim
n→∞

Mn,I − Mn,δa ,I = 0.

These arguments need to be slightly more precise near ω = 0, but we omit the details
that can be found in the works of Turkman and Walker (1984).

Thus, the Fourier frequencies ω j = 2π j/n, j = 1, 2, . . . , [ 1
2 (n − 1)] form a sparse

grid and the maximum over the Fourier frequencies and over a dense grid grow with
different rates. In fact, as n→∞,

P(Mn,I ≤ 2x + log n − 2 log 2)→ exp(e−x ), (25)

whereas,

P(MI ≤ 2x + 2 log n + log log n − log 3/π)→ exp(e−x ). (26)

Thus, if 3 is a random variable with standard Gumbel distribution, then

Mn,I =
d 23+ 2 log n − 2 log 2,

whereas

MI =
d 23+ 2 log n + log log n − log

3

π
,

These results show the degree of deviance of the maximum of the periodogram
ordinates at Fourier frequencies from the maximum over the continuous range of
frequencies, differing in the limit by an order of log log n.

The limit in (25) is given by Walker (1965), whereas the limit in (26) is obtained by
Turkman and Walker (1984) by showing that as n→∞,

P(Mn,I > un) ∼ µ(un),

where µ(un) is the upcrossing intensity of the high-level un . However, in order to
obtain such a result, it is needed to verify that the second-order moment of upcrossings
given by

E[Nun (Nun − 1)]
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is negligibly small, that is

E[Nun (Nun − 1)] = o(µ(un)), (27)

where Nun is the number of upcrossings of the level un in the interval [0,π ]. Meth-
ods that are employed to obtain such results are specific for Gaussian processes and
other processes that are simple transformations of Gaussian processes, such as the
periodogram for Gaussian time series. It would be interesting to characterize the joint
limiting distribution of the periodogram maximum over the continuous range of fre-
quencies and the periodogram maximum over a Pickands’ grid in terms of the random
sequence {ζa,x (k)}∞k=1 given in (10). Albin (1990) shows that under the condition (27),

lim
a→0

1

a
P(ζa,x (1) ≤ x) = lim

a→0

1

a
P

(
sup
k≥1

ζa,x ≤ x

)
,

therefore, the sequence {ζa,x (k)}∞k=1 must be degenerate in some sense, facilitating part
of the tedious technical work.

Characterizations of Section 2 give a very detailed and accurate description of the
asymptotic relationship between the discrete and continuous maxima, but they have
very limited practical use since the conditions are generally hard to verify and lit-
tle is known on possible estimators for expressions such as Hz(b, x , y) defining the
degree of dependence between the continuous and discrete extremes. Therefore, it
is very important to get simpler and more robust representations for the relationship
between continuous and discrete maxima, such as the adjustment (3) suggested by
Anderson (2003), which are more adapted for statistical inference permitting numer-
ical computations and applications. For statistical applications, most interesting case is
the joint distribution of maxima over the continuous range and a sparse grid. However,
asymptotic results are not particularly useful, as these maxima are asymptotically inde-
pendent. Therefore, more refined class of models describing the tails of asymptotically
independent distributions at subasymptotic levels are needed. The study of rates of con-
vergence related to the reported asymptotic results may also be very useful in getting
sharper bounds for the adjustment given in Eq. (3).
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Abstract

Numerical methods have been used for fitting sinusoids to data since the mid-
dle of the 18th century. Since the discovery of the Fast Fourier Transform by
Cooley and Tukey in 1965, the techniques for estimating frequency have become
computationally feasible.

This review examines various techniques for estimating the frequency or fre-
quencies of sinusoids in additive noise. The techniques fall into two categories –
those based on Fourier, or frequency-domain methods, and those derived from
a consideration of a small number of sample autocovariances. The Fourier tech-
niques invariably have asymptotic variances of order T−3, where T is the sample
size, and are particularly useful when T is large and the signal is noisy, whereas
the other techniques are usually statistically inefficient, with asymptotic variances
of order T−1, and are often biased, but because of their computational efficiency,
can be useful when T is small and the signal is relatively noise free.

Keywords: frequency estimation, sinusoidal regression, periodogram, Fourier
transform, resolution.

1. Introduction

An excellent historical account of the estimation of frequency, or the fitting of sinu-
soids, is contained in Bloomfield (1976), which also devotes a chapter to “Fitting
Sinusoids.” Further information is provided in Brillinger (1974, 1987), Heideman et al.
(1984), and Priestley (1981).

Numerical methods have been used for fitting sinusoids since the middle of the 18th
century. Of note is the method of Prony (1795) for fitting complex exponentials by
solving systems of linear equations. The first technique that could be applied to other
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than extremely small samples was the method of Buys-Ballot (1847) (Whittaker and
Robinson, 1944). An implicit assumption in many of the techniques was that the sample
size should be an integer multiple of the period – the data could then be lined up in such
a way that addition would be coherent. Although there is some argument that the Fast
Fourier transform algorithm predates the discovery by Cooley and Tukey (1965), it was
not until then that computation of the discrete Fourier transform of large time series,
and thus that frequency estimation based on Fourier methods, became feasible.

The history is slightly confused because of the use of Fourier methods in estimating
both the frequency of a sinusoid or periodic function and the spectral density of a
stationary stochastic process.

2. Basic model

Although we shall consider more general models, the basic noisy sinusoid satisfies an
equation of the form

X t = µ+ ρ cos (ωt + φ)+ εt (1)

= µ+ α cos (ωt)+ β sin (ωt)+ εt , t = 0, 1, . . . , T − 1 (2)

where {εt } is a zero-mean stochastic process with enough structure to ensure that
parameter estimators have some decent asymptotic properties, and µ, ρ,φ,ω,α =
ρ cosφ,β = −ρ sinφ are unknown parameters. The form (2), is, for ω fixed, recog-
nizable as a regression model with regressor variables cos (ωt) and sin (ωt). Although
many papers have assumed, for example, that {εt } is an independent and identically dis-
tributed sequence of random variables, or even normality, rarely are such assumptions
needed. All we shall assume generally is that {εt } is strictly stationary and ergodic,
with continuous spectral density. We shall also assume the minimalist conditions of
Section 2.5 in Quinn and Hannan (2001), referred to from now on as Q&H.

Figures 1 and 2 show a pure sinusoid, with µ = β = 0,α = 1,ω = 2π35.5/128,
and T = 128, and a noisy version, which has the same parameters, but with pseudo-
Gaussian white noise with variance 1. The noise standard deviation is thus the same
as the amplitude of the sinusoid, making it virtually impossible to tell from Fig. 2 that
there is a sinusoidal component present.

The most obvious method for estimating µ,α,β, and ω in (2) is regression. Since ω
occurs nonlinearly, the least squares regression estimators may be defined by

ω̂T = arg min
ω

ST (ω)

ST (ω) = min
µ,α,β

T−1∑
t=0

{X t − µ− α cos (ωt)− β sin (ωt)}2

(
µ̂T , α̂T , β̂T

)
= arg min

µ,α,β

T−1∑
t=0

{X t − µ− α cos (ω̂T t)− β sin (ω̂T t)}2 .
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For fixed ω, let

MT =



1 1 0

1 cosω sinω

...
...

...

1 cos {ω (T − 1)} sin {ω (T − 1)}



be the design matrix for the regression equation given by (2). Then, using the
identity

T−1∑
t=0

eiλt
=

 T ; λ = 0, mod 2π

eiλT
−1

eiλ−1 ; λ 6= 0, mod 2π ,

we have, as T →∞, if ω 6= 0, modπ ,

M ′T MT =


T + O (1) O(1) O(1)

O(1) T
2 + O(1) O(1)

O(1) O(1) T
2 + O(1)

 .

To see this, note for example that

T−1∑
t=0

cos2 (ωt) =
1

2

T−1∑
t=0

{1+ cos (2ωt)}

=
T

2
+

1

2
Re

T−1∑
t=0

ei2ωt

=
T

2
+

1

2
Re

ei2ωT
− 1

ei2ω − 1

=
T

2
+ O(1).
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Thus, putting X T = T−1∑T−1
t=0 X t , the regression sum of squares for fixed ω is

T−1∑
t=0

(
X t − X T

)2
− ST (ω)

=



T−1∑
t=0

X t

T−1∑
t=0

X t cos (ωt)

T−1∑
t=0

X t sin (ωt)



′ T + O(1) O(1) O(1)

O(1) T
2 + O(1) O(1)

O(1) O(1) T
2 + O(1)


−1

×



T−1∑
t=0

X t

T−1∑
t=0

X t cos (ωt)

T−1∑
t=0

X t sin (ωt)


− T X

2
T

= IX (ω)+ RX (ω),

where

IX (ω) =
2

T

∣∣∣∣∣
T−1∑
t=0

X t e
−iωt

∣∣∣∣∣
2

, (3)

and RX (ω) may be shown to be smaller in order than IX (ω), in the sense that, for any
δ > 0,

sup
δ<ω<π−δ

∣∣∣∣ RX (ω)

IX (ω)

∣∣∣∣→ 0,

almost surely as T →∞.
The regression estimator of ω is thus asymptotically equivalent to the maximizer of

the periodogram IX (ω), which is a constant multiple of Schuster’s (1898) periodogram
and therefore has the same maximizer. Thus, the maximizer of the periodogram has
the same asymptotic properties as the regression estimator of ω. In the same way, the
estimator 

X T

2
T

T−1∑
t=0

X t cos (ω̂T t)

2
T

T−1∑
t=0

X t sin (ω̂T t)


of [µα β]′ has the same asymptotic behavior as its regression estimator.
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3. Properties of the periodogram maximizer

Because the periodogram maximizer is asymptotically equivalent to the least squares
estimator, it follows that the asymptotic properties should mirror those of the maxi-
mum likelihood estimator constructed under Gaussian white noise assumptions, that is,
under the assumption that the εt are normal, independent, and identically distributed.
Since the information matrix, assuming that the εt have common variance σ 2, is for the
parameter

[
µα β ω σ 2

]′
,

1

σ 2


T O(1) O(1) O(T ) 0

O(1) T/2+ O(1) O(1) −αT 2/4+ O(T ) 0

O(1) O(1) T/2+ O(1) βT 2/4+ O(T ) 0

O(T ) −αT 2/4+ O(T ) βT 2/4+ O(T )
(
α2
+ β2

)
T 3/6+ O(T 2) 0

0 0 0 0 T
2σ 2

,

it follows that the Cramér-Rao lower bound for the variance of unbiased estimators
of ω is

24σ 2

ρ2T 3
{1+ O(1)} .

The result is due to Whittle (1952), who also showed that under less restrictive
conditions, T 3/2 (ω̂T − ω) is asymptotically normally distributed with mean 0 and vari-
ance 24σ 2/ρ2. Walker (1971) proved rigorous results for the i.i.d. case. The definitive
result is due to Hannan (1973), who showed that under very general colored noise
assumptions, strong consistency and a central limit theorem hold, with T 3/2 (ω̂T − ω)

asymptotically normally distributed with mean 0 and variance 48π f (ω)/ρ2, where

f (λ) =
1

2π

∞∑
j=−∞

γ j e
−i jλ

is the spectral density function of {εt }, and γ j = cov
(
εt , εt− j

)
. It is interesting to note

that in the years between 1952 and 1974, the result was unknown in the engineering
literature. In fact, in 1974, Rife and Boorstyn essentially derived the Cramér-Rao lower
bound for the complex white Gaussian case, and it is their result that is still generally
referred to in the engineering literature. The T 3/2 order in the asymptotic distribution
may seem surprising at first, as the order is T 1/2, for example, for estimators of ARMA
parameters. However, in time series regression, the order T 3/2 occurs, for example, in
the central limit theorem for the slope parameter in a linear regression with time as the
regressor.

Chen et al. (2000) have developed asymptotic theory for the estimators of frequency
obtained by maximizing windowed periodograms.
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4. Links with ARMA processes

The general solution of the differential equation

d2x(t)

dt2
= −ω2x(t)

is

x(t) = c1 cos (ωt)+ c2 sin (ωt) ,

which is also the general solution of the autoregressive-like difference equation

x(t)− 2 cosω x(t − 1)+ x(t − 2) = 0. (4)

This was the starting point for the famous article of Yule (1927), where autore-
gressive processes were introduced to model periodicities evident in Wolfer’s sunspot
numbers. Yule imagined that although “errors of observation are practically eliminated”
in the “departures of a simple harmonic pendulum from its position of rest,” “unfortu-
nately boys get into the room and start pelting the pendulum with peas, sometimes
from one side and sometimes from the other.” The displacement of the pendulum is
then governed by the equation

x(t)− 2 cosω x(t − 1)+ x(t − 2) = ε(t),

where the ε (t) are perturbations or random errors. In Section 2 of his chapter, Yule
proposed estimating 2 cosω by its least squares estimator

T−1∑
t=1
{x (t)+ x (t − 2)} x(t − 1)

T−1∑
s=1

x2(s − 1)

. (5)

Another obvious approach is to estimate 2 cosω by the Yule–Walker estimator (see,
e.g., Priestley (1981))

2

T−1∑
t=1

x(t)x(t − 1)

T−1∑
s=0

x2(s)

.

In Section 3 of his paper, Yule proposed fitting the AR(2) model

x(t)− b1x(t − 1)+ b2x(t − 2) = ε(t)
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to the sunspot numbers. Since the zeros of z2
− 2r cosωz + r2 are re±iω and the

general solution of

x(t)− 2r cosω x(t − 1)+ r2x(t − 2) = 0

is

x(t) = c1r t cos (ωt)+ c2r t sin (ωt) ,

Yule proposed estimating the frequency as the solution ω̂ in (0,π) of

z2
− b̂1z + b̂2 = 0

z = r̂ e±iω̂,

where b̂1 and b̂2 are the estimators of b1 and b2, respectively, constructed from sample
autocorrelations (the Yule–Walker relations) and assuming that b̂2

1 < 4b̂2.
Using data from the same years available to Yule (1749–1924), the estimates of the

period P = 2π/ω using the raw data and the Yule–Walker method are 9.97 years for
the Section 2 and 10.55 years for the Section 3 techniques, respectively. As many other
authors have transformed the sunspot numbers by taking square roots, we applied the
techniques to the square roots of the series. The period estimates were then 10.26 and
10.85, respectively.

5. Autoregressive approximation

In light of Yule’s work, many authors have explored the use of autoregressive
approximation to estimate frequency. Suppose {X (t)} is a second-order stationary
autoregressive process that satisfies the equation

X (t)+
p∑

j=1

β j X (t − j) = ε(t), (6)

where {ε(t)} is uncorrelated and second-order stationary. Its spectral density function
is then

f (λ) =
σ 2

2π

∣∣∣∣∣∣1+
p∑

j=1

β j e
i jλ

∣∣∣∣∣∣
−2

. (7)

If the polynomial β(z) = 1+
∑p

j=1 β j z j has a complex pair of zeros, say r−1e±iω,
where 0 < r < 1, then the homogeneous difference equation

X (t)+
p∑

j=1

β j X (t − j) = 0, t = 0, 1, . . .



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 25-ch21-583-622-9780444538581 2012/4/24 1:53 Page 593 #11

The Estimation of Frequency 593

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

λ

f(
λ)

Fig. 3. Spectral density function of an AR(2) process.

will have a solution of the form

cr t cos (ωt + φ) .

If r is close to 1, and the other zeros of β(z) have moduli much greater than r−1, then
f (λ) will have a peak close to ω. For example, suppose p = 2,β1 = −1.9 cos(π/3),
β2 = 0.952, and σ 2

= 1. Then

β (z) =
(
1− 0.95e−iπ/3z

) (
1− 0.95eiπ/3z

)
has zeros 0.95−1e±iπ/3. The spectral density is depicted in Fig. 3.

The peak, however, is not at π/3 ∼ 1.0472, but at

arccos

(
cos (π/3)

(
1+ 0.952

)
2× 0.95

)
∼ 1.0464.

If β1 = −1.98 cos (π/3) and β2 = 0.992, the peak is now at

arccos

(
cos (π/3)

(
1+ 0.992

)
2× 0.99

)
∼ 1.0472,

illustrating what happens as the zeros of β(z) approach the unit circle. It follows that
the estimated spectral density, formed from (7), but using estimated parameters, has
maximizer that is not a consistent estimator of ω.
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Suppose that {X (t)} satisfies (2), and that an autoregression of some order is
fitted using the Yule–Walker relations. For j = 0, 1, . . . , let C j denote the j th sample
autocovariance given by

C j = T−1
T−1∑
t= j

(
X (t)− X T

) (
X (t − j)− X T

)
,

where

X T = T−1
T−1∑
t=0

X t .

Then

X T → µ,

C j → γ j + ρ
2 cos (ω j) /2,

almost surely as T →∞, where γ j = cov
(
εt , εt− j

)
. It is therefore impossible to esti-

mate ω using the C j , without assuming something about the γ j . If, for example,
we assume that {ε(t)} is white, then we may estimate ω consistently from the two
equations

C1 =
1

2
ρ2 cos ω̂

C2 =
1

2
ρ2 cos (2ω̂) ,

(8)

or the equation

C2

C1
=

cos (2ω̂)

cos ω̂
=

2 cos2 ω̂ − 1

cos ω̂
. (9)

The only (strongly) consistent estimator of ω constructed from C1 and C2 is thus

ω̂ = arccos

C2 +

√
C2

2 + 8C2
1

4C1

 . (10)

This estimator should be contrasted with Yule’s two estimators

arccos

(
C1

C0

)
(11)

and

arccos

(
−

b1

2
√

b2

)
, (12)
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where [
b1

b2

]
=

[
C0 C1

C1 C0

]−1 [
C1

C2

]
,

both of which are consistent only if σ 2
= 0, that is, if there is no noise, in which case

the estimators are exact, and thus trivially consistent. For the raw sunspot numbers,
the estimates of period using (10), (11), and (12) are 11.37, 9.94, and 10.55 years,
respectively. The transformed series yields estimates 11.62, 10.21, and 10.85 years.
The Quinn and Fernandes (1991) estimates and the periodogram maximizer are 11.38
and 11.36 years, respectively, for the raw data and 11.34 and 11.33 for the transformed
series.

The differences between the above estimates are noteworthy and reflect the different
assumptions made. The periodogram maximizer, Quinn–Fernandes, and autoregressive
estimator have been derived for the case of a sinusoid in additive noise, whereas Yule’s
two estimators assume the underlying process to be the solution of a difference equation
with stochastic forcing term.

If the process is indeed a noisy sinusoid, then the autoregression-based techniques
are clearly inappropriate. For even if (10) is used to estimate ω, and {ε (t)} is i.i.d. with
common variance σ 2, it is easily shown that

T
1
2

[
C1 −

ρ2

2 cosω

C2 −
ρ2

2 cos (2ω)

]

is asymptotically normally distributed with mean 0 and covariance matrix

(
σ 2
)2
[

1 0
0 1

]
+ 2ρ2σ 2

[
cosω

cos (2ω)

] [
cosω cos (2ω)

]
,

and consequently, the estimator ω̂ of ω is such that T
1
2 (ω̂ − ω) is asymptotically

normal with mean 0 and variance

2

(
σ 2

ρ2

)2
cos2 ω + cos2 (2ω)(

2 cos2 ω + 1
)2 .

If a higher-order autoregression is fitted, the maximizer of the estimated spectral
density function will still not be a consistent estimator of ω. It has been conjectured
that if an autoregression is fitted, for example, using AIC, then the estimated order will
be an increasing function of T and the asymptotic “bias” converges to 0. However, this
has not been proven.

It is easy to see why the fitting of a fixed-order autoregression, with order, say, p,
can never produce an estimator that has as good asymptotic performance as the peri-
odogram maximizer. Let β̂ be the vector of autoregressive estimators. Again assume
that {ε (t)} is i.i.d. Then

ω̂ = h(β̂)

β̂ = g(C),
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where C =
[
C0 · · · C p

]
and g and h are differentiable. Since

C0 − σ
2
−

ρ2

2

C1 −
ρ2

2 cosω
...

C p −
ρ2

2 cos (pω)


converges almost surely to 0, and

T
1
2


C0 − σ

2
−

ρ2

2

C1 −
ρ2

2 cosω
...

C p −
ρ2

2 cos (pω)


is asymptotically normally distributed with some covariance matrix 6, it follows
assuming that

ω = h(g(γ )),

where

γ =


σ 2
+

ρ2

2
ρ2

2 cosω
...

ρ2

2 cos (pω)

 ,

that ω̂ is consistent and T 1/2 (ω̂ − ω) is asymptotically normal. It is therefore the case
that the rate of convergence is much less than that of the periodogram maximizer. More-
over, the estimator will be consistent only if the noise is white, whereas the periodogram
maximizer has excellent properties even when the noise is colored.

6. Pisarenko’s technique

Because of the use of the sample autocovariance matrix in the estimation of autore-
gressive parameters, there has been much interest in the use of sample autocovariance
matrices in the signal processing literature in the estimation of frequency. Pisarenko’s
(1973) procedure is popular: let

Cp =


C0 C1 · · · C p

C1 C0 · · · C p−1
...

. . .
. . .

...
C p · · · C1 C0

 ,
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and let d =
[
d0 d1 d2

]′
denote an eigenvector corresponding to the smallest eigen-

vector of C2. ω is estimated by that argument of the zeros of d0 + d1z + d2z2, which is
in (0,π). The motivation for the technique is that under white noise conditions,

C2 →
a.s.
σ 2 I3 +

ρ2

2

 1 cosω cos (2ω)
cosω 1 cosω

cos (2ω) cosω 1


= σ 2 I3 +

ρ2

2

{
cc′ + ss ′

}
,

where

c′ =
[
1 cosω cos (2ω)

]
s ′ =

[
0 sinω sin (2ω)

]
.

Now

σ 2 I3 +
ρ2

2

{
cc′ + ss ′

}
has smallest eigenvalue σ 2, and, since[

1 −2 cosω 1
]′

is orthogonal to both c and s, it is a left eigenvector corresponding to the smallest
eigenvalue of the almost sure limit of C2. As the zeros of 1− 2z cosω + z2 are e±iω, it
follows that the Pisarenko estimator is strongly consistent.

Because of the Toeplitz structure of C2, its left eigenvectors are multiples of the
forms

[
1 a 1

]
and

[
1 0 −1

]
. The equationC0 C1 C2

C1 C0 C1

C2 C1 C0

 1
a
1

 = λ
 1

a
1


has solutions

a =
−C2 +

√
C2

2 + 8C2
1

2C1
, λ = C0 +

C2 +

√
C2

2 + 8C2
1

2
,

a =
−C2 −

√
C2

2 + 8C2
1

2C1
, λ = C0 +

C2 −

√
C2

2 + 8C2
1

2
,

whereas C0 C1 C2

C1 C0 C1

C2 C1 C0

 1
0
−1

 = λ
 1

0
−1
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has solution

λ = C0 − C2.

The minimum eigenvalue is therefore the minimum of

C0 +

C2 −

√
C2

2 + 8C2
1

2

and

C0 − C2.

Now

C0 − C2 − C0 −

C2 −

√
C2

2 + 8C2
1

2

=

−3C2 +

√
C2

2 + 8C2
1

2
,

which converges almost surely to√
cos2 (2ω)+ 8 cos2 ω − 3 cos (2ω)

2

= 1− cos (2ω) > 0.

Thus, almost surely as T →∞, the smallest eigenvalue is

C0 +

C2 −

√
C2

2 + 8C2
1

2
.

Pisarenko’s estimator is therefore the positive arg of the zeros of

1+
−C2 −

√
C2

2 + 8C2
1

2C1
z + z2,

which occur as a complex conjugate pair with modulus 1. Denoting Pisarenko’s
estimator by ω̂P , it follows that

−2 cos ω̂P =

−C2 −

√
C2

2 + 8C2
1

2C1
,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 25-ch21-583-622-9780444538581 2012/4/24 1:53 Page 599 #17

The Estimation of Frequency 599

or

ω̂P = arccos
C2 +

√
C2

2 + 8C2
1

4C1
,

which is the same as (10), not surprisingly, as we have already shown that this is the
only strongly consistent estimator constructed from C0, C1, and C2 and that Pisarenko’s
estimator is strongly consistent.

Pisarenko’s technique generalizes to estimating the frequencies of a noisy sum of p
sinusoids. In this case, the sample autocovariance matrix constructed from C0, . . . , C2p

is constructed, the eigenvector corresponding to the smallest eigenvector again com-
puted, and the positive arguments of the zeros of the polynomial constructed from the
elements of the eigenvector are used as estimators of the p frequencies. For details, see
Pisarenko (1973), and for an asymptotic analysis, see Sakai (1984).

7. MUSIC

The MUltiple SIgnal Characterization technique of Schmidt (1981, 1986) comes from
the array processing literature, providing estimators of direction of arrival rather than
frequency. The problems are very similar, however, and MUSIC has become a popular
technique for estimating frequency. As with many of the previous techniques, the noise
must be white for the technique to work.

Let
{

P̂j ; j = 1, . . . , K
}

denote normalized eigenvectors (i.e., P̂ ′j P̂j = 1 for each j)
corresponding to the decreasing eigenvalues of the sample autocovariance matrix CK ,
where K ≥ 3. The MUSIC estimator of ω is defined to be the minimizer of

K∑
k=3

∣∣P̂ ′keK (ω)
∣∣2 ,

where, letting z∗ be the complex conjugate transpose of z,

e∗K (ω) =
[
1 e−iω

· · · e−i Kω
]

.

Since

K∑
k=1

∣∣P̂ ′keK (ω)
∣∣2 = e∗K (ω)

K∑
k=1

P̂k P̂ ′keK (ω)

= K + 1,

it follows that the MUSIC estimator of ω is the maximizer of what is termed the MUSIC
spectrum

2∑
k=1

∣∣P̂ ′keK (ω)
∣∣2 .
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In the special case where K = 3, the MUSIC estimator is (asymptotically) the same as
Pisarenko’s, since the minimizer of∣∣∣∣∣∣∣1+

−C2 −

√
C2

2 + 8C2
1

2C1
eiω
+ ei2ω

∣∣∣∣∣∣∣
2

satisfies the equation

2 cosω = −
−C2 −

√
C2

2 + 8C2
1

2C1
.

For general K and the more general case of more than one frequency, the analysis is
contained in Q&H, where the results for complex sinusoids are also presented.

A related estimator is the minimizer of

K∑
k=3

λ̂αk

∣∣P̂ ′keK (ω)
∣∣2 ,

where the λ̂k are the eigenvalues of CK , in decreasing order, and α ∈ R. When α = −1,
the technique is known as the EV method (Johnson, 1982). It is shown in Q&H that the
asymptotic properties are the same as those of MUSIC, for any α. In particular, the
asymptotic variance of the estimator is O

(
T−1

)
.

8. An efficient technique based on ARMA filtering

In light of the fact that

X t − 2 cosωX t−1 + X t−2 = εt − 2 cosω εt−1 + εt−2,

it makes sense to consider ARMA(2, 2) estimation techniques that constrain the zeros
of the autoregressive polynomial to be near, or even on, the unit circle. Nehorai and
Porat (1986) and Fernandes et al. (1987) suggested iterative estimation procedures with
zeros approaching the unit circle with each iteration. Li and Kedem (1993) have devel-
oped a similar technique, but bounded the zeros away from the unit circle. Techniques
that bound the zeros away from the unit circle inevitably have asymptotic variances of
order O

(
T−1

)
. However, although the statistical properties of estimation techniques

with zeros approaching the unit circle are unknown, simulations suggested that they
were better than Pisarenko’s estimator and MUSIC. The fact that constraining the
autoregressive polynomial’s zeros to be on the unit circle is anathema to Engineers
is probably the reason why the following idea had not been tried.

Suppose we fit the ARMA(2,2) model

X t + βX t−1 + X t−2 = εt + αεt−1 + εt−2 (13)
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in the following way:

1. Let α̂0 be an initial value of α. (This should therefore be an estimator of
−2 cosω.)

2. Put

ξt = X t − α̂0ξt−1 − ξt−2

ξ−1 = ξ−2 = 0.

Then

εt = ξt + βξt−1 + ξt−2,

and so, the minimizer with respect to β of

T−1∑
t=0

ε2
t =

T−1∑
t=0

(ξt + βξt−1 + ξt−2)
2

is found by regressing ξt + ξt−2 on −ξt−1. We would thus estimate β by

−

∑T−1
t=0 (ξt + ξt−2) ξt−1∑T−1

s=0 ξ
2
s−1

.

3. Since α and β should be equal, we could then replace α̂0 by

α̂1 = −

∑T−1
t=0 (ξt + ξt−2) ξt−1∑T−1

s=0 ξ
2
s−1

= −

∑T−1
t=0 (X t − α̂0ξt−1) ξt−1∑T−1

s=0 ξ
2
s−1

= α̂0 −

∑T−1
t=0 X tξt−1∑T−1

s=0 ξ
2
s−1

and carry out step 2 again, repeating until the process “converges.”

There is no guarantee a priori that this might produce any sensible estimation
procedure. However, simple simulations suggested that the increment

−

∑T−1
t=0 X tξt−1∑T−1

s=0 ξ
2
s−1

should be doubled to improve convergence. The procedure introduced in Quinn and
Fernandes is

1. Let α̂0 be an initial value of α = −2 cosω.
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2. For j = 0, 1, . . . ,
(a) Put, for t = 0, . . . , T ,

ξt = X t − α̂ jξt−1 − ξt−2

ξ−1 = ξ−2 = 0.

(b) Let

α̂ j+1 = α̂ j − 2

∑T−1
t=0 X tξt−1∑T−1

s=0 ξ
2
s−1

(c) Repeat step 2 unless
∣∣∣∑T−1

t=0 X tξt−1/
∑T−1

s=0 ξ
2
s−1

∣∣∣ is acceptably small.

3. With α̂ the current value of α̂ j+1, put

ω̂QF = arccos

(
−
α̂

2

)
.

Note that the procedure involves only a number of filters and simple arithmetic oper-
ations, which can be carried out frugally using mathematical and statistical packages.
The question of starting values and “convergence” criterion has a simple answer. Under
the same conditions as assumed for the periodogram maximizer ω̂P , if the initial esti-
mator of ω is accurate to order oP

(
T−1/2

)
, the estimator has the same asymptotics as

the periodogram maximizer. Moreover, if

α̂0 = −2 cos (2πkT /T ) ,

where

kT = arg max
1≤ j≤T/2

IX

(
2π j

T

)
, (14)

it may be shown that

T 3/2
(
ω̂QF − ω̂P

)
→ 0 (15)

in probability as T →∞, where

ω̂QF = arccos

(
−
α̂2

2

)
.

In other words, to estimate ω with the same efficiency as the periodogram maximizer,
the iterations above need to be carried out only twice. In particular, although the pro-
cedure was motivated by least squares, {εt } need not be white. In light of (15), the two
estimators have the same central limit theorem.

Note: Truong-Van (1990) proposed an estimator based on finding zeros of∑T−1
t=0 X tξt−1. The procedure was motivated by the fact that the solution to the

difference equation

ξt − 2 cos λξt−1 + ξt−2 = cos (ωt + φ)
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“rings” when λ = ω, that is of the form

ξt = ct cos (ωt + ν) .

Truong-Van termed the approach “Amplified Harmonics.” Since the Quinn–Fernandes
technique also produces zeros of

∑T−1
t=0 X tξt−1, the estimators theoretically share the

same asymptotic behavior. Although Truong-Van assumed the noise process {εt } to be
ARMA, this is not necessary.

Note: The zeros of
∑T−1

t=0 X tξt−1 are also the zeros of

T−1∑
j=1

sin ( jλ)C j ,

which, because of the relation

C j =
1

4π

π∫
−π

ei jλ IX (λ)dλ,

are local maximizers of

κX (λ) =

π∫
−π

IX (γ )µT (λ− γ ) dγ

=

π∫
−π

IX (γ )µ (λ− γ ) dγ ,

where

µT (λ) =

T−1∑
k=1

cos (kλ)

k
,

µ(λ) =

∞∑
k=1

cos (kλ)

k

= −
1

2
log

{
4 sin2

(
λ

2

)}
.

The function κX (λ) is therefore a smoothed version of the periodogram – the convo-
lution of the periodogram with µT (λ), which is ∼log T at λ = 0, but which converges
for any fixed λ. Further details are given in Q&H. Figure 4 depicts µT , for T =
128, 256, 384, . . . , 1024 and µ.

Finally, we note that Song and Li (2000) contains an asymptotic analysis of the
technique of Li and Kedem (1993) , modified to allow the zeros of the autoregres-
sive polynomial to converge to the unit circle at a rate depending on T . They claim
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Fig. 4. The kernel µT .

that their technique allows any initial value of ω and still produces an estimator with
order of asymptotic variance arbitrarily close to T−3. Their claim that the Quinn and
Fernandes technique requires an initial estimator accurate to order o(T−1) is incorrect,
as indicated above.

9. Maximizing the periodogram: practicalities

Figures 5 and 6 show the periodogram and κX (λ) for the same time series, which
has been simulated from (1) with ρ = 1,ω = 2π35.3/1024,φ = 0, T = 1024, and {εt }

Gaussian and white with variance 1.
Although it may appear that the periodogram is better at “detecting” the sinusoid,

it should be obvious from Figs 5 and 6 that it will be easier numerically to find the
maximizer of κT than the periodogram maximizer, since the derivative of the peri-
odogram near the main “spike” is changing very quickly locally. In fact, Newton’s
method, applied to find a zero of I ′X (ω), with initial estimator 2πkT /T , where kT

is given by (14), is not guaranteed to produce the periodogram maximizer. This is
because of the fact that “sidelobes” of the periodogram occur within O(T−1) of the
true frequency, while κT does not have any sidelobes nearby. For details, see Rice and
Rosenblatt (1988) and Quinn et al. (2008). The latter show that if

nT = arg max
1≤ j≤2T

IX

(
2π j

4T

)
,
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obtained, for example, by zero-padding, that is by Fourier-transforming

{X0, . . . , XT−1}

with 3T zeros appended, then Newton’s method can be shown to work if started with
the estimator 2πnT / (4T ). It is also shown that Newton’s method works with initial
estimator 2πkT /T if applied to find the maximizer of {IX (ω)}

α , with α ≤ 0.373.

