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I Introduction 

For more than two decades, hydrologists have been advocating the use of multivari- 
ate models for describing complex hydrological data. Recently, for example, the 
import of multivariate modeling in hydrology was reinforced by a number of 
manuscripts that appeared in a conference proceedings edited by Shen et al. (1986) 
and also a special monograph on time series analysis in water resources edited by 
Hipel (1985). When considering the general family of multivariate autoregressive 
moving average (ARMA) models, a par t icular  subset of this family, called contem- 
poraneous A R M A  or C A R M A  models, is well suited for modeling hydrological 
time series (Salas et al. 1980; Camacho et al. 1985 ). The main objective of this 
paper is to derive useful statistical properties of C A R M A  models so that they can 
be conveniently and properly applied to hydrological, as well as other types of time 
series. 

The contemporaneous A R M A  (p,q) model, C A R M A  (p,q), is defined as: 

( p h ( B ) ( Z h , t  - -  ~th) = O h ( B ) a h ,  t h = 1 ..... k (I) 

where r  = 1 - -  ~ h l  B . . . . .  (~hphB ph is the autoregressive (AR) operator 

of order Ph for series h; 0h(B) = 1 -- 0hlB . . . . .  OhqhBqh is the moving 
avearge (MA) operator of order qh for series h; a t = (air , . .... ak t  ) '  is the k 
dimensional vector of innovations which is distributed as NID (0, A), where N I D  
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means normally independently distributed. Further, A = (~gh)is  the variance- 
covariance matrix of a t , and Ix h is the mean of series Zh.t" Also, 
P = max(Pt . . . . .  Pk) and q = max(q 1 . . . . .  q~). 

It  is assumed that the zeros of the polynomial equations (Ph(B)=--0 and 
Oh(B ) = 0 ,  h = 1 ..... k, lie outside the unit circle so that the model is stationary 
and invertible, respectively. For the case where Ogh = 0 for g ~ h the model col- 
lapses to a set of k independent univariate ARMA (p,q) models as defined by Box 
and Jenkins (1976). The CARMA model describes the situation when only con- 
temporaneous Granger causality is present among the series (see Granger 1969; 
Pierce and Haugh 1979 and 1977). Pierce (1977.) and Hipel et al. (1985) provide 
empirical evidence that many economic and geophysical time series possess, in fact, 
only Gra~ager instantaneous causality, so that they can be adequately fitted by 
CARMA models. More generally, as is pointed out by Granger and Newbold 
(1979), instantaneous causality may be originated when some temporal aggregation 
is present in the data, a situation which frequently occurs in many fields. These 
considerations show that the class of CARMA models is a very rich class of models 
and that a detailed analysis would be desirable. 

Beside hydrologists, the CARMA model has been studied by workers in other 
fields such as statistics and economics. Nelson (1976) considers the gains in effi- 
ciency from joint estimation of CARMA model parameters. He uses bivariate 
AR(1) (autoregressive model of order one) and MA(1) (moving average model of 
order one) models in simulation experiments to illustrate such gains in efficiency 
and their effects on the forecasting accuracy of the model. Risager (1980, 1981), 
for the CAR (contemporaneous autoregressive) model, and Cipra (1984), for the 
bivariate CARMA model, derive the correlation structure of the model. They also 
provide the asymptotic distribution of the residual cross correlations. Moriarty and 
Salamon (1980) and Umashankar and Ledolter (1984) provide empirical evidence 
of the usefulness of the model to improve the forecast accuracy of the component 
series. For the bivariate case of the CARMA model where one series may be 
longer than the other, Camacho et al. (1987) develop an efficient estimation pro- 
cedure which uses all of the available data. 

The purpose of this paper is to give a comprehensive presentation of the statisti- 
cal properties of the CARMA model. A special effort has been made to present 
the results as general as possible, extending in this way many of the results that 
have been given in the literature. For example, properties regarding the gain in 
efficiency in the estimation of the CARMA model have been given considering 
only particular models. This paper presents the general result. The effect of a joint 
estimation scheme on the asymptotic properties of the estimators for the mean and 
the variance has not been considered before. It  is shown here that the asymptotic 
properties of the univariate estimators for the mean and the variance-covariance 
matrix are identical to the asymptotic properties of the corresponding joint estima- 
tors. Also, a detailed treatment of the forecast accuracy of the CARMA model is 
presented. Finally, some practical applications demonstrate the usefulness of the 
CARMA model in hydrology. 

