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ABSTRACT
The forecasting capabilities of feed-forward neural network (FFNN) models
are compared to those of other competing time series models by carrying out
forecasting experiments. As demonstrated by the detailed forecasting results
for the Canadian lynx data set, FFNN models perform very well, especially
when the series contains nonlinear and non-Gaussian characteristics. To
compare the forecasting accuracy of a FFNN model with an alternative model,
Pitman’s test is employed to ascertain if one model forecasts significantly better
than another when generating one-step-ahead forecasts. Moreover, the 
residual-fit spread plot is utilized in a novel fashion in this paper to compare
visually out-of-sample forecasts of two alternative forecasting models. Finally,
forecasting findings on the lynx data are used to explain under what conditions
one would expect FFNN models to furnish reliable and accurate forecasts.
Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

In recent years, neural networks or neural nets have been applied to many areas of statistics, such
as regression analysis (De Veux et al., 1998), classification and pattern recognition (Ripley, 1996)
and time series analysis. General discussions of employment of neural networks in statistics are pre-
sented by Warner and Misra (1996) and Chen and Titterington (1994). Within the statistical litera-
ture, the theory and application of neural networks have been advanced and in certain situations
neural networks have been found to work as well or better than rival statistical models. For an account
of the historical development of neural computation, one can refer to books by authors such as 
Anderson and Rosenfeld (1998) and Johnson and Brown (1988). Well-written textbooks on neural
networks include contributions by Kasabov (1998), Mehrotra et al. (1997), Freeman (1994) and
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Hertz et al. (1991). Neural networks have been featured in mass-circulation popular magazines such
as Maclean’s magazine in Canada (Kurzweil, 1999). Dyson (1997) provides an entertaining and spec-
ulative look at the future of neural computation and its impact on the World Wide Web.

In spite of the diverse applicability of neural networks in many different areas, much controversy
surrounds their employment for tackling problems that can also be studied using well-established
statistical models. One such controversial domain is time series forecasting. Accordingly, the main
objective of this paper is to use forecasting experiments to explain under what conditions 
FFNN (feed-forward neural network) models forecast well when compared to competing statistical
models.

Following a description of FFNN models in the next section, an overview is given about the use
of neural networks in time series prediction. In the third section, model calibration methods for FFNN
models and techniques for comparing forecasts from competing models are described. As one of the
comparison methods, Pitman’s test is introduced because it is utilized in the subsequent forecasting
experiments to determine if one model forecasts significantly better than another. In addition, the
residual-fit plot of Cleveland (1993) is put forward as an insightful visual means for comparing the
forecasting abilities of two models. In the fourth section, forecasting experiments with lynx data are
presented based on the analytical framework explained previously. By making comparisons with a
statistical model suggested by Tong (1983), many advantages of FFNN models are shown. Overall,
FFNN models work well for forecasting certain types of ‘messy’ data that may, for example, be non-
linear and not follow a Gaussian distribution.

FEED-FORWARD NEURAL NETWORK MODELS IN TIME SERIES PREDICTION

A variety of neural net architectures have been examined for addressing the problem of time series
prediction. These architectures include: multilayer perceptron (MLP) (Lisi and Schiavo, 1999;
Faraway and Chatfield, 1998; Stern, 1996; Hill et al., 1996; Lachtermacher and Fuller, 1995;
Jayawardena and Fernando, 1995); recurrent networks (Freeman, 1994, section 6.2); radial basis
functions (RBF) (Jayawardena and Fernando, 1998; Hutchinson, 1994); comparison of MLP and
RBF (Fernando and Jayawardena, 1998; Jayawardena et al., 1996).

There is substantial motivation for using FFNN for predicting time series data. Hill et al. (1996),
for example, mention the following drawbacks of statistical time series models that neural network
models might solve:

• Without expertise, it is possible to misspecify the functional form relating the independent and
dependent variables, and fail to make necessary data transformations.

• Outliers can lead to biased estimates of model parameters.
• Time series models are often linear and thus may not capture nonlinear behaviour.

Nonlinear time series
Lisi and Schiavo (1999) used a FFNN model for predicting European exchange rates. The FFNN
model was found to perform as well as the best model, which was a chaos model. Chaos or dynam-
ical nonlinear systems provide another new approach to time series forecasting, which has had some
success (Casdagli, 1989). Both the FFNN and chaos models outperformed the classical random walk
model for one-step-ahead forecasting of daily exchange rate data. According to Lisi and Schiavo
(1999), based on a statistical test, there was no significant difference between FFNN and the chaos
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models, but both of these models performed significantly better than the traditional random walk
model, which is usually the best model for such data.

Lachtermacher and Fuller (1995) mention that Lapedes and Farber (1987, 1988) generated two
deterministic nonlinear time series, which look chaotic, and found neural networks performed excel-
lently in generating forecasts. They think that neural networks have a key role to play in time series
forecasting.

Jayawardena and Fernando (1995) applied FFNN models to daily discharge data at a streamflow
gauging station in Hong Kong. They found that the FFNN approach is better than the traditional
tank model method for forecasting in terms of root mean square error (RMSE) out-of-sample 
forecasting.

Jayawardena et al. (1996) applied the RBF method, which is similar to FFNN, to runoff fore-
casting. The RBF approach has the advantage that it does not require a long calculation time and
does not suffer with the overtraining problem. In their study, they found that the RBF method per-
forms the same as FFNN in terms of RMSE out-of-sample forecasting for mean water levels.