10. Discrete Fourier transform-based methods

Given the problems associated with maximizing IX (ω) as a continuous func-
tion of frequency, and the ease of computing IX (ω) at the Fourier frequencies{
ω j = 2π j/T ; 0 ≤ j < T

}
, it makes sense to consider estimation using the Fourier

coefficients

Y j =

T−1∑
t=0

X t e
−iω j t . (16)

If

ω =
2π (k + δT )

T
, (17)

where δT = O (1), then

Yk+ j =
Tρeiφ

2

ei2πδT − 1

2π i (δT − j)
+

T−1∑
t=0

εt e
−iω j t + O (1) . (18)

Bartlett (1967) appears to has been the first to use this fact to estimate δT and thus ω by
minimizing with respect to δT and the complex constant D

∑
j

∣∣∣∣Yk+ j −
D

δT − j

∣∣∣∣2 , (19)

the sum being over a small number of j close to 0. Bartlett did this by minimizing (19)
with respect to D for δT on some grid and then by interpolation. The asymptotic behav-
ior is described in Q&H. In modern times, minimization of (19) is not as problematic.
A closed-form expression is preferable, however, in real-time systems, where data are
processed online, rather than offline.

From (18), we have

Yk+ j

Y j
=

δT

δT − j
+ o (1) ,
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almost surely as T →∞, since each of T−1∑T−1
t=0 εt e−iω j t converges almost surely

to 0. Each of the equations

Re
Yk+ j

Yk
=

δT

δT − j
, j = ±1,±2, . . . ,

thus provides a “strongly consistent” estimator of ω via (17). For example, with j = 1,

δ̂T =
Re
(
Yk+ j/Y j

)
Re
(
Yk+ j/Y j

)
− 1

.

What remains is to define j and k in a sensible way, so that asymptotics also make
sense. One such algorithm, the Fourier Transform Interpolator (FTI), is given in Quinn
(1992, 1994):

Algorithm 1. (FTI)

1. Let kT be given by (14).

2. Let δ̂ jT =
j R j

R j−1 , where R j =
Re(Yk+ j /Y j)

Re(Yk+ j /Y j)−1
.

3. Let δ̂T = δ̂1T . If δ̂ jT > 0, j = ±1, let δ̂T = δ̂−1T .
4. Put ω̂T = 2π

(
kT + δ̂T

)
/T .

It is shown in Quinn (1994) and Quinn and Hannan (2001) that T 3/2 (log T )−1/2−ν

(ω̂T − ω) converges almost surely to 0, for all ν > 0, and that the distribution
function of

T 3/2v−1
T (ω̂T − ω)

converges to that of the standard normal, where

v2
T =

16π3 f (ω)

ρ2

π2δ2
T

sin2 (πδT )
(1− |δT |)

2
{
(1− |δT |)

2
+ δ2

T

}
and δT = Tω/ (2π) minus its nearest integer, and is therefore in

[
−

1
2 , 1

2

]
. That the

“asymptotic variance” should depend on T is not surprising, as the Fourier frequen-
cies change with T . The choice between two possible estimators in step 3 of FTI is
motivated in Quinn (1992, 1994) and Quinn and Hannan (2001). MacLeod (1998) has
pointed out that putting δ̂T = δ̂−1T if R−1 > R1 is better, especially when the closest
integer to Tω/ (2π) is known a priori. Although the procedure uses only three Fourier
coefficients, the ratio

v2
T

48π f (ω) /ρ2
,

the asymptotic efficiency relative to the periodogram maximizer, is largest(
π2/3 ∼ 3.2899

)
when δT = 0, and smallest

(
π4/96 ∼ 1.0147

)
, when δT = ±

1
2 .
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A class of algorithms is suggested from optimally combining the two estimators δ̂1T

and δ̂−1T . One such estimator replaces step 3 above with

δ̂T =
δ̂1T + δ̂−1T

2
+ g(̂δ2

1T )− g(̂δ2
−1T ),

where

g(x) =
1

4
log(3x2

+ 6x + 1)−

√
6

24
log

 x + 1−
√

2
3

x + 1+
√

2
3

 .

An asymptotically equivalent estimator is obtained by using, with δT equal to the FTI1
estimator,

δ̂T =
δ̂1T + δ̂−1T

2
+
(
δ̂1T − δ̂−1T

) 3δ
3
T + 2δT

3δ
4
T + 6δ

2
T + 1

.

The new estimator ω̂T satisfies the same type of central limit theorem, but with

v2
T =

8π3 f (ω)

ρ2

π2δ2
T

sin2 (πδT )

(
1− δ2

T

)2 (
3δ4

T + 1
)

3δ4
T + 6δ2

T + 1
.

The new asymptotic efficiency relative to the periodogram maximizer is largest(
π2/6 ∼ 1.6449

)
when δT = 0 and smallest

(
57π4/5504 ∼ 1.0088

)
when δT = ±

1
2 .

For further details, see Quinn and Hannan (2001).
Quinn (2006) has developed and analyzed algorithms which may be applied to time

series that have been “tapered.”

11. Estimation using only the moduli of the DFT

Popular estimation techniques have been based on fitting curves to the perio-
dogram. The most well-known estimator is the quadratic interpolator, which is
defined as the maximizer of the quadratic fitted through the points

{(
ωkT+ j ,

IX (ωkT+ j )
)

; j = −1, 0, 1
}
. It is shown in Q&H that the frequency estimator is given

by

ω̂T = 2π
kT + δ̂T

T
,

where

δ̂T =
1

2

IX
(
ωkT+1

)
− IX

(
ωkT−1

)
2IX

(
ωkT

)
− IX

(
ωkT−1

)
− IX

(
ωkT+1

)
= δT +

4δ3
T − δT

1− 3δ2
T

+ o(1)
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almost surely as T →∞, when δT ∈
[
aT−ν − 1

2 , 1
2 − aT−ν

]
, for fixed a > 0 and 0 <

ν < 1/2, instead of δT . Therefore, T (ω̂T − ω) does not converge almost surely to 0,
and the quadratic interpolator has an unacceptably large bias. Other estimators have
been suggested, such as (Hawkes, 1990)

δ̂T = c

√
IX
(
ωkT+1

)
−

√
IX
(
ωkT−1

)√
IX
(
ωkT

)
+

√
IX
(
ωkT−1

)
+

√
IX
(
ωkT+1

) , (20)

where c does not depend on δ. All such estimators, however, will also have the same
bias problems. To see this, let

δ̂T =

a
√

IX
(
ωkT+1

)
+ b

√
IX
(
ωkT−1

)
c
√

IX
(
ωkT

)
+ d

√
IX
(
ωkT−1

)
+ e

√
IX
(
ωkT+1

)
=

a
∣∣∣ δT
δT−1

∣∣∣+ b
∣∣∣ δT
δT+1

∣∣∣
c + d

∣∣∣ δT
δT−1

∣∣∣+ e
∣∣∣ δT
δT−1

∣∣∣ + o(1),

almost surely as T →∞, again when δT ∈
[
aT−ν − 1

2 , 1
2 − aT−ν

]
, for fixed a > 0

and 0 < ν < 1/2. In order that δ̂T − δT converge almost surely to 0, it is necessary that
in some neighborhood of 0,

δ =
a
∣∣ δ
δ−1

∣∣+ b
∣∣ δ
δ+1

∣∣
c + d

∣∣ δ
δ−1

∣∣+ e
∣∣ δ
δ+1

∣∣ .
Thus, for δ > 0,

δ =
a
(
δ

1−δ

)
+ b

(
δ
δ+1

)
c + d

(
δ

1−δ

)
+ e

(
δ
δ+1

)
=

aδ (1+ δ)+ bδ (1− δ)

c
(
1− δ2

)
+ dδ (1+ δ)+ eδ (δ + 1)

,

so that

a = d , b = −e, c = d − e,

while, for δ < 0,

δ =
a
(
−δ

1−δ

)
+ b

(
−δ
δ+1

)
c + d

(
−δ

1−δ

)
+ e

(
−δ
δ+1

)
=

−aδ (1+ δ)− bδ (1− δ)

c
(
1− δ2

)
− dδ (1+ δ)− eδ (δ + 1)

,
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which implies that

a = d, b = −e, c = e − d.

The two sets of conditions can hold only when e = d, and therefore, c = 0 and b = −a.
Thus, the only estimator with the correct order of consistency is formed using

δ̂T =

√
IX
(
ωkT+1

)
−

√
IX
(
ωkT−1

)√
IX
(
ωkT−1

)
+

√
IX
(
ωkT+1

) .

This estimator has, however, very poor asymptotic properties. The main prob-
lem with estimators that use only the moduli of the Fourier coefficients, and not the
arguments, or phases, is that they are missing important sign information.

Rife and Vincent (1970) suggested the estimator

ω̂T = 2π
kT + δ̂T

T

δ̂T = α̂T

√
IX
(
ωkT+α̂T

)√
IX
(
ωkT

)
+

√
IX
(
ωkT+α̂T

)
α̂T = sgn

{
IX
(
ωkT+1

)
− IX

(
ωkT−1

)}
.

The motivation behind this is that δT is more likely to be positive if IX (ωkT+1) >

IX (ωkT−1) and vice versa. The resulting frequency estimator exhibits bizarre behavior.
It is shown in Q&H that if ω/ (2π) is irrational, T 5/4 (ω̂T − ω) does not converge in
probability to 0, whereas if ω/ (2π) is rational, T 3/2 (ω̂T − ω) converges in distribu-
tion, but is not asymptotically normal. The problems with the estimator result from
making the wrong choice in α̂T when δT is close to 0. This can be partially corrected
by using

sgn Re
YkT+ j

YkT

, j = −1, 1.

The details are given in Q&H. It is conjectured that no estimation procedure based
only on kT and

{
IX (ωkT+ j ) j = −1, 0, 1

}
will have the same order of consistency as

those which use the additional information provided by the Fourier coefficients.

12. More than one sinusoid

The model containing several sinusoids

X t = µ+

f∑
j=1

ρ j cos
(
ω j t + φ j

)
+ εt (21)
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is reasonable whenever data containing different sinusoids with different and unrelated
frequencies are added, or when a time series is thought to have been produced by some
periodic, but not necessarily sinusoidal phenomenon. In the latter case, the frequencies
ω j above will be harmonically related, that is, integer multiples of a fundamental fre-
quency. In practice, and especially in the sonar context, a time series may be the noisy
sum of a large number of sinusoids, with some frequencies harmonically related and
others not related at all. In this section, we consider f to be known.

The least squares estimators of the ω j are obtained (Bloomfield, 1976; Quinn and
Hannan, 2001) by minimizing with respect to the ω j

min
µ,ρ1,...,ρ f ,φ1,...,φ f

T−1∑
t=0

X t − µ−

f∑
j=1

ρ j cos
(
ω j t + φ j

)
2

,

or, equivalently,

min
µ,α1,...,α f ,β1,...,β f

T−1∑
t=0

X t − µ−

f∑
j=1

{
α j cos

(
ω j t

)
+ β j sin

(
ω j t

)}2

. (22)

The latter function is easily computed by regression, for fixed ω1, . . . ,ω f , as in the
single frequency case, and is asymptotically equivalent to

T−1∑
t=0

(
X t − X

)2
−

f∑
j=1

IX (ω j ). (23)

Consequently, the least squares estimators are, at least in the usual sense, asymp-
totically equivalent to local maximizers of the periodogram. It has long been the
approach to estimate several frequencies by looking for the largest local maxima of
the periodogram. However, there are several problems with this approach.

1. Two sinusoids might have frequencies “close together” relative to T , invalidating
the approximation of (22) by (23).

2. The sidelobes from one sinusoid might be interpreted as coming from separate
sinusoids if one sinusoid has a much larger amplitude than some others.

The two problems are quite different and have quite different solutions. It is the sec-
ond problem that has driven the development of MUSIC and similar techniques – the
fact that the periodogram cannot “resolve” several frequencies if the amplitudes of
the sinusoids are quite different. However, there is no inherent reason why the fre-
quencies of several sinusoids should be resolved by maximizing a function of a single
frequency.

12.1. The resolution of close frequencies

Hannan and Quinn (1989) consider the case where f = 2 and ω2 = ω1 + T−1a, where
ω1 and a are fixed. The T−1 term might seem odd, but something is needed to model
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the case of “close” frequencies, and T−1 is suggested by the analysis. The case where
ω1 = 0 is considered special, as it can be argued that then there are three sinusoids
with close frequencies at 0 and ±T−1a. Equation (22) may be shown in the case where
ω1 = ω 6= 0 and ω2 = ω + T−1a to equal

T−1∑
t=0

(
X t − X

)2
−

1

1− sin2(a/2)
(a/2)2

[
IX (ω)+ IX (ω + T−1a)

−
2

T
Re

{
Y T (ω + T−1a)YT (ω)

eia
− 1

ia

}]
,

where

YT (ω) =

T−1∑
t=0

X t e
−iωt .

The regression sum of squares, as a function of ω and a, is thus easily computed
using the discrete Fourier transform. Hannan and Quinn (1989) and Quinn and Hannan
(2001) show that the least squares estimators ω̂T and âT are such that

T (ω̂T − ω)→ 0

âT − a→ 0,

almost surely as T →∞, and that [T 3/2 (ω̂T − ω) T 1/2 (̂aT − a)]′ is asymptotically
normally distributed with zero mean and a covariance matrix, which depends in a
complicated way on φ2 − φ1 − a/2, a/2, ρ1, ρ2, and ω. They also discuss the related
problem of estimating a single low frequency of the form a/T . Consider the case

f = 2, ρ1 = 1, ρ2 = 0.5, φ1 = φ2 = 0, ω1 =
2π135.3

1024
, a = 0.9, T = 1024,

where {εt } is Gaussian and white, with common variance 1. The periodogram, shown
in Fig. 7, does not resolve the two frequencies, as the first right sidelobe due to the
sinusoid at ω1 has been confused with the main lobe of the sinusoid at ω1 + T−1a.

The MUSIC spectrum is, with K = 100, shown in Fig. 8.
MUSIC does not resolve the two close frequencies. However, if we let ζ (ω1,ω2) be

the regression sum of squares, computed for example by

ζ (ω1,ω2) =
1

1− sin2(a/2)
(a/2)2

[
IX (ω1)+ IX (ω2)−

2

T
Re

{
Y T (ω2)YT (ω1)

eia
− 1

ia

}]
,

where a = T (ω2 − ω1), the frequencies may be resolved (Fig. 9). Although it is
difficult to see this in a single surface plot of ζ , the plot of

ξ (ω) = max
ω1

ζ (ω1,ω)

is convincing (Fig. 10).
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Fig. 7. Periodogram, two close frequencies.
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Fig. 8. MUSIC, two close frequencies.
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Fig. 9. Log of regression sum of squares for two close frequencies.
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Fig. 10. Resolution using ξ .

A discussion of resolution is not complete without the mention of “sidelobe suppres-
sion” techniques. Figure 11 is a plot of the periodogram after applying a Hann window.
This has, however, resulted in quite a bit of bias.
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Fig. 11. Sidelobe suppression using Hanning window.

12.2. Other resolution problems

Consider the case where f = 2, ρ1 = 10, ρ2 = 1,ω1 = 171π/1024,ω2 = 190π/1024,
φ1 = φ2 = 0, and T = 1024. We shall assume first that {εt } is white, with common
variance 1. The log of the periodogram of a simulated time series is partially shown
in Fig. 12. The bin number k refers to the frequency 2πk/T . It is clearly seen that the
second frequency corresponds to the sixth largest local maximum.

In contrast, the relevant section of the MUSIC spectrum is given in Fig. 13, with
K = 100. Clearly, MUSIC does not resolve the two frequencies, even though they are
separated.

The situation may even be worse if the noise is not white. Suppose, now that f = 2,
ρ1 = 1, ρ2 = 1,ω1 = 171π/1024,ω2 = 190π/1024,φ1 = φ2 = 0, and T = 1024, so
that the amplitudes are equal, but that the noise is an autoregression of order 2,
satisfying

εt − 1.64εt−1 + 0.81εt−2 = ut ,

where {ut } is white, with common variance 1. Thus {εt } exhibits a pseudo-cycle near
the frequency 140π/1024. The local periodogram of a simulated time series is shown
in Fig. 14.

Not only the peak in the periodogram at ω2 has been suppressed, there are many
other spurious peaks because the background spectral density is not flat. In fact, the
periodogram at ω1 is only marginally larger than the periodogram near frequency bin
73.6. This is because of the thresholding effect: the largest periodogram value “due to
noise” is larger than the periodogram at the true frequency. A discussion is given in
Quinn and Kootsookos (1994) of the complex Gaussian white noise case.
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Fig. 14. Periodogram, same amplitudes and colored noise.

Bloomfield (1976) and Quinn and Hannan (2001) suggest that, rather than trying to
resolve frequencies by using the periodogram, sinusoidal terms be removed by regres-
sion after being detected and then estimated, one by one. This approach will work as
long as the frequencies are separated, but not when they are close. To reduce problems
that arise as a result of non-whiteness of the background noise, Quinn (2004) has devel-
oped a technique that simultaneously estimates an autoregressive approximation to the
noise and “equalises” its effects, so that the periodogram appears to be from the sum of
sinusoids and white noise. An extension to the complex case is given by Quinn (2007).

12.3. Harmonically related frequencies

When the sinusoidal sum is actually the approximation to a periodic function, the
frequencies in (21) are such that ω j = jω, where ω is the unknown “fundamental”
frequency. The regression sum of squares based on white noise assumptions is then not
the appropriate function to maximize, as the component sinusoids are influenced indi-
vidually by the noise spectral densities at the harmonics, and each sinusoid is a function
of ω. If {εt } is Gaussian, with known spectral density, then an asymptotically equivalent
approach to maximum likelihood is (Quinn and Thomson, 1991) to maximize

f∑
j=1

IX ( jω)

f ( jω)
. (24)

The spectral density, of course, is not known and must be estimated. Quinn
and Thomson suggest estimating f (λ) by using the median of the IX (ω) near λ.
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Chiu (1989) uses trimmed means. Another approach is to model the noise: Quinn and
Thomson (1998) have assumed {εt } to be autoregressive and estimate the sinusoidal and
autoregressive parameters simultaneously. Their algorithm also allows missing values
in the data by incorporating an EM-like algorithm. In all cases, ω̂, the maximizer of
(24), is such that T 3/2 (ω̂ − ω) is asymptotically normally distributed with zero mean
and variance

48π∑ f
j=1

j2ρ2
j

f ( jω)
.

Semiparametric or nonparametric approaches to the problem of estimating the
period of a periodic function have recently been proposed by Gassiat and Lévy-Leduc
(2006), Hall et al. (2000), Hall and Li (2006), Hall and Yin (2003),, and Lévy-Leduc
et al. (2008). These approaches apply to the more general case where the time series is
sampled irregularly.

13. Complex sinusoids

Many engineering techniques have been explicitly developed for complex-valued
processes satisfying equations of the form

X t = µ+

f∑
j=1

D j exp
(
iω j t

)
+ εt , (25)

where the D j are complex and {εt } a complex-valued stationary process. Many of the
techniques mentioned above are easily modified, if they need to be. There is a class
of techniques, however, which is only applicable to complex sinusoids – those which
use only the arguments (phases) of the time series and ignore the moduli. The need for
such techniques arises in systems where the moduli may be distorted, for example, by
Automatic Gain Control, but the arguments are distortion free.

Consider {X t } satisfying (25) with µ = 0 and f = 1

X t = D exp (iωt)+ εt

= D exp (iωt)
{
1+ D−1 exp (−iωt) εt

}
.

If {εt } is complex Gaussian and white, then so is {vt }, where vt = 1+
D−1 exp (−iωt) εt . Thus,

arg X t = arg D + ωt + arg vt mod (2π) . (26)

Several popular techniques are based on the fact that this equation is “linear” in t ,
and thus, linear regression techniques may be used. The fact that “wrapping” occurs
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with increasing t has led several authors to take first differences, or args of ratios,
obtaining

arg

(
X t

X t−1

)
= ω + arg

(
vt

vt−1

)
mod (2π)

and then estimating ω by weighted averages of the arg
(

X t
X t−1

)
. Such techniques have

been shown to be inconsistent (Quinn, 2000). Although it is tempting to believe that a
simple technique exists which uses (26) and is both consistent and asymptotically close
to efficient, the wrapping problem seems insurmountable. Recently, McKilliam et al.
(2010) have analyzed the estimator of ω found by minimizing

T−1∑
t=0

〈
arg X t − arg D − ωt

2π

〉2

with respect to arg D and ω, where 〈x〉 = x − bxe and so |〈x〉| is the distance between
x and its nearest integer. Although the asymptotic behavior is excellent, the technique
is computationally intensive.

14. Related problems and areas

The problems of testing for the presence of sinusoids, and estimating the number of
sinusoids, have not been addressed. The reader is referred to Quinn and Hannan (2001).
The state of the art in estimating the number of sinusoids is most likely Kavalieris and
Hannan (1994), who use a BIC-like procedure to estimate both the number of sinusoids
and the order of the best autoregressive fit to the noise. The problem of “tracking” an
evolving frequency is also not discussed, although there is an enormous literature on
this topic. A related problem is the estimation and tracking of the direction of arrival of
a signal, using arrays of sensors.
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Abstract

The wavelet variance is a decomposition of the variance of a time series. Because
of its scale-based nature, the wavelet variance offers insight into various time
series, particularly in the physical sciences. This primer is a basic introduction
to the wavelet variance, starting with its definition in terms of the discrete wavelet
transform, proceeding with a discussion of the large-sample statistical properties
of its basic estimators, and then continuing with an examination of estimators
appropriate for time series with either missing values or contamination by dis-
cordant values. The discussion then moves to two uses of the wavelet variance
involving its across-scale patterns, namely, estimation of exponents of power-
law processes and estimations of characteristic scales. The primer closes with
examples of the wavelet variance applied to time series involving atomic clocks,
sea-ice thickness, the albedo of Arctic ice, X-ray fluctuations from binary stars,
and coherent structures in river flow.

Keywords: analysis of variance, characteristic scales, discrete wavelet trans-
form, Daubechies wavelet filters, intrinsically stationary time series, multiscale
contamination, power-law processes, missing observations, robust estimator.

1. Introduction

The discrete wavelet transform (DWT), as formulated in the late 1980s by Daubechies
(1988), Mallat (1989a,b,c), and others, has inspired extensive research into how to use
this transform to study time series. One focus of this research has been on the wavelet
variance (also called the wavelet spectrum). The wavelet variance decomposes the
variance of a time series and, hence, provides an analysis of variance (ANOVA).
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The most widely used ANOVA technique in time series analysis is spectral analy-
sis, which involves the Fourier-based spectral density function (SDF). The ANOVA
that the wavelet variance provides is in many ways similar to that afforded by the
SDF (Li and Oh, 2002); however, from a practitioner’s point of view, there are key
differences. The SDF is a decomposition of variance across a continuum of Fourier
frequencies. Each component in the decomposition reflects the degree to which a time
series resembles a sinusoid with a particular frequency. The wavelet variance differs
in that it is a decomposition across a discrete set of scales. Roughly speaking, a scale
is an interval (or span) of time over which a time series is averaged. The strength
of each component in the decomposition measures how much variability there is
between adjacently located averages associated with a particular scale. The concept of
scale is distinct from that of period (the inverse of frequency). Both are measured in
the same units, but period does not involve averaging. Although it is possible to esti-
mate an SDF indirectly via the wavelet variance (Tsakiroglou and Walden, 2002), the
different interpretations that frequency and scale have make the ANOVA afforded by
the wavelet variance more appealing than the one given by the SDF for interpreting
certain time series. Examples of applications that have made use of the wavelet vari-
ance are extensive and include time series related to electroencephalographic sleep
state patterns of infants (Chiann and Morettin, 1998), frequency instability of atomic
clocks (Greenhall et al., 1999), rainfall/runoff relationships (Labat et al., 2001), vari-
ations in soil composition (Lark and Webster, 2001), ocean surface waves (Massel,
2001), surface albedo and temperature in desert grasslands (Pelgrum et al., 2000),
heart rate variability (Pichot et al., 1999), stochastic fluctuations on accreting binary
stars (Scargle et al., 1993), solar coronal activity (Rybák and Dorotovič, 2002), and
the El Niño–Southern Oscillation (Torrence and Compo, 1998). In addition, in con-
trast to the Fourier transform, the DWT is localized in time, and hence, the wavelet
variance can be readily adapted for exploring processes that are locally stationary
with time-varying SDFs (Nason et al., 2000) and for detecting inhomogeneities in
time series (Whitcher et al., 2002).

The intent of this chapter is to provide a basic introduction to the wavelet variance,
with an emphasis on its interpretation, its statistical properties, and some recent exten-
sions to the basic methodology. We start with an overview of the maximal overlap
DWT (MODWT), which is the version of the DWT of most interest for formulating
the wavelet variance (Section 2). The MODWT leads to a basic ANOVA of a time
series, which we describe in Section 3. If we assume that the time series under anal-
ysis is a realization of an intrinsically stationary process (as defined in Section 4), we
can define a theoretical wavelet variance and regard the descriptive statistics discussed
in Section 3 as basic estimators of this variance. We discuss the fundamental statis-
tical theory behind estimators of the wavelet variance in Section 5, following which
we discuss estimators intended to handle special circumstances (gappy time series in
Section 6.1 and series with aberrant observations in Section 6.2). We then describe two
wavelet-based methodologies in Section 7, one for deducing the presence of power-
law dependence in a time series and the other for defining a characteristic scale. In both
cases, the statistics that arise are qualitatively similar in that they combine wavelet vari-
ance estimates together across adjacent scales. We devote the penultimate Section (8)
to five real-world examples illustrating the methodology discussed in previous sections
(two of these examples serve to briefly compare Fourier-based spectral analysis with
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the analysis afforded by the wavelet variance; see also Faÿ et al. (2009)). We close with
some concluding remarks in Section 9.

2. Maximal overlap discrete wavelet transform

The wavelet variance is based on the maximal overlap wavelet transform (MODWT)
of a time series, so we start with a discussion of this transform and its basic properties.
The MODWT is closely related to transforms with a variety of names in the literature,
including “undecimated DWT” (Shensa (1992) implemented via the “à trous algo-
rithm”), “shift invariant DWT” (Beylkin, 1992; Lang et al., 1995), “wavelet frames”
(Unser, 1995), “translation invariant DWT” (Coifman and Donoho, 1995; Liang and
Parks, 1996; Del Marco and Weiss, 1997), “stationary DWT” (Nason and Silverman,
1995), “time invariant DWT” (Pesquet et al., 1996), and “nondecimated DWT” (Bruce
and Gao, 1996). For more details about the MODWT, we refer the reader to Percival
and Walden (2000), from which we adopt the notation used below.

The starting point for the MODWT is a Daubechies wavelet filter {h̃1,l , l = 0, 1, . . .,
L1 − 1}, where we insist that h̃1,0 6= 0 and h̃1,L1−1 6= 0, so that the filter has width L1

(for technical reasons, this width must be even). We define h̃1,l = 0 for l < 0 and l ≥ L1

for convenience. By definition, a Daubechies wavelet filter must satisfy three properties
as follows:∑
l∈Z

h̃1,l = 0,
∑
l∈Z

h̃2
1,l = 1/2, and

∑
l∈Z

h̃1,l h̃1,l+2n = 0, n = ±1,±2, . . . , (1)

where Z is the set of all integers. Although it is easy to construct filters that satisfy
the first two properties, the third (orthogonality to even shifts) is challenging. The sim-
plest filter with all three properties is the Haar wavelet filter, which has width L1 = 2
and filter coefficients h̃1,0 = 1/2 and h̃1,1 = −1/2. We denote the transfer function
(i.e., discrete Fourier transform (DFT)) for {h̃1,l} by

H̃1( f ) ≡
∑
l∈Z

h̃1,le
−i2π f l , −∞ < f <∞,

and its associated squared gain function by H̃1( f ) ≡ |H̃1( f )|2. For the Haar wavelet
filter, we have

H̃1( f ) = 1
2 −

1
2 e−i2π f and H̃1( f ) = sin2(π f ). (2)

The wavelet filter spawns a complementary filter known as the scaling filter,
defined by

g̃1,l = (−1)l+1h̃1,L1−l−1, l ∈ Z.

In the Haar case, we have g̃1,0 = 1/2, g̃1,1 = 1/2, and g̃1,l = 0 otherwise. We denote

the corresponding transfer and squared gain functions by G̃1(·) and G̃1(·). For the Haar
scaling filter, we have

G̃1( f ) = 1
2 +

1
2 e−i2π f and G̃1( f ) = cos2(π f ).
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Although the wavelet filter is a high-pass filter with a nominal passband defined by
1/4 ≤ | f | ≤ 1/2, the scaling filter is a low-pass filter with passband dictated by 0 ≤
| f | ≤ 1/4. A fundamental (but far from obvious) consequence of conditions (1) is that
the squared gain functions for the wavelet and scaling filters must satisfy

H̃1( f )+ G̃1( f ) = 1 for all f . (3)

An implication of the above equation is that applying both filters to a time series results
in outputs that preserve the content of the original series over all Fourier frequencies.
Note that the above relationship holds in the Haar case because of the well-known
identity sin2(x)+ cos2(x) = 1.

Let {X t , t = 0, 1, . . . , N − 1} represent a time series of N observations regularly
sampled in time; that is, the time associated with X t is t0 + t1, where t0 is the time at
which X0 is observed, and 1 is the sampling interval between adjacent observations.
Upon circularly filtering {X t } with the wavelet and scaling filters, we obtain the unit-
level MODWT wavelet coefficients

W̃1,t ≡

L1−1∑
l=0

h̃1,l X t−l mod N , t = 0, 1, . . . , N − 1,

and corresponding scaling coefficients

Ṽ1,t ≡

L1−1∑
l=0

g̃1,l X t−l mod N , t = 0, 1, . . . , N − 1.

The modulo operator in the above equation is such that ‘t − l mod N ’ is equal to t − l
if 0 ≤ t − l ≤ N − 1; otherwise, it is equal to t − l + nN , where n is the unique integer
such that 0 ≤ t − l + nN ≤ N − 1. This operator in effect ties the beginning and end
of the time series together, which is why the filtering is referred to as circular. For the
Haar case, we have

W̃1,t =
X t − X t−1

2
and Ṽ1,t =

X t + X t−1

2
for t = 1, 2, . . . N − 1,

whereas

W̃1,0 =
X0 − X N−1

2
and Ṽ1,0 =

X0 + X N−1

2
. (4)

With the exception of t = 0, each scaling coefficient is the average of two adjacent
values from the time series. We associate these averages with a standardized scale
λ1= 2 and a physical scale of λ11. By contrast, each wavelet coefficient is proportional
to the difference between two adjacent values. If we take the point of view that each
X t spans the time interval 1 (as would be appropriate if X t were to represent, e.g.,
the average annual temperature at a particular spot on the earth so that 1 = 1 year),
then we can regard each wavelet coefficient as being proportional to the difference of
averages over a standardized scale of τ1 = 1 and a physical scale of τ11.
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We can also interpret the MODWT scaling and wavelet coefficients as averages
and differences between adjacently located averages when the transform is based on
other Daubechies wavelet filters besides the Haar. For these other filters, each Ṽ1,t at
indices t = L1 − 1, . . . , N − 1 is related to a weighted localized average of the time
series over a scale of 21, where we now take 21 to be a measure of the effective
width of the weighted average. The wavelet coefficients W̃1,t are related to changes
in adjacent weighted localized averages over a scale of 1. Our ability to make these
interpretations requires that {h̃l} satisfies certain conditions above and beyond those
imposed by Eq. (1). For example, the regularity conditions that lead to {h̃1,l} having a
squared gain function of

H̃1( f ) = sinL1(π f )

L1
2 −1∑
l=0

( L1
2 − 1+ l

l

)
cos2l(π f ) (5)

allow us to attach these interpretations to Ṽ1,t and W̃1,t . Note that the above equation
collapses to Eq. (2) in the Haar case (L1 = 2). The squared gain functions for the widely
used “least asymmetric” Daubechies wavelet filters take the above form.

It is important to note that the wavelet and scaling coefficients with indices t =
0, 1, . . . , L1 − 2 do not involve localized averages. Instead, they combine values from
both the beginning and end of the time series. We refer to these special cases as “bound-
ary” coefficients, to which we will need to pay special attention. In the Haar case, the
unit-level boundary coefficients are shown in Eq. (4).

Just as the unit-level wavelet coefficients are related to differences of averages at
scale τ1 = 1 while the scaling coefficients extract averages from {X t } at scale λ1 = 2,
higher-level MODWT coefficients extract quantities with similar interpretations for
larger scales τ j = 2 j−1 and λ j = 2 j , where j is the level index. We define the level
j > 1 coefficients in terms of the higher-level wavelet filter {h̃ j ,l , l = 0, 1, . . . , L j − 1}
and scaling filter {g̃ j ,l , l = 0, 1, . . . , L j − 1}, where L j ≡ (2 j

− 1)(L1 − 1)+ 1. The
appropriate definitions are

W̃j ,t ≡

L j−1∑
l=0

h̃j ,l X t−l mod N, t = 0, 1, . . . , N − 1 (6)

and

Ṽj ,t ≡

L J0−1∑
l=0

g̃ j ,l X t−l mod N, t = 0, 1, . . . , N − 1. (7)

For the Haar case, we have

W̃ j ,t =
1

2 j

(2 j−1
−1∑

l=0

X t−l −

2 j−1
−1∑

l=0

X t−l−2 j−1

)
and Ṽ j ,t =

1

2 j

2 j
−1∑

l=0

X t−l

for t = 2 j−1, 2 j−1
+ 1, . . . N − 1. The scaling coefficients are averages over scale

λ j = 2 j , whereas the wavelet coefficients are proportional to differences of adjacent
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averages over scale τ j = 2 j−1. For wavelets other than the Haar, the higher-level filters
depend on just the basic wavelet and scaling filters {h1,l} and {g1,l} and are most easily
described in terms of inverse DFTs of their transfer functions. The transfer functions
for {h̃ j ,l} and {g̃ j ,l} are given by

H̃ j ( f ) ≡ H̃1(2
j−1 f )

j−2∏
l=0

G̃1(2
l f ) and G̃ j ( f ) ≡

j−1∏
l=0

G̃1(2
l f ).