2 E s t i m a t i o n  o f  p a r a m e t e r s  

The estimation of the parameters of the CARMA (p,q) model in Eq. (1) is con- 
sidered in this section. To facilitate the exposition, the following notation is intro- 
duced. Let {Z 1 . . . . .  Z t} where Z t = (Z1t . . . . .  Zkt ) '  , t = 1 ..... N,  be a sample 
of N consecutive observations from a CARMA (p,q) process. Let 
~h =(~hl  . . . . .  O?hp,Ohl . . . .  --0hg)(~l' denote the parameters of series 
Zht,  h = 1 ..... k ,  and let [I . . . . .  [~k')' denote the matrix of parameters of 
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the CARMA model. It is assumed, without loss of generality, that the order of the 
univariate models are the same, i.e., Ph = P ,  qh = q, h = 1 ..... k .  It is also 
assumed that (i) the process is stationary, (ii) invertible, (iii) ~ h ( B )  and Oh(B) do 
not have common factors, and (iv) the innovations are Gaussian. Let [~h denote the 
univariate maximum likelihood estimator of 13h obtained using the data 
{ Z h l  . . . . .  Z h u } .  Algorithms to obtain these estimators are given elsewhere (see 
for example McLeod 1977; Ansley 1979; MeLeod and Sales 1983). Let 

= (1~1 ', . . . .  ~k')' denote the vector of univariate estimators. The first lemma 
gives the asymptotic distribution of ~. 

LEMMA 1 
tor zero and covariance matrix Vg 

CYlki11 I l k l k k  O.11ii~l . . . --1 --1 

V ~ =  . 
[% l l k~ l  ik  111~ 1 6kki~-k 1 

where 

Ig h = 

The asymptotic distribution o f  ]V1/2 (~  - -  I~) is normal with mean vec- 

(2/ 

[ YVgvh(i -- j )  Yvguh( i --  J) ]  

YugG( i J)  Y G u Y  J)  ' Y c a ( i -  j )  = < c t - i ' d t - j >  

where c, d stand for Vg, Ug, V h, U h, < ' >  denotes expectation and the dimensions 
of V.~. and Ig h are k(p + q) X k(p + q) and (t7 + q) X (p + q), respectively. The 
auxiliary time series are defined by: 

(#h(B)Vm = - -ah t ,  and Oh(B)Uht  = aht h = 1 ..... k (3) 

Proof: It is well known that under normality, identifiability, stationarity and inver- 
tibility conditions, the univariate ARMA model meets the usual regularity condi- 
tions for the maximum likelihood estimator (MLE) to be asymptotically normal 
and efficient. Therefore, the MLE ~h can be expanded as; 

~h - -  ~h = r + 0 p ( N - l )  (4) 

where 

S h = (Sh l  . . . . .  Sh(  p +q))' is the score function and 
N 

{ - - (N(Yhh) - l t~=lah tVh t_  i i = 1 ..... p 

Shi = 1 N (5) 
- - (NOhh) - -  ~ . ,ah tUht_  i i = p + t  ..... p + q  

t = l  

From Eqs. (4_) and (5) it is straightforward to show that 
N < (~g -- I~g)'(l~ h ~,_ 13h)' > = CrghIgglIghI~ 1 which gives Eq. (2). Linear 
combinations of the S s are the average of Martingale differences with convergent 
finite variance. Therefore, normality follows from the Martingale Central limit 
theorem (Billingsley 1961). �9 

Let 13 = (131', . . . .  ~tc')' denote the MLE of 13using joint estimation. The fol- 
lowing lemma gives the asymptotic distribution of [3. 

LEMMA 2 The asymptotic distribution of  N1/2( [~  - -  I~) is normal with zero 
mean and variance covariance V~ given by: 
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[  111,1 .... o,kI,  1-1 
VI~ = (6) 

( y k l I k l  . . . .  (ykklkk 

where t h e  Ig h submatrices are defined in Lemma 1 and A-1  = ((ygh) is the inverse 
of the innovation variance covariance matrix. 

Proof. It is obvious that the aforesaid assumptions (i) through (iii) of the C A R M A  
model imply stationarity, inverfibility and triangular identifiability of the model 
when it is considered as a multivariate A R M A  model (Dunsmuir and Hannan 
1976). Wilson (1973) and later Dunsmuir and Hannan, (1976) show that under 
such conditions N1/2(~ -- I~) is asymptotically normal with zero mean and covari- 
ance 1-1 where 

N 
I =  l im<02S/Ol~Ol~ '>  with S = ~ a t ' A - l a t / 2 N .  