Linear time series
Faraway and Chatfield (1998) compared FFNN models with a SARIMA (seasonal autoregressive
integrated moving average) model on their accuracy for forecasting airline data. In their paper, they
discovered that FFNN models also give smaller mean square errors (MSEs) of out-of-sample pre-
diction, but they mention that one has to be cautious when applying FFNN models to time series.
For choosing an appropriate FFNN architecture, they recommend using the Baysian information cri-
terion (BIC) (Akaike, 1977; Schwarz, 1978). However, the FFNN procedure is not a probabilistic
type of neural network which assumes random errors, and therefore it is strange to use the BIC which
is based on a likelihood obtained by random errors. In fact, Chen and Titterington (1994) mention
that the traditional neural network approach proposes an optimality criterion without any mention
of random errors and probability models. Another interesting result from Faraway and Chatfield
(1998) is that their log transformation for the airline data did not improve the forecasting accuracy.

On the contrary, Lachtermacher and Fuller (1995) suggest using the Box–Cox transformation 
recommended by Hipel and McLeod (1994) in their modelling framework. They employ the
Box–Jenkins method approach to build a suitable neural network structure by identifying the lag
components of the time series. Moreover, they demonstrate the usefulness of their hybrid method-
ology by applying it to four stationary time series (annual river flows) and four nonstationary time
series (annual electricity consumption).

Stern (1996) applied FFNN models to several data sets generated by autoregressive models of
order 2 (abbreviated as AR(2) models) with different signal to noise ratios. He concluded that if the
signal to noise ratio is small, FFNN models cannot produce good predictions. However, his FFNN
architecture is chosen without regard to sound theoretical reasons.

Hill et al. (1996) mention that the length of training data (number of historical data) influences
the forecasting accuracy. Overall, many issues have been discussed by researchers with respect to
time series forecasting using FFNN models.

Based on these previous forecasting results, FFNN models seem to be suitable for time series fore-
casting with small signal to noise ratios if we have enough data and use appropriate data transfor-
mation techniques. Therefore, FFNN models should be more widely applied to this type of data not
only for forecasting purposes but also for other reasons such as checking the performance of devel-
oped statistical models or producing combinations of forecasts as is done by Lachtermacher 
and Fuller (1995). Especially when a time series is nonlinear or messy and statistical modelling is
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difficult, FFNN models can be advantageous in providing quick and accurate forecasts of the series.
Accordingly, more forecasting experiments should be carried out to compare the performance of
FFNN models with other types of models not only for experimentally generated data but also for
actual time series. The lynx data studied later in this paper constitute a typical nonlinear time series
for which FFNN models outperform other statistical models.

Comparison methods are another important issue for the FFNN application. Since FFNN models
are not probabilistic, residuals do not usually follow a probability distribution. Therefore, we adopt
a methodology to compare the forecasts considering the nonprobabilistic feature of FFNN models.
Specifically, Pitman’s test constitutes an appropriate statistical test for comparing forecasting accu-
racy between FFNN models and other statistical models. In addition, a visualization method called
residual-fit spread (RFS) plot is introduced to compare two different forecasting methods.

FORECASTING PROCEDURES FOR FFNN MODELS

Model calibration method
Software for fitting neural networks is widely available. The research in this paper uses the SPSS
(1998) package called Neural Connection. This software supports a variety of node activation func-
tions, weight functions and learning algorithms. We examine six types of FFNN models combining
three kinds of node activation functions and two types of weight functions shown in Table I. Two
types of learning algorithms can be selected, but in our case we examine only the default setting,
which is the conjugate gradient method. For the time series data, we have to construct an input data
with several lags. The way to select a number for the lag can be arbitrary, but a reasonable idea is
to select a lag for which the autocorrelation between the original data and lagged data becomes large.
Several different lags are examined in our case study, but the lag is chosen considering the auto-
correlation. In time series modelling using the FFNN, let the model be denoted by FFNN(L; h),
where L is the set of lags and h is the number of hidden nodes.

Typically the data are divided into three portions, N = N1 + N2 + N3. N1 of the data are used for
training and N2 are used as validation data to check the prediction accuracy for the model selection.
N3 of the data are employed for the out-of-sample predictions by the calibrated model. The small-
est number of RMSEs for the validation data becomes a desirable model, but N2 can be arbitrarily
chosen and the forecasting accuracy by the calibrated model depends on the numbers N1 and N2.

Table I. Examined FFNN models featured by node activation functions
and weight functions

Model Node activation function Weight function

A Sigmoid Gaussian
B Sigmoid Uniform
C Tanh Gaussian
D Tanh Uniform
E Linear Gaussian
F Linear Uniform



Forecasting with Feed-Forward Neural Networks 109

Copyright © 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 105–117 (2005)

Therefore, we examine several numbers for N1 and N2. The model which produces the smallest
RMSEs for both the training and validation data is desirable. An overtrained model can produce a
small RMSE for the training data set, but tends to produce a large RMSE for the validation data set.
On the other hand, a large RMSE for the training data set and a small RMSE for the validation data
set may indicate that the forecasts for the validation happen to fit the data well. Therefore, we 
recommend to use the number of validations which makes smallest the larger of the RMSE for the
training and validation data sets.

A reasonable method to determine the numbers of hidden nodes and layers is still controversial
in the FFNN application field. (e.g. Moshiri and Cameron, 2000; Amilon, 2003). In this paper, the
numbers of hidden nodes and hidden layers are experimentally determined as either 1 or 2. If the
best model is obtained, then we try the 3 hidden nodes case. This approach is designed to minimize
the time required to obtain the forecasts and minimize the forecast errors.

We focus primarily on one-step-ahead forecasting. One reason for this is that forecasting methods
for a stationary series predict the mean as the long-run forecast. Another justification is that one-
step-ahead forecasts are most useful in practice, since one should automatically recalibrate a model
and generate new