The higher-level wavelet filters are band-pass filters with nominal passbands dictated
by 1/2 j+1

≤ | f | ≤ 1/2 j , whereas {g̃ j ,l} is a low-pass filter with passband given by
0 ≤ | f | ≤ 1/2 j+1. For future use, we let

H̃ j ( f ) ≡ |H̃ j ( f )|2 and G̃ j ( f ) ≡ |G̃ j ( f )|2 (8)

denote the corresponding squared gain functions.
Finally, we note that in practice, the MODWT wavelet and scaling coefficients

are not computed directly via (6) and (7), but rather via an efficient recursive proce-
dure known as the pyramid algorithm (for pseudo-code describing this algorithm, see
Percival and Walden, 2000, pp. 177–178)).

3. Analysis of variance via the MODWT

Let X , W̃ j , and Ṽ j be column vectors of dimension N whose t th elements are,
respectively, X t , W̃1,t , and Ṽ1,t . Let

‖X‖2
≡

N−1∑
t=0

X2
t

be the square of the Euclidean norm of X . We refer to ‖X‖2 as the “energy” in X .
A key point about the MODWT is that it is energy preserving, in the sense that

‖X‖2
= ‖W̃ 1‖

2
+ ‖Ṽ 1‖

2. (9)

In general, this decomposition of the energy into two parts follows from Parseval’s
theorem and Eq. (3). In the Haar case, it readily follows from

W̃ 2
1,t + Ṽ 2

1,t =
(X t + X t−1)

2

4
+
(X t − X t−1)

2

4
=

X2
t + X2

t−1

2
,

t = 1, . . . , N − 1, along with a similar piece involving the boundary coefficients W̃1,0

and Ṽ1,0.
Letting X =

∑N−1
t=0 X t/N represent the sample mean of X , we can express the

sample variance of our time series as

σ̂ 2
X ≡

1

N

N−1∑
t=0

(
X t − X

)2
=

1

N
‖X‖2

− X
2
=

1

N
‖W̃ 1‖

2
+

(
1

N
‖Ṽ 1‖

2
− X

2
)

≡ σ̂ 2
W1
+ σ̂ 2

V1
,
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where σ̂ 2
W1

and σ̂ 2
V1

can be taken to be sample variances for W̃ 1 and Ṽ 1 (the definition
of the wavelet filter ensures that, if the X t s have a population mean, then the population
mean of the W̃1,t s is zero under mild conditions; on the other hand, the sample mean of
Ṽ1 is always X , as is easy to verify directly in the Haar case). Thus, we can break up
the sample variance of X into two parts, one of which (σ̂ 2

W1
) is attributable to changes

in the time series over standardized scale τ1 = 1, and the other (σ̂ 2
V1

), to averages in X
over scale λ1 = 2τ1 = 2; alternatively, we can think of σ̂ 2

W1
and σ̂ 2

V1
as capturing the

parts of σ̂ 2
X due to high- and low-frequency fluctuations, respectively.

We can generalize the above scheme to define ANOVAs out to some maximum level
J0 ≥ 1. Considering a level J0 = 2 ANOVA, first, the basic idea is to replace ‖Ṽ 1‖

2

in Eq. (9) with the sum of two values, namely, ‖W̃ 2‖
2 and ‖Ṽ 2‖

2, the first of which
is related to changes in adjacent weighted localized averages of {X t } over a scale of
τ2 = 2, and the second, to weighted localized averages over a scale of λ2 = 2τ2 = 4.
By recursively replacing ‖Ṽ j−1‖

2 with ‖W̃ j‖
2
+ ‖Ṽ j‖

2, we are led to the level J0

decomposition:

‖X‖2
=

J0∑
j=1

‖W̃ j‖
2
+ ‖Ṽ J0‖

2 and σ̂ 2
X =

J0∑
j=1

σ̂ 2
W j
+ σ̂ 2

VJ0
,

where

σ̂ 2
W j
≡

1

N
‖W̃ j‖

2 and σ̂ 2
VJ0
≡

1

N
‖Ṽ J0‖

2
− X

2
. (10)

We refer to σ̂ 2
W j

as the j th level empirical wavelet variance and to σ 2
VJ0

as the level J0

empirical scaling variance. The interpretation of σ̂ 2
W j

is that it is related to changes in

adjacent weighted localized averages of {X t } over a scale of τ j = 2 j−1, while σ 2
VJ0

is

associated with weighted localized averages over a scale of λJ0 = 2J0 . This generaliza-
tion of Eq. (9) again follows from Parseval’s theorem, but this time in conjunction with
a generalization of Eq. (3), namely,

J0∑
j=1

H̃ j ( f )+ G̃J0( f ) = 1 for all f . (11)

As a simple example of a wavelet-based ANOVA, consider a small segment of
length N = 192 from a time series of subtidal sea-level fluctuations (Fig. 1a); see
Percival and Mofjeld (1997) for details about these data. This segment is of interest
because of several bumps, each spanning approximately 16 units of time. Fig. 1b shows
the empirical wavelet variances σ̂ 2

W j
(circles) and empirical scaling variance σ̂ 2

VJ0
(aster-

isk) based on a level J0 = 7 Haar MODWT. The sum of these eight variances is exactly
equal to the sample variance σ̂ 2

X
.
= 258.6 of the time series. The largest wavelet vari-

ance occurs at level j = 5, which corresponds to scale τ5 = 24
= 16. The peak at this

scale quantifies what a visual inspection picks out, namely, features in the series (the
bumps) with a characteristic span of 16 time units. The fact that the scaling variance
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Fig. 1. Subtidal sea-level time series (a) and the Haar empirical wavelet variances (b) at levels j = 1, . . . , 7
(circles) and empirical scaling variance for level 7 (asterisk). The seven levels correspond to scales τ j =

2 j−1, so the peak at level j = 5 is associated with changes on scale τ5 = 16. (Reflection boundary conditions
were used in forming the MODWT – see Section 5.2 for details.)

at level J0 = 7 is small relative to the displayed wavelet variances tells us that the
bulk of the variance of the time series can be attributed to changes in averages over
scales τ7 = 26

= 64 and smaller. Thus, the scale-based ANOVA given by the wavelet
variance can offer an intuitively sensible explanation of how a time series is structured.

4. Definition and basic properties of wavelet variance

In this section, we formulate the wavelet variance for a dth order intrinsically stationary
process {X t : t ∈ Z}, where d ≥ 0 is an integer. The definition for such a process is
as follows. If d = 0, then {X t } is just a second-order stationary process; that is, its
expected value E{X t } and covariances cov {X t+τ , X t }, τ ∈ Z, are finite and do not
depend on t . For d > 0, let {X (d)

t } represent the dth order backward difference of {X t }:

X (d)
t ≡

d∑
k=0

(
d

k

)
(−1)k X t−k

(thus X (1)
t = X t − X t−1, X (2)

t = X t − 2X t−1 + X t−2 and so forth). Then {X (d)
t } is

second-order stationary, but {X (d−1)
t }, {X (d−2)

t }, . . . , {X (0)
t } are not, where we define

X (0)
t = X t for convenience. For example, suppose {Z t } is a white noise process, i.e., a

sequence of uncorrelated random variables (RVs) with zero mean and finite variance.
Then the nonstationary random walk process X t =

∑t
u=0 Z t for t ≥ 1 is first-order

intrinsically stationary since its first difference is a stationary process. As a second
example, suppose a and b 6= 0 are constants, and now let X t = a + bt + Z t so that
{X t } is nonstationary. Then X (1)

t = b + Z t − Z t−1 is stationary, so {X t } is first-order
intrinsically stationary. A special case of a dth-order intrinsically stationary process is
an ARIMA(p, d , q) process, which is the most widely used parametric model in time
series analysis (see, e.g., Brockwell and Davis (2002)).
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For use below, let {s(d)τ : τ ∈ Z} denote the autocovariance sequence (ACVS) for
{X (d)

t }:

s(d)τ ≡ cov
{
X (d)

t+τ , X (d)
t

}
= E

{
(X (d)

t+τ − µ
(d))(X (d)

t − µ
(d))
}

,

where µ(d) ≡ E{X (d)
t }. Under the assumption that {X (d)

t } has an SDF SX (d)(·), we can,
when d > 0, define a generalized SDF for {X t } itself via

SX ( f ) =
SX (d)( f )

[4 sin2(π f )]d
(12)

(Yaglom 1958); here, 4 sin2(π f ) comes into play because it defines the squared gain
function for a first-order backward difference filter (cf. Eq. (2)).

Given a dth-order intrinsically stationary process {X t : t ∈ Z} with an SDF given
by Eq. (12) and a j th-level wavelet filter {h̃ j ,l , l = 0, 1, . . . , L j − 1}, we can define an
associated wavelet coefficient process via

W j ,t ≡

L j−1∑
l=0

h̃ j ,l X t−l . (13)

Under the assumptions that the associated unit-level wavelet filter has a squared gain
function given by Eq. (5) and that L1 ≥ 2d , the wavelet coefficient process is stationary
with an SDF given by

S j ( f ) ≡ H̃ j ( f )SX ( f ) =
H̃ j ( f )SX (d)( f )

[4 sin2(π f )]d
,

where H̃ j (·) is defined by Eq. (8). The squared gain function H̃ j (·) depends on H̃1(·)

of Eq. (5), which can be interpreted as arising from an implicit cascade of two filters.
The first is a backward difference filter of order L1/2. The condition L1 ≥ 2d thus
ensures that the j th-level wavelet filter has enough embedded differencing operations
to transform {X t } into the stationary process {X (d)

t } (the second filter in the cascade
transforms {X (d)

t } into W j ,t ). The j th-level wavelet variance is just the variance of the
stationary process {W j ,t }:

ν2
X (τ j ) ≡ var {W j ,t } =

1/2∫
−1/2

S j ( f )d f .

If d = 0 so that {X t } is stationary, then

∞∑
j=1

ν2
X (τ j ) = var {X t },

and hence the wavelet variance is a scale-based ANOVA for {X t }, paralleling the
empirical ANOVA for the sample variance described in Section 3. If d > 0, the
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summation above diverges to infinity, which is a reasonable definition for the variance
of certain (but not all) nonstationary processes with stationary differences.

For d ≥ 0, the wavelet variance just depends on the ACVS {s(d)τ } for the stationary
process {X (d)

t } at the heart of {X t }:

ν2
X (τ j ) =

L j−d−1∑
l=0

L j−d−1∑
m=0

b̃(d)j ,l b̃(d)j ,ms(d)l−m

= s(d)0

L j−d−1∑
l=0

(
b̃(d)j ,l

)2
+ 2

L j−d−1∑
τ=1

s(d)τ

L j−d−1−τ∑
l=0

b̃(d)j ,l b̃(d)j ,l+τ , (14)

where {b̃(d)j ,l } is the dth-order cumulative summation of {h̃ j ,l}; that is, with b̃(0)j ,l ≡ h̃ j ,l ,
we have, for k = 1, . . . , d,

b̃(k)j ,l =

l∑
n=0

b̃(k−1)
j ,n , l = 0, 1, . . . , L j − k − 1

(Lemma 1; Craigmile and Percival, 2005). This expression for ν2
X (τ j ) follows from

reexpressing Eq. (13) in terms of {b̃(d)j ,l } and {X (d)
t }:

W j ,t =

L j−d−1∑
l=0

b̃(d)j ,l X (d)
t−l . (15)

The above equation directly leads to an expression for the ACVS for {W j ,t }, namely,

s j ,τ ≡ cov {W j ,t+τ , W j ,t } =

L j−d−1∑
l=0

L j−d−1∑
m=0

b̃(d)j ,l b̃(d)j ,ms(d)τ+l−m .

Eq. (14) follows from the above since ν2
X (τ j ) = s j ,0.

When d = 0 or 1, we can also express the wavelet variance in terms of the
semivariogram, defined as γτ = 1

2 var {Xτ − X0}. We then have

ν2
X (τ j ) = −

L j−1∑
l=0

L j−1∑
m=0

h̃ j ,l h̃ j ,mγl−m .

5. Basic estimators of the wavelet variance

We now consider the problem of estimating the wavelet variance given a time series
that can be regarded as a realization of a portion X0, X1, . . . , X N−1 of a dth-order
intrinsically stationary process. Under the assumption that L1 ≥ 2d , we can base an



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 26-ch22-623-658-9780444538581 2012/4/24 1:53 Page 633 #11

A Wavelet Variance Primer 633

estimator for ν2
X (τ j ) on the level j MODWT wavelet coefficients W̃ j ,t of Eq. (6). If we

compare

W̃ j ,t =

L j−1∑
l=0

h̃ j ,l X t−l mod N with W j ,t =

L j−1∑
l=0

h̃ j ,l X t−l for t = 0, 1, . . . , N − 1,

we see that W̃ j ,t = W j ,t when t ≥ L j − 1, but this equality need not hold when 0 ≤
t < L j − 1, that is, when W̃ j ,t is a boundary coefficient. As discussed in the next two
subsections, excluding the boundary coefficients leads us to an unbiased estimator of
the wavelet variance, whereas, with certain modifications, we can form an attractive
biased estimator that makes use of all available coefficients.

5.1. Unbiased estimators of the wavelet variance

Under the assumption that E{W j ,t } = 0 and that M j ≡ N − L j + 1 > 0, an unbiased
estimator of ν2

X (τ j ) is given by

ν̂2
X (τ j ) ≡

1

M j

N−1∑
t=L j−1

W̃ 2
j ,t =

1

M j

N−1∑
t=L j−1

W
2
j ,t . (16)

An unbiased estimator is not possible in general without the condition E{W j ,t } = 0.
As can be seen from Eq. (15), this condition will hold if E{X (d)

t } = 0, which in general
cannot be guaranteed; however, no matter what E{X (d)

t } is, the condition will hold as
long as

L j−d−1∑
l=0

b̃(d)j ,l = 0,

which we can guarantee by assuming L1 > 2d rather than just L1 ≥ 2d. The zero mean
condition is thus easy to achieve by just increasing the length of the basic wavelet filter.

The large sample distribution for ν̂2
X (τ j ) is tractable if we make some additional

assumptions about the wavelet coefficient process. One pathway is to assume that
{W j ,t } is a stationary Gaussian (normal) process with a square summable ACVS,
that is,

A j ≡

∞∑
τ=−∞

s2
j <∞. (17)

With this assumption, it follows that

M1/2
j (ν̂2

X (τ j )− ν
2
X (τ j ))

(2A j )1/2
d
= N (0, 1) (18)
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asymptotically, where “
d
= ” stands for “is equal in distribution to”, and N (0, 1) is a

standard Gaussian RV (Mondal (2007) gives a succinct proof of the above based on
Theorem 5 of Giraitis and Surgailis (1985) and discusses earlier – but more complicated
and less general – proofs in Percival (1983) for the Haar wavelet and in Percival (1995)
for general Daubechies wavelet filters). Accordingly, the random interval[

ν̂2
X (τ j )−8

−1(1− p)

(
2A j

M j

)1/2

, ν̂2
X (τ j )+8

−1(1− p)

(
2A j

M j

)1/2
]

(19)

constitutes an approximate 100(1− 2p)% confidence interval (CI) for ν2
X (τ j ), where

8−1(p) is the p × 100% point for the standard Gaussian distribution.
The lower limit of the CI displayed in (19) is not restricted to be positive even

though the true wavelet variance is. This fact poses a problem if we adopt the common
practice of plotting estimates ν̂2

X (τ j ) and their associated CIs on a logarithmic scale.
An alternative – but asymptotically equivalent – approach that yields CIs with positive
lower limits is to assume that asymptotically

η j ν̂
2
X (τ j )

ν2
X (τ j )

d
= χ2

η j
, (20)

where χ2
η j

is a chi-square RV with η j degrees of freedom. We can set η j using a

moment-matching scheme. Recalling first that E{χ2
η j
} = η j and var {χ2

η j
} = 2η j so that

2
(

E
{

cχ2
η j

})2

var
{

cχ2
η j

} = η j for any constant c,

we use the facts that E{ν̂2
X (τ j )} = ν

2
X (τ j ) and var {ν̂2

X (τ j )} ≈ 2A j/M j to obtain

η j =
2
(
E{ν̂2

X (τ j )}
)2

var {ν̂2
X (τ j )}

=
2ν4

X (τ j )

var {ν̂2
X (τ j )}

≈
M jν

4
X (τ j )

A j
. (21)

The random interval[
η j ν̂

2
X (τ j )

Qη j (1− p)
,
η j ν̂

2
X (τ j )

Qη j (p)

]
(22)

is then an approximate 100(1− 2p)% CI for ν2
X (τ j ), where Qη j (p) is the p × 100%

point for the χ2
η j

distribution.
We must know A j to form the CIs of Eqs (19) and (22). If we regard

W̃ j ,L j−1, . . . , W̃ j ,N−1 as a time series whose mean value is zero, then we can estimate
its ACVS via

ŝ j ,τ ≡
1

M j

N−|τ |−1∑
t=L j−1

W̃ j ,t W̃ j ,t+|τ |, 0 ≤ |τ | ≤ M j − 1.
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An approximately unbiased estimator of A j is given by

Â j ≡

M j−1∑
τ=−(M j−1)

ŝ2
j ,τ

2
=

ŝ2
j ,0

2
+

M j−1∑
τ=1

ŝ2
j ,τ =

ν̂4(τ j )

2
+

M j−1∑
τ=1

ŝ2
j ,τ (23)

(comparison of Â j with the definition of A j in Eq. (17) indicates a counter-intuitive
division by two in the above – this is due to the moments of the χ2

2 distribution, as
explained in the study by Percival and Walden (2000), Section 8.4). We can plug this
estimator into Eq. (19) to get Gaussian-based approximate CIs. We can also plug Â j

along with ν̂4(τ j ) into Eq. (21) to estimate η j , which in turn can be used in Eq. (22)
to produce χ2

η j
-based approximate CIs. Monte Carlo studies indicate that CIs based

on estimating A j are reasonably accurate as long as M j ≥ 128. If there aren’t enough
wavelet coefficients to get a decent estimate of A j , a fallback for getting an approx-
imate CI for ν2(τ j ) is to use Eq. (22) with η j set to max {M j/2 j , 1}. This approach
banks on the fact that the wavelet filter {h̃ j ,l} is an approximate band-pass filter and
hence that {W j ,t } should resemble a band-limited process. If the SDF for {W j ,t } is rel-
atively flat over the passband, this alternative approach is viable, but tends to produce
conservative CIs.

The large-sample theory described above is based on the assumption that {W̃ j ,t }

is Gaussian. If {X t } itself is Gaussian, then {W̃ j ,t } must be Gaussian since each W̃ j ,t

is a linear combination of RVs in {X t }. For certain non-Gaussian processes {X t }, the
assumption that {W̃ j ,t } is approximately Gaussian is viable (particularly for large j)
because linear filtering tends to induce Gaussianity (Mallows, 1967). If {W̃ j ,t } cannot
be regarded as approximately Gaussian, we can obtain a large sample approximation
to the distribution of ν̂2(τ j ) if we are willing to make certain assumptions (Serroukh
et al., 2000). LetM0

−∞
andM∞

n denote the σ -algebras generated by {. . . , W̃ j ,−1, W̃ j ,0}

and {W̃ j ,n , W̃ j ,n+1, . . .}, respectively. For n > 0, define the mixing coefficient

αn = sup
A∈M0

−∞,B∈M∞
n

|P(A ∩ B)− P(A)P(B)| ,

where P(A) is the probability of the event A. If {W̃ j ,t } is strictly stationary with
E{|W̃ j ,t |

4+2δ
} <∞ for some δ > 0, if

∑
∞

n=1 α
δ/(2+δ)
n <∞, and if the SDF SW̃ 2

j ,t
( f )

for the process {W̃ 2
j ,t } is positive at zero frequency, then

M1/2
j (ν̂2

X (τ j )− ν
2
X (τ j ))

S1/2
W̃ 2

j ,t
(0)

d
= N (0, 1) (24)

approximately for large M j . The condition on the mixing coefficients implies that αn →

0 as n→∞, in which case {W̃ j ,t } is said to have strong mixing; that is, its dependence
is short range (Rosenblatt, 1985, pp. 62–63). The assumptions we need for (24) to hold
are thus restrictive but not overly so (Serroukh et al. (2000) give specific examples of
processes for which these assumptions hold).
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As in the Gaussian case, we can reexpress Eq. (24) in terms of a chi-square
distribution as per Eq. (20), with the degrees of freedom now given by

η j ≈
2M jν

4
X (τ j )

SW̃ 2
j ,t
(0)

. (25)

To form the CI of Eq. (22), we need in practice to estimate SW̃ 2
j ,t
(0) based on

W̃ 2
j ,L j−1,. . . , W̃ 2

j ,N−1. Serroukh et al. (2000) advocate a multitaper SDF estimator
of order K = 5 based on Slepian (discrete prolate spheroidal) data tapers {vk,t },
k = 0, 1, . . . , K − 1, with design bandwidth set to 7/M j (Percival and Walden 1993;
Thomson 1982). Define

Jk(0) =
N−1∑

t=L j−1

vk,t W̃
2
j ,t , Vk(0) =

N−1∑
t=L j−1

vk,t and ν̌2
X (τ j ) =

∑K−1
k=0 Jk(0)Vk(0)∑K−1

k=0 V 2
k (0)

. (26)

Then the required estimator takes the form

ŜW̃ 2
j ,t
(0) =

1

K

K−1∑
k=0

(
Jk(0)− Vk(0)ν̌

2
X (τ j )

)2
. (27)

Two comments are in order. First, computation of the above can be simplified by
noting that Vk(0) = 0 for odd k. Second, as suggested by its notation, we can regard
ν̌2

X (τ j ) as an estimator of the wavelet variance alternative to ν̂2
X (τ j ) (both estimators are

unbiased, but ν̌2
X (τ j ) is not constrained to be non-negative, even though the exponent

“2” would suggest otherwise).

5.2. Biased estimators of the wavelet variance

The unbiased estimator ν̂2
X (τ j ) of the wavelet variance makes use of just the non-

boundary wavelet coefficients from the MODWT. The number M j of such coefficients
decreases drastically as the level index j increases. For example, for a wavelet filter of
width L1 = 8 and a time series of length N = 1024, we find M j = 1017, 1003, 975,
919, 807, 583, and 135 for levels j = 1, . . . , 7, and there are no nonboundary coeffi-
cients at levels j ≥ 8 (these correspond to scales τ j ≥ 128). This fact motivates us to
consider estimators of ν2

X (τ j ) that make use of the N −max {M j , 0} boundary wavelet
coefficients. One obvious candidate is

σ̂ 2
W j
≡

1

N

N−1∑
t=0

W̃ 2
j ,t ,

which we introduced in the context of forming a scaled-based ANOVA for a time
series (see Eq. (10)). This estimator is in general biased because E{W̃ 2

j ,t } need not
equal ν2

X (τ j ) when t = 0, . . . , L j − 2. If the underlying time series {X t } is a stationary
process, then E{σ̂ 2

W j
} → ν2

X (τ j ) as N →∞; however, if {X t } is first-order intrinsically
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stationary, then σ̂ 2
W j

is not in generally asymptotically unbiased. The basic reason is that

E{(X0 − X N−1)
2
} → ∞, which means that we can expect to see an increasing mis-

match between the beginning and the end of the time series. This mismatch adversely
impacts the boundary wavelet coefficients because they join together X t s from both
ends of the time series.

We can create a biased estimator that is asymptotically equivalent to ν̂2
X (τ j ) for

zeroth- and first-order intrinsically stationary processes by using wavelet coefficients
obtained from an augmented version of our original time series X0, . . . , X N−1. To do
so, we append a time-reversed version of the series to the original X t s to create a series
of length 2N :

X0, X1, . . . , X N−2, X N−1, X N−1, X N−2, . . . , X1, X0.

Denoting this series by X ′0, . . . , X ′2N−1, we first note that its sample variance is identical
to that for the original series X0, . . . , X N−1, so that an ANOVA of the X ′t s is a useful
surrogate for an ANOVA of the original X t s. The MODWT of the X ′t s is given by

W̃ ′j ,t ≡

L j−1∑
l=0

h̃ j ,l X ′t−l mod 2N , t = 0, 1, . . . , 2N − 1,

which we also refer to as the MODWT of the X t s based on reflection boundary
conditions. Greenhall et al. (1999) proposed the wavelet variance estimator

←→ν 2
X (τ j ) ≡

1

2N

2N−1∑
t=0

(W̃ ′j ,t )
2,

but only explored its statistical properties through limited computer experiments.
Aldrich (2005) showed that, although this estimator is generally biased, it is asymptot-
ically equivalent to ν̂2

X (τ j ) for zeroth- and first-order intrinsically stationary processes
(but not for second order and higher). He also compared the mean squared errors of
←→ν 2

X (τ j ) and ν̂2
X (τ j ) for representative processes through both exact expressions and

computer experiments and found the biased estimator to be superior to the unbiased
estimator, particularly in cases where M j is small relative to N .

6. Specialized estimators of the wavelet variance

The basic estimators of the wavelet variance discussed in the previous section are
predicated on certain assumptions that might not hold in practical situations. Here we
consider estimation of the wavelet variance when faced with departures from one of
two assumptions. The first assumption is that our time series consists of N contiguous
values; that is, there are no missing values in the time series. The second is that our
series does not suffer from contamination unrelated to the process of interest (i.e., from
corrupted observations).



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 26-ch22-623-658-9780444538581 2012/4/24 1:53 Page 638 #16

638 D. B. Percival and D. Mondal

6.1. Estimation of wavelet variance for gappy time series

Suppose we use an automatic measuring system to record the temperature every day
at noon at some outdoor location, with the intent of eventually collecting a time series
of N temperature measurements regularly sampled in time. In practice, we might not
achieve this goal for a variety of reasons (power outages, sporadic instrumentation fail-
ure, vandalism, etc.) so that we end up with gaps (missing values) in the collected
series. The wavelet variance estimators we discussed in Section 5 presume a regularly
sampled series. If we want to use one of these estimators, we are faced with the task
of filling in missing values. There are a variety of methods for doing so, ranging from
the simple (using the sample mean of the existing observations as a surrogate for the
missing ones) to the sophisticated (developing a statistical model for the time series and
using the model to fill in the gaps via conditional expectations or a stochastic interpola-
tion scheme). Interpolation can work well for certain gappy time series (particularly if
both the number of gaps and the gap sizes are small) but can be problematic for others.
Here we discuss two specialized wavelet variance estimators proposed by Mondal and
Percival (2010) to handle gappy time series without having to resort to interpolation.

Let {δt } be a strictly stationary binary-valued process such that δt is 0 or 1 according
to whether X t is missing or present (we assume that E{δt } > 0 and that {δt } and {X t }

are independent). Define

β−1
k = P(δt = 1 and δt+k = 1),

and, for 0 ≤ l ≤ L j − 1 and 0 ≤ l ′ ≤ L j − 1, let

β̂−1
l,l ′ =

1

M j

N−1∑
t=L j−1

δt−lδt−l ′ ,

which is an estimator of β−1
l−l ′ . While β−1

k > 0 necessarily, we must assume that β̂−1
l,l ′ > 0

for all l, l ′. This assumption is restrictive because it might not hold for a time series with
too many gaps (it does hold asymptotically almost surely). Define a covariance-type
estimator by

û2
X (τ j ) =

1

M j

N−1∑
t=L j−1

L j−1∑
l=0

L j−1∑
l ′=0

h̃ j ,l h̃ j ,l ′ β̂l,l ′X t−l X t−l ′δt−lδt−l ′ (28)

and a semi-variogram-type estimator by

v̂2
X (τ j ) = −

1

2M j

N−1∑
t=L j−1

L j−1∑
l=0

L j−1∑
l ′=0

h̃ j ,l h̃ j ,l ′ β̂l,l ′(X t−l − X t−l ′)
2δt−lδt−l ′ . (29)

Both û2
X (τ j ) and v̂2

X (τ j ) collapse to the usual unbiased estimator ν̂2
X (τ j )when δt = 1 for

all t (the gap-free case). In the presence of gaps, the expected value of both estimators
is ν2

X (τ j ), but it should be carefully noted that neither estimator is guaranteed to be
non-negative for a gappy realization of X0, . . . , X N−1.
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Let us now consider the large sample theory for û2
X (τ j ) and v̂2

X (τ j ). Mondal and
Percival (2010) show that, if {X t } is a stationary Gaussian process whose SDF SX (·)

is square integrable and if {δt } satisfies certain technical conditions in addition to strict
stationarity, then û2

X (τ j ) is asymptotically Gaussian with mean ν2
X (τ j ) and large sample

variance given by SU 2
j ,t
(0)/M j , where the numerator is the SDF at zero frequency for

the stationary process

U 2
j ,t ≡

L j−1∑
l=0

L j−1∑
l ′=0

h̃ j ,l h̃ j ,l ′βl−l ′X t−l X t−l ′δt−lδt−l ′ .

This process has a mean of ν2
X (τ j ) and collapses to W

2
j ,t in the gap-free case (again,

note carefully that U 2
j ,t can be negative for certain realizations). If we let

Ũ 2
j ,t ≡

L j−1∑
l=0

L j−1∑
l ′=0

h̃ j ,l h̃ j ,l ′ β̂l,l ′X t−l X t−l ′δt−lδt−l ′ , t = L j − 1, . . . , N − 1,

we can estimate SU 2
j ,t
(0) using the multitaper approach of Eqs (26) and (27) with Jk(0)

redefined to be
∑

t vk,tŨ 2
j ,t . On the other hand, if {X t } is a zeroth- or first-order intrin-

sically stationary Gaussian process such that sin2(π f )SX ( f ) is square integrable and
if we make the same assumptions as before about {δt }, then v̂2

X (τ j ) is asymptotically
Gaussian with mean ν2

X (τ j ) and large sample variance given by SV 2
j ,t
(0)/M j , which, as

before, involves an SDF at zero frequency, but this time for the stationary process

V 2
j ,t ≡ −

1

2

L j−1∑
l=0

L j−1∑
l ′=0

h̃ j ,l h̃ j ,l ′βl−l ′(X t−l − X t−l ′)
2δt−lδt−l ′ .

Again, the above process has a mean of ν2
X (τ j ), collapses to W

2
j ,t in the gap-free case

and can be negative for certain realizations. Letting

Ṽ 2
j ,t ≡

L j−1∑
l=0

L j−1∑
l ′=0

h̃ j ,l h̃ j ,l ′ β̂l,l ′(X t−l − X t−l ′)
2δt−lδt−l ′ , t = L j − 1, . . . , N − 1,

we can estimate SV 2
j ,t
(0) via Eqs (26) and (27) with Jk(0) now redefined to be∑

t vk,t Ṽ 2
j ,t . Mondal and Percival (2010) note that the Gaussianity assumption on {X t }

can be dropped, and both estimators will still have the same limiting distribution if
we assume mixing conditions similar to what was needed to obtain the result stated in
Eq. (24).

Both û2
X (τ j ) and v̂2

X (τ j ) can handle stationary processes, but v̂2
X (τ j ) also works for

first-order intrinsically stationary processes. It might seem we could dispense with
û2

X (τ j ) in favor of v̂2
X (τ j ); however, for certain – but not all – stationary processes,

û2
X (τ j ) proves to be more efficient asymptotically than v̂2

X (τ j ) as measured by the ratio
SV 2

j ,t
(0)/SU 2

j ,t
(0). There is thus a role for both estimators. However, we note one impor-

tant practical distinction between them. The semi-variogram-type estimator v̂2
X (τ j ) is
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invariant if we add a constant to the observed time series, whereas the covariance-type
estimator û2

X (τ j ) is not. Thus it is important to center a time series by subtracting off
its sample mean prior to computing û2

X (τ j ).

6.2. Robust estimation of wavelet variance

The usual unbiased estimator of the wavelet variance is the sample mean of squared
wavelet coefficients. In general, sample means as an estimator of a population mean
are particularly sensitive to contamination, that is, a small number of large values that
do not reflect the statistical properties of the underlying process of interest. This fact has
motivated the quest for robust alternatives to sample means that perform better in the
presence of contamination. A simple robust estimator of ν2

X (τ j ) is the sample median of
W̃ 2

j ,L j−1, . . . , W̃ 2
j ,N−1 after an adjustment to take into account the difference between the

population mean ν2
X (τ j ) and the population median of the W̃ 2

j ,t s (Stoev et al., 2006). We
can develop an appropriate statistical theory for a median-type estimator of the wavelet
variance by considering

Q̃ j ,t ≡ log(W̃ 2
j ,t ).

Because the log of the median of the W̃ 2
j ,t s is the same as the median of the Q̃ j ,t s, a

large sample theory based on the latter is pertinent for an estimator based on the sample
median of the W̃ 2

j ,t s. The advantage of the log transform is that it recasts the median-
type estimator as a special case of the M-estimators pioneered by Huber (1964). These
estimators work with location parameters, whereas ν2

X (τ j ) is a scale parameter, but one
that can be recast as a location parameter via the log transform. Focusing on the case
where {W̃ j ,t } is Gaussian, it follows from Bartlett and Kendall (1946) that

E{Q̃ j ,t } = log(ν2
X (τ j ))+ ψ

(
1
2

)
+ log(2) ≡ µ j and var {Q̃ j ,t } = ψ

′
(

1
2

)
=
π2

2
,

where ψ and ψ ′ are the di- and tri-gamma functions. These facts allow us to write

Q̃ j ,t = µ j + ε j ,t , (30)

where E{ε j ,t } = 0 and var {Q̃ j ,t } = π
2/2. Thus we can manipulate a location estimator

for Q̃ j ,t so that it becomes an estimator of ν2
X (τ j ) since

ν2
X (τ j ) = exp(µ j − ψ

(
1
2

)
− log(2)).