N---,oo t = 1 

From Eq. (1) it follows that 

Oat/O(~r = (0 ..... Vh t_  t . . . . .  0 ) '  h = 1 ..... k; l = 1,...,p 

0at /d0 t = (0 ..... Uht_g ..... 0) '  h = 1 ..... k; I = 1 ..... q 

where Vht and Uht are the auxiliary series defined by Eq. (3). The second deriva- 
tives of S are given by: 

1 N 
O2S/O~giO~hj --  ~ ~ ( O a t / / O ~ i A - l O a t / O ~ h i  + at /A- lO2at /O~giO~hj)  

IV t = l  ~ " 

Taking expectations, the first term of this equation becomes: 

(ygh < Wg t - i  Wht - j > I N  = cgh'~wgwh ( i --  j ) 
t = l  

where W stands for V if 13 = dp or for U if 13 = 0. The second term of this equa- 
tion has zero expectation. The Theorem follows by comparing this result w i t h  Ig h. 
II  

In the following Theorem, the asymptotic distributions of ~ and 13 are com- 
pared. Although both estimators are asymptotically unbiased and asymptotically 
consistent, I~ is not as efficient as I~. 

T H E O R E M  1 V ~  - -  V-I~ is a positive semidefinite matrix, so that ~ is not an 
asymptotically efficient estimator if A is not a diagonal matrix. 

Proof. Consider the vector a = Nl/2([~ -- [~]',0S/0[~')', where 
N K N 

S = ~_~ a t ' A - l a t / 2 N .  Then, OS/O~h j = ]~ Cr rh ]~ a r t W h t - j / N ,  w h e r e  W stands 
t = 1  r = l  t = l  

for V if 13 = ~ and for U if 13 = 0. Now because of the normality assumption, it 
follows from a well-known result of Isserlis (1918) that: 

< a gt Wgt - i  art 'Wht ' - j  > = < a gt Wgt - i  > < art 'Wht '- j  > 

+ < agt art'> < Wgt - i  Wht ' - j  > + <agt Wh t~ j  > < Wgt - i  art'> 

= CgrYW, Wh(i -- j ) ' 8 ( t  -- t ' )  (7) 

where 8(t) = 1 for t = 0 and 8(t) = 0 for t ~ 0. 
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From Eq. (5), it follows that: 
K 

N<agiOS/O~hj~ = ~wgwh(i - j )"  ~ (~rh(~gr/(~gg 
r = l  

i YWewh(i--J)/(~gg i f g  = h 

t 0 otherwise. 

This result and Eq. (4) imply that 

N < ( ~  - -  ~ ) ' 0 S / 0 I ] ' >  = I k ( p + q )  

where I m is the m-dimensional identity matrix. 
Now, from Eq. (7) it is easy to show that 

N. < 0 s / 0 1 3 . 0 s / 0 f f >  = v~- 1. 

Therefore,  the variance covariance matrix of a,  which is positive semidefinite, is 
given by: 

I 

It  follows from a result of matrix algebra that 

V~ -- I" (Vii)-  l.i = Vii -- Vii 

is a positive semidefinite matrix, which is the desired result. In the case that A is 
a diagonal matrix, it is easy to see that V~ = Vii. �9 

The next l emma provides a computationally and statistically efficient algorithm 
to estimate the parameters  of the C A R M A  model. 

N 
at'A-lat/2N. Then, 

t = l  
L E M M A  3 Let [3* = ~ -- Vii(0S/01~)l 3 = Ii where S = 

13" is an asymptotically efficient estimator. 

Proof. From Lemma  1, ~ is an asymptotically consistent estimator of [3. There- 
fore, 1~*, which corresponds to one iteration of the method of scores, has the same 
asymptotic  properties as the M L E  of I~ (Cox and Hinkley 1974; Harvey 1981). �9 

The main idea in the above procedure is to estimate the parameters  of the 
series, 13h, h = 1,...,k, using an univariate A R M A  estimation algorithm and then 
to calculate one iteration of the Gauss-Newton optimization scheme. Of course, 
iterations may  be continued until convergence is obtained to give the M L E  I~. 