(We would need different manipulations to handle non-Gaussian processes.)
In general, an M-estimator for µ j of Eq. (30) is based on a real-valued function

ϕ(·) that is defined over the real axis R and satisfies certain technical conditions (see
Mondal and Percival (2012a) for details). The M-estimator is

µ̂ j ≡ arg min
x∈R

∣∣∣∣∣∣
N−1∑

t=L j−1

ϕ(Q̃ j ,t − x)

∣∣∣∣∣∣ .
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Let us specialize to the case ϕ(x) = sign(x), for which the M-estimator becomes
the sample median of the Q̃ j ,t s. Let φ(·) and 8(·) denote the probability density and
distribution functions for a standard Gaussian RV, and let 8−1(·) be the inverse of
8(·). Under the assumption that {W̃ j ,t } is a zero-mean Gaussian process with an SDF
that is square integrable, Mondal and Percival (2012a) show that µ̂ j is asymptotically
Gaussian with mean

µ0, j = log
(
ν2

X (τ j )
)
+ 2 log

(
8−1

(
3
4

))
and large sample variance Sϕ(0)/(M j C), which involves a constant C =

4
[
φ(8−1( 3

4 ))8
−1( 3

4 )
]2

and the SDF at zero frequency for the stationary process
{ϕ(Q̃ j ,t − µ0, j )}. We can estimate Sϕ(0) via the multitaper approach of Eqs (26) and
(27) by redefining Jk(0) to be

∑
t vk,tϕ(Q̃ j ,t − µ̂ j ). Denoting this estimator by Ŝϕ(0), it

can be shown that an approximately unbiased and robust estimator of ν2
X (τ j ) is given by

r̂2
X (τ j ) =

median{W̃ 2
j ,t } · exp(−Ŝϕ(0)/[2M j C])(

8−1( 3
4 )
)2 . (31)

The above estimator is asymptotically normal with mean ν2
X (τ j ) and large sample vari-

ance ν4
X (τ j )Sϕ(0)/(M j C). We can use this large sample theory to form CIs for ν2

X (τ j )

based on the median-type estimator r̂2
X (τ j ). (Mondal and Percival (2012a) provide

theory paralleling the above for M-estimators other than the median.)
The median-type estimator r̂2

X (τ j ) guards against data contamination but is a less
efficient estimator of ν2

X (τ j ) than the unbiased mean-type estimator ν̂2
X (τ j ) when in

fact the W̃ j ,t s are free of contamination. Mondal and Percival (2012a) found that, for
moderate sample sizes, r̂2

X (τ j ) has approximately twice the variance of ν̂2
X (τ j ) over a

selection of stationary processes encompassing both short- and long-range dependence.
Thus, if the W̃ j ,t s are truly Gaussian, we can expect r̂2

X (τ j ) to perform markedly poorer
than ν̂2

X (τ j ), but the presence of contamination can lead to the median-type estimator
being preferred.

7. Combining wavelet variance estimators across scales

In the previous two sections, we have presented a variety of wavelet variance estima-
tors, which, in conjunction with their sampling theory, can be used to form, say, 95%
CIs for the true wavelet variance ν2

X (τ j ). Taking the unbiased estimator as an example,
it is conventional to plot the estimates ν̂2

X (τ j ) and associated CIs versus standardized
scale τ j (or physical scale τ j1) on log/log axes, in part because the estimates and
CIs can range over many orders of magnitude and in part because scales increase by
factors of two as the level index j increases. In addition to telling us how the vari-
ance of a time series is partitioned out across different scales, two patterns warranting
further analysis often emerge in plots of log (ν̂2

X (τ j )) versus log (τ j ). The first pat-
tern is a stretch of scales over which log (ν̂2

X (τ j )) varies approximately linearly with
log (τ j ). Two explanations for this linear pattern are that the intrinsically stationary
process {X t } exhibits long-range dependence or fractal fluctuations, both of which are
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special cases of a power-law variation. The second pattern is a peak at, say, scale τ j ;
that is, we have both log (ν̂2

X (τ j )) > log (ν̂2
X (τ j−1)) and log (ν̂2

X (τ j )) > log (ν̂2
X (τ j+1)).

Since the log transform preserves order, such a peak indicates a tendency of {X t } to
have fluctuations over a so-called characteristic scale in the neighborhood of τ j . In the
subsections below, we look at methods for quantifying power-law variations and char-
acteristic scales based on the wavelet variance. Both methods involve statistics that
combine log (ν̂2

X (τ j )) across adjacent scales. In preparation for delving into the sam-
pling properties of these statistics, here we give some background on the statistical
properties of log (ν̂2

X (τ j )) (for simplicity, we focus on the unbiased estimator ν̂2
X (τ j ),

but the other estimators that we have discussed can be used instead with appropriate
adjustments).

Under the assumption that ν̂2
X (τ j ) obeys a chi-square distribution when properly

normalized as per Eq. (20), we can write

log
(
ν̂2

X (τ j )
) d
= log

(
χ2
η j

)
+ log

(
ν2

X (τ j )
)
− log(η j ).

Bartlett and Kendall (1946) show that

E
{

log(χ2
η j
)
}
= ψ

( η j

2

)
+ log(2),

where ψ is the di-gamma function. Hence, we have

E
{
log
(
ν̂2

X (τ j )
)}
= log

(
ν2

X (τ j )
)
+ ψ

( η j

2

)
+ log(2)− log(η j ).

Assuming that the bivariate stationary processes {W̃ j ,t } and {W̃k,t } are jointly
Gaussian with cross-covariance sequence s j ,k,τ ≡ cov {W̃ j ,t+τ , W̃k,t }, we can approxi-
mate cov {log(ν̂2

X (τ j )), log(ν̂2
X (τk))} by

cov
{
ν̂2

X (τ j ), ν̂2
X (τk)

}
ν2

X (τ j )ν
2
X (τk)

+ 2
var

{
ν̂2

X (τ j )
}

var
{
ν̂2

X (τk)
}
+
(
cov

{
ν̂2

X (τ j ), ν̂2
X (τk)

})2

ν4
X (τ j )ν

4
X (τk)

, (32)

where, for j ≤ k,

cov
{
ν̂2

X (τ j ), ν̂
2
X (τk)

}
≈

2

M j

∞∑
τ=−∞

s2
j ,k,τ ≡

2A j ,k

M j

(Keim and Percival, 2012). In practice, we can estimate A j ,k using

Â j ,k =
1

2

(
ν̂2

X (τ j )ν̂
2
X (τk)+ 2

Mk−1∑
τ=1

ŝ j ,τ ŝk,τ

)

(note that, when k = j , the above becomes identical to Â j of Eq. (23)).
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7.1. Estimation of power-law exponents

As illustrated in Section 8 below, plots of the wavelet variance versus scale on log/log
axes sometimes show stretches over which log (ν̂2

X (τ j )) appears to vary linearly with
log (τ j ), that is, that

log(ν̂2
X (τ j )) ≈ α + β log (τ j ) over levels j , such that, say, J1 ≤ j ≤ J2.

This pattern is consistent with a hypothesis that the true wavelet variance obeys a power
law over scales τJ1 to τJ2 :

ν2
X (τ j ) = cτ βj , where c = eα .

The power-law exponent β manifests itself as the slope on a log-log plot and is
amenable to various interpretations. For example, at small scales, a slope of 0 ≤ β ≤ 2
might indicate that {X t } has a fractal dimension of D = 2− β

2 (Gneiting et al. (in
press)); on the other hand, a log-log plot that is linear over large scales is indicative of an
intrinsically stationary process with long-range dependence that might be well modeled
by either a fractional Gaussian process with Hurst parameter H = 1+ β

2 when −1 <
β < 0, a fractional Brownian motion with parameter Hurst parameter H = β

2 when
0 < β < 2, or a fractionally differenced process with parameter δ = (β + 1)/2 when
β > −1 (Abry et al., 1993, 1995; Abry and Veitch, 1998; Coeurjolly, 2008; Faÿ et al.,
2009; Flandrin, 1992; Jensen, 1999; Stoev and Taqqu, 2003; Stoev et al., 2006).
Metrologists studying fractional frequency deviates from atomic clocks and other
high-performance oscillators would equate slopes of β = −3, −2, −1, 0, and 1 to
five canonical noise processes known as white phase, flicker phase, white frequency,
flicker frequency, and random-walk frequency noise, respectively (Percival, 2003;
Stein, 1985).

To estimate the power-law exponent β based on wavelet variance estimates ν̂2
X (τ j ),

j = J1, . . . , J2, we first define

Y j ≡ log
(
ν̂2

X (τ j )
)
− ψ

( η j

2

)
− log(2)+ log(η j )

and then form the linear regression model

Y j = α + β log(τ j )+ e j ,

for which the error term

e j ≡ log

(
ν̂2

X (τ j )

ν2
X (τ j )

)
− ψ

( η j

2

)
− log(2)+ log(η j )

is equal in distribution to the RV log(χ2
η j
)− ψ(

η j

2 )− log(2). As a rule of thumb, if
η j ≥ 10 for each j , we can regard the ej s as approximately obeying a multivariate
Gaussian distribution. In vector notation, we can write

Y = Aθ + e,
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where Y ≡ [YJ1 , . . . , YJ2 ]T , A is a (J2 − J1 + 1)× 2 matrix whose first column con-
sists just of ones and whose second column is log (τJ1), . . . , log (τJ2), θ ≡ [α,β]T , and
e ≡ [eJ1 , . . . , eJ2 ]T is a random vector with zero means and a covariance matrix6e that
is symmetric with its ( j , k)th element given by Eq. (32) when j ≤ k. The generalized
least squares (GLS) estimator of θ is

θ̂ = [α̂, β̂]T
≡
(
AT6−1

e A
)−1AT6−1

e Y (33)

(Draper and Smith, 1998). Under our working assumptions, the estimator θ̂ is mul-
tivariate Gaussian with mean vector θ and covariance matrix

(
AT6−1

e A
)−1

, whose

lower right-hand corner is the variance associated with the GLS estimator β̂ of the
power-law exponent. We can in turn use β̂ to estimate, for example, the parameter δ for
a fractionally differenced process via δ̂ = (β̂ + 1)/2, noting that var {δ̂} = var {β̂}/4.

A simpler way to estimate θ is to use a weighted least squares (WLS) estimator.
This estimator takes the same form as θ̂ of Eq. (33), but with6e replaced by a diagonal
matrix 3e whose diagonal elements are the same as those in 6e; that is, the j th diag-
onal element is var {log(ν̂2

X (τ j ))}. Using Eqs (32) and (21), we can approximate this
variance by

var {ν̂2
X (τ j )}

ν4
X (τ j )

+
4(var {ν̂2

X (τ j )})
2

ν8
X (τ j )

=
2

η j
+

16

η2
j

.

The WLS estimator is attractive in that it just depends on the EDOFs η j and does not
make use of the covariances cov {log(ν̂2

X (τ j )), log(ν̂2
X (τk))}, j 6= k. The WLS estima-

tor is suboptimal unless these covariances are close to zero, which becomes a better
approximation as the wavelet filter width L1 increases. Assuming the validity of this
approximation, we can take the WLS estimator to be multivariate Gaussian with mean
vector θ and covariance matrix

(
AT3−1

e A
)−1

. (Section 9.5 of Percival and Walden
(2000) formulates a WLS estimator with the diagonal elements of 3e given by ψ ′( η j

2 ).
The tri-gamma function enters into play because var {e j } = var {log(χ2

η j
)} = ψ ′(

η j

2 ), a
result due to Bartlett and Kendall (1946). This approach and the one presented here are
essentially the same since ψ ′( η j

2 ) ≈
2
η j

for large η j .)

7.2. Estimation of characteristic scale

The notion of characteristic scale pervades the physical sciences, but has no com-
monly accepted single definition (von Storch and Zwiers, 1999). Since the wavelet
variance is scale based, it is natural to entertain a definition in terms of peaks in plots
of ν2

X (τ j ) versus τ j (Keim and Percival, 2012). Accordingly, suppose {X t } is an intrin-
sically stationary process whose wavelet variance is such that ν2

X (τ j ) ≥ ν
2
X (τ j−1) and

ν2
X (τ j ) ≥ ν

2
X (τ j+1) for some j ≥ 2, with strict inequality holding in at least one of the

two cases. We define a wavelet-based characteristic scale as the location τc, j at which
a quadratic fit through the points (xk , yk) ≡ (log(τk), log(ν2

X (τk))), k = j − 1, j , and
j + 1, is maximized:

τc, j = 2−β1/β2τ j , where β1 ≡
y j+1 − y j−1

2
and β2 ≡ y j+1 − 2y j + y j−1.
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Note that this definition is based only on properties of the wavelet variance locally
around scale τ j , not on its properties at arbitrarily large scales. Other measures of cor-
relation length in use break down in the face of long-range dependence, which is a
large-scale property.

We can form an estimator of τc, j in an obvious manner by substituting ŷk = log(ν̂2
k )

for yk in the above equation, thus yielding estimators β̂1, β̂2, and hence τ̂c, j . An approxi-
mate 95% CI for τc, j is given by[

2−1.96σκ̂ τ̂c, j , 21.96σκ̂ τ̂c, j
]

(Keim and Percival, 2012), which depends on the quantity σκ̂ , whose square σ 2
κ̂

can
be computed through the following steps. Let 6 be the 3× 3 covariance matrix whose
elements are dictated by Eq. (32); that is, the (m, n)th element of 6 is obtained by
setting ( j , k) in (32) to ( j − 2+ m, j − 2+ n), where m ≤ n range over the values
1, 2, and 3. Let

H =

[
−

1
2 0 1

2

1 −2 1

]
.

The 2× 2 covariance matrix for β̂1 and β̂2 is given by the symmetric matrix H6H T .
Using the elements of this matrix, we can form

σ 2
κ̂ =

var {β̂1}

β2
2

+
β2

1 var {β̂2}

β4
2

+
var {β̂1} var {β̂2} + 2(cov {β̂1, β̂2})

2

β4
2

+
3β2

1 (var {β̂2})
2

β6
2

−
2β1 cov {β̂1, β̂2}

β3
2

.

In practice, we can estimate σ 2
κ̂

in a “plug-in” manner by replacing the elements of 6
with obvious estimators.

8. Examples

Here we present five examples of wavelet variance analysis to illustrate the methodol-
ogy discussed in previous sections.

8.1. Fractional frequency deviates from an atomic clock

We first consider a time series that is derived from measurements of the difference in
time as kept by two hydrogen masers. Phase differences φt between the two masers
(directly related to time differences) were measured once per minute for 4000 min and
converted into fractional frequency deviates by a proper scaling of the first differences
φt − φt−1. After multiplication by 1012 (merely to facilitate plotting), we obtain the
series {X t } shown in Fig. 2a. The plot shows several pairs of large positive and nega-
tive spikes, which are due to isolated glitches in the phase measurements φt . The plot
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Fig. 2. Fractional frequency deviates (after multiplication by 1012) derived from time differences between
two hydrogen masers sampled one per minute, along with a plot of empirical quantiles versus theoret-
ical Gaussian quantiles, with eight smallest and largest quantiles indicated by circles (data courtesy of

Drs. Lara Schmidt and Demetrios Matsakis, US Naval Observatory).

of empirical quantiles versus theoretical Gaussian quantiles shown in Fig. 2b demon-
strates that the data are well modeled by a Gaussian distribution except for the glitches
distorting the tails of the distribution. The glitches are rogue occurrences that do not
reflect the inherent ability of the hydrogen masers to keep time.

Scientists assessing the ability of atomic clocks to keep time have used the Allan
variance as a performance measure since its introduction in the 1960s (Allan, 1966).
The Allan variance is equal to twice the Haar wavelet variance of fractional frequency
deviates, so we regard the Haar wavelet and Allan variances as equivalent in the dis-
cussion that follows. The popularity of the Allan variance is due in part to the ease
with which it can be interpreted relative to SDF-based measures of clock perfor-
mance (changes in averages over various scales are directly related to timing errors
in clocks, whereas the SDF is related only indirectly). Figure 3 shows the Haar wavelet
variance estimated using the unbiased estimator ν̂2

X (τ j ) (circles) and the median-type
robust estimator r̂2

X (τ j ) (diamonds). The conventional and robust estimates are in good
agreement, indicating that the rogue values are not adversely affecting ν̂2

X (τ j ).
Plots of the Allan variance have been traditionally used to identify the presence of

power-law noise processes, with emphasis on certain canonical laws. Figure 3 makes it
clear that no single power-law noise process can adequately model {X t } over all scales,
but we can employ different processes over selected scales. For example, arguably
the lowest five scales exhibit linear variation in Fig. 3, so we can make use of the
methodology described in Section 7.1 to estimate a power-law exponent β over those
scales based on ν̂2

X (τ j ) and Eq. (33); however, the exponent so estimated is −1.73,
with a corresponding 95% CI of [−1.76,−1.70]. This estimate lies between the expo-
nents associated with two canonical power-law processes, namely, flicker-phase noise
(β = −2) and white-frequency noise (β = −1), but it is not in good agreement with
either. Prediction of ν2

X (τ j ) based on the regression model is shown by the line in the
lower left-hand portion of Fig. 3, along with asterisks depicting the ν̂2

X (τ j )s (both the
line and the wavelet variance estimates are displaced down by an order of magnitude
for display purposes).
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Fig. 3. Haar wavelet variance estimates of fractional frequency deviates along with 95% confidences inter-
vals based on the unbiased estimator ν̂2

X (τ j ) (circles) and median-type robust estimator r̂2
X (τ j ) (diamonds).

An estimator of the Allan variance (routinely used to assess performance of atomic clocks) is given by
2ν̂2

X (τ j ). The asterisks show the unbiased wavelet variance estimates displaced downward by an order of
magnitude (i.e., ν̂2

X (τ j )/10) along with a line determined by generalized least squares.
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Fig. 4. Residual sea-ice thickness (based on data from a September 1997 Scientific Ice Expedition (SCICEX)
cruise archived at the National Snow and Ice Data Center).

8.2. Residual sea-ice thickness

Beginning in the late 1950s, the US Navy used submarines with upward-looking sonars
to measure the underwater draft of Arctic sea ice, from which ice thickness can be
inferred. The submarines collected these data by cruising under the ice in straight lines,
resulting in profiles of thickness along transects that can be treated as a time series (with
time being replaced with distance along a transect). These are the most direct observa-
tional data we have documenting the evolution of sea-ice thickness over the past half
century. Testing the hypothesis that there has been a significant decline in the average
thickness of Arctic sea ice requires an understanding of the correlation properties of
the profiles. Here we demonstrate how the wavelet variance can be used to assess these
properties. Figure 4 shows a thickness profile covering 802 km after detrending by
subtracting off a least squares line. This profile has a number of gaps whose positions
are indicated by vertical hatch marks under the plot of the profile itself. As described by
Percival et al. (2008), we can fill in these gaps using a stochastic interpolation scheme
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based upon either a first-order autoregressive or fractionally differenced Gaussian pro-
cess. Doing so allows us to compute the conventional unbiased Haar wavelet variance
estimates ν̂2

X (τ j ) shown by the open circles in Fig. 5a. Rather than using a gap-filled
series, we can compute estimates based on the gappy series using the covariance-type
estimator of Eq. (28) and the semi-variogram-type estimator of Eq. (29) – these are
shown by the solid circles and diamonds, respectively, in Fig. 5a. The three estimates
at each scale agree well within one another, which provides some reassurance that
the gap-filling procedure is not misrepresenting the correlation properties of the data.
Figure 5b replicates the covariance-type estimates. The approximate linear decay of the
wavelet variance versus scale on this log–log plot suggests modeling the data as a pro-
cess with long-range dependence. The WLS estimator described in Section 7.1 gives
an estimated power-law exponent of β̂ = −0.49, which translates into an estimate of
δ̂ = 0.26 for the long-memory parameter for a fractionally differenced process. This
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Fig. 5. Haar wavelet variance estimates of residual ice thickness along with 95% confidences intervals based
on gap-filled data and the unbiased estimator ν̂2

X (τ j ) (open circles) and on gappy data and the covariance-
type and semi-periodogram-type estimators û2

X (τ j ) and v̂2
X (τ j ) (solid circles and diamonds, respectively).

The lower plot shows a line from a weighted least squares fit of log (û2
X (τ j )) versus log(τ j ).



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 26-ch22-623-658-9780444538581 2012/4/24 1:53 Page 649 #27

A Wavelet Variance Primer 649

value is consistent with an estimate (0.27) obtained using a computationally intensive
maximum likelihood procedure (Percival et al., 2008) and is typical of results obtained
for other thickness profiles. The wavelet variance thus contributes to our understanding
of the correlation properties of sea-ice thickness, which in turn is a key component in
assessing the significance of changes over the past quarter century in this important
indicator of the Arctic climate (Rothrock et al., 2008).

8.3. Albedo measurements of pack ice

Figure 6 shows a plot of surface albedo (a measure of proportion of incident light
reflected) of spring ice in the Beaufort Sea as recorded by the Landsat satellite. The
series consists of N = 8428 values spaced 1t = 25 m apart collected along a tran-
sect. Its distribution is highly non-Gaussian, with a lower tail dominated by spikes of
low brightness attributable to open water and narrow cracks in thick ice. Lindsay et al.
(1996) considered the wavelet variance for this series to investigate its potential for
characterizing sea-ice variability. The circles in Fig. 7a show the Haar wavelet variance
estimates ν̂2

X (τ j ) for physical scales ranging from 25 m up to 25.6 km (corresponding
to standardized scales 1 to 1024). The broad peak in the wavelet variance curve indi-
cates a characteristic scale between 200 and 400 m (standardized scales 8 and 16). The
solid curves above and below the circles depict Gaussian-based 95% CIs formed via
Eqs (21) through (23), while the dashed curves are corresponding CIs appropriate for
non-Gaussian data based on Eqs (25), (27), and then (22) again. Note that, at small
scales, the Gaussian-based CIs are considerably narrower than the ones based on non-
Gaussian theory, but that the difference is less marked at larger scales, with the two
CIs being virtually identical at the largest scale displayed. This example illustrates that
there is a danger of underestimating the variability in wavelet variance estimates from
an unwarranted assumption of Gaussianity.

Figure 7b again shows the estimates ν̂2
X (τ j ) as circles along with the non-Gaussian-

based 95% CIs. The diamonds show the robust median-type estimate r̂2
X (τ j ) of Eq. (31)

along with 95% CIs. This estimate deemphasizes the spikes in the series and hence
reflects background properties of sea ice once the effect of open water and cracks has
been downplayed. The robust estimate is quite a bit different from the usual estimate
ν̂2

X (τ j ) at small scales, suggesting that these scales are dominated by open water and
cracks and that the characteristic scale between 200 and 400 m is mainly due to these

0 2000 4000 6000 8000

0.2

0.4
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0.8

t (observation index)

Fig. 6. Surface albedo of pack ice in the Beaufort Sea from a single line of a Landsat TM image obtained
from channel 3 on April 16, 1992.
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Fig. 7. Haar wavelet variance estimates ν̂2
X (τ j ) for albedo series (circles in both plots), along with Gaussian-

based 95% confidence intervals (solid lines in upper plot) and non-Gaussian-based CIs (dashed lines). In
addition to ν̂2

X (τ j ) and its associated non-Gaussian-based CIs, the lower plot shows the robust median-type
estimate r̂2

X (τ j ) (diamonds) with associated 95% CIs.

features. The spatial distribution of these features is of geophysical interest, and hence
we cannot regard the spikes in Fig. 6 as rouge observations. Nonetheless, the robust
estimate is of interest because it tells us how much of the overall variability at each
scale is due to background sea-ice processes that are interrupted by open water and
cracks.

8.4. X-ray fluctuations from a binary star system

Our fourth example is a time series of N = 65, 526 counts from the X-ray binary system
GX 5–1 as recorded by the Ginga satellite over a 512-second stretch of time (Hertz and
Feigelson, 1997, Norris et al., 1990). Each observation X t is the number of X-rays
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Fig. 8. X-ray fluctuations from a binary star system (first 4096 data values), along with histogram and fitted
Gaussian probability density function.
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Fig. 9. Unbiased Haar wavelet variance estimates ν̂2
X (τ j ) for the time series of X-ray fluctuations (circles),

along with Gaussian-based 95% confidence intervals (vertical lines) and a line with slope −0.7 based upon
the generalized least square estimator of Eq. (33).

arriving within an interval (bin size) of 1t = 1/128 s. Figure 8a shows the first 4096
values of the time series, while Fig. 8b shows a histogram for the entire series, along
with a Gaussian probability density function whose mean and variance match those of
the data.

Figure 9 shows a plot of the unbiased Haar wavelet variance estimates ν̂2
X (τ j ) along

with 95% CIs, which, since the data are reasonably close to Gaussian, are based on
Eqs (21) through (23). Because of the large sample size, the widths of the CIs are
so small at the smaller scales as to be barely visible in the plot. Note that log (ν̂2

X (τ j ))

decays roughly linearly with log (τ ) over all 15 displayed scales. This fact suggests that
a power-law model might be a simple description of the overall correlation properties
for this time series. The GLS estimator of Eq. (33) yields an estimate of β̂

.
= −0.702

for the power-law exponent, with an associated 95% CI of [−0.712,−0.693]. Using
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the relationship δ = (β + 1)/2, this exponent translates into an estimate of δ̂ = 0.149
for the long-range parameter for a fractionally differenced process. Predicted values for
the wavelet variances from the regression model are shown by the line in Fig. 9. Note
that the CIs for the wavelet variances fail to trap the predicted values at a number of
scales (particularly those below 1 s), an indication that the data have a more intricate
correlation structure than what can be captured by a simple power-law model. Thus,
the wavelet variance is able both to suggest a simple overall model for the X-ray
fluctuations and to point out its limitations.

8.5. Coherent structures in river flow

Figure 10 shows a time series capturing so-called coherent structures (such as boils or
eddies) in river flows (Chickadel et al., 2009). The 4096 values shown in the plot are
from a longer series of length N = 29, 972 that has a sampling interval of 1 = 1/25 s
and spans a little less than 20 min (the subseries in the plot covers about 2.7 min). This
time series is derived from measurements from three transducers and a velocity profiler
set on the bottom of the Snohomish River Estuary in Washington State immediately
downstream of a sill pointing upward. The structures are essentially quasi-periodic
upwellings from the river that appear as temporary “blobs” on the surface of the river.
Each blob dissipates within a second or so, and then another blob forms sometime later.
As the tide increases, the water velocity increases, and the frequency at which the blobs
occur appears to increase.

Videos of the river surface clearly show these boils qualitatively, but quantifying this
little-understood phenomenon using standard Fourier-based spectral analysis is prob-
lematic because it appears as a small perturbation in a low-frequency roll-off. Figure 11
shows unbiased Haar wavelet variance estimates ν̂2

X (τ j ) (circles) for this series, along
with associated Gaussian-based 95% CIs (arguably non-Gaussian-based CIs would be
more appropriate here). Here, we see a peak at scale τ61 = 1.28 s, a clear indication of
a characteristic scale in this vicinity. Using the methodology described in Section 7.2,
we obtain an estimated characteristic scale of τ̂c,61 = 1.6 s, with an associated 95% CI
of [1.4, 1.9] s. The vertical dashed line in Fig. 11 indicates this estimated characteristic
scale, whereas the thick horizonal line shows its associated CI. The estimated char-
acteristic scale is based on a quadratic fit through ν̂2

X (τ5), ν̂2
X (τ6), and ν̂2

X (τ7), which is
shown by the curve passing through these estimates. In contrast to the SDF, the wavelet

16000 17000 18000 19000 20000

0

400

8000

t (observation index)

Fig. 10. Coherent structures in river flows (first 4096 values; data courtesy of Alex Horner-Devine and
Bronwyn Hayworth, Department of Civil and Environmental Engineering, University of Washington).
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Fig. 11. Haar wavelet variance estimates from time series of coherent structures (circles), with wavelet-based
characteristic scale indicated by vertical dashed line. A 95% confidence interval for the characteristic scale
is shown by the thick horizontal line, whereas similar intervals for the wavelet variances are shown by the

vertical lines emanating from the circles.

variance thus gives a readily interpretable quantification of the phenomenon of inter-
est. We can study the time-evolving properties of the boils by estimating characteristic
scales for time series spanning successive 20-min time intervals.

9. Concluding remarks

We have presented a basic introduction to the wavelet variance of time series and
its sampling theory. The five real-world examples in the previous section hopefully
give the reader an idea of how the wavelet variance can be used as a tool for analyz-
ing time series. Much has been left uncovered. Our statistical treatment has focused
on time series that can be regarded as realizations of intrinsically stationary processes.
Time series that fall outside of this framework can be fruitfully handled by breaking
the series into subseries and analyzing each subseries separately if it is reasonable to
assume that each subseries is itself a realization of an intrinsically stationary process
(but with a possibly different process for each subseries). This procedure provides a
simple way of using the wavelet-based methodology discussed in this chapter to han-
dle certain nonstationary time series; however, the reader should be aware that there
are other wavelet-based and -related approaches designed to handle nonstationary time
series (see, e.g., Ombao (2012), Chapter 14 in this volume). One approach is based on
a “locally stationary modeling” philosophy that facilitates certain asymptotic consider-
ations. A good entry point to this body of literature is Dahlhaus (2012), Chapter 13 in
this volume, and references therein.

Our presentation has focused on univariate time series. To study the bivariate rela-
tionships between multiple time series, Hudgins (1992) introduced the notion of the
wavelet covariance (or wavelet cross spectrum) and wavelet cross-correlation in terms
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of a continuous wavelet transform and applied these concepts to atmospheric turbulence
in a subsequent paper (Hudgins et al., 1993). Whitcher et al. (2000) and Serroukh and
Walden (2000a,b) provide a statistical theory for wavelet covariance analysis of bivari-
ate time series that parallels our treatment of the wavelet variance for single series.
This theory presumes that the individual series are intrinsically stationary, but certain
bivariate series whose relationships are evolving over time can be handled within this
framework by breaking the series into subseries. Sanderson et al. (2010) describe an
alternative approach to studying nonstationary bivariate time series that involves the
use of wavelet-based locally stationary models. The notion of the wavelet variance can
also be extended outside the context of time series to form a scale-based ANOVA for
two-dimensional images. Unser (1995) is a pioneering work in this area, which also
discusses wavelet-based texture analysis. Lark and Webster (2004) and Milne et al.
(2010) document substantive applications of the two-dimensional wavelet variance in
the analysis of soil variations. Mondal and Percival (2012b) develop a statistical the-
ory for the two-dimensional wavelet variance that closely parallels the theory for the
one-dimensional case presented in this chapter.

Finally, we note that all of the computations and figures in this chapter were done in
the statistical language R (R Development Core Team, 2011). Code for reproducing all
of the numerical examples is available on request from the authors.
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Abry, P., Gonçalvès, P., Flandrin, P., 1995. Wavelets, spectrum analysis and 1/ f processes. In: Antoniadis,
A., Oppenheim, G. (Eds.), Wavelets and Statistics. Lecture Notes in Statistics, vol. 103. Springer–Verlag,
New York, pp. 15–29.

Abry, P., Veitch, D., 1998. Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inform. Theor. 44,
2–15.

Aldrich, E.M., 2005. Alternative Estimators of Wavelet Variance. MS dissertation, Department of Statistics,
University of Washington, DC.

Allan, D.W., 1966. Statistics of atomic frequency standards. Proc. IEEE. 54, 221–230.
Bartlett, M.S., Kendall, D.G., 1946. The statistical analysis of variance-heterogeneity and the logarithmic

transformation. J. Roy Stat. Soc. Suppl. 8, 128–138.
Beylkin, G., 1992. On the representation of operators in bases of compactly supported wavelets. SIAM J.

Numer. Anal. 29, 1716–1740.
Brockwell, P.J., Davis, R.A., 2002. Introduction to Time Series and Forecasting, second ed. Springer,

New York.
Bruce, A.G., Gao, H.-Y., 1996. Applied Wavelet Analysis with S-PLUS. Springer, New York.
Chiann, C., Morettin, P.A., 1998. A wavelet analysis for time series. Nonparametric Stat 10, 1–46.
Chickadel, C.C., Horner-Devine, A.R., Talke, S.A., Jessup, A.T., 2009. Vertical boil propagation from a

submerged estuarine sill. Geophys. Res. Lett. 36, L10601. doi:10.1029/2009GL037278.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 26-ch22-623-658-9780444538581 2012/4/24 1:53 Page 655 #33

A Wavelet Variance Primer 655

Coeurjolly, J.-F., 2008. Hurst exponent estimation of locally self-similar Gaussian processes using sample
quantiles. Ann. Stat. 36, 1404–1434.

Coifman, R.R., Donoho, D.L., 1995. Translation-invariant de-noising. In: Antoniadis, A., Oppenheim,
G. (Eds.), Wavelets and Statistics. Lecture Notes in Statistics, vol 103. Springer–Verlag, New York,
pp. 125–150.

Craigmile, P.F., Percival, D.B., 2005. Asymptotic decorrelation of between-scale wavelet coefficients. IEEE
Trans. Inform. Theor. 51, 1039–1048.

Dahlhaus, R., 2012. Locally Stationary Processes. Elsevier Chapter 13.
Daubechies, I., 1988. Orthonormal bases of compactly supported wavelets. Comm. Pure. Appl. Math. 41,

909–996.
Del Marco, S., Weiss, J., 1997. Improved transient signal detection using a wavepacket-based detector with

an extended translation-invariant wavelet transform. IEEE Trans. Signal Process. 45, 841–850.
Draper, N.R., Smith, H., 1998. Applied Regression Analysis, third ed. John Wiley & Sons, New York.
Faÿ, G., Moulines, E., Roueff, F., Taqqu, M., 2009. Estimators of long-memory: Fourier versus wavelets.

J. Econometrics. 151, 159–177.
Flandrin, P., 1992. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inform. Theor.

38, 910–917.
Giraitis, L., Surgailis, D., 1985. CLT and other limit theorems for functionals of Gaussian processes.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 70, 191–212.
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Abstract

A brief overview of the R statistical computing and programming environment
is given that explains why many time series researchers in both applied and the-
oretical research may find R useful. The core features of R for basic time series
analysis are outlined. Some intermediate level and advanced topics in time series
analysis that are supported in R are discussed such as including state-space mod-
els, structural change, generalized linear models, threshold models, neural nets,
co-integration, GARCH, wavelets, and stochastic differential equations. Numer-
ous examples of beautiful graphs constructed using R for time series are shown. R
code for reproducing all the graphs and tables is given on my homepage.

Keywords: cluster and multicore computing, quantitative programming environ-
ment, reproducible research, statistical computing, time series graphics.

The purpose of our article is to provide a summary of a selection of some of the
high-quality published computational time series research using R. A more complete
overview of time series software available in R for time series analysis is available in
the CRAN1 task views.2 If you are not already an R user, this article may help you in
learning about the R phenomenon and motivate you to learn how to use R. Existing R
users may find this selective overview of time series software in R of interest. Books
and tutorials for learning R are discussed later in this section. An excellent online
introduction from the R Development Core Team is available3 as well as extensive
contributed documentation.4

1 Comprehensive R Archive.
2 http://cran.r-project.org/web/views/
3 http://cran.r-project.org/manuals.html
4 http://cran.r-project.org/other-docs.html
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In the area of computational time series analysis, especially for advanced algo-
rithms, R has established itself as the choice of many researchers. R is widely used
not only by researchers but also in diverse time series applications and in the teaching
of time series courses at all levels. Naturally, there are many other software systems
such as Mathematica (Wolfram Research, 2011), that have interesting and useful addi-
tional capabilities, such as symbolic computation (Smith and Field, 2001; Zhang and
McLeod, 2006). For most researchers working with time series, R provides an excellent
broad platform.

The history of R has been discussed elsewhere (Gentleman and Ihaka, 1996), so
before continuing our survey, we will just point out some other key features of this
quantitative programming environment (QPE).

R is an open source project, providing a freely available and a high-quality com-
puting environment with thousands of add-on packages. R incorporates many years of
previous research in statistical and numerical computing, and so it is built on a solid
foundation of core statistical and numerical algorithms. The R programming language
is a functional, high-level interactive and scripting language that offers two levels of
object-oriented programming. For an experienced R user, using this language to express
an algorithm is often easier than using ordinary mathematical notation, and it is more
powerful since, unlike mathematical notation, it can be evaluated. In this way, R is
an important tool of thought. Novice and casual users of R may interact with it using
Microsoft Excel (Heiberger and Neuwirth, 2009) or R Commander (Fox, 2005).

Through the use of Sweave (Leisch, 2002, 2003), R supports high-quality techni-
cal typesetting and reproducible research including reproducible applied statistical and
econometric analysis (Kleiber and Zeileis, 2008). This article has been prepared using
Sweave and R scripts for all computations, including all figures and tables, are avail-
able in an online supplement.5 This supplement also includes a PDF preprint of this
article showing all graphs in color.

R supports 64-bit, multicore, parallel and cluster computing (Hoffmann, 2011;
Revolution Computing, 2011; Schmidberger et al., 2009). Since R is easily interfaced
to other programming languages such as C and Fortran, computationally efficient pro-
grams may simply be executed in cluster and grid computing environments using R to
manage the rather complex message-passing interface.

There is a vast literature available on R that includes introductory books as well
as treatments of specialized topics. General purpose introductions to R are available
in many books (Adler, 2009; Braun and Murdoch, 2008; Crawley, 2007; Dalgaard,
2008; Everitt and Hothorn, 2009; Zuur et al., 2009). Advanced aspects of the R pro-
gramming are treated by Chambers (2008), Gentleman (2009), Spector (2008), and
Venables and Ripley (2000). Springer has published more than 30 titles in the Use R
book series, Chapman & Hall/CRC has many forthcoming titles in The R Series and
there are many other high-quality books that feature R. Many of these books discuss
R packages developed by the author of the book and others provide a survey of R
tools useful in some application area. In addition to this flood of high-quality books,
the Journal of Statistical Software (JSS) publishes refereed papers discussing statistical
software. JSS reviews not only the paper but also the quality of the computer code as
well and publishes both the paper and code on its website. Many of these papers discuss

5 http://www.stats.uwo.ca/faculty/aim/tsar.html

http://www.stats.uwo.ca/faculty/aim/tsar.html
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R packages. The rigorous review process ensures a high-quality standard. In this arti-
cle, our focus will be on R packages that are accompanied by published books and/or
papers in JSS.

The specialized refereed journal, The R Journal, features articles of interest to
the general R community. There is also an interesting blog sponsored by Revolution
Analytics.6

The nonprofit association R metrics (Würtz, 2004) provides R packages for teaching
and research in quantitative finance and time series analysis that are further described
in the electronic books that they publish.

There are numerous textbooks, suitable for a variety of courses in time series anal-
ysis (Chan, 2010; Cryer and Chan, 2008; Lütkepohl and Krätzig, 2004; Shumway and
Stoffer, 2011; Tsay, 2010; Venables and Ripley, 2002). These textbooks incorporate R
usage in the book and an R package on CRAN that includes scripts and datasets used
in the book.

1. Time series plots

In this section our focus is on plots of time series. Such plots are often the first step in an
exploratory analysis and are usually provided in a final report. R can produce a variety
of these plots not only for regular time series but also for more specialized time series
such as irregularly spaced time series. The built-in function, plot(), may be used to
plot simple series such as the annual lynx series, lynx. The aspect ratio is often helpful
in visualizing slope changes in a time series (Cleveland et al., 1988, Cleveland, 1993).
For many time series, an aspect-ratio of 1/4 is good choice. The function xyplot()
(Sarkar, 2008) allows one to easily control the aspect ratio. Figure 1 shows the time
series plot of the lynx series with an aspect ratio of 1/4. The asymmetric rise and fall
of the lynx population is easily noticed with this choice of the aspect ratio.

There are many possible styles for your time series plots. Sometimes, a high-density
line plot is effective as in Fig. 2.

Another capability of xyplot() is the cut-and-stack time series plot for longer
series. Figure 3 shows a cut-and-stack plot of the famous Beveridge wheat price index
using xyplot() and asTheEconomist(). The cut-and-stack plot uses the equal count
algorithm (Cleveland, 1993) to divide the series into a specified number of subseries
using an overlap. The default setting is for a 50% overlap.

Year
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0

1820 1840 1860 1880 1900 1920

5000

Fig. 1. Annual numbers of lynx trappings in Canada.

6 http://blog.revolutionanalytics.com/

http://blog.revolutionanalytics.com/
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Fig. 2. High-density line plot.
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Fig. 3. Beveridge wheat price index.

Figure 4 uses xyplot() to plot the seasonal decomposition of the well-known CO2

time series. The seasonal adjustment algorithm available in R stl() is described in the
R function documentation and in more detail by Cleveland (1993). This plot efficiently
reveals a large amount of information. For example, Fig. 4 reveals that the seasonal
amplitudes are increasing.

Bivariate or multivariate time series may also be plotted with xyplot(). In Fig. 5,
the time series plot for the annual temperature in ◦C for Canada (CN), Great Britain
(UK), and China (CA) 1973–2007, is shown.7 Figure 5 uses juxtaposition – each series
is in a separate panel. This is often preferable to superposition or showing all series in
the same panel. Both types of positioning are available using the R functions plot()
or xyplot().

A specialized plot for bivariate time series called the cave plot (Becker et al., 1994)
is easily constructed in R as shown by Zhou and Braun (2010). When there are many
multivariate time series, using xyplot may not feasible. In this case, mvtsplot()
provided by Peng (2008) may be used. Many interesting examples, including a stock
market portfolio, daily time series of ozone pollution in 100 US counties, and levels of
sulfate in 98 US counties are discussed by Peng (2008).

7 The data were obtained from Mathematica’s curated databases.
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Fig. 4. Atmospheric concentration of CO2.
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Fig. 5. Average annual temperature (◦C) 1973–2007 for Canada (CN), Great Britain (UK), and China (CA).
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Fig. 6. Average annual temperature in ◦C, 1973–2007.

Usually, this plot is used with many time series – at least 10 or more – but for
simplicity and in order to compare with the last example, Fig. 6 displays the annual
temperature series for Canada, Great Britain, and China using using mvtsplot().
The right panel of the plot shows a boxplot for the values in each series. From this
panel, it is clear that China is generally much warmer than Great Britain and Canada
and that Great Britain is often slightly cooler than Canada on an average annual basis.
The bottom panel shows the average of the three series. The image shown shows
the variation in the three series. The colors purple, grey, and green correspond to
low, medium, and high values for each series. The darker the shading, the larger the
value. From image in Fig. 6, it is seen that Canada has experienced relatively warmer
years than Great Britain or China, since about the year 2000. During 1989–1991, the
average annual temperature in Canada was relatively low compared with Great Britain
and China. There are many more possible option choices for constructing these plots
(Peng, 2008). This plot is most useful for displaying a large number of time series.

Financial time series are often observed on a daily basis but not including holi-
days and other days when the exchange is closed. Historical and current stock market
data may be accessed using get.hist.quote() (Trapletti, 2011). Dealing with dates
and times is often an important practical issue with financial time series. Grolemund
and Wickham (2011) provide a new approach to this problem and review the other
approaches that have been used in R. Irregularly observed time series can be plotted
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Fig. 7. IBM, daily close price, returns in percent.

using Rmetrics functions (Wuertz and Chalabi, 2011). The RMetrics package fImport
also has functions for retrieving stock market data from various stock exchanges around
the world.

In Fig. 7, the function yahooSeries() is used to obtain the last 60 trading days of
the close price of IBM stock. The function RMetrics timeSeries() converts this data
to a format that can be plotted.

Time series plots are ubiquitous and important in time series applications. It must
also be noted that R provides excellent time series graphic capabilities with other stan-
dard time series functions, including functions time series diagnostics, autocorrelations,
spectral analysis, and wavelet decompositions to name a few. The output from such
functions is usually best understood from the graphical output.

More generally, there are many other types of functions available for data visualiza-
tion and statistical graphics. For example, all figures in the celebrated monograph on
visualizing data by Cleveland (1993) may be reproduced using the R scripts.8

The R package ggplot2 (Wickham, 2009) implements the novel graphical methods
discussed in the wonderful graphics book by (Wilkinson, 1999). An interesting rendi-
tion of Millard’s famous temporal-spatial graph of Napoleon’s invasion of Russia using
ggplot2 is available in the online documentation.

Dynamic data visualization, including time series, is provided with rggobi (Cook
and Swayne, 2007).

8 http://www.stat.purdue.edu/∼wsc/visualizing.html

http://www.stat.purdue.edu/~wsc/visualizing.html
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The foundation and the state-of-the-art in R graphics is presented in the book by
Murrell (2011).

2. Base packages: stats and datasets

The datasets and stats packages are normally automatically loaded by default when
R is started. These packages provide a comprehensive suite of functions for analyzing
time series, as well as many interesting time series datasets. These datasets are briefly
summarized in the Appendix (Section A.1) (Table A.1).

The stats package provides the base functions for time series analysis. These func-
tions are listed in the Appendix (A.2) (Tables A.2–A.5). For further discussion of these
functions, see the study by Cowpertwait and Metcalfe (2009). Many time series text-
books provide a brief introduction to R and its use for time series analysis (Cryer
and Chan, 2008; Shumway and Stoffer, 2011; Venables and Ripley, 2002; Wuertz,
2010).

Adler (2009) provides a comprehensive introduction to R that includes a chapter on
time series analysis.

An introduction to ARIMA models and spectral analysis with R is given in the
graduate level applied statistics textbook by Venables and Ripley (2002). This textbook
is accompanied by the R package MASS.

The time series analysis functions that R provides are sufficient to supplement most
textbooks on time series analysis.

2.1. stats

First, we discuss the stats time series functions. In addition to many functions for
manipulating time series such as filtering, differencing, inverse differencing, window-
ing, simulating, aggregating, and forming multivariate series, there is a complete set of
functions for auto/cross correlations analysis, seasonal decomposition using moving-
average filters or Loess, univariate and multivariate spectral analysis, univariate and
multivariate autoregression, and univariate ARIMA model fitting. Many of these func-
tions implement state-of-the art algorithms. The ar() function includes options, in both
the univariate and multivariate cases, for Yule-Walker, least-squares or Burg estimates.
Although ar() implements the maximum likelihood estimator, the package FitAR
(McLeod et al., 2011b; McLeod and Zhang, 2008b) provides a faster and more reliable
algorithm.

The function spectrum(), also for both univariate and multivariate series, imple-
ments the iterated Daniel smoother (Bloomfield, 2000), and in the univariate case, the
autoregressive spectral density estimator (Percival and Walden, 1993).

The arima() function implements a Kalman filter algorithm that provides exact
maximum likelihood estimation and an exact treatment for the missing values (Ripley,
2002). This function is interfaced to C code to provide maximum computational effi-
ciency. The arima() function has options for multiplicative-seasonal ARIMA model
fitting, subset models, where some parameters are fixed at zero and regression with
ARIMA errors. The functions tsdiag() and Box.test() provide model diagnos-
tic checks. For ARMA models, a new maximum likelihood algorithm (McLeod and
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Fig. 8. Creatinine clearance series.

Zhang, 2008a) written entirely in the R language is available in the FitARMA package
(McLeod, 2010).

A brief example of a medical intervention analysis carried out using arima()
will now be discussed. In a medical time series of monthly average creatinine
clearances, a step intervention analysis model with a multiplicative-seasonal
ARIMA(0, 1, 1) (1, 0, 0)12 error term was fit. The intervention effect was found to be
significant at 1%. To illustrate this finding, Fig. 8 compares the forecasts before and
after the intervention date. The forecasts are from a model fit to the pre-intervention
series. The plot visually confirms the decrease in creatinine clearances after the
intervention.

Exponential smoothing methods are widely used for forecasting (Gelper et al., 2010)
and are available in stats (Meyer, 2002). Simple exponential smoothing defines the
prediction for zt+h , h = 1, 2, . . . as ẑt+1, where ẑt+1 = λzt + (1− λ)ẑt−1. The fore-
cast with this method is equivalent to that from an ARIMA(0,1,1). An extension,
double exponential smoothing, forecasts zt+h , h = 1, 2, . . . uses the equation ẑt+h =

ât + hb̂t , where ât = αzt + (1− α)(ât−1 + b̂t−1), b̂t = β(ât − ât−1)+ (1− β)b̂t−1,
where α and β are the smoothing parameters. Double exponential smoothing is some-
times called Holt’s linear trend method, and it can be shown to produce forecasts
equivalent to the ARIMA(0,2,2). The Winter’s method for seasonal time series with
period p, forecasts zt+h , by ẑt+h = ât + hb̂t + ŝt , where ât = α(zt − ŝt−p)+ (1−
α)(ât−1 + b̂t−1), b̂t = β(ât − ât−1)+ (1− β)b̂t−1, ŝt = γ (Y − ât )+ (1− γ )ŝt−p, α,
β, and γ are smoothing parameters. In the multiplicative version, ẑt+h = (ât +

hb̂t )ŝt . Winter’s method is equivalent to the multiplicative-seasonal ARIMA air-
line model in the linear case. All of the above exponential smoothing models
may be fit with HoltWinters(). This function also has predict() and plot()
methods.

Structural time series models (Harvey, 1989) are also implemented using Kalman
filtering in the function StructTS(). Since the Kalman filter is used, Kalman smooth-
ing is also available, and it is implemented in the function tsSmooth(). The basic
structural model is comprised of an observational equation,

zt = µt + st + et , et ∼ N I D(0, σ 2
e )
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Fig. 9. Comparisons of forecasts for 1961.

and the state equations,

µt+1 = µt + ξt , ξt ∼ NID(0, σ 2
ζ ),

νt+1 = νt + ζt , ζt ∼ NID(0, σ 2
ζ ),

γt+1 = −(γt + · · · + γt−s+2)+ ωt , ωt ∼ NID(0, σ 2
η ).

If σ 2
ω is set to zero, the seasonality is deterministic. The local linear trend model is

obtained by omitting the term involving γt in the observational equation and the last
state equation may be dropped as well. Setting σ 2

ζ = 0 in the local linear trend model
results in a model equivalent to the ARIMA(0,2,2). Setting σ 2

ξ = 0 produces the local
linear model, which is also equivalent to the ARMA(0,1,1).

In Fig. 9, the forecasts from the multiplicative Winter’s method for the
next 12 months are compared with forecasts from the multiplicative-seasonal
ARIMA(0, 1, 1) (0, 1, 1)12 model. With this model, the logarithms of the original
data were used, and then the forecasts were backtransformed. There are two types
of backtransform that may be used for obtaining the forecasts in the original data
domain (Granger and Newbold, 1976; Hopwood et al., 1984) — naive or minimum
mean-square error (MMSE). Figure 9 compares these backtransformed forecasts and
shows that the MMSE are shrunk relative to the naive forecasts.

2.2. tseries

The tseries package (Trapletti, 2011) is well established and provides both useful time
series functions and datasets. These are summarized in (Appendix A.3).

2.3. Forecast

The package Forecast (Hyndman, 2010) provides further support for forecasting
using ARIMA and a wide class of exponential smoothing models. These methods are
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described briefly by Hyndman and Khandakar (2008) and in more depth in the book
(Hyndman et al., 2008). Hyndman and Khandakar (2008) discuss a family of 60 differ-
ent exponential smoothing models and provide a new state-space approach to evaluate
the likelihood function.

In Appendix A.4, Table A.10 summarizes functions for exponential smoothing
models.

Automatic ARIMA and related functions are summarized in Table A.9.
In addition, general utility functions that are useful for dealing with time series data

such as number of days in each month, interpolation for missing values, a new seasonal
plot, and others are briefly described in Table A.8.

3. More linear time series analysis

3.1. State-space models and Kalman filtering

Tusell (2011) provides an overview of Kalman filtering with R. In addition to
StructTS, there are four other packages that support Kalman filtering and state-space
modeling of time series. In general, the state-space model (Harvey, 1989; Tusell, 2011)
is comprised of two equations, the observation equation:

yt = d t + Ztαt + εt (1)

and the state equation:

αt = ct + T tαt−1 + Rtηt , (2)

where the white noises, εt and ηt , are multivariate normal with mean vector zero and
covariance matrices Qt and Ht , respectively. The white noise terms are uncorrelated,
E{ε′tηt } = 0.

The Kalman filter algorithm recursively computes

• predictions for αt ,
• predictions for yt ,
• interpolation for yt ,

and in each case, the estimated covariance matrix is also obtained.
Dropping the terms d t and ct and restricting all the matrices to be constant over time

provides a class of state-space models that includes univariate and multivariate ARMA
models (Brockwell and Davis, 1991; Durbin and Koopman, 2001; Gilbert, 1993). As
previously mentioned, the built-in function arima uses a Kalman filter algorithm to
provide exact MLE for univariate ARIMA with missing values (Ripley, 2002). The
dse package Gilbert (2011) implements Kalman filtering for the time-invariant case
and provides a general class of models that includes multivariate ARMA and ARMAX
models.

Harrison and West (1997) and Harvey (1989) provide a comprehensive account of
Bayesian analysis dynamic linear models based on the Kalman filter, and this theme is
further developed in the book by Petris et al. (2009). This book also provides illustrative
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Fig. 10. Nile river flows (solid line with circles), filter values after fitting random walk with noise (solid
thick line) and 95% confidence interval (dashed lines).

R scripts and code. The accompanying package dlm (Petris, 2010) provides functions
for estimation and filtering as well as a well-written vignette explaining how to use the
software.

The following example of fitting the random walk plus noise model,

yt = θt + vt , vt ∼ N (0, V ),

θt = θt−1 + wt , wt ∼ N (0, W ),

to the Nile series and plotting the filtered series, Fig. 10 and its 95% interval, is taken
from the vignette by Petris (2010).

Three other packages for Kalman filtering (Dethlefsen et al., 2009, Luethi et al.,
2010, Helske, 2011) are also reviewed by Tusell (2011).

3.2. An approach to linear time series analysis using Durbin-Levinsion recursions

Table A.11 in Appendix A.5 lists the main functions available in the ltsa package for
linear time series analysis.

The Durbin-Levinson recursions (Box et al., 2008) provide a simple and direct
approach to the computation of the likelihood, computation of exact forecasts and their
covariance matrix, and simulation for any linear process defined by its autocorrelation
function. This approach is implemented in ltsa (McLeod et al., 2007, 2011a).

In Section 3.3, this approach is implemented for the fractional Gaussian noise (FGN)
and a comprehensive model building R package is provided for this purpose using the
functions in ltsa.
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Three methods of simulating a time series given its autocovariance function are
available: DHSimulate(), DLSimulate(), and SimGLP(). DHSimulate() imple-
ments the fast Fourier algorithm (FFT) of Davies and Harte (1987). But this algorithm is
not applicable for all stationary series (Craigmile, 2003), so DHSimulate(), based on
the Durbin-Levinson recursion, is also provided. The algorithm SimGLP() is provided
for simulating a time series with non-Gaussian innovations based on the equation,

zt = µ+

Q∑
i=1

ψi at−i . (3)

The sum involved in Eq. (3) is efficiently evaluated using the R function convolve()
that uses the fast Fourier transform (FFT) method. The built-in function arima.sim()
may also be used in the case of ARIMA models. The functions TrenchInverse() and
TrenchInverseUpdate() are useful in some applications involving Toeplitz covari-
ance matrices. TrenchForecast() provides exact forecasts and their covariance
matrix.

The following illustration is often useful in time series lectures when forecasting is
discussed. In the next example, we fit an AR(9) to the annual sunspot numbers, 1700–
1988, sunspot.year. For forecasting computations, it is a standard practice to treat
the parameters as known, that is to ignore the error due to estimation. This is reasonable
because the estimation error is small in comparison to the innovations. This assump-
tion is made in our algorithm TrenchForecast(). Letting zm(`) denote the optimal
minimum mean-square error forecast at origin time t = m and lead time `, we com-
pare the forecasts of zm+1, . . . , zn using the one-step ahead predictor zm+`−1(1), with
the fixed origin prediction zm(`), where ` = 1, . . . , L and L = n − m + 1. Figure 11
compares forecasts and we see many interesting features. The fixed origin forecasts are
less accurate as might be expected. As well the fixed origin forecasts show systematic
departures, whereas the one step do not.

As shown by this example, TrenchForecast() provides a more flexible approach
to forecasting than provided by predict().

3.3. Long-memory time series analysis

Let zt , t = 1, 2, . . . , be stationary with mean zero and autocovariance function, γz(k) =
cov(zt , zt−k). Many long-memory processes such as the FGN (fractional Gaussian
Noise) and FARMA (fractional ARMA) may be characterized by the property that
kαγZ (k)→ cα,γ as k →∞, for some α ∈ (0, 1) and cα,γ > 0. Equivalently,

γZ (k) ∼ cα,γ k−α .

The FARMA and FGN models are reviewed by Beran (1994), Brockwell and Davis
(1991), Hipel and McLeod (1994). FGN can simply be described as a stationary
Gaussian time series with covariance function, ρk =

(
|k + 1|2H

− 2|k|2H
+ |k −

1|2H
)
/2, 0 < H < 1. The FARMA model generalizes the ARIMA model to a family

of stationary models with fractional difference parameter d , d ∈ (−0.5, 0.5). The
long-memory parameters H and d may be expressed in terms of α, H ' 1−
α/2, H ∈ (0, 1), H 6= 1/2 and d ' 1/2− α/2, d ∈ (−1/2, 1/2), d 6= 0 (McLeod,
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Fig. 11. Comparing forecasts from a fixed origin, 1969, with lead-one forecasts starting in 1969 for
sunspot.year.

1998). Gaussian white noise corresponds to H = 1/2 and in the case of FARMA,
d = 0 assuming no AR or MA components. Haslett and Raftery (1989) developed an
algorithm for maximum likelihood estimation of FARMA models and applied these
models to the analysis of long wind speed time series. This algorithm is available in
R in the package fracdiff (Fraley et al., 2009). The generalization of the FARMA
model to allow more general values of d is usually denoted by ARFIMA. A frequently
cited example of a long-memory time is the minimum annual flows of the Nile over
the period 622–1284, n = 663 (Percival and Walden, 2000, Section 9.8). The package
longmemo (Beran et al., 2009) has this data as well as other time series examples. FGN
provides exact MLE for the parameter H as well as a parametric bootstrap and mini-
mum mean-square error forecast. For the Nile data, Ĥ = 0.831. The time series plots
in Fig. 12 show the actual Nile series along with three bootstraps.

As a further illustration of the capabilities of R, a simulation experiment was done to
compare the estimation of the H parameter in fractional Gaussian noise using the exact
MLE function FitFGN() in FGN and the GLM method FEXPest() in the package
longmemo. The function SimulateFGN()in FGN was used to simulate 100 sequences
of length n = 200 for H = 0.3, 0.5, 0.7. Each sequence was fit by the MLE and GLM
method, and the absolute error of the difference between theestimate and the true
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Fig. 12. Comparing actual Nile minima series with two bootstrap versions.

parameter was obtained, that is, ErrMLE = |ĤMLE − H | and ErrGLM = |ĤGLM − H |.
From Fig. 13, the notched boxplot for Err(GLM) − Err(MLE), we see that the MLE is
more accurate. These computations take less than 30 seconds using direct sequential
evaluation on a current PC.

The ARFIMA model extends the FARMA models to the ARIMA or difference-
stationary case (Baillie, 1996; Diebold and Rudebusch, 1989). The simplest approach is
to choose the differencing parameter and then fit the FARMA model to the differenced
time series.

3.4. Subset autoregression

The FitAR package (McLeod and Zhang, 2006, 2008b; McLeod et al., 2011b)
provides a more efficient and reliable exact MLE for AR(p) than is available
with the built-in function ar(). Two types of subset autoregressions may also be
fit. The usual subset autoregression may be written, φ(B)(zt − µ) = at , where
φ(B) = 1− φi1 B − · · · − φim Bim , where i1, . . . , im are the subset of lags. For this
model, ordinary least squares (OLS) are used to estimate the parameters. The other
subset family is parameterized using the partial autocorrelations as parameters. Effi-
cient model selection, estimation, and diagnostic checking algorithms are discussed
by McLeod and Zhang (2006) and McLeod and Zhang (2008b) and implemented
in the FitAR package (McLeod et al., 2011b). Any stationary time series can be
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Fig. 13. Comparing MLE estimator and GLM estimator for the parameter H in fractional Gaussian noise.

approximated by a high-order autoregression that may be selected using one of
several information criteria. Using this approximation, FitAR, provides functions for
automatic bootstrapping, spectral density estimation, and Box-Cox analysis for any
time series. The optimal Box-Cox transformation for the lynx is obtained simply from
the command R > BoxCox(lynx). The resulting plot is shown in Fig. 14.

The functions of interest in the FitAR package are listed in Appendix A.6.

3.5. Periodic autoregression

Let zt , t = 1, . . . , n be n consecutive observations of a seasonal time series with
seasonal period s. For simplicity of notation, assume that n/s = N is an integer,
so N full years of data are available. The time index parameter, t , may be writ-
ten t = t (r , m) = (r − 1)s + m, where r = 1, . . . , N and m = 1, . . . , s. In the case of
monthly data, s = 12 and r and m denote the year and month. If the expected monthly
mean µm = E{zt (r ,m)} and the covariance function, γ`,m = cov(zt (r ,m), zt (r ,m)−`) depend
only on ` and m, zt is said to be periodically autocorrelated and is periodic stationary.
The periodic AR model of order (p1, . . . , ps) may be written,

zt (r ,m) = µm +

pm∑
i=1

φi ,m(zt (r ,m)−i − µm−i )+ at (r ,m),
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Fig. 14. Box-Cox analysis of lynx time series.

where at (r ,m) ∼ NID(0, σ 2
m), where m obeys modular arithmetic base s. This model

originated in monthly streamflow simulation and is further discussed with examples by
Hipel and McLeod (1994). Diagnostic checks for periodic autoregression are derived
by McLeod (1994). The package pear (McLeod and Balcilar, 2011) implements func-
tions for model identification, estimation and diagnostic checking for periodic AR
models.

We conclude with a brief mention of some recent work on periodically correlated
time series models that we hope to see implemented in R. Tesfaye et al. (2011) develop
a parsimonious and efficient procedure for dealing with periodically correlated daily
ARMA series and provide applications to geophysical series. Ursu and Duchesne
(2009) extend modeling procedures to the vector PAR model and provide an applica-
tion to macroeconomic series. Aknouche and Bibi (2009) show that quasi-MLE provide
consistent, asymptotically normal estimates in a periodic GARCH model under mild
regularity conditions.

4. Time series regression

An overview of selected time series regression topics is given in this section. Further
discussion of these and other topics involving time series regression with R is available
in several textbooks (Cowpertwait and Metcalfe, 2009; Cryer and Chan, 2008; Kleiber
and Zeileis, 2008; Shumway and Stoffer, 2011).
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4.1. Cigarette consumption data

Most of the regression methods discussed in this section will be illustrated with data
from an empirical demand analysis for cigarettes in Canada (Thompson and McLeod,
1976). The variables of interest, consumption of cigarettes per capita, Qt , real dis-
posable income per capita, Yt , and the real price of cigarettes, Pt , for t = 1, . . . , 23
corresponding to the years 1953–1975 were all logarithmically transformed and con-
verted to an R dataframe cig. For some modeling purposes, it is more convenient to
use a ts object,

R >cig.ts <- ts(as.matrix.data.frame(cig), start = 1953,
+ freq = 1)

The time series are shown in Fig. 15.

R >plot(cig.ts, xlab = "year", main = "", type = "o")

4.2. Durbin-Watson test

The exact p value for the Durbin-Watson diagnostic test for lack of autocorrelation
in a linear regression with exogenous inputs and Gaussian white noise errors is avail-
able with the function dwtest() in the lmtest package (Hothorn et al., 2010). The
diagnostic check statistic may be written

d =

∑n
t=2(êt − êt−1)

2∑n
t=1 ê2

t
, (4)

where êt , t = 1, . . . , n are the OLS residuals. Under the null hypothesis, d should be
close to 2 and small values of d indicate positive autocorrelation.

Many econometric textbooks provide tables for the critical values of d. But in small
samples, these tables may be inadequate since there is a fairly large interval of val-
ues for d for which the test is inconclusive. This does not happen when the exact p
value is computed. Additionally, current statistical practice favors reporting p values in
diagnostic checks (Moore, 2007).
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Fig. 15. Canadian cigarette data, consumption/adult (Q), real price (P), income/adult (Y).
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The Durbin-Watson test is very useful in time series regression for model selection.
When residual autocorrelation is detected, sometimes simply taking first or second
differences is all that is needed to remove the effect of autocorrelation. In the next
example, we find that taking second differences provides an adequate model.

First, we fit the empirical demand equation, regressing demand Qt on real price Pt
and income Yt , Qt = β0 + β1 Pt + β2Yt + et using OLS with the lm() function. Some
of the output is shown below.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.328610 2.5745756 1.2928771 2.107900e-01
P -0.402811 0.4762785 -0.8457468 4.076991e-01
Y 0.802143 0.1118094 7.1741970 6.011946e-07

This output suggests Pt is not significant but Yt appears to be highly significant.
However, since the Durbin-Watson test rejects the null hypothesis of no auto-
correlation, these statistical inferences about the coefficients in the regression are
incorrect.

After differencing, the Durbin-Watson test still detects significant positive autocor-
relation.

Finally, fitting the model with second-order differencing, ∇2 Qt = β0 +∇
2β1 Pt +

∇
2β2 Qt + et , β̂1 = 0.557 with a 95% margin of error, 0.464, so the price elasticity is

significant at 5%. As may be seen for the computations reproduced below the other
parameters are not statistically significant at 5%.

R >cig2.lm <- lm(Q ˜ P + Y, data = diff(cig.ts, differences
= 2)) R >summary(cig2.lm)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.003118939 0.008232764 -0.3788447 0.70923480
P -0.557623890 0.236867207 -2.3541625 0.03012373
Y 0.094773991 0.278979070 0.3397172 0.73800132

The intercept term, corresponds to a quadratic trend, is not significant and can be
dropped. Income, Yt , is also not significant. The evidence for lag-one autocorrelation is
not strong,

R >dwtest(cig2.lm, alternative = "two.sided")

Durbin-Watson test

data: cig2.lm
DW = 2.6941, p-value = 0.08025
alternative hypothesis: true autocorelation is not 0

There is also no evidence of non-normality using the Jarque-Bera test. We use the
function jarque.bera.test() in the tseries package (Trapletti, 2011).

R >jarque.bera.test(resid(cig2.lm))

Jarque Bera Test

data: resid(cig2.lm)
X-squared = 1.1992, df = 2, p-value = 0.549
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Kleiber and Zeileis (2008, Section 7) discuss lagged regression models for time
series and present illustrative simulation experiment using R that compares the
power of the Durbin-Watson test with the Breusch-Godfrey test for detecting residual
autocorrelation in time series regression (Kleiber and Zeileis, 2008, Section 7.1).

As discussed below in Section 4.4, fitting regression with lagged inputs is best done
using the package dynlm.

4.3. Regression with autocorrelated error

The built-in function arima can fit the linear regression model with k inputs
and ARIMA(p, d , q) errors, yt = β0 + β1x1,t + · · · + βk xk,t + et , where et ∼

ARIMA(p, d, q) and t = 1, . . . , n.
We illustrate by fitting an alternative to the regression just fit above for the Canadian

cigarette data.

R >with(cig, arima(Q, order = c(1, 1, 1), xreg = cbind(P,
+ Y)))

Call:
arima(x = Q, order = c(1, 1, 1), xreg = cbind(P, Y))

Coefficients:
ar1 ma1 P Y

0.9332 -0.6084 -0.6718 0.2988
s.e. 0.1010 0.2007 0.2037 0.2377

sigmaˆ2 estimated as 0.0008075: log likelihood = 46.71,
aic = -83.41

This model agrees well with the linear regression using second differencing.