The following Theorem gives the distribution of the estimators of the mean vec- 
tor it = (gl  ...... I.tk) and the variance-covariance matrix A in the C A R M A  model. 
As before, g = (~1 . . . . .  ~ k )  denotes the vector of univariate estimators for It and 
I1 the joint estimator. Similar notation is used for A. 

T H E O R E M  2 The asymptotic distribution of N 1 / 2 ( g -  it, A -  A) and of 
N1/2(li --  i t ,~  - A) are identical. Both are normal with zero mean and variance 
covariance given by: 



146 

[i: o 1 
V = 121 

where I~t = [~ghepg(1)t~h(1)/Og(1)Oh(1)], IA = [i(~ij,~rs)/2], and i(t~ij,~,s ) = 
(o'si(yJ%--~ t ~ s j ( ~ i r ) / 2 .  Furthermore, this distribution is statistically independent of 
fl and [I. 

Proof. Consider first the distribution of N1/2(t[ -- It, A --  A) .  As in Lemma 2, 
the normality, identifiability, stationarity and invertibility conditions ensure that 
the regularity conditions for the asymptotic results of the MLE are satisfied. 
Moreover the likelihood can be approximated by (Hillmer and Tiao 1979): 

N 
e(l~,it,A) = C - Nlog [ A I / 2  - ~ at'A-lat/2 (8) 

t ~ l  

It  follows that the asymptotic distribution o f  N 1 / 2 ( l i  - -  I t , / ~  - -  A )  is normal with 
1 mean zero and variance-covariance I -  where I = l i r a  <--02~/O2(tt,A)>/N is 

N--*oo 
the large sample Fisher information matrix per observation. For others, 

N 
O~/O].t h = ~ a h ' A - 1 D  

t = l  

where D '  = (0 �9 �9 - C h �9 �9 �9 O)  and C h = - -dah /Ok t  h = ~ h ( 1 ) / O h ( 1 ) ( s e e  Eq. (1)). So 

I~t= <--O2g/OZit>/N-= (~ghCgCh) = diag(C 1 .... Ck)A -1  diag(C 1 .... Ck) (9) 

Also, 
N 

02g/O(~ijO~Lh = - -  Z a/A-1Kij A-1D = 0 + Op(N 1/2) (10) 
t = l  

where Kij = (Kij + Kji)/2 and Kij is the matrix with zero entries everywhere 
except for a value of one in position (i,j). The last equality follows because the 
left side of Eq. (10) has zero expectation and variance 0(N). The derivatives with 
respect to A are given by: 

N 
Oe/Ocsij = --N~i-i/2 + tr(A-1KijA -1" ~, atat')/2 and 

t = l  

02~/O(~ijOl~rs = N( t~r io j s  n t- ~ r J ( f i s ) / 4  --  tr  { A - 1 K i j A - 1 K r s  A - 1  

N 
+ A-1KrsA-1KijA-I'( ~.~ afar')}~2 

t = l  

Taking expectations, this becomes: 

<02g/O(YijO(Yrs ~> = N((ysit~J r + 6 r i ( y j s ) / 4  

In general, I A can be expressed as: 

I A = <--ozg/o2A>/N = ( A - I |  + P)/4 
where P is a permutation matrix such that p 2 _  ik 2 the identity matrix and 
P ( A - I |  -1)  = ( A - I ~ A - 1 ) P .  Given that A is a symmetric matrix, it is only 
necessary to consider the k (k+ 1)/2 elements of the upper (or lower) triangular 
part of the matrix to obtain the Fisher information and the correlation matrices of 
A. When the k 2 elements of the matrix A are considered in the calculation of the 
Fisher information matrix of A, the resulting matrix I A is singular because some 
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rows of the matrix are repeated. This representation is, however, somewhat easier 
to work with. A generalized inverse for I A can be easily obtained. In fact, IA - l  can 
be expressed as: 

i 

IA -1 = (I + P) (A |  = (A~ A) ( I  + P)  (11) 

The result for (!i -- It, /~ -- A) follows from Eqs. (9) to (11). 
Consider now the distribution of g and A. As in Lemma 1, the univariate MLE 

gh can be expanded as: 

gh -- gh = [ ~ I O g h / O ~ h  + O p ( 1 / N )  (12) 
N 

where gh (~h,ixh,(~hh) ~ C -- Nlogcr 11/2 -- ~ a~t/2C~hh and 
t = l  

Irt = lira ~02~h/O2~th?~ = N a 2 / G h h  . Further, 
/'V---,oo 

N ' C o v ( g g ,  -~h ) = N < I ~  l O~ g /  Ol.tg'I~ l Oe h / O]-th 7~ 
N N 

= ( N 2 f 2 f 2 / ( Y g g ( Y h h ) - l ' z  Z <agtaht  ' >  = (Ygh/Cgfh  
t = l t ' = l  