4.4. Regression with lagged variables

Linear regression models with lagged dependent and/or independent variables are eas-
ily fit using the dynlim package (Zeileis, 2010). In the case of the empirical demand for
cigarettes, it is natural to consider the possible effect lagged price. ∇2 Qt = β1∇

2 Pt +

β1,2∇
2 Pt−1 + β2∇

2Yt + et ,

R >summary(dynlm(Q ˜ -1 + P + L(P) + Y, data = diff(cig.ts,
+ differences = 2)))$coefficients

Estimate Std. Error t value Pr(>|t|)
P -0.6421079 0.2308323 -2.7817077 0.01278799
L(P) -0.1992065 0.2418089 -0.8238177 0.42145104
Y -0.2102738 0.2993858 -0.7023507 0.49196623

We see that lagged price is not significant.

4.5. Structural change

Brown et al. (1975) introduced recursive residuals and related methods for exam-
ining graphically the stability of regression over time. These methods and recent
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Fig. 16. Cusum test of residuals in cigarette demand regression.

developments in testing and visualizing structural change in time series regression are
discussed in the book by Kleiber and Zeileis (2008, Section 6.4) and implemented in
the package strucchange (Zeileis et al., 2010, 2002). We use a CUMSUM plot of the
recursive residuals to check the regression using second differences for stability. As
shown in Fig. 16, no instability is detected with this analysis.

4.6. Generalized linear models

Kedem and Fokianos (2002) provide a mathematical treatment of the use of general-
ized linear models (GLMs) for modeling stationary binary, categorical and count time
series. GLMs can account for autocorrelation by using lagged values of the dependent
variable in the systematic component. Under regularity conditions, inferences based on
large sample theory for GLM time series models can be made using standard software
for fitting regular GLMs (Kedem and Fokianos, 2002, Section 1.4). In R, the function
glm() may be used, and it is easy to verify estimates of the precision using the boot()
function. These GLM-based time series models are extensively used with longitudinal
time series (Li, 1994).

As an illustration, we consider the late night fatality data discussed in Vingilis et al.
(2005). The purpose of this analysis was to investigate the effect of the extension of bar
closing hours to 2:00 am that was implemented May 1, 1996. This type of intervention
analysis (Box and Tiao, 1975) is known as an interrupted time series design in the social
sciences (Shadish et al., 2001). The total fatalities per month for the period starting
January 1992 to December 1999, corresponding to a time series of length n = 84, are
shown in Fig. 17.
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Fig. 17. Late night car fatalities in Ontario. Bar closing hours were extended in May 1996.

The output from the glm() function using y as the dependent variable, y1 as the
lagged dependent variable,9 and x as the step intervention defined as 0 before May 1,
1996 and 1 after.

R >summary(ans)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.53923499 0.5040873 -5.03729193 4.721644e-07
x2 1.16691417 0.6172375 1.89054329 5.868534e-02
y1 -0.06616152 0.6937560 -0.09536712 9.240232e-01

The resulting GLM may be summarized as follows. The total fatalities per month,
yt , are Poisson distributed with mean µt , where µ̂t = exp{β̂0 + β̂1xt + β̂2 yt−1}, β̂0

.
=

−2.54, β̂1
.
= 1.17, and β̂2

.
= −0.07. There is no evidence of lagged dependence but the

intervention effect, β2, is significant with p < 0.10.
We verified the standard deviation estimates of the parameters by using a nonpara-

metric bootstrap with 1000 bootstrap samples. This computation takes less than 10
seconds on most current PC’s. Table 1, produced directly from the R output using the
package xtable, compares the asymptotic and bootstrap standard deviations. As seen
from the table the agreement between the two methods is reasonably good.

Hidden Markov models provide another time series generalization of Poisson and
binomial GLMs (Zucchini and MacDonald, 2009).

9 y and y1 are the vectors containing the sequence of observed fatalities and its lagged values.
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Table 1
Comparison of asymptotic and bootstrap
estimates of the standard deviations in the
GLM time series regression

(Intercept) x2 y1

Asymptotic 0.50 0.62 0.69
Bootstrap 0.49 0.66 0.75

5. Nonlinear time series models

Volatility models including the GARCH family of models are one of the newest
types on nonlinear time series models. Nonlinear regression models can sometimes
be applied to time series. GLMs provide an extension of linear models that is useful
for modeling logistic and count time series (Kedem and Fokianos, 2002). Ritz and
Streibig (2008) provides an overview of nonlinear regression models using R. Loess
regression in R provides a flexible nonparametric regression approach to handling
up to three inputs. Using generalized additive models (GAM), many more inputs
could be accommodated (Wood, 2006). Two packages, earth (Milborrow, 2011) and
mda (Hastie and Tibshirani, 2011) implement MARS or multiadaptive regression
splines (Friedman, 1991). Lewis and Stevens (1991) reported that MARS regression
produced better out-of-sample forecasts for the annual sunspot series than competing
nonlinear models. In the remainder of the section, we discuss tests for nonlinearity and
two popular approaches to modeling and forecasting nonlinear time series, threshold
autoregression, and neural net.

5.1. Tests for nonlinear time series

One approach is to fit a suitable ARIMA or other linear time series model and then
apply the usual Ljung-Box portmanteau test to the squares of the residuals. McLeod
and Li (1983) suggested this as a general test for nonlinearity. The built-in function
Box.test() provides a convenient function for performing this test. Two tests (Ter-
aesvirta et al., 1993; Lee et al., 1993) for neglected nonlinearity that are based on neural
nets are implemented in tseries (Trapletti, 2011) as functions terasvirta.test()
and white.test(). The Keenan test for nonlinearity (Keenan, 1985) is available in
TSA (Chan, 2011) and is discussed in the textbook by Cryer and Chan (2008).

5.2. Threshold models

Threshold autoregression (TAR) provides a general flexible family for nonlinear time
series modeling that has proved useful in many applications. This approach is well
suited to time series with stochastic cyclic effects such as exhibited in the annual
sunspots or lynx time series. The model equation for a two-regime TAR model may
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be written,

yt = φ1,0 + φ1,1 yt−1 + · · · + φ1,p yt−p

+ I (yt−d > r){φ2,0 + φ2,1 yt−1 + · · · + φ2,p yt−p} + σat

(5)

where I (yt−d > r) indicates if yt−d > r the result is 1 and otherwise it is 0. The param-
eter d is the delay parameter and r is the threshold. There are separate autoregression
parameters for each regime. This model may be estimated by least squares or more
generally using conditional maximum likelihood.

A TAR model for the predator time series in Fig. 18 is described in the book by
Cryer and Chan (2008). The package TSA (Chan, 2011) provides illustrative datasets
from the book (Cryer and Chan, 2008) as well as the function tar() for fitting
two-regime TAR models, methods functions predict()and tsdiag(), and functions
tar.skelton()and tar.sim().

TAR and related models are also discussed by Tsay (2010) and some R scripts are
provided as well the companion package FinTS (Graves, 2011) that includes datasets
from the book. Figure 19 shows monthly US unemployment. Tsay (2010, Example 4.2)
fits the two-regime TAR model,

yt = 0.083yt−2 + 0.158yt−3 + 0.0118yt−4 − 0.180yt−12 + a1,t

if yt−1 ≤ 0.01,

= 0.421yt−2 + 0.239yt−3 − 0.127yt−12 + a2,t if yt−1 > 0.01,
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Fig. 18. Number of prey individuals (Didinium natsutum) per ml measured every 12 hours over a period of
35 days.

Year

R
at

e

4

6

8

10

1950 1960 1970 1980 1990 2000

Fig. 19. US civilian unemployment rate, seasonally adjusted, January 1948 to March 2004.
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where yt is the differenced unemployment series. The estimated standard deviations
of a2,t and a2,t were 0.180 and 0.217, respectively. Tsay (2010) remarks that the TAR
provides more insight into the time-varying dynamics of the unemployment rate than
the ARIMA.

5.3. Neural nets

Feed-forward neural networks provide another nonlinear generalization of the autore-
gression model that has been demonstrated to work well in suitable applications
(Faraway and Chatfield, 1998; Hornik and Leisch, 2001; Kajitani et al., 2005). Model-
ing and forecasting are easily done using nnet (Ripley, 2011). A feed-forward neural
net that generalizes the linear autoregressive model of order p may be written,

yt = fo

a +
p∑

i=1

�i xi +

H∑
j=1

w j f

(
α j +

p∑
i=1

ωi , j xt−i

) , (6)

where ŷt is the predicted time series at time t and yt−1, . . . , yt−p are the lagged inputs,
fo is the activation function for the output node, f is the activation function for each
of the H hidden nodes, ωi , j are the p weights along the connection for the j th hidden
node, �i is the weight in the skip-layer connection, and a is the bias connection. There
are m(1+ H(p + 2)) unknown parameters that must be estimated. The hyperparam-
eter H , the number of hidden nodes, is determined by a type of cross-validation and
is discussed by Faraway and Chatfield (1998), Hornik and Leisch (2001), and Kajitani
et al. (2005) in the time series context. The activation functions f and fo are often cho-
sen to be logistic, `(x) = 1/(1+ e−x ). A schematic illustration for p = 2 and H = 2
is shown in Fig. 20. Feed-forward neural nets may be generalized for multivariate time
series.

Hastie et al. (2009) pointed out that the feed-forward neural net defined in Eq. (6) is
mathematically equivalent to the projection pursuit regression model. The net defined
in Eq. (6) as well as the one illustrated in Fig. 20 has just one hidden layer with p and
p = 2 nodes, respectively. These nets may be generalized to accommodate more than
one hidden layer and such nets provide additional flexibility. Ripley (1996) shows that
asymptotically for a suitable number of hidden nodes, H , and a large enough train-
ing sample, the feed-forward neural net with one hidden layer can approximate any
continuous mapping between the inputs and outputs.

6. Unit-root tests

Financial and economic time series such as macro/micro series, stock prices, inter-
est rates and many more often exhibit nonstationary wandering behavior. Often, this
type of nonstationarity is easily corrected by differencing and the series is said to
have a unit root. Such series are sometimes called homogeneous nonstationary or
difference stationary. Pretesting for a unit root is useful in ARIMA modeling and
in cointegration modeling. Since actual time series may also exhibit other depar-
tures from the stationary Gaussian ARMA, many other types of unit-root tests
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Input Hidden Output

yt− 1

yt− 2

1

yt

Fig. 20. A nonlinear version of the AR(2) using the feed-forward neural net. This neural net has one hidden
layer that is comprised of two hidden nodes. All input nodes have skip-layer connections that connect the

input directly with the output.

have been developed that are appropriate under various other assumptions (Elliott
et al., 1996; Kwiatkowski et al., 1992; Phillips and Perron, 1988; Said and Dickey,
1984). State-of-the-art testing for unit roots requires a full model building approach
that includes taking into account not only possible general autocorrelation effects
but also stochastic and deterministic drift components. An incorrect conclusion
may be reached if these effects are not taken into account. Such state-of-the-art
tests are implemented in the R packages fUnitRoots (Wuertz, 2009b) and urca
(Pfaff, 2010a).

6.1. Overview of the urca package

The urca (Pfaff, 2010a) package offers a comprehensive and unified approach to unit-
root testing that is fully discussed in the book Pfaff (2006). The textbook by Enders
(2010) also provides an excellent overview of the state-of-the-art in unit-root testing.
A useful flowchart for using the urca package to test for unit roots is given by Pfaff
(2006, Chapter 5).

Three regressions with autocorrelated AR(p) errors are considered for the unit-root
problem,

1Z t = β0 + β1t + γ Z t−1 +

p−1∑
i=1

δi1Z t−i + et (7)

1Z t = β0 + γ Z t−1 +

p−1∑
i=1

δi1Z t−i + et , (8)
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1Z t = γ Z t−1 +

p−1∑
i=1

δi1Z t−i + et , (9)

corresponding, respectively, to a unit root:

1. with drift term plus deterministic trend,
2. random walk with drift,
3. pure random walk.

The test for unit root corresponds to an upper-tail test of H0 : γ = 0. The parameters
β0 and β1 correspond to the drift constant and the deterministic time trend, respec-
tively. When p = 1, the test reduces to the standard Dickey-Fuller test. To perform the
unit-root test, the correct model needs to be identified and the parameters need to be
estimated.

The order of the autoregression is estimated using the AIC or BIC. For all three
models, the unit-root test is equivalent to testingH0 : γ = 0 is

τi =
φ̂ − 1

SE(φ̂)
, i = 1, 2, 3,

where i denotes the model (9), (8), or (7), respectively. The distribution of τi has
been obtained by Monte-Carlo simulation or by response surface regression methods
(MacKinnon, 1996).

If τ3 is insignificant, so that H0 : γ = 0 is not rejected, the nonstandard F-statistics
83 and 82 are evaluated using the extra-sum-of-squares principle to test the null
hypotheses H0 : (β0,β1, γ ) = (β0, 0, 0) and H0 : (β0,β1, γ ) = (0, 0, 0), respectively.
That is, to test whether the deterministic time trend term is needed in the regression
model Eq. (7).

If τ2 is insignificant, so that H0 : γ = 0 is not rejected, the nonstandard F-statistic
81 is evaluated using the extra-sum-of-squares principle to test the hypotheses H0 :
(β0, γ ) = (0, 0). That is, to test whether the regression model has a drift term.

If H0 : γ = 0 is not rejected in the final selected model, we conclude that the series
has a unit root.

These steps may be repeated after differencing the series to test if further differenc-
ing is needed.

6.1.1. Illustrative example
As an example, consider the US real GNP from 1909 to 1970 in billions of US dollars.
From Fig. 21, we see there is a strong upward trend. Because the trend does not appear
to follow a straight line, a difference-stationary time series model is suggested. This
dataset is available as nporg in the urca package. We set the maximum lag to 4 and
use the BIC to select the optimum number of lags. The code snippet is shown below,

R >require("urca")
R >data(nporg)
R >gnp <- na.omit(nporg[, "gnp.r"])
R >summary(ur.df(y = gnp, lags = 4, type = "trend",
+ selectlags = "BIC"))
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Fig. 21. Real US GNP for 1909–1970.

###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################

Test regression trend

Call:
lm(formula = z.diff ˜ z.lag.1 + 1 + tt + z.diff.lag)

Residuals:
Min 1Q Median 3Q Max

-47.149 -9.212 0.819 11.031 23.924

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.89983 4.55369 -0.417 0.67821
z.lag.1 -0.05322 0.03592 -1.481 0.14441
tt 0.74962 0.36373 2.061 0.04423 *
z.diff.lag 0.39082 0.13449 2.906 0.00533 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.19 on 53 degrees of freedom
Multiple R-squared: 0.2727, Adjusted R-squared: 0.2316
F-statistic: 6.625 on 3 and 53 DF, p-value: 0.0006958
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Value of test statistic is: -1.4814 3.8049 2.7942

Critical values for test statistics:
1pct 5pct 10pct

tau3 -4.04 -3.45 -3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47

The above R script fit the full model in Eq. (7) with p = 4 and used the BIC to select the
final model with p = 1. Notice that all test statistics are displayed using the summary
method.

###############################################
# Augmented Dickey-Fuller Test Unit-Root Test #
###############################################

Test regression trend

Call:
lm(formula = z.diff ˜ z.lag.1 + 1 + tt + z.diff.lag)

Residuals:
Min 1Q Median 3Q Max

-47.374 -8.963 1.783 10.810 22.794

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.33082 4.02521 -0.082 0.93479
z.lag.1 -0.04319 0.03302 -1.308 0.19623
tt 0.61691 0.31739 1.944 0.05697 .
z.diff.lag 0.39020 0.13173 2.962 0.00448 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

Residual standard error: 14.88 on 56 degrees of freedom
Multiple R-squared: 0.2684, Adjusted R-squared: 0.2292
F-statistic: 6.847 on 3 and 56 DF, p-value: 0.0005192

Value of test statistic is: -1.308 3.7538 2.6755

Critical values for test statistics:
1pct 5pct 10pct

tau3 -4.04 -3.45 -3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47

When Sweave (Leisch, 2002) is used, Table 2 may be obtained directly from the output
produced in R. Figure 22 shows the graphical model diagnostics.

The τ3 statistic for the null hypothesis γ = 0 is −1.308, and its corresponding crit-
ical values at levels 1%, 5%, and 10% with 62 observations are given in Table 3 as
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Table 2
Regression with constant and trend for the US real GNP
data starting at 1909 until 1970

Estimate Std. Error t value Pr(> |t |)

(Intercept) −0.331 4.025 −0.082 0.935
z.lag.1 −0.043 0.033 −1.308 0.196

tt 0.617 0.317 1.944 0.057
z.diff.lag 0.390 0.132 2.962 0.004
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Fig. 22. Residual diagnostic of US real GNP data from 1909 to 1970.

Table 3
Critical values for test statistics
for drift and trend case equation
(efADFtest1)

1pct 5pct 10pct

tau3 −4.04 −3.45 −3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47

−4.04,−3.45, and−3.15, respectively. At these levels, we can’t reject the null hypoth-
esis that γ = 0 and so we conclude that there is a unit root. Instead of comparing
the test statistic value with the critical ones, one can use the MacKinnon’s p value
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determined from response surface regression methodology (MacKinnon, 1996). The
function punitroot() is available in urca. In the present example, the p value is
0.88, and it corresponds to the τ3 statistic value confirming that the unit root hypothesis
cannot be rejected as in the code snippet below,

R >punitroot(result1.ADF@teststat[1], N = length(gnp),
+ trend = "ct", statistic = "t")

[1] 0.8767738

The F-statistic83 is used to test whether the deterministic time trend term is needed
in the regression model provided that the model has a drift term. The test statistic has
a value of 2.68. From Table 3, the critical values of 83 at levels 1%, 5%, and 10%
with 62 observations are 8.73, 6.49, and 5.47, respectively. We conclude that the null
hypothesis is not rejected and a trend term is not needed. Thus, we proceed to the next
step and estimate the regression parameters in Eq. (8) with a drift term.

###############################################
# Augmented Dickey-Fuller Test Unit--Root Test #
###############################################

Test regression drift

Call:
lm(formula = z.diff ˜ z.lag.1 + 1 + z.diff.lag)

Residuals:
Min 1Q Median 3Q Max

-47.468 -9.719 0.235 10.587 25.192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.42944 4.01643 0.356 0.7232
z.lag.1 0.01600 0.01307 1.225 0.2257
z.diff.lag 0.36819 0.13440 2.739 0.0082 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

Residual standard error: 15.24 on 57 degrees of freedom
Multiple R-squared: 0.219, Adjusted R-squared: 0.1916
F-statistic: 7.993 on 2 and 57 DF, p-value: 0.0008714

Value of test statistic is: 1.2247 3.5679

Critical values for test statistics:
1pct 5pct 10pct

tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86
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Table 4
Regression with drift constant for the US real GNP data

Estimate Std. Error t value Pr(> |t |)

(Intercept) 1.42944 4.01643 0.35590 0.72323
z.lag.1 0.01600 0.01307 1.22474 0.22571

z.diff.lag 0.36819 0.13440 2.73943 0.00820

Table 5
Dickey-Fuller critical values for test
statistics with drift case

1pct 5pct 10pct

tau2 −3.51 −2.89 −2.58
phi1 6.70 4.71 3.86

Table 6
Critical values for test statistics testing for
second differences

1pct 5pct 10pct

tau3 −4.04 −3.45 −3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47

The τ2 statistic for the null hypothesis γ = 0 is 1.22474 and its corresponding criti-
cal values at levels 1%, 5%, and 10% are given in Table 5 as −3.51,−2.89, and −2.58
respectively. From this analysis we conclude that the series behaves like a random walk
with a drift constant term. The next question is whether further differencing might be
needed. So we simply repeat the unit root modeling and testing using the differenced
series as input.

The τ3 statistic equals to −4.35. From Table 6, we reject the null hypothesis at 1%
and assume that no further differencing is needed.

6.2. Covariate augmented tests

The CADFtest package (Lupi, 2011) implements Hansen’s covariate augmented
Dickey-Fuller test (Hansen, 1995) by including stationary covariates in the model
equations,

a(L)1Z t = β0 + β1t + γ Z t−1 + b(L)′1X t + et (10)

a(L)1Z t = β0 + γ Z t−1 + b(L)′1X t + et , (11)

a(L)1Z t = γ Z t−1 + b(L)′1X t + et . (12)

where a(L) = 1− a1L + · · · + ap L p and b(L)′ = bq2 L−q2 + · · · + bq1 Lq1 . If the main
function CADFtest() is applied without any stationary covariates, the ordinary
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ADF test is performed. In the illustrative example below, taken from the CADFtest()
online documentation, the augmented test strongly rejects the unit root hypothesis, with
a p value less than 2%. On the other hand, with the covariate, the test produces a p value
of about 9%. This is shown in the the R session below,

R >require(CADFtest)
R >data(npext, package = "urca")
R >npext$unemrate <- exp(npext$unemploy)
R >L <- ts(npext, start = 1860)
R >D <- diff(L)
R >S <- window(ts.intersect(L, D), start = 1909)
R >CADFtest(L.gnpperca ˜ D.unemrate, data = S, max.lag.y = 3,
+ kernel = "Parzen", prewhite = FALSE)

CADF test

data: L.gnpperca ˜ D.unemrate
CADF(3,0,0) = -3.413, rho2 = 0.064, p-value =
0.001729
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.08720302

7. Cointegration and VAR models

In the simplest case, two time series that are both difference-stationary are said to be
cointegrated when a linear combination of them is stationary. Some classic examples
(Engle and Granger, 1987) of bivariate cointegrated series include:

• consumption and income,
• wages and prices,
• short and long-term interest rates.

Further examples are given in most time series textbooks with an emphasis on eco-
nomic or financial series (Banerjee et al., 1993; Chan, 2010; Enders, 2010; Hamilton,
1994; Lütkepohl, 2005; Tsay, 2010).

A cointegration analysis requires careful use of the methods discussed in these
books since spurious relationships can easily be found when working with difference-
stationary series (Granger and Newbold, 1974). Most financial and economic time
series are not cointegrated. Cointegration implies a deep relationship between the series
that is often of theoretical interest in economics. When a cointegrating relationship
exists between two series, Granger causality must exist as well (Pfaff, 2006). The vars
package (Pfaff, 2010b) for vector autoregressive modeling is described in the book
(Pfaff, 2006) and article (Pfaff, 2008). This package, along with its companion package
urca (Pfaff, 2010a), provides state-of-the-art methods for cointegration analysis and
modeling stationary and nonstationary multivariate time series.

Full support for modeling, forecasting, and analysis tools are provided for the vector
autoregressive time series model (VAR), structural VAR (SVAR), and structural vector
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error-correction models (SVEC). The VAR (p) stationary model for a k-dimensional
time series, { yt }

yt = δd t +81 yt−1 + · · · +8p yt−p + et , (13)

where δ,8` = (φi j ,`)k×k are coefficient matrices, d t is a matrix containing a constant
term, linear trend, seasonal indicators or exogenous variables, and εt ∼ N (0, Ik). Using
the vars package, the VAR model is estimated using OLS. The basic VAR model,
without the covariates d t , may also be estimated using the R core function ar(). In the
case of the SVAR model,

A yt = δd t +81 yt−1 + · · · +8p yt−p + Bet , (14)

where A, and B are k × k matrices. With the structural models, further restrictions are
needed on the parameters and after the model has been uniquely specified, it is esti-
mated by maximum likelihood. The SVEC model is useful for modeling nonstationary
multivariate time series and is an essential tool in cointegration analysis. The basic
error-correction model, VEC, may be written,

∇ yt = 5 yt + 01∇ yt−1 + · · · +∇0 p yt−p+1 + et , (15)

where ∇ is the first-differencing operator and 5 and 0`, ` = 1, . . . , p − 1 are para-
meters. As with the VAR model, the VEC model may be generalized to the SVEC
model with coefficient matrices A and/or B. A cointegration relationship exists pro-
vided that 0 < rank 5 < p. When rank 5 = 0, a VAR model with the first differences
may be used, and when 5 is of full rank, a stationary VAR model of order p is appro-
priate. The vars package includes functions for model fitting, model selection, and
diagnostic checking as well as forecasting with VAR, SVAR, and SVEC models. Coin-
tegration tests and analysis are provided in the urca. In addition to the two-step method
of Engle and Granger (1987), tests based on the method of Phillips and Ouliaris (1990)
and the likelihood method (Johansen, 1995) are implemented in the urca package. Illus-
trative examples of how to use the software for multivariate modeling and cointegration
analysis are discussed in the book, paper, and packages of Pfaff (2006, 2008, 2010b).

8. GARCH time series

Volatility refers to the random and autocorrelated changes in variance exhibited by
many financial time series. The GARCH family of models (Engle, 1982; Bollerslev,
1986) capture quite well volatility clustering as well as the thick-tailed distributions
often found with financial time series such as stock returns and foreign exchange rates.
The GARCH family of models is discussed in more detail in textbooks dealing with
financial time series (Chan, 2010; Cryer and Chan, 2008; Enders 2010; Hamilton, 1994;
Shumway and Stoffer, 2011; Tsay, 2010).

A GARCH(p, q) sequence at , t = . . . ,−1, 0, 1, . . . is of the form

at = σtεt
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and

σ 2
t = α0 +

p∑
i=1

α j a
2
t−i +

q∑
j=1

β jσ
2
t− j ,

where α0 > 0, αi ≥ 0, 1 ≤ i ≤ p, β j ≥ 0, 1 ≤ j ≤ q are parameters. The errors εt are
assumed to be independent and identically distributed from a parametric distribution
such as normal, generalized error distribution (GED), Student-t or skewed variations
of these distributions. Although ARMA models deal with nonconstant conditional
expectation, GARCH models handle nonconstant conditional variance. Sometimes,
those two models are combined to form the ARMA/GARCH family of models. A
comprehensive account of these models is also given in the book by Zivot and Wang
(2006). This book also serves as the documentation for the well-known S-Plus add-on
module, Finmetrics. Many of the methods provided by Finmetrics for GARCH and
related models are now available with the fGARCH package (Wuertz, 2009a). In the
following, we give a brief discussion of the use of fGARCH for simulation, fitting,
and inferences. The principal functions in this package include garchSpec, garch-
Sim, and garchFit and related methods functions. The fGarch package allows for a
variety of distributional assumptions for the error sequence εt . As an illustrative exam-
ple, we simulate a GARCH(1,1) with α0 = 10−6, α1 = 0.2, and β1 = 0.7 and with a
skewed GED distribution with skewness coefficient 1.25 and shape parameter 4.8. The
simulated series is shown in Fig. 23.

R> require("fGarch")
R> spec <- garchSpec(model = list(omega = 1e-06,

Time

2008−10−23 2009−11−26 2010−12−31

−0.020

−0.010

0.000

0.010

Fig. 23. Simulated GARCH(1, 1) with α0 = 10−6,α1 = 0.2,β1 = 0.7.
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Fig. 24. Inflation rate, rt , and volatility, σt .

alpha = 0.2,
+ beta = 0.7, skew = 1.25, shape = 4.8), cond.dist =

"sged")
R> x <- garchSim(spec, n = 1000)

To fit the above simulated data with GARCH(1,1), we could use,

R> out <- garchFit(˜garch(1, 1), data = x, trace = FALSE)

Some of the inferences that can be carried out by using the summary() function,
include the Jarque-Bera and Shapiro-Wilk normality tests, various Ljung-Box white
noise tests, and ARCH effect tests.

As a further illustration, we fit an ARMA/GARCH model to the US inflation
(Bollerslev, 1986). We used the GNP deflator for 1947-01-01 to 2010-04-01. There
were n = 254 observations that are denoted by zt , t = 1, . . . , n. Then, the inflation
rate may be estimated by the logarithmic difference, rt = log(zt )− log(zt−1). The fol-
lowing ARMA/GARCH model was fit using the function garchFit() in fGarch,
rt = 0.103+ 0.369rt−1 + 0.223rt−2 + 0.248rt−3 + εt , and σ 2

t = 0.004+ 0.269ε2
t−1 +

0.716σ 2
t−1. Figure 24 shows time series plots for rt and σt . The tseries (Trapletti, 2011)

can also fit GARCH models but fGarch provides a more comprehensive approach.

9. Wavelet methods in time series analysis

Consider a time series of dyadic length, zt , t = 1, . . . , n, where n = 2J . The discrete
wavelet transformation (DWT) decomposes the time series into J wavelet coeffi-
cients vectors, W j , j = 0, . . . , J − 1 each of length n j = 2J− j , j = 1, . . . , J plus a



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 27-ch23-659-712-9780444538581 2012/4/24 1:52 Page 697 #39

Time Series Analysis with R 697

scaling coefficient VJ . Each wavelet coefficient is constructed as a difference of
two weighted averages each of length λ j = 2 j−1. Like the discrete Fourier transfor-
mation, the DWT provides an orthonormal decomposition, W =WZ , where W ′ =
(W ′1, . . . , W ′J−1, V ′J−1), Z = (z1, . . . , zn)

′, and W is an orthonormal matrix. In prac-
tice, the DWT is not computed using matrix multiplication but much more efficiently
using filtering and downsampling (Percival and Walden, 2000, Chapter 4). The result-
ing algorithm is known as the pyramid algorithm, and computationally, it is even more
efficient than the fast Fourier transform. Applying the operations in reverse order yields
the inverse DWT. Sometimes, a partial transformation is done, producing the wavelet
coefficient vectors W j , j = 0, . . . , J0, where J0 < J − 1. In this case, the scaling coef-
ficients are in the vector, VJ0 of length 2J−J0 . The wavelet coefficients are associated
with changes in the time series over the scale λ j = 2 j−1, while the scaling coefficients,
VJ0 , are associated with the average level on scale τ = 2J0 . The maximum overlap
DWT or MODWT omits the downsampling. The MODWT has many advantages over
the DWT (Percival and Walden, 2000, Chapter 5), even though it does not provide an
orthogonal decomposition. Percival and Walden (2000) provide an extensive treatment
of wavelet methods for time series research with many interesting scientific time series.
Gençay et al. (2002) follows a similar approach to wavelets as given by Percival and
Walden (2000) but with an emphasis on financial and economic applications.

All important methods as well as all datasets discussed in the books by Percival and
Walden (2000) and Gençay et al. (2002) are available in the R packages waveslim
(Whitcher, 2010) and wmtsa (Constantine and Percival, 2010). Nason (2008) provides
a general introduction to wavelet methods in statistics, including smoothing and multi-
scale time series analysis. R scripts are used extensively in his book and all figures in the
book (Nason, 2008) may be reproduced using R scripts available in the wavethresh
R package (Nason, 2010).

Figure 25 shows the denoised annual Nile riverflows (Hipel and McLeod, 1994)
using the universal threshold with hard thresholding and Haar wavelets. (Hipel and
McLeod, 1994; Hipel et al., 1975) fit a step intervention analysis time series model
with AR(1) noise. Physical reasons as well as cumsum analysis were presented (Hipel
and McLeod, 1994, Section 19.2.4) to suggest 1903 as the start of intervention that was
due to the operation of the Aswan dam. The fitted step intervention is represented by the
three line segments, whereas the denoised flows are represented by the jagged curve.
The points show actual observed flows. Figure 25 suggests the intervention actually
may have started a few years prior to 1903. The computations for Fig. 25 were done
using the functions modwt(), universal.thresh.modwt() and imodwt() in the
package waveslim.

An estimate of the wavelet variance, σ̂ 2(λ j ), is obtained based on the variance of
the wavelet coefficients in an MODWT transformation at scale λ j = 2 j−1. The wavelet
variance is closely related to the power spectral density function and

σ̂ 2(λ j ) ≈ 2

2/λ j∫
1/λ j

p( f )d f .

The wavelet variance decomposition for the annual sunspot numbers, sunspot.year
in R is shown in Fig. 26. This figure was produced using the wavVar function in wmtsa
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Fig. 25. Mean annual Nile flow, October to September, Aswan.
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Fig. 26. Wavelet variance, yearly sunspot numbers, 1700–1988.

and the associated plot method. The 95% confidence intervals are shown in Fig. 26. The
wavelet variances correspond to changes over 1, 2, 4, 8, and 16 years.

Multiresolution analysis (MRA) is another widely useful wavelet method for time
series analysis. The MRA decomposition works best with the MODWT. The mra func-
tion in waveslim was used to produce the decomposition of an electrocardiogram time
series that is shown in Fig. 27. The la8 or least-asymmetric filter with half-length 8
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Fig. 27. MRA using MODWT with la8 filter. ECG time series comprised of about 15 beats of a human
heart, sampled at 180 Hz, units are millivolts and n = 2048.

was used (Percival and Walden, 2000, p. 109). A similar plot is given by Percival and
Walden (2000, Fig. 184).

10. Stochastic differential equations (SDEs)

A SDE is comprised of a differential equation that includes a stochastic process, the
simplest example being Brownian motion. Geometrical Brownian motion is often
used to describe stock market prices. This SDE may be written, d P(t) = P(t)µ dt +
P(t)σ dW (t), where P(t) is the price at time t and the parameters µ > 0 and σ > 0
are the drift and diffusion parameters. The Gaussian white noise term, W (t), may
be considered the derivative of Brownian motion. This SDE may also be written,
d log(P(t)) = µ dt + σ dW (t), so we see that P(t) > 0 and log(P(t)) is Brownian
motion.

More complicated SDE’s may involve more complex drift and volatility functions.
The book (Iacus, 2008) provides an intuitive and informal introduction to SDE and
could be used in an introductory course on SDE. Only SDE’s with Gaussian white
noise are considered. The accompanying R package (Iacus, 2009) provides R scripts for
all figures in the book (Iacus, 2008) as well as functions for simulation and statistical
inference with SDE.

An important area of application is in financial mathematics, where option values or
risk assessments are often driven by SDE systems. Usually, Monte-Carlo simulation is
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the only way to find approximate solutions. The main class of SDE considered by this
package is a diffusion process of the following form,

d X (t) = b(t , X (t))dt + σ(t , X (t))dW (t) (16)

with some initial condition X (0), where W (t) is a standard Brownian motion. Accord-
ing to Itô formula, (16) can be represented as

X (t) = X (0)+

t∫
0

b(u, X (u))du +

t∫
0

σ(u, X (u))dW (u).