The varianve-covariance matrix of N1/2(~ -- Ix) is given by 

diag(1/C 1 ..... 1/C~)A-ldiag(1/C1 . . . . .  1/C~) 

which is the inverse of Irt given in Eq. (9). The estimators for A are given by: 
N 

~"'gh = Z agt a h t / N  
t= l  

where a-hi are the residuals obtained from Eq. (1) using ~h instead of I~, the true 
value. Taking a Taylor expansion around the true parameters I~, evaluating at 
and observing that ([~ - I~) and O(~gh/OCYhj are both Op(N-I/2), it follows that: 

N 
Ug h = ~_~ a g t a h t / N  + 0 p ( N  - t )  (13) 

t = l  

The expectation Of~g h is Gg h and the variance-covariance of ~gh and "6ij, neglect- 
ing terms of 0 ( N - 0 ,  is given by 

N N 
<-~ij"~gh > -- (YghCYij = ( l / N 2 ) .  ]~  ]~ <ait 'a j t 'agtaht  > -- Ggh(Yij 

t = i t ' = l  

= (CYgiCYjh + ~gjCrih)/N 

so that the variance covariance matrix of N 1 / 2 ( A -  A) can be written as 
(A|  + P)  which is equal to Eq; (11). Normality is obtained from the Mar- 
tingale central limit theorem as in Lemma 1. 

The last statement of the theorem can be proved considering the Taylor expan- 
sions of the form (see Eqs. (4), (12), (13)) 

N1/2(I ~ - -  I~) = [I i~]- loe/Ol3 + 0 ( N  -1 /2)  

where g(-) is given by Eq. (8) and observing that 

<OglOl~'Og/O(ix', A ) >  = 0, <OglOl~.Og/Otxh> = 0 

<Og/O~'~gh> = 0, and <OglO[~'Og/O(IX', A ) >  = 0. 

It  can also be proved that the joint distributions are normal. Because they are 
uncorrelated, the independence result is obtained. �9 
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3 Distribution of the residual autocorrelations 

In this section, the large sample distribution of the residual autocorrelations for the 
C A R M A  model and an adequate  Portmanteau test for the independence of the 
residuals is given. Li and McLeod (1981) derived the large sample distribution of 
the residual autocorrelations for the general mult ivariate  A R M A  model. The 
result for the general  model is rather too complicated to be of direct applicability.  
For the C A R M A  model, a significant amount of simplification may be obtained 
which gives more easily applicable results. 

Let  1~ be a vector of parameter  values satisfying conditions (i) through (iii) of 
Section 2. F o r p  + 1 < t < N l e t  

Clht = Z h t  - -  + h l Z h t _ l  . . . . .  + h p Z h t _ p  -~- O h l ( l h t _ l  q- . . . -}- O h q ( l h t _ q  

itht = 0 for t <~ p ,  h = 1 ..... k 

The corresponding autocorrelations are defined by: 

% (e) = dgh (e)/[dgg(e)dhh (e)]1/2 
N - - 1  

Cgh(e) = ~_~ i~gtaht+e/N 
t = l  

Let  also f i - -  " ' " ' " ' " ' '  " --  " ' - -  ( r l l  , r21 . . . . .  r12 . . . . .  r k k  ) w h e r e  r i j  - -  [l;ij(1) . . . . .  r i j ( M ! ] ~ .  
For I~ = ~ the vector of univariate est imator (see section 2), let ffht and rijt~) 
denote the corresponding residuals and residual autocorrelations. Similarly,  let 
qht, rij(g) and dht, fij(g) be the residuals and the auotcorrelations corresponding to 
I~ = P, the true parameter  values, and to I~ = I], the M L E  of It, respectively. I t  is 
also assumed through this section that  A = < a t . a t ' >  is in correlation form. 

McLeod  (1979) derived the distribution of the residual cross-correlation in 
univariate A R M A  time series models. His results can be part icular ized to obtain 
the distr ibution of f. The main results for the C A R M A  model are summarized in 
the following Lemma.  

L E M M A  4 

(i) The asymptot ic  joint  distribution of N1/2(-~ -- ~, r ')  is normal with mean zero 
and variance covariance 

[ A iv0g,i di  :I X'A 1 
where V~ and Ihh are given in Lemma 1, 

g = A |  IM, A = ( ~ g h ' X h h ) '  

Xhh =- [(Ylh " ' '  CYkh]'~(--~h,i--j ] ~j,i-j)Mx(p+q) = CY.h Xh,  
oo oo 

* (  g ) - I  = E 7~hr n r '  0 h  l ( g )  = Z lllhr n r  
r =0 r =0 

and A | B denotes the kronecker product  of matrices. 

(ii) The asymptotic  distribution of N1/2~ is normal with mean zero and variance- 
covariance 
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Y + XV~X' -- Xdiag(Ih~l)A ' - Adiag(Ih~l)x ' 

where X = diag(Xii . . . . .  X k k ) k 2 M X k 2 M  . 
In particular, the variance of rgh = (Ygh(1) . . . . .  ~gh(M)) is given by: 

NVar(Fgh) = I M -- ~ghXhIZhlXh" 

The following lemmas give the asymptotic distribution of ~. 

(14) 

L E M M A  5 

(i) The asymptotic joint distribution of  N1/2([~ - -  [~, r ' )  is normal with mean zero 
and variance covariance given by v x,] 

- x . v ~  

where Vf~ is given by L e m m a  2, X and Y by Lemma 4. 

(ii) The asymptotic distribution of N1/2~ is asymptotically normal with zero mean 
and covariance matrix 

y - x .vf fx ,  

In particular, the variance of rgh = (rgh (1) ...... dg h (M))  is given by 

N-Var( tg h) = I M -- ~2 h X h" Var([~ h )x  h (15) 

A detailed proof for the lemma is given by Camacho (1984). �9 
The following modified Portmanteau test statistics is useful for testing for the 

independence of the residuals (see Li and McLeod 1981): 

QM* = N~'~ + k 2 M ( M  + 1)/2 
M 

= N ] ~  ~ ( g ) ' ( A - I |  -4- k Z M ( M  q- 1)/2 (16) 
g = l  

where f (g )  = ( f l l (g) ,  f21(g),.~, r~l(g), f12(g) ..... r~z(g ) ..... r~k(r which is approx- 
imately z~-distributed with k M -- k(p  q-q) d.f. for large N and M.  As shown 
by Li and McLeod (1981), this modified test provides a better approximation to 
the null distribution than QM = N.F~. 

Expressions (14) and (15) also provide a method for testing the independence of 
the residuals by comparing the observed values of fly(e) or Yiy(C) with the respec- 
tive asymptotic standard deviations which are easily calculated. Large values or 
rij(~) or  ~7(g), g # 0, should detect misspecification of the model. 

4 Prediction error for the CARMA model 

In this section, the effect of the two different estimation procedures, namely 
univariate and joint estimation, on the prediction error of the C A R M A  model is 
investigated. To begin with, it is observed that  for a given set of paramet.er values 
the univariate and the joint f9recasts are equal. More specifically, let Z.h,t(i ) t he  

i th  step ahead prediction of Zh, t at t ime t using the parameter  values I~ and the 
univariate model be 

;~h (8 )Zh, = Oh (a )ah, 
where it is assumed, for simplicity, that the mean of the series are equal to zero. 
Let  (Zt,i) h denote the h-component  of Z t , i ,  the i th step ahead prediction at time t 
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of the vector Z t = (Zlt . . . . .  Zkt )" using the model 

~(B)Z  t = O(B)a t 

where ~ ( B )  a.nd O(B) are diagonal matrices with entries {~I(B) . . . . .  ~rc(B)} and 
{.01(B) . . . . .  0K(B)}, respectively. Then, it can be easily shown that 
Zh,t(i) = (Zt , i )  h and Var{Zh,t( i )  } = Var{(Zt , i )h  }. 

The above result implies that to study the effects of different estimation pro- 
cedures on the predictions of the CARMA model, it is sufficient to restrict the 
study to each one of the univariate models. 