Under some regular conditions on the drift b(·, ·) and diffusion σ 2(·, ·), (16) has
either a unique strong or weak solution. In practice, the class of SDE given by (16)
is too large. The following diffusion process covers many well-known and widely
used stochastic processes, including Vasicek (VAS), Ornstein-Uhlenbeck (OU), Black-
Scholes-Merton (BS) or geometric Brownian motion, and Cox-Ingersoll-Ross (CIR),

d P(t) = P(t)µ dt + P(t)σdW (t)d X (t) = b(X (t))dt + σ(X (t))dW (t). (17)

The main function is sde.sim(), and it has extensive options for the general diffusion
process (17) or more specific processes. The function DBridge() provides another
general purpose function for simulating diffusion bridges. Simple to use functions
for simulating a Brownian bridge and geometric Brownian motion, BBridge(), and
GBM() are also provided. Using sde.sim(), we simulate ten replications of Brownian
motions each starting at the X (0) = 0 and comprised of 1000 steps. The results are
displayed in Fig. 28.

A more complex SDE,

d X (t) = (5− 11x + 6x2
− x3)dt + dW (t)

with X (0) = 5 is simulated using three different algorithms and using two different step
sizes 1 = 0.1 and 1 = 0.25. For the smaller step size 1 = 0.1, Fig. 29 suggests all
three algorithms work about equally well. But only the Shoji-Ozaki algorithm appears
to work with the larger step size 1 = 0.25.

In addition to simulation, the sde package provides functions for parametric
and nonparametric estimation: EULERloglik(), ksmooth(), SIMloglik(), and
simple.ef(). Approximation of conditional density X (t)|X (t0) = x0 at point x0

of a diffusion process is available with the functions: dcElerian(), dcEuler(),
dcKessler(), dcozaki(), dcShoji(), and dcSim().

11. Conclusion

There are many more packages available for time series than discussed in this article
and many of these are briefly described in the CRAN Task Views.10 In particular,
see task views for Econometrics, Finance, and TimeSeries. We have selected those

10 http://cran.r-project.org/web/views/

http://cran.r-project.org/web/views/
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Fig. 29. Simulations of d X (t) = (5− 11x + 6x2
− x3)dt + dW (t) using three different algorithms and two

different step sizes.

packages that might be of most general interest that have been most widely used
and that we are most familiar with. The reader should note that the packages pub-
lished on CRAN, including those in the task views, need only obey formatting rules
and not produce computer errors. There is no endorsement that packages available on
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CRAN produce correct or useful results. On the other hand, packages discussed in
the Journal of Statistical Software or published by major publishers such as Springer-
Verlag or Chapman & Hall/CRC have been carefully reviewed for correctness and
quality.

Researchers wishing to increase the impact of their work should consider imple-
menting their methods in R and making it available as a package on CRAN. Developing
R packages is discussed in the online publication by R Development Core Team (2011)
and from a broader perspective by Chambers (2008).
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A. Appendix

A.1. Datasets

Table A.1
Datasets in the packge ‘datasets’

Dataset name Description

AirPassengers Monthly airline passengers, 1949–1960
BJsales Sales data with leading indicator
BOD Biochemical oxygen demand
EuStockMarkets Daily close price, European stocks, 1991–1998
LakeHuron Level of Lake Huron 1875–1972
Nile Flow of the river Nile
UKDriverDeaths Road casualties, Great Britain 1969–1984
UKgas UK quarterly gas consumption
USAccDeaths Accidental deaths in the US 1973–1978
USPersonalExpenditure Personal expenditure data
WWWusage Internet usage per minute
WorldPhones Ihe world’s telephones
airmiles Passenger miles, US airlines, 1937–1960
austres Quarterly time series, Australian residents
co2 Mauna loa atmospheric co2 concentration
UKLungDeaths Monthly deaths from lung diseases in the UK
freeny Freeny’s revenue data
longley Longley’s economic regression data
lynx Annual Canadian lynx trappings 1821–1934
nhtemp Average yearly temperatures in New Haven
nottem Monthly temperature, Nottingham, 1920–1939
sunspot.month Monthly sunspot data, 1749–1997
sunspot.year Yearly sunspot data, 1700–1988
sunspots Monthly sunspot numbers, 1749–1983
treering Yearly treering data, -6000–1979
uspop Populations recorded by the US census
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A.2. stats
Table A.2
‘stats’ package utilities for ts objects. These functions are useful for
creating and manipulating univariate and multivariate time series

Function Purpose

embed Matrix containing lagged values
lag Lagged values
ts Create a time series object
ts.intersect Intersection, multivariate series by
ts.union Union, multivariate series by union
time Extract time from a ts object
cycle Extract seasonal times from a ts object
frequency Sampling interval
window Select subset of time series

Table A.3
‘stats’ package autocorrelation and spectral analysis functions

Function Purpose

acf acf, pacf
ccf Cross-correlation
cpgram Bartlett’s cumulate periodogram test
lag.plot Alternative time series plot
fft Fast Fourier transform
convolve Convolution via fft
filter Moving-average/autoregressive filtering
spectrum Spectral density estimation
toeplitz Toeplitz matrix

Table A.4
‘stats’ package functions for time series models. In addition, many
of these functions have predict and residuals methods

Function Purpose

arima, arima0 Fit ARIMA
ar Fit AR
KalmanLike Log-likelihood, univariate state-space model
KalmanRun KF filtering
KalmanSmooth KF smoothing
KalmanForecast KF forecasting
makeARIMA ARIMA to KF
PP.test Phillips-Perron unit-root test
tsdiag Diagnostic checks
ARMAacf Theoretical ACF of ARMA
acf2AR Fit AR to ACF
Box.test Box-Pierce or Ljung-Box test
diff, diffinv Difference or inverse
ARMAtoMA MA expansion for ARMA
arima.sim Simulate ARIMA
HoltWinters Holt-Winters filtering
StructTS Kalman filter modeling
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Table A.5
‘stats’ package smoothing and filtering

Function Purpose

filter Moving-average/autoregressive filtering
tsSmooth Smooth from StuctTS object
stl Seasonal-trend-Loess decomposition
decompose Seasonal decomposition, moving-average filters

A.3. tseries
Table A.6
‘tseries’ package functions

Function Purpose

adf.test Augmented Dickey-Fuller test
bds.test Breusch-Godfrey test
garch Fit GARCH models to time series
get.hist.quote Download historical finance data
jarque.bera.test Jarque-Bera test
kpss.test KPSS Test for stationarity
quadmap Quadratic map (logistic equation)
runs.test Runs test
terasvirta.test Teraesvirta neural network test for nonlinearity
tsbootstrap Bootstrap for general stationary data
white.test White neural network test for nonlinearity

Table A.7
‘tseries’ package datasets

Dataset name Description

bev Beveridge wheat price index, 1500-1869
camp Mount Campito, treering data, -3435-1969
ice.river Icelandic river Data
NelPlo Nelson-Plosser macroeconomic time series
nino sea surface temperature, El Niño indices
tcm monthly yields on treasury securities
tcmd daily yields on treasury securities
USeconomic US economic variables

A.4. ‘Forecast’ Package

Table A.8
General purpose utility functions

Function Purpose

accuracy() Accuracy measures of forecast
BoxCox, invBoxCox() Box-Cox transformation
decompose() Improved version of decompose()

(Continued)
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Table A.8
General purpose utility functions (Continued)

Function Purpose

dm.test() Diebold-Mariano test compares the forecast accuracy
forecast() Generic function with various methods
monthdays() Number of days in seasonal series
na.interp() Interpolate missing values
naive(), snaive() ARIMA(0,1,0) forecast and seasonal version
seasadj() Seasonally adjusted series
seasonaldummy() Create matrix of seasonal indicator variables
seasonplot() Season plot

Table A.9
ARIMA functions

Function Purpose

arfima Automatic ARFIMA
Arima Improved version of arima()
arima.errors Removes regression component
auto.arima Automatic ARIMA modeling
ndiffs Use unit-root test to determine differencing
tsdisplay() Display with time series plot, ACF, PACF, etc.

Table A.10
Exponential smoothing and other time series modeling functions

Function Purpose

croston Exponential forecasting for intermittent series
ets Exponential smoothing state-space model
logLik.ets Loglikelihood for ets object
naive(), snaive() ARIMA(0,1,0) forecast and seasonal version
rwf() Random walk forecast with possible drifts
ses(), holt(), hw() Exponential forecasting methods
simulate.ets() Simulation method for ets object
sindexf Seasonal index, future periods
splinef Forecast using splines
thetaf Forecast using theta method
tslm() lm()-like function using trend and seasonal

A.5. ltsa

Table A.11
Main functions in ltsa

Function Purpose

DHSimulate Simulate using Davies-Harte method
DLLoglikelihood Exact concentrated log-likelihood
DLResiduals Standardized prediction residuals

(Continued)
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Table A.11
Main functions in ltsa (Continued)

Function Purpose

DLSimulate Simulate using DL recursion
SimGLP Simulate general linear process
TrenchInverse Toeplitz matrix inverse
ToeplitzInverseUpdate Updates the inverse
TrenchMean Exact MLE for mean
TrenchForecast Exact forecast and variance

A.6. FitAR

Table A.12
FitAR model selection functions

Function Purpose

PacfPlot Partial autocorrelation plot
SelectModel AIC/BIC selection
TimeSeriesPlot Time series plot

Table A.13
FitAR estimation functions

Function Purpose

FitAR Exact mle for AR(p)/subset ARzeta
FitARLS LS for AR(p)/subset ARphi
GetFitAR Fast exact mle for AR(p)/subset ARzeta
GetFitARLS Fast LS for AR(p) and subset ARphi
GetARMeanMLE Exact mean MLE in AR
AR1Est Exact MLE for mean-zero AR(1)

Table A.14
FitAR diagnostic check functions

Function Purpose

Boot Generic parametric bootstrap
Boot.FitAR Method for FitAR
Boot.ts Method for ts
LjungBox Ljung-Box portmanteau test
LBQPlot Plot Ljung-Box test results
RacfPlot Residual acf plot
JarqueBeraTest Test for normality



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 27-ch23-659-712-9780444538581 2012/4/24 1:52 Page 707 #49

Time Series Analysis with R 707

Table A.15
FitAR miscellaneous functions

Function Purpose

AcfPlot General purpose correlation plotting
ARSdf AR spectral density via FFT
ARToMA Impulse coefficients
ARToPacf Transform AR to PACF
BackcastResidualsAR Compute residuals using backforecasting
cts Concantenate time series
InformationMatrixAR Fisher information matrix AR
InformationMatrixARp Fisher information matrix subset case, ARp
InformationMatrixARz Fisher information matrix subset case, ARz
InvertibleQ Test if invertible or stationary-casual
PacfDL Compute PACF from ACF using DL recursions
PacfToAR Transform PACF to AR
sdfplot Generic spectral density plot
sdfplot.FitAR Method for class FitAR
sdfplot.Arima Method for class Arima
sdfplot.ar Method for class ar
sdfplot.ts Method for class ts
sdfplot.numeric Method for class numeric
SimulateGaussianAR Simulate Gaussian AR
Readts Input time series
TacvfAR Theoretical autocovariances AR
TacvfMA Theoretical autocovariances MA
VarianceRacfAR Variance of residual acf, AR
VarianceRacfARp Variance of residual acf, subset case, ARp
VarianceRacfARz Variance of residual acf, subset case, ARz
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Rönz, B. (Eds.), COMPSTAT 2002 – Proceedings in Computational Statistics. Physica-Verlag, Heidel-
berg, pp. 575–580.

Leisch, F., 2003. Sweave and beyond: computations on text documents. In: Hornik, K., Leisch, F., Zeileis, A.
(Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Aus-
tria. ISSN 1609-395X. http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
(accessed 03.02.12).

Lewis, P.A.W., Stevens, J.G., 1991. Nonlinear modeling of time series using multivariate adaptive regression
splines (mars). J. Am. Stat. Assoc. 86(416), 864–877.

Li, W.K., 1994. Time series models based on generalized linear models: some further results. Biometrics
50(2), 506–511.

Luethi, D., Erb, P., Otziger, S., 2010. FKF: Fast Kalman Filter. http://CRAN.R-project.org/

package=FKF (accessed 03.02.12).
Lupi, C., 2011. CADFtest: Hansen’s Covariate-Augmented Dickey-Fuller Test. R package version 0.3-1.

http://CRAN.R-project.org/package=CADFtest (accessed 03.02.12).
Lütkepohl, H., 2005. New Introduction to Multiple Time Series Analysis. Springer-Verlag, New York.
Lütkepohl, H., Krätzig, M. (Eds.), 2004. Applied Time Series Econometrics. Cambridge University Press,

Cambridge.
MacKinnon, J.G., 1996. Numerical distribution functions for unit root and cointegration tests. J. Appl.

Econom. 11, 601–618.
McLeod, A.I., 1994. Diagnostic checking periodic autoregression models with application. J. Time Ser. Anal.

15, 221–223, Addendum, J. Time Ser. Anal. 16, 647–648.
McLeod, A.I., 1998. Hyperbolic decay time series. J. Time Ser. Anal. 19, 473–484.
McLeod, A.I., 2010. FitARMA: Fit ARMA or ARIMA Using Fast MLE Algorithm. R package version 1.4.

http://CRAN.R-project.org/package=FitARMA (accessed 03.02.12).
McLeod, A.I., Balcilar, M., 2011. pear: Package for Periodic Autoregression Analysis. R package version 1.2.

http://CRAN.R-project.org/package=pear (accessed 03.02.12).
McLeod, A.I., Li, W.K., 1983. Diagnostic checking arma time series models using squared-residual

autocorrelations. J. Time Ser. Anal. 4, 269–273.
McLeod, A.I., Yu, H., Krougly, Z., 2007. Algorithms for linear time series analysis: With R package. J. Stat.

Softw. 23(5), 1–26. http://www.jstatsoft.org/v23/i05 (accessed 03.02.12).
McLeod, A.I., Yu, H., Krougly, Z., 2011a. FGN: Fractional Gaussian Noise, estimation and simulation. R

package version 1.4. http://CRAN.R-project.org/package=ltsa (accessed 03.02.12).
McLeod, A.I., Zhang, Y., 2006. Partial autocorrelation parameterization for subset autoregression. J. Time

Ser. Anal. 27(4), 599–612.
McLeod, A.I., Zhang, Y., 2008a. Faster arma maximum likelihood estimation. Comput. Stat. Data Anal.

52(4), 2166–2176.
McLeod, A.I., Zhang, Y., 2008b. Improved subset autoregression: With R package. J. Stat. Softw. 28(2),

1–28. http://www.jstatsoft.org/v28/i02 (accessed 03.02.12).
McLeod, A.I., Zhang, Y., Xu, C., 2011b. FitAR: Subset AR Model Fitting. R package version 1.92.

http://CRAN.R-project.org/package=FitAR (accessed 03.02.12).
Meyer, D., June 2002. Naive time series forecasting methods: the holt-winters method in package ts. R News

2(2), 7–10.
Milborrow, S., 2011. earth: Multivariate Adaptive Regression Spline Models. R package version 2.6-2.

http://CRAN.R-project.org/package=earth (accessed 03.02.12).
Moore, D.S., 2007. The Basic Practice of Statistics, fourth ed. W. H. Freeman & Co., New York.
Murrell, P., 2011. R Graphics, second ed. Chapman and Hall/CRC, Boca Raton.
Nason, G., 2008. Wavelet Methods in Statistics with R. Springer-Verlag, New York.
Nason, G., 2010. wavethresh: Wavelets statistics and transforms. R package version 4.5. http://CRAN.R-

project.org/package=wavethresh (accessed 03.02.12).

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://CRAN.R-project.org/package=FKF
http://CRAN.R-project.org/package=FKF
http://CRAN.R-project.org/package=CADFtest
http://CRAN.R-project.org/package=FitARMA
http://CRAN.R-project.org/package=pear
http://www.jstatsoft.org/v23/i05
http://CRAN.R-project.org/package=ltsa
http://www.jstatsoft.org/v28/i02
http://CRAN.R-project.org/package=FitAR
http://CRAN.R-project.org/package=earth
http://CRAN.R-project.org/package=wavethresh
http://CRAN.R-project.org/package=wavethresh


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 27-ch23-659-712-9780444538581 2012/4/24 1:52 Page 711 #53

Time Series Analysis with R 711

Peng, R., 2008. A method for visualizing multivariate time series data. J. Stat. Softw. 25 (Code Snippet 1),
1–17. http://www.jstatsoft.org/v25/c01 (accessed 03.02.12).

Percival, D.B., Walden, A.T., 1993. Spectral Analysis For Physical Applications. Cambridge University
Press, Cambridge.

Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press,
Cambridge.

Petris, G., 2010. dlm: Bayesian and Likelihood Analysis of Dynamic Linear Models. http://CRAN.R-
project.org/package=dlm (accessed 03.02.12).

Petris, G., Petrone, S., Campagnoli, P., 2009. Dynamic Linear Models with R. Springer Science+Business
Media, LLC, New York.

Pfaff, B., 2006. Analysis of Integrated and Cointegrated Time Series with R. Springer, New York.
Pfaff, B., 2008. Var, svar and svec models: implementation within R package vars. J. Stat. Softw. 27(4), 1–32.

http://www.jstatsoft.org/v27/i04 (accessed 03.02.12).
Pfaff, B., 2010a. urca: Unit Root and Cointegration Tests for Time Series Data. R package version 1.2-5.

http://CRAN.R-project.org/package=urca (accessed 03.02.12).
Pfaff, B., 2010b. vars: VAR Modelling. R package version 1.4-8. http://CRAN.R-project.org/

package=vars (accessed 03.02.12).
Phillips, P.C.B., Ouliaris, S., 1990. Asymptotic properties of residual based tests for cointegration. Econo-

metrica 58, 165–193.
Phillips, P.C.B., Perron, P., 1988. Testing for a unit root in time series regression. Biometrika 75(2), 335–346.
R Development Core Team, 2011. Writing R Extensions. R Foundation for Statistical Computing, Vienna,

Austria. http://www.R-project.org/ (accessed 03.02.12).
Revolution Computing, 2011. foreach: For Each Looping Construct for R. R package version 1.3.2.

http://CRAN.R-project.org/package=foreach (accessed 03.02.12).
Ripley, B.D., 2011. nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models. R package

version 7.3-1. http://CRAN.R-project.org/package=nnet (accessed 03.02.12).
Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University Press, New York.
Ripley, B.D., June 2002. Time series in R 1.5.0. R News 2(2), 2–7.
Ritz, C., Streibig, J.C., 2008. Nonlinear Regression with R. Springer Science+Business Media, LLC,

New York.
Said, S.E., Dickey, D.A., 1984. Test for unit roots in autoregressive-moving average models of unknown

order. Biometrika 71(3), 599–607.
Sarkar, D., 2008. Lattice: Multivariate Data Visualization with R. Springer, New York.
Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mansmann, U., Aug 2009. State of the

art in parallel computing with R. J. Stat. Softw. 31(1), 1–27. http://www.jstat soft.org/v31/i01

(accessed 03.02.12).
Shadish, W.R., Cook, T.D., Campbell, D.T., 2001. Experimental and Quasi-Experimental Designs for

Generalized Causal Inference, second ed. Houghton Mifflin, Boston.
Shumway, R.H., Stoffer, D.S., 2011. Time Series Analysis and Its Applications With R Examples, third ed.

Springer, New York.
Smith, B., Field, C., 2001. Symbolic cumulant calculations for frequency domain time series. Stat. Comput.

11, 75–82.
Spector, P., 2008. Data Manipulation with R. Springer-Verlag, Berlin.
Teraesvirta, T., Lin, C.F., Granger, C.W.J., 1993. Power of the neural network linearity test. J. Time Ser. Anal.

14, 209–220.
Tesfaye, Y.G., Anderson, P.L., Meerschaert, M.M., 2011. Asymptotic results for fourier-parma time series.

J. Time Ser. Anal. 32(2), 157–174.
Thompson, M.E., McLeod, A.I., June 1976. The effects of economic variables upon the demand for cigarettes

in Canada. Math. Sci. 1, 121–132.
Trapletti, A., 2011. tseries: Time Series Analysis and Computational Finance. R package version 0.10-25.

http://CRAN.R-project.org/package=tseries (accessed 03.02.12).
Tsay, R.S., 2010. Analysis of Financial Time Series, third ed. Wiley, New York.
Tusell, F., 2011. Kalman filtering in R. J. Stat. Softw. 39(2). http://www.jstatsoft.org/v39/i02 (accessed

03.02.12).
Ursu, E., Duchesne, P., 2009. On modelling and diagnostic checking of vector periodic autoregressive time

series models. J. Time Ser. Anal. 30(1), 70–96.
Venables, W.N., Ripley, B.D., 2000. S Programming. Springer, New York.

http://www.jstatsoft.org/v25/c01
http://CRAN.R-project.org/package=dlm
http://CRAN.R-project.org/package=dlm
http://www.jstatsoft.org/v27/i04
http://CRAN.R-project.org/package=urca
http://CRAN.R-project.org/package=vars
http://CRAN.R-project.org/package=vars
http://www.R-project.org/
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=nnet
http://www.jstatsoft.org/v31/i01
http://CRAN.R-project.org/package=tseries
http://www.jstatsoft.org/v39/i02


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 27-ch23-659-712-9780444538581 2012/4/24 1:52 Page 712 #54

712 A. I. McLeod, H. Yu and E. Mahdi

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S, fourth ed. Springer, New York.
Vingilis, E., McLeod, A.I., Seeley, J., Mann, R.E., Stoduto, G., Compton, C., et al., 2005. Road safety impact

of extended drinking hours in ontario. Accid. Anal. Prev. 37, 547–556.
Whitcher, B., 2010. waveslim: Basic Wavelet Routines for One-, Two- and Three-Dimensional Signal

Processing. R package version 1.6.4. http://CRAN.R-project.org/package=waveslim (accessed
03.02.12).

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
Wilkinson, L., 1999. The Grammar of Graphics. Springer, New York.
Wolfram Research, Inc., 2011. Mathematica Edition: Version 8.0. Wolfram Research, Inc., Champaign,

Illinois.
Wood, S., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, Boca

Raton.
Wuertz, D., 2010. fBasics: Rmetrics - Markets and Basic Statistics. R package version 2110.79. http://

CRAN.R-project.org/package=fBasics (accessed 03.02.12).
Wuertz, D., Chalabi, Y., 2011. timeSeries: Rmetrics - Financial Time Series Objects. R package version

2130.92. http://CRAN.R-project.org/package=timeSeries (accessed 03.02.12).
Wuertz, D., 2009a. fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling. R package

version 2110.80. http://CRAN.R-project.org/package=fGarch (accessed 03.02.12).
Wuertz, D., 2009b. fUnitRoots: Trends and Unit Roots. R package version 2100.76. http://CRAN.R-

project.org/package=fUnitRoots (accessed 03.02.12).
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A
ACF, see Autocorrelation function
ACR models, see Autoregressive conditional root

models
Additive quantile model, 239
Adenine, 262
ADF regression model, see Augmented

Dickey-Fuller regression model
Air pollution levels, spatial interpolation of, 484
Air quality standards, 477
Akaikes information theoretic criterion (AIC), 507
Analysis of variance (ANOVA), 624, 628–630
ANN models, see Artificial neural network models
ar() function, 668
arima() function, 668
AR model, see Autoregressive model
AR–ARCH model
– data analysis for
– – financial data, 152–153
– – simulation study, 151–152, 151t
– nonlinear
– – ARLSCH model, 143–144
– – ARTCH model, 144
– – Engle’s ARCH Model, 143
– – M- and R-estimator, 144–146
AR-sieve bootstrap method, 33–35
AR-sieve methodology, 30
ARCH model, see Autoregressive conditional

heteroscedastic model
ARLSCH model, see Autoregressive Linear Square

Conditional Heteroscedastic model
ARTCH model, see Autoregressive Threshold

Conditional Heteroscedastic model
Artificial neural network (ANN) models, 73–74
Asymmetric Laplace density, 239, 249
Asymptotic distributions, 129–131
– MLE, 329–331
– nonlinear AR–ARCH model, 147–150
Asymptotic joint distribution, 568

Asymptotic mean squared error, 359–360
Asymptotic normality, 109–110
Asymptotic theory, 37, 72
– for estimators of frequency, 590
Asymptotics of sample covariances, 189–193
Atomic clocks, fractional frequency deviates from,

645–646
Augmented Dickey-Fuller (ADF) regression

model, 242
Autocorrelated error, regression, 680
Autocorrelation function (ACF), 30, 315, 316f ,

320, 321, 326t, 672
Autocovariance
– matrix, 596
– operator, defined , 171
– summability of, 179
Autocovariance function (ACF), 190, 322, 326, 673
Autocovariance sequence (ACVS), 631
Autoregression quantile process, 220
Autoregressive (AR) model, 302, 303
Autoregressive approximation, 592–596
Autoregressive conditional heteroscedastic

(ARCH) model, 123, 149
– quantile regression for, 224–229
Autoregressive conditional root (ACR) models, 83
Autoregressive Linear Square Conditional

Heteroscedastic (ARLSCH) model, 143, 144
Autoregressive moving average (ARMA), 28, 100,

117
– filtering, 600–604
– links with processes, 591–592
Autoregressive operator, estimation of, 167–169
Autoregressive Threshold Conditional

Heteroscedastic (ARTCH) model, 144
Autoregressive time series, QR for
– classical AR model, 216
– nonlinear QAR models, 222–223
– QAR models, 217–221
Autoregressive-like difference equation, 591
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Autoregressive-sieve bootstrap, 9–11
Average quadratic loss (AQL), 137

B
B-estimator, 127, 133
Backward procedure, 112–113
Bahadur representation, 224, 229
Balian-Low theorem, 419
Band-pass filters, 628
Bandwidth, 19
Bartlett kernel, 180
Bayesian forecasting, 485
Bernoulli random variables, 339, 340
Bernstein’s theorem, 579
Beveridge wheat price index, 663, 664f
Bicovariance function, 49
Bilateral synchrony, 432
Bilinear models, 537
Biomedical time series, 504, 507
Bispectral density, 30
Bispectrum, 49–50
Bispectrum-based tests, 28
Bivariate cointegrated series, 693
Bivariate time series, 664
Black–Scholes–Merton (BS), 700
Black–Scholes model, 118
Block bootstrap methods, 15
Block Whittle likelihood, 385
Box.test() function, 668, 683
Bootstrap method, 404
– block, 13–16
– frequency domain, 16–17
– for Markov chains, 11–13
– two, mixture of, 17–21
– under long-range dependence, 21–23
Bottom-up algorithm, 427
Brain mapping data analysis, 310–311
Brain time series data, 417
Brownian motion, 243, 245
– process, 71

C
CADFtest package, 692
Canadian Lynx, 48
Canonical correlation analysis (CCA), 512
– for time series, 291–293
Canonical link process, 324
CAR models, see Conditional autoregressive

models
CARMA process, see Continuous-time

autoregressive moving average process
CAST models, see Conditional autoregressive

spatio-temporal models
Categorical-valued time series, 266
Cauchy estimator, 127

Cauchy–Schwarz inequality, 183
Cave plot, 664
CAViaR model, see Conditional Autoregressive

Value-at-Risk model
Central limit theorem, 76, 590
Chaos theory, 56–57
Check function, 214, 234
Chernoff divergence, 440, 441
Chi-square distribution, 271, 636
Cholesky decomposition of covariance matrices,

201–202
Cigarette consumption data, 678
Circular block bootstrap (CBB), 15
Circular boundary conditions, 502
Classical bootstrap approach, 5
Classical linear model, 214
– QR, 240–241
Classical multiple linear regression model, 446
Classification rule for viruses, 279
Close frequency resolution, 611–614
CMAQ model, see Community Multiscale Air

Quality model
Coarsest grid, 567
Code snippet, 687
COGARCH process, 558
Coherence, 418
– SLEX, 435, 436f
Coherent structures, 652–653
Cointegrated time series, quantile regression on,

245–247
Cointegration, 693–694
Cointegration theory, 70, 77–78
Community Multiscale Air Quality (CMAQ)

model, 486
Compact operators, 161
Companion autoregressive process, 11
Completely continuous operators, 161
Complexity-penalized Kullback-Leibler criterion,

426
Conditional autoregressive (CAR) models,

529–530
Conditional autoregressive spatio-temporal

(CAST) models, 532–533
Conditional Autoregressive Value-at-Risk

(CAViaR) model, 237–239
Conditional distribution, 4
– for Gibbs sampling, 492–494
– testing changes in, 249–252
Conditional heteroskedasticity, 220
Conditional information matrix, 328
Conditional likelihood function, 328
Conditional maximum likelihood inference, linear

model, 327–328
Conditional quantile function, 213–214
Conditionally heteroscedastic mixtures of experts

(CHARME), 118
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Consistent estimator, 593
Continuous mapping theorem, 77, 247
Continuous time, Markov switching in, 118–119
Continuous-time autoregressive moving average

(CARMA) process
– Lévy-driven, 545
– second-order properties of, 548–549
– for spot volatility, 550–555
Continuous-time GARCH process, 558–561
Continuous-time stochastic volatility model,

549–550
Conventional nonlinear state-space model, 92
Copula-based Markov models, 222
Cosine packet transfer (CPT), 424
Cosine packets, 424
Count time series models
– integer autoregressive models
– – branching processes, 337–339
– – renewal process models, 342
– – thinning operator-based models, 339–342
– poisson regression models, 317–318
– – asymptotic distribution, MLE, 329–331
– – data examples, 331–334
– – inference, 327–329
– – linear models, 319–323
– – log-linear models, 323–327
– – nonlinear models, 327
– regression models for
– – distributional assumptions, 334–336
– – parameter driven models, 337
Covariance function, 481
– isotropic, 482
– Matern class of, 525
– spatial and temporal, 298–299
Covariance matrices, 390, 595, 644
– Cholesky decomposition of, 201–202
– estimation
– – high-dimensional, 200–201
– – for linear models, 199–200
– – low-dimensional, 193–195
– – with multiple i.i.d. realizations, 202–204
– – with one realization, 204–206
– – parametric, 202
– – for stationary vectors, 197–198
– estimators
– – HAC, 198–199
– – heteroscedasticity-consistent, 195–197
Covariance operator, functional mean and, 163
Covariance-stationarity, 35
Covariance-type estimator, 640
Covariances, asymptotics of sample, 189–193
Covariate effect, 480
Covariate augmented tests, 692–693
Cox-Ingersoll-Ross (CIR), 700
Cramér representation, 382

Cramér-Rao lower bound, 590
Creatinine clearance series, 669, 669f
Cross-spectral density function, 533
Cumulant function, 37
Cumulant generating function, 318
Cusum test, residuals, 681f
Cut-and-stack plot, 663
Cytosine, 262

D
Dahlhaus model, 418
Daniell window, 509, 509f
Data analysis, 331t, 332
Data-generating mechanism, 100, 108
Data-generating process, 7, 8
Daubechies wavelet filters, 625, 627
DBridge(), 700
Decomposition theorem, 48
Dense grid, 568, 572
DFT, see Discrete Fourier transform
DHSimulate() function, 673
Diagnostic tests, 50–53
Dickey-Fuller test, 90, 687
Differential equation, general solution of, 591
Dimension-reduction modeling method, 234–235
Discrete Fourier transform (DFT), 20, 29, 532, 533,

606–610, 625
– frequency domain SAST, 534
Discrete time series, decomposition of
– eigenvalue decomposition, 502
– embedding, 501–502
– window length, 503
Discrete wavelet transformation (DWT), 623,

696–697
Discrete-time hidden Markov models, 118
Discrimination analysis, 407
Distributional assumptions, 317, 334–336
DNA
– bases of, 262, 263
– protein-coding sequences of, 262
– sequence
– – global alignment model, 287
– – local alignment model, 285
– – models for matching, 285–288
– – spectral envelope for analysis of, see Spectral

envelope
– structure of, 263f
Double exponential smoothing, 669
Double Poisson distribution, 336
Double-kernel local linear technique, 234
Durbin-Levinsion recursions, 672–673
Durbin-Watson test, 678–680
DWT, see Discrete wavelet transformation
Dyadic segmentation, 275–279
Dynamic data visualization, 667
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Dynamic initial model for fMRI time series, 303
Dynamic quantile M-test, 136
Dynamic quantile model
– additive, 239
– CAViaR model, 237–239
– forecasting with, 248–249
– QR for dynamic panel data, 239–240
dynlim package, 680

E
EFPCs, see Empirical functional principal

components
Eigentriple clustering, 503
Eigenvalue, 597
– decomposition, 502
Eigenvectors, 597
El Niño–Southern Oscillation, 624
Electroencephalograms (EEGs), 415, 416f , 441
– multichannel, 430–432
EM algorithm, see Expectation–maximization

algorithm
Empirical functional principal components

(EFPCs), 163–164
Empirical orthogonal functions, 502
Empirical spectral processes
– defining, 393
– exponential inequality, 400–401
– Gaussian random vector, 395
– kernel functions, 397
– local quasi-likelihood estimates, 399–400
– measurement of, 395
– tapered preperiodogram, 396
Engle’s ARCH model, 143
Environmental decision making, 478
Epstein–Barr virus (EBV), 280t
– BNRF1 gene
– – blockwise optimal scaling, 276t
– – data analysis, 275
– – dynamic spectral envelope estimates for, 275,

276f
– – spectral envelopes of, 288, 289f
Error correction representation, 78
E-step, 111–115
Estimated Kernel (EK), 170–171
Estimated Kernel Improved (EKI), 172
Eta-CMAQ, 486
European Molecular Biology Laboratory (EMBL),

280t
Exact (EX) prediction method, 172
Expectation–maximization (EM) algorithm,

111–115
Expected shortfall (ES), 253
Exponential autoregressive model, 72
Exponential inequality, 400–401
Exponential pseudo-maximum likelihood

estimation (EPMLE), 127

Exponential smoothing methods, 669
Extremal quantile regressions, 240–242
Extreme value index, 241

F
FARMA, see Fractional ARMA
Fast Fourier transform (FFT), 271, 422, 586, 673
FDB methods, see Frequency domain bootstrap

methods
Feed-forward neural networks, 685
fGarch package, 695
FGN, see Fractional Gaussian noise
Filtering algorithms in continuous time, 119
fImport, 667
Financial time series, 666
Finite intervals, conditions and results of, 571–576
Finite regime models, 91
Finmetrics, 695
Fisher information matrix, 109, 385
FitAR package, 675
fMRI data analysis, see Functional Magnetic

Resonance Imaging data analysis
Forecast distribution, 248
Forecast package, 670–671
Forecasting computations, 673
Forward procedure, 111–112
Forward–backward procedure, see E-step
Foster-Lyapunov criteria, 70
Fourier analysis, 266
Fourier frequencies, 267
Fourier periodogram matrices, 422
Fourier transform, 16, 36, 49
Fourier Transform Interpolator (FTI), 607
Fourier waveforms, 418, 419
Fourier-based spectral analysis, 624
Fourier-transforming, 606
FPCs, see Functional principal components
Fractional ARMA (FARMA), 673, 674
Fractional Gaussian noise (FGN), 673, 674
Fredholm integral, 514
Frequency domain bootstrap (FDB) methods,

16–17
Frequency estimation
– asymptotic theory for, 590
– autoregressive approximation, 592–596
– DFT, 608–610
– Pisarenko’s technique, 596–599
FTI, see Fourier Transform Interpolator
Functional autoregressive (FAR) model, 166–167
– prediction of, 170
Functional coefficient model, 235
Functional connectivity, definition of, 298
Functional limit theorem, 76
Functional Magnetic Resonance Imaging (fMRI)

data analysis, 297
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Functional mean and covariance operator, 162–163
Functional principal components (FPCs)
– estimation of mean function and, 176–178
– population, 164–166
Functional time series, examples of, 158–159

G
Galton-Watson process, 337
Gappy time series, 638–640
GARCH model, see Generalized ARCH model
Gaussian assumption, 92
Gaussian distribution, 634
Gaussian likelihood theory for locally stationary

processes
– generalized Whittle estimates, 392
– LAN and LAM, 390
– MLE, 391
– preperiodogram, 389
– Toeplitz matrices, 388
Gaussian maximum likelihood (GML), 446
Gaussian maximum likelihood estimator (GMLE),

462
Gaussian process, 481–482, 500
– transformations of, 578
Gaussian stochastic process, 76
Gaussian time series, periodogram for, 581
Gaussian white noise, 590, 615, 674
Gaussianity of innovations, 309–310
Gaussianity test, 28–30, 528
– statistics, 37–40
Generalized additive models (GAM), 683
Generalized ARCH (GARCH)
– process, continuous-time, 558–561
– time series, 694–696, 695f
Generalized ARCH (GARCH) model, 100, 118,

125–126
– data analysis for
– – financial data, 133–134
– – M-estimators, MSE of, 132t
– – MSE, 131
– – QMLE of, 134t
– – simulation study, 132–133
– quantile regression for, 224–229
Generalized eigenvalue decomposition (GED), 511
Generalized least squares (GLS), 644
Generalized linear models (GLMs), 318, 681–683,

683t
Generalized Ornstein–Uhlenbeck process, 555
Generalized Whittle likelihood, 389
Genomic differences, detection of, 283
– data analysis, 288
– general problem, 283–285
– sequence matching models, 285–288
Geometric distribution, 15
Geometric ergodicity, 70

Geometrical Brownian motion, 699
ggplot2, 667
Gibbs sampling, conditional distributions for,

492–494
GJR model, 126
– financial data, 133–134
– M-estimator, MSE, 133t
– MSE, 131
– QMLE of, 134t
– simulation study, 132–133
GLMs, see Generalized linear models
GMLE, see Gaussian maximum likelihood

estimator
Ground-level ozone, 478
Guanine, 262

H
Haar wavelet filter, 625
Haar wavelet variance, 647f
Haar wavelet vector, 427
HAC, see Heteroscedasticity and Autocorrelation

Consistent
Hanning window, sidelobe suppression using, 615f
Harmonically related frequencies, 617–618
Harris recurrence condition, 12
Hermitian matrix, 290
Herpesvirus saimiri (HVS), spectral envelopes of

BNRF1 gene in, 288, 289f
Herrndorfs functional central limit theorem, 81
Hessian matrix, 328
Heteroscedasticity and Autocorrelation Consistent

(HAC) covariance matrix estimators,
198–199

Heteroscedasticity-consistent (HC) covariance
matrix estimators, 195–197

Hidden layer, 74
Hidden Markov
– model, 93
– process, 101, 119
Hierarchical models, 479–481
High-density line plot, 664f
High-dimensional covariance matrix estimation,

200–201
Higher-order autoregression, 595
Hilbert space, 530, 533
– model
– – for functional data, 160
– – operators, 160–161
Hilbert–Schmidt norm, 438
Hilbert–Schmidt operator, 161
Histone–DNA interactions, 264
HoltWinters() function, 669
Huber’s estimator, 133
Huber’s k-score, 127
Hybrid bootstrap procedure, 17, 19–21
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I
Identifiability condition, 130
Inflation rate, 696f
Infrared signals, MR-KL analysis of, 507–510
Innovation approach and NN-ARX model, 302–304
Innovation process, 11
Integer autoregressive models, 317, 337
– renewal process models, 342
– thinning operator-based models, 339–341
– – extensions of, 341–342
Integrated volatility sequence, 551
Intermediate-order quantile, 240
Intervals
– finite, 571–576
– increase of, 576–578
Intrinsic spatial stationary process, 528
Invariance principle, 76
Isotropic covariance function, 482, 523

J
jarque.bera.test() function, 679
Joint posterior distribution, 482–483
Joint posterior probability, 113
Jump-diffusion processes, 119

K
Kalman filter, 92, 671–672
Kalman smoothing, 669
Karhunen–Loéve (KL) analysis, 501
Karhunen–Loéve expansion (KLE), 164
– of coupled one-dimensional process, 510–512
– of one-dimensional process
– – analysis, KL, 501
– – discrete time series, decomposition of, 503
– – Gaussian process, 500
– – monthly energy consumption in Italy, 504–505,

505t
– – random process, 498, 499
– – reconstruction, 503–504
– of spatio-temporal process
– – computational details, 514–515
– – quadrature factor, 513
– – state-space formulation, 515–517
– – Voronoi tessellation, 514, 514f
Keenan test, 683
Kernel estimation, 365
Kernel smoothed periodogram matrix, 429
Kernel-based polyspectral, estimation of, 35–37
Kernels, types of, 511–512
Kiefer process, 251
Kiefer-Müller process, 401
KL, see Kullback-Leibler
KLE, see Karhunen–Loéve expansion
Kolmogorov’s formula, 363
Kriging predictors, 523
Kronecker-delta function, 499

Kullback-Leibler (KL), 424
– criterion, 434
– divergence, 427
– information, 384

L
Lévy process, 544–545
Lévy-driven CARMA process, 545
Lévy–Khintchine formula, 544
LAD, see Least absolute deviation
Lagged variables, regression , 680
Lagrange multiplier (LM) tests, 53–54
Laplace distribution, 6
Laplacian operator, 304, 305
Lattices, spatial process, 529–530
Least absolute deviation (LAD), 214
– estimator, 129, 132
– score, 127
Least squares estimators, 611
Least squares regression estimators, 586
Lebesgue measure, 105, 111
Levinson-Durbin algorithm, 364
Likelihood theory, large deviations, 405
Limiting distribution of tn(τ ), 244–245
Linear cointegration system, 79
Linear dependence, measures for, 527–528
Linear dynamic model, 302
Linear Gaussian autoregressive process, 69
Linear Gaussian models, 69
Linear Gaussian state-space model, 515
Linear locally stationary processes
– Cramér representation, 382
– Kullback-Leibler information divergence, 384
– RMSE, 386
– stochastic processes, sequence of, 380
Linear models, 229–230, 330
– for count time series, 319–323
– covariance matrix estimation for, 199–200
Linear nonstationarity models
– linear cointegration system, 79
– unit root model, 75–77
– VAR process, 77–79
Linear ordinary kriging estimator, 524
Linear process, 379
– defining, 45–47
Linear process bootstrap (LPB), 35
Linear regression techniques, 618
Linear simple kriging predictor, 523–524
Linear time series, 30–33
– analysis
– – Durbin-Levinsion recursions, 672–673
– – long-memory time series analysis, 673–675
– – periodic autoregression, 676–677
– – state-space models and kalman filtering,

671–672
– – subset autoregression, 675–676
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Linear univariate case, 70
Linear universal kriging estimator, 524
Linearity of stationary spatial process, 527–528
Linearity test, 28–30
– AR-sieve bootstrap method, 33–35
– statistics, 37–40
– subsampling tests of, 35–40
Link function, 318
Lipschitz continuous derivatives, 400
Lipschitz continuous function, 450
Ljung-Box portmanteau test, 683
Ljung-Box statistics, 133, 152
lmtest package, 678
Local Lyapunov exponents (LLE), 57
Local polynomial fit, 365, 392
Local polynomial functional coefficient estimation,

235–236
Local spectral envelope
– data analysis, 275, 279–282
– dyadic segmentation, 275–279
– piecewise stationarity, 274–275
Locally asymptotically minimax (LAM), 390
Locally asymptotically normal (LAN), 390
Locally stationary processes
– bootstrap methods for, 404
– testing of, 403
Locally stationary random fields, 407
Locally stationary wavelet processes, 402
Log-intensity process, 324
Log-likelihood function, 105, 328
Log-linear models, 318, 330
– for count time series, 323–327
Log-periodograms, 509, 509f , 510f
Logistic vector smooth transition autoregressive

(LVSTAR), 73
Long-memory time series analysis, 673–675
Long-range dependent (LRD), 21, 22
Long-run covariance matrix estimation for

stationary vectors, 197–198
Long-run variance, estimation of, 178–184
Long-memory processes, 406–407
Low-dimensional covariance matrix estimation,

193–195
LPB, see Linear process bootstrap
LRD, see Long-range dependent
ltsa package, linear time series analysis, 672

M
Magnetometer, 158
Mallows topology, 69
Marcenko–Pastur law, 203
Markov chains, 11–13, 331, 338
– theory, 68
Markov inequality, 183
Markov models, 682

Markov switching autoregressions (MS-AR), 101,
103f

– asymptotic normality, 109–110
– ergodicity and consistency, 107–109
– maximum likelihood estimation, 105–107
– model selection, 110
– Viterbi algorithm, 116–117
Markov switching models, 101, 106, 117–118
Matched block bootstrap (MaBB), 15
Matern class, covariance function, 525
Maximal Lyapunov characteristic exponent

(MLCE), 56
Maximal overlap discrete wavelet transform,

625–628
– analysis of variance, 628–630
Maximum likelihood estimation (MLE), 105–107,

127, 590
– consistency of, 108
Maximum likelihood theory, 318
MCMC method, 239, 249
Mean curve, inference for, 406
Mean prediction (MP) method, 172
Mean relative bias (MRB), 137
Mean squared errors (MSEs), 192
– of GARCH and GJR models, 131
Mean-ES analysis, 253
Median regression, 214
Median-type estimator, 640, 641
Mercer’s theorem, 162, 499
M-estimation methods, 124, 144–146
– for GARCH and GJR model, MSE, 132, 133t
– LAD estimator, 129
– score function, 127
– variance function, 128
Metropolis algorithm, 493, 494
Mittag-Leffler process, 89
Mixture models, 93
MLCE, see Maximal Lyapunov characteristic

exponent
Model assumptions, 129
Model mis-specifications, 404–405
Model selection, 404–405
MODWT, see Maximal overlap discrete wavelet

transform
Moment-matching scheme, 634
Monte Carlo
– algorithm, 110
– methods, 93
– simulations, 5, 274
Moore-Penrose inverse, 272
Moving block bootstrap (MBB), 13, 14
Moving-average models, 71
MR-KL, see Multiresolution Karhunen–Loéve
MRA, see Multiresolution analysis
MS-AR, see Markov switching autoregressions
M-step, 114–115



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 28-ind-713-726-9780444538581 2012/4/24 1:06 Page 720 #8

720 Index

Multiple linear regression model, 448
MUltiple SIgnal Characterization (MUSIC)

technique, 599–600
– close frequencies, 613f
– disparate amplitudes, 616f
Multiplicative Winter’s method, 670
Multiresolution analysis (MRA), 698, 699f
Multiresolution Karhunen–Loéve (MR-KL)
– infrared signals, analysis of, 507–510
– noise filtering, 506–507
– scheme of, 506, 507f
– WPT, 505
Multistep prediction, 48
Multivariate AR models, 534–538
Multivariate linear case, 70
Multivariate locally stationary processes, 402–403
Multivariate nonstationary processes, 440
Multivariate STAR models, 534–538
Multivariate time series, 436
MUSIC technique, see MUltiple SIgnal

Characterization technique

N
Nadaraya-Watson estimator, 89
– of conditional distribution function, 234
Native prediction (NP) method, 172
Natural orthonormal components, 163
Nearest Neighbor AutoRegressive model with

eXogenous variable (NN-ARX)
– activation in voxel, 306–307
– dynamic correlations between remote voxels, 308
– innovation approach and, 302–304
– instantaneous connectivities between remote

voxels, 307–308
– likelihood and significance of assumptions,

304–306
Negative binomial probability mass function, 336
Negative binomial regression, 337
Neural nets, 685
Newton’s method, 604, 606
Nile minima series, 675f
NLEC models, see Nonlinear error-correction

models
NN-ARX model, see Nearest Neighbor

AutoRegressive model with eXogenous
variable

Noise filtering, 506–507
Noisy sinusoid, 587f , 595
– periodogram of, 605f
Non linear space–time models, 537–538
Non-linear quadratic kriging predictor, 526–527
Non-negative integer-valued bilinear processes,

342
Nonlinear AR–ARCH model
– ARLSCH model, 144
– asymptotic distribution, 147–150

– Engle’s ARCH model, 143
– M- and R-estimator, 144–146
Nonlinear cointegration
– nonparametric estimation in, 89–90
– relationship, 88
Nonlinear error-correction (NLEC) models, 83–84
Nonlinear I(1) process, 79–82
Nonlinear models
– count time series, 327
Nonlinear models, stationarity of, 69–71
Nonlinear moving average (NLMA), 50
Nonlinear parametric time series models, 72
Nonlinear prediction, 48
Nonlinear process, 47–48
Nonlinear QAR models, 222–223
Nonlinear quantile regression, 222, 226
Nonlinear regression model, 327
Nonlinear state-space models, 91–93
Nonlinear stationary models
– Brownian motion process, 71
– geometric ergodicity, 70
– linear Gaussian model, 69
– linear process, 68
– specific, 71–74
Nonlinear time series, 30–33
– models
– – neural nets, 685
– – tests for, 683
– – threshold models, 683–685
Nonlinearity test, 48
– bispectrum and higher order moments, 49–50
– chaos theory, tests based on, 56–57
– diagnostic tests, 50–53
– nonparametric tests, 54–56
– specification tests and lagrange multiplier tests,

53–54
– surrogate data, 57–59
Nonoverlapping block bootstrap (NBB), 15
Nonparametric bootstrap applications, 9
Nonparametric dynamic quantile regressions
– Bahadur representation, 232
– Nadaraya-Watson, 231
– quantile smoothing splines, 233–234
Nonparametric estimation in nonlinear

cointegration, 89–90
Nonparametric estimator, 392
Nonparametric maximum likelihood estimation,

365–366
Nonparametric tests, 54–56
Nonparametric tvAR models, inference for,

364–366
Nonstationary model, 389
Nonstationary multivariate time series, 418
Nonstationary time series, 70, 434
– quantile regression for, 242–247
– shrinkage procedure for, 439
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Nonsynonymous codon usage, 265
Nucleosome, 262–264
Nucleotide, 262, 264
Nugget effect, 480
β-Null recurrent process, 82
Nullrecurrent Markov chains, 71, 81
Numerical methods, 585
Numerical-valued time series, 267

O
Objective function, 450–452
Observation switching models, 100–101
Occupation time formula, 87
Optimal Box-Cox transformation, 676
Optimal empirical orthonormal basis, 163
Optimal scaling, 269, 270
Optimal shrinkage parameters, 438
Ordinary kriging estimator, 524
Ordinary least square (OLS), 453
Ornstein–Uhlenbeck (OU), 700
– process, 547–548
– – generalized, 555–557
Orthogonal series estimation, 365
Orthogonal transforms, 419
Ozone
– concentration
– – calculation of, 485
– – levels, 485–491, 487f , 488f , 490f , 491f
– ground-level, 478

P
Parameter driven models, 337
Parametric covariance matrix estimation, 202
Parametric estimator, 392
Parametric fit, 366
Parametric forms, 525
Parametric Markov switching models, 118
Parametric models, 7, 68
Parametric nonlinear regression model, 84–88
Parametric Whittle-type estimation, 360–364
Partial Least Square (PLS), 512
Particle filters, 93
Particulate matter, 478
PCA, see Principal components analysis
Pearson residuals, 326, 331, 332, 332f , 333f
Periodic autoregression, 676–677
Periodic function, 617
Periodogram, 58, 578–581
– close frequencies, 613f
– matrix, SLEX, 422
– maximizer, 589–590, 604–606
– same amplitudes and colored noise, 617f
PF method, see Predictive factors method
Pickands’ grid, 567–569, 577, 581
– for periodogram, 579
Piecewise constant models, 406

Piecewise stationarity, 274–275
Plug-in principle, 4
Poisson intensity process, 321
Poisson regression models, 317–318
– for count time series
– – asymptotic distribution, MLE, 329–331
– – data examples, 331–334
– – inference, 327–329
– – linear models, 319–323
– – log-linear models, 323–327
– – nonlinear models, 327
Poisson–loglinear model, 337
Polyspectra, 36
Population functional principal components,

164–166
Population spectral density, 268
Portfolio construction, 252–254
Posterior regime probabilities, 113–114
Power-law exponents, 643–644
Predictions, 407
– methods, 170
Predictive factors (PF) method, 171–175
Predictive model choice criteria (PMCC), 481
Preperiodogram, 388
Principal components analysis (PCA), 435, 436,

498
– SLEX, 428–429
– for time series, 290–291
Purine–pyrimidine pattern, 265
Purines, 262
Pyrimidines, 262

Q
QAR models, see Quantile autoregression models
QMLE, see Quasi maximum likelihood estimator
QR, see Quantile regression
Quadratic interpolator, 608
Quadrature factor, 513
Quantile autoregression (QAR) models, 217–223
Quantile function, 213
Quantile models, forecasting with, 248–249
Quantile regression (QR), 214, 215
– applications
– – conditional distribution, testing changes in,

249–252
– – forecasting with quantile models, 248–249
– – portfolio construction, 252
– for ARCH and GARCH models
– – Bahadur representation, 224, 229
– – nonlinear quantile regression, 225
– – sieve approximation, 227
– for autoregressive time series
– – classical AR model, 216
– – nonlinear QAR models, 222–223
– – QAR models, 217–221
– on cointegrated time series, 245–247
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Quantile regression (continued)
– with dependent errors, 229–231
– for dynamic panel data, 239–240
– extremal, 240–242
– unit root, 242–245
Quasi maximum likelihood estimator (QMLE), 124
Quasi-GML, 446
– estimator, 447
Quinn–Fernandes technique, 603, 604

R
R package ggplot2, 667
R-estimator, 144–146
Random coefficient autoregressive (RCAR) model,

218
Random field, 522, 528f
– models, 529
Random process, 498, 499
Random variables (RV), 630
Random walk plus noise model, 672
Ratio statistics, 17
Realized volatility sequence, 551
Recursive estimation algorithms, 405–406
Reduced rank regression, 512
Redundancy analysis (RA), 512
Regeneration-based bootstrap, 13
Regime switching models, 99, 479
Regression analysis, count data, 316
Regression estimator, 586–589
Regression models
– distributional assumptions, 334–336
– parameter driven models, 337
Regression quantiles, 214–215
Regular functions, 86
Relative mean squared error (RMSE), 386
Renewal process models, 342
Resampling, 12, 13, 20
Residual bootstrap
– for parametric and nonparametric models, 6–9
– procedure, 7
Residual resampling scheme, 8
RMetrics timeSeries() function, 667
Robust estimation, 640
Robust sandwich matrix, 331
Robust test, cointegration, 247

S
SAR models, see Simultaneous autoregressive

models
SAST models, see Simultaneous autoregressive

spatio-temporal models
Scaling filter, 625
Score function, 127
– conditions on, 130

SCR model, see Stochastic coefficient regression
model

Second-order correctness, 14, 17
Second-order stationary autoregressive process,

592
Second-order stationary process, 16, 522, 530
Segment selections, 359–360
Self-exciting threshold autoregression (SETAR),

100
Semi-variogram, 522
– type estimators, 639
Semiparametric dynamic quantile regressions,

234–237
Separable covariance function, 482
Separable process, 531, 532
Sequential quantile regression estimators (SQREs),

250
Shape curves, 366–367
Short-range dependent (SRD), 21
Sieve approximation, 227
SimulateFGN() function, 674
Simultaneous autoregressive (SAR) models, 529,

534
Simultaneous autoregressive spatio-temporal

(SAST) models, 533–534
Single hidden-layer model, 73–74
Singular value decomposition, 161
Sinusoids, 587f , 610
– complex, 618–619
– estimating number of, 619
– fitting, 585
Sklars theorem, 222
Smooth localized complex exponential (SLEX)
– basis algorithm, 422–423
– localized waveforms, 423–424
– periodogram matrix, 422
– shrinkage discrimination method, algorithm for,

439–441
– signal representation
– – models, 425–429
– – multichannel EEG, 430–432
– – spectral estimates, 429–430
– transform, 421–422
– waveforms, 419, 421f
Smoothness conditions, 130
spectrum() function, 668
Space–time autocorrelation coefficients, 536
Space–time autocovariance function, 536
Space–time autoregressive models (STARMA),

535, 536
Space–time bilinear models, 537–538
Sparse grid, 568, 575–577
Spatial analysis, 522
Spatial covariance functions, 298–299
Spatial covariance matrix, 515–516, 516f



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 28-ind-713-726-9780444538581 2012/4/24 1:06 Page 723 #11

Index 723

Spatial interpolation of air pollution levels, 484
Spatial models, 478
Spatial prediction, 478
Spatial process, 522
– models for, 529–530
Spatial stationarity assumption, 299
Spatial stochastic process, 303
Spatial temporal correlations, 298
Spatio-Temporal predictions, 516–517
Spatio-Temporal process
– CAST models, 532–533
– KLE
– – computational details, 514–515
– – quadrature factor, 513
– – state-space formulation, 515–517
– – Voronoi tessellation, 514, 514f
– models for, 532
– SAST models, 533–534
– – frequency domain, 534
Specification tests, 53–54
Spectral density, 30, 267
Spectral density function (SDF), 590, 592, 593f ,

624
Spectral envelope, 265, 269, 270f
– algorithm for estimating, 271
– data analysis, 273–274
– definition and asymptotics, 269–273
– for DNA subsequence, 281f
– of human Y-chromosomal fragment, 273f
– spectral analysis, 267–269
Spectral estimation, shrinkage procedure for,

438–439
Spectral matrix, 418, 435
Spectral representations, 417–418
Spectral shrinkage, 436, 437
SPM, 299–302
– assumption of determinism implied in, 306
Spot volatility modeling, 550–555
Squashing function, 74
STARMA, see Space-time autoregressive models
State-space models, 90–93, 300, 301, 671–672
Stationary multivariate time series, 428
Stationary spatial process, linearity of, 527–528
Stationary time series, shrinkage of, 438
Stationary vectors, long-run covariance matrix

estimation for, 197–198
Statistical inference, 221, 230–231
Stats packages, 668–670
Stochastic coefficient regression (SCR) model,

446–448
– comparison of, 448
– estimators, 450–453
– – asymptotic properties of, 456–462
– – Gaussian likelihood and asymptotic efficiency

of, 462–464

– locally stationary time series, 449–450
– real data analysis, 465–472
– testing for coefficients randomness in, 453–455
– varying coefficient models, 449
Stochastic coefficients, 456
Stochastic differential equation (SDE), 555,

699–700
Stochastic process, 11
– ergodicity of, 107
Stochastic unit root (STUR) models, 82–83
Stochastic volatility model, continuous-time,

549–550
StructTS() function, 669
strucchange package, 681
Structural vector error-correction models (SVEC) ,

694
STUR models, see Stochastic unit root models
Subset autoregression, 675–676
Sup-Wald statistic, 251
Surrogate data method, 57–59
Surrogate series, 57
Systematic component, 319

T
Tapered block bootstrap (TBB), 15
Tapered preperiodogram, 396
TAR, see Threshold autoregression
Temporal covariance functions, 298–299
Thinning operator-based models, 339–341
– extensions of, 341–342
Threshold autoregression (TAR), 683, 684
Threshold models, 683–685
Threshold vector error correction (TVEC)

model, 84
Thresholding procedure, 506
Thymine, 262
Time Frequency toggle (TFT)-bootstrap, 29
Time index parameter, 676
Time series
– analysis, 302
– – functions, 668
– – wavelet methods in, 696–699
– brain, 417
– classication and discrimination of
– – EEG, 432
– – multivariate spectra, 435
– – nonstationary time series, 434
– – SLEX-shrinkage discrimination method,

algorithm for, 439–441
– – spectral estimation, shrinkage procedure for,

438–439
– – spectral shrinkage, 436, 437
– – visual-motor EEG data set, application on, 441
– data, 100
– multivariate, 415
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Time series (continued)
– nonstationary multivariate, 418
– plots
– – built-in function, 663
– – financial time series, 666
– – high-density line plot, 664f
– – RMetrics functions, 667
– – xyplot() function, 664
– quantile regression applications
– – conditional distribution, testing changes in,

249–252
– – forecasting with quantile models, 248–249
– – portfolio construction, 252
– regime-switching models for, 101
– regression, 677
– – autocorrelated error, regression, 680
– – cigarette consumption data, 678
– – Durbin-Watson test, 678–680
– – GLMs, 681–683, 683t
– – structural change, 680–681
– stationary multivariate, 428
Time Series in the Frequency Domain (Brillinger

and Krishnaiah), 197
Time varying autoregressive processes, 353–355
– local covariance estimation, 356–359
– nonparametric tvAR models, inference for,

364–366
– parametric Whittle-type estimation, 360–364
– shape and transition curves, 366–367
– stationary methods, estimation, 355–356
– Yule-Walker estimation, 359–360
Time varying parameters, 90–93
– finance, 407
– local likelihoods, derivative processes and

nonlinear models, 367
– – Kernel-type local likelihoods, 372–373
– – local Whittle estimates, 373–374
– – tvAR(p) processes, 374–375
– – tvARCH processes, 375–377
– – tvGARCH processes, 377–378
Time varying spectral densities, 379, 381
– Fisher information matrix, 385
– Kullback-Leibler information divergence, 384
– RMSE, 386
– Wigner-Ville spectrum, 383
Time-varying spectra, SLEX, 431, 431f
Time-varying weights, SLEX PC, 432, 433f
Toeplitz matrix, 388
TrenchInverse() function, 673
Tracy–Widom law, 203
Traditional least square, 214
Trajectory matrix, 501
Transfer function, 425
– matrix, 417, 418
Transition curves, 366–367
Transition matrix, 104

TrenchForecast() function, 673
Tri-gamma functions, 640
Triangular array asymptotics, 88
Triangular representation, 79
Trigonometric polynomial, 579
tsdiag() function, 668
tseries package, 670
Two-step parameter estimation scheme, 452–453

U
Unconditional likelihood ratio test statistic, 136
Unit root model, linear, 75–77
Unit root quantile regressions, 242–245
Unit-root tests, 685–686
– covariate augmented tests, 692–693
– urca package
– – autocorrelated errors, 686
– – Dickey-Fuller critical values, 692t
– – Dickey-Fuller test, 687
– – punitroot() function, 691
– – residual diagnostic, US real GNP, 690f
Univariate bilinear models, 538
Univariate time series, 101
Universal Transverse Mercator (UTM) projection,

514

V
Validation mean square errors (VMSE), 489
Value-at-Risk (VaR), 124, 252–253
– competing M-estimators comparison, 137
– evaluation and comparison
– – in-sample, 138, 139, 140t
– – out-of-sample, 138, 140–142, 141t
– M-tests, 136
VAR, see Vector autoregressive
VaR, see Value-at-Risk
Variance function, 128
Variogram, 522
vars package, 693, 694
Vasicek (VAS), 700
Vector autoregressive (VAR)
– model, 72–73
– models, 693–694
– process, 77–79
Viterbi algorithm, 116–117
Volatility, 696f
– sequence, 551
Volterra series expansion, 54
Voronoi tessellation, 514, 514f

W
Walsh functions, 272
Wavelet coefficients, 627
Wavelet methods, time series analysis, 696–699
Wavelet packet transform (WPT), 505
Wavelet packets, 423



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 28-ind-713-726-9780444538581 2012/4/24 1:06 Page 725 #13

Index 725

Wavelet variance, 697, 698f
– basic estimators of, 632–633
– biased estimators of, 636–637
– combining, 641–642
– – characteristic scales, 644–645
– – power-law exponents, 643–644
– definition and properties of, 630–632
– examples of
– – atomic clock, fractional frequency deviates

from, 645–646
– – coherent structures, 652–653
– – pack ice, albedo measurements of, 649–650
– – residual sea-ice thickness, 647–649
– – X-ray fluctuations, 650
– for gappy time series, 638–640
– robust estimation of, 640–641
– specialized estimators of, 637
– unbiased estimators of, 633–636
Wavelet-based characteristic scales, 644–645
Weakly dependent functional time series,

approximable functional sequences, 175–176
Weighted empirical distribution estimator, 236–237
Weighted least squares (WLS), 644
Weighted localized averages, 627
Whitening by windowing effect, 9

Wiener expansion, 49
Wiener process, 76, 86, 87, 119
Wigner-Ville spectrum, 383
Wilcoxon rank score function, 146
Window spectral estimation, 268
Winter’s method, 669
Wold-type autoregressive representation, 11

X
X-ray fluctuations, 650, 651f
xyplot() function, 663, 664

Y
yahooSeries() function, 667
Yule-Walker
– equations, 18
– estimation, 167
– – segment selection and asymptotic MSEs,

359–360
– estimators, 10, 591
– parameter, 7
Yule–Walker-type equations, 533

Z
Zero-mean stochastic process, 586
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3. Growth Curve Analysis by S. Geisser
4. Bayesian Inference in MANOVA by S.J. Press
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8. Rank Statistics and Limit Theorems by M. Ghosh
9. Asymptotic Comparison of Tests – A Review by K. Singh

10. Nonparametric Methods in Two-Way Layouts by D. Quade
11. Rank Tests in Linear Models by J.N. Adichie
12. On the Use of Rank Tests and Estimates in the Linear Model by J.C. Aubuchon and

T.P. Hettmansperger
13. Nonparametric Preliminary Test Inference by A.K.Md.E. Saleh and P.K. Sen
14. Paired Comparisons: Some Basic Procedures and Examples by R.A. Bradley
15. Restricted Alternatives by S.K. Chatterjee
16. Adaptive Methods by M. Hušková
17. Order Statistics by J. Galambos
18. Induced Order Statistics: Theory and Applications by P.K. Bhattacharya
19. Empirical Distribution Function by F. Csáki
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25. Itô’s Stochastic Calculus and Its Applications by S. Watanabe

Volume 20. Advances in Reliability
Edited by N. Balakrishnan and C.R. Rao
2001 xxii + 860 pp.

1. Basic Probabilistic Models in Reliability by N. Balakrishnan, N. Limnios
and C. Papadopoulos



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

RAO 29-cpv-727-758-9780444538581 2012/4/24 1:05 Page 745 #19

Contents of Previous Volumes 745

2. The Weibull Nonhomogeneous Poisson Process by A.P Basu and S.E. Rigdon
3. Bathtub-Shaped Failure Rate Life Distributions by C.D. Lai, M. Xie and

D.N.P. Murthy
4. Equilibrium Distribution – its Role in Reliability Theory by A. Chatterjee and

S.P. Mukherjee
5. Reliability and Hazard Based on Finite Mixture Models by E.K. Al-Hussaini and

K.S. Sultan
6. Mixtures and Monotonicity of Failure Rate Functions by M. Shaked and

F. Spizzichino
7. Hazard Measure and Mean Residual Life Orderings: A Unified Approach by

M. Asadi and D.N. Shanbhag
8. Some Comparison Results of the Reliability Functions of Some Coherent Systems

by J. Mi
9. On the Reliability of Hierarchical Structures by L.B. Klebanov and G.J. Szekely

10. Consecutive k-out-of-n Systems by N.A. Mokhlis
11. Exact Reliability and Lifetime of Consecutive Systems by S. Aki
12. Sequential k-out-of-n Systems by E. Cramer and U. Kamps
13. Progressive Censoring: A Review by R. Aggarwala
14. Point and Interval Estimation for Parameters of the Logistic Distribution Based on

Progressively Type-II Censored Samples by N. Balakrishnan and N. Kannan
15. Progressively Censored Variables-Sampling Plans for Life Testing by

U. Balasooriya
16. Graphical Techniques for Analysis of Data From Repairable Systems by

P.A. Akersten, B. Klefsjö and B. Bergman
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31. Bayesian Inference for the Number of Undetected Errors by S. Basu

Volume 23. Advances in Survival Analysis
Edited by N. Balakrishnan and C.R. Rao
2003 xxv + 795 pp.

1. Evaluation of the Performance of Survival Analysis Models: Discrimination and
Calibration Measures by R.B. D’Agostino and B.-H. Nam

2. Discretizing a Continuous Covariate in Survival Studies by J.P. Klein and J.-T. Wu
3. On Comparison of Two Classification Methods with Survival Endpoints by Y. Lu,

H. Jin and J. Mi
4. Time-Varying Effects in Survival Analysis by T.H. Scheike
5. Kaplan–Meier Integrals by W. Stute
6. Statistical Analysis of Doubly Interval-Censored Failure Time Data by J. Sun
7. The Missing Censoring-Indicator Model of Random Censorship by S. Subramanian
8. Estimation of the Bivariate Survival Function with Generalized Bivariate Right

Censored Data Structures by S. Keleş, M.J. van der Laan and J.M. Robins
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