Bloomfield (1972) obtained the one step ahead prediction error of univariate 
ARMA models when the parameters of the model are estimated and showed that it 
depends on the estimation procedure. A more general result was given by 
Yamamoto (1981). He obtained formulae for the asymptotic mean square predic- 
tion error at any lag of multivariate ARMA models when the true parmaeters 
values are substituted for their maximum likelihood estimates. His results remain 
valid if a consistent estimator with asymptotic normal distribution is used instead 
of the maximum likelihood estimator. Yamamoto's formulae can then be exploited 
to obtain the prediction, errors of the CARMA model under different estimation 
schemes. For this, let Z h t(i) denote the ith step ahead prediction of Zht using the 
p.arameter values I~. The following lemma gives the asymptotic distribution of 
Zh,t(i). The lemma is a straight forward modification of Theorem 2 of Yamamoto 
(1981, p.489). It is assumed that the observations used for forecasting are indepen- 
dent from those used for estimation, as is customary when dealing with asymptotic 
prediction errors. 

LEMMA 6 Assume that I~ is a consistent estimator for I~ with a normal asymp- 
totic distribution with mean zero and variance-covariance V. Then the asymptotic 
mean square error (AMSE) of Zh,t(i) is given by 

A M S E ( Z t , h ( i ) )  = s + E ( Y t ' U i ' V U i Y t )  

i - 1  = E t]Jhk~hh' where ~ = H'{ ~ Ak- I (A- -B )HAH' (A- -B ) ' A 'k -1}H i-1 2 
k = 0  k = 0  

Yt  = [ Z t , Z t - l , Z t - 2 , ' " ] ' ,  Ui = [ S 1 , S 2 , S 3 , ' " ] ,  

S = " ~ [ H ' A i - I B r ( A - - B ) H ] ,  

A = , B =  i I s - l [ ,  H = (1,0 ..... 0)'s• 1 , 1 m O B  

S " " ' " 0 ] 
j = l  ..... q, ISj=0,  j > q  and ~i=r i = l , . . . , p ,  ~t i = 0 ,  i > p ,  ~ j = 0 h j ,  

U~h(B ) = Oh(B)/~h(B ) and s = max(p,q). 

The following corollary is a direct consequence of Lemma 6 and Theorem 1. 

COROLLARY Let Zt,h(i) and Zt,h(i) denote the ith step ahead prediction error of 
Zt, h using the univariate estimated_parameters ~ and the joint estimated parame- 
ters, I~, respectively. Then AMSE(Z h t(i)) >-- AMSE(Zh t(i)) for i = 1,2 ..... 

These results can be illustrated using the bivariate CARM(1,0) process. It is 
well known that the asymptotic variance covariance of ~h is 
Var(~ h) = (1 -- Op~)/N and it can be shown that 
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V ^ - 2 4 where ~ is the cross correlation at lag ar(gh ) = Var(gh).(1 -- p )/(1 -- ap  ) 
zero between the two processes and a = (1 -- 911)(1 - 921)/(1 -- 911921) 2. Now 
using Lemma 6, it follws that 

A M S E ( Z h , t ( i )  ) - -  AMSE(J~h , t ( i )  ) = N - l ( Y h h . ( i g ~ - l ) 2 . p 2 ( l  - -  ap2)/(1 -- ap  4) 

For the case of a bivariate CARMA(0,1) ,  it can be shown that 

t 
N - - l ~ h h p 2 ( 1  --  ap2)(1 -- ap  4) i ----- 1 

A M S E ( Z h , t ( i )  ) - -  AMSE(Zh,t(i) ) = 0 i > 1 

where now a = (1 -- 021)(1 -- 021)/(1 - -  0 1 1 0 2 1 )  2 .  

These examples illustrate the fact that the reduction on the forecast error 
obtained by using joint estimators, depends on the parameter values of the model 
and on the lag of the forecast. 

5 Hydrological applications 
As an example to show the advantages of fitting C A R M A  models to water 
resources time series, consider the first of three applications given by Camacho et 
al. (1985). Average annual riverflows in m3/s for the Fox River near Berlin, 
Wisconsin, and the Wolf  River near London, Winconsin, are available from Yevje- 
vich (1963) and also the hydrological data tapes of Colorado State University at 
Fort Collins, for the years from 1899 to 1965. Because the Fox and Wolf Rivers 
lie within the same geographical and climatic region of North America, a priori 
one may expect from a physical viewpoint that a C A R M A  model would be more 
appropriate to use than separate univariate A R M A  models. Subsequent to taking 
a natural logarithmic transformation of the observations in both time series, 
univariate identification results suggest that it may be adequate to fit a M A  model 
of order one (i.e., MA(1)) to each data set. After prewhitening each series using 
the calibrated MA(1) model, the residual CCF (cross correlation function) for each 
series is calculated with the prewhitened Fox and Wolf riverflows in order to obtain 
the graph of the residual CCF in Fig. 1, along with the 95% confidence limits (see 
Haugh (1976) and Haugh and Box (1977) for a description of the residual CCF 
and Hipel et al. (1985) for detailed hydrological applications using the residual 
CCF). Because the sample residual CCF in Fig. 1 is only significantly different 
from zero at lag zero, this indicates that a C A R M A  model could be fitted to the 
logarithms of the bivariate series. Additionally, the fact that each series can ade- 
quately be described by a univariate MA(1) model suggests that the following 
CARMA(0,1)  model should be used: 

l~  --  ~h = (1 -- OhlB)aht  h = 1,2 

where h = 1 and h = 2 refer to the Fox and Wolf logarithmic riverflows, respec- 
tively. Table 1 lists the parameter estimates along with their standard errors 
appearing in brackets, using the univariate approach (McLeod and Sales 1983) and 
the joint estimation algorithm developed in this paper. As can be observed in 
Table 1, there is a significant reduction in the variance of the parameter estimates 
when the joint estimation is employed. This in turn means that the relative effi- 
ciency of the univariate estimates with respect to the joint multivariate estimator is 
much less than unity. This relative efficiency is calculated using 

eff = var(~hi) /var(-~hi)  

where 13hi and -~hi are the joint and univariate estimates, respectively, for the 
parameter 13hi. The correlation between tilt and d2t is calculated to be 0.82. 
When the residuals of the CARMA(0,1)  model are subjected to residual checking, 
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Figure 1. Residual CCF for the prewhitened series of the logarithmic Fox and Wolf riverflows 

Table 1. Parameter estimates for the CARMA model and univariate models for the Fox and Wolf 
Rivers 

Fox River Wolf River 
Univariate -0.483 -0.411 
Estimates of Oh a (0.110) (0.111) 

Joint -0.170 -0.470 
Estimates of Oh 1 (0.088) (0.091) 

Efficiency of 0.640 0.532 
Univariate Estimator 

Mean of Log Zht 3.39 3.84 
(0.037) (0.042) 

Residual Variance 4.30 )< 10 2 7.4 • 10 -2 

no misspecfications of the fi t ted model are detected. 
In a second application, Camacho et al. (1985), fitted a C A R M A  model to two 

average monthly water  quality t ime series. Because it is usually fairly expensive to 
collect water quality data,  the employment of the best model at the analysis stage 
can be cost effective. They demonstrate that  if only a univariate series were used 
to est imate the parameters  of the model for each series, it would be necessary to 
increase the sample size of each series by a factor of four in order to achieve the 
same reduction in the variance of the parameter  estimates obtained using a 
C A R M A  model. 

In  their  final application, Camacho et al. (1985) fi t ted a C A R M A  model to two 
average annual riverflow time series for which one series has 70 observations while 
the other has 45 values. Because the estimation procedure of Camacho et al. 
(1987) can deal  with data  having unequal numbers of observations, and conse- 
quently, all of the available information can be used, their joint estimation pro- 
cedure is uti l ized to efficiently est imate the model parameters.  

Besides pract ical  applications, simulation can also be used to demonstrate that  
the efficiency of the joint estimation procedure is bet ter  than the univariate estima- 
tion approach. Assuming a CARMA(1 ,0 )  model, Camacho (1984) uses simulation 
studies to demonstrate  that  for small samples the joint estimation approach is more 
efficient. 
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6 Conclusion 

By employ ing  the  jo in t  es t imat ion  p rocedure  developed theore t ica l ly  in this paper ,  
prac t i t ioners  can  actual ly  ca l ibra te  C A R M A  models  when they  fit  t hem to hydro- 
logical  and o ther  kinds of t ime  series. Besides theore t ica l  results, p rac t ica l  applica- 
tions demons ta r t e  the  usefulness  of  C A R M A  model l ing  in hydrology.  A f t e r  
es t imat ing  the  pa ramete r s  of  a C A R M A  model ,  d iagnost ic  checking  can be carr ied  
out  to ensure  that  the C A R M A  model  provides an adequa te  fit  to the da ta  set. 
U p o n  sat isfying diagnost ic  tests, a f i t ted  C A R M A  model  can be used for purposes 
such as forecas t ing  and simulat ion.  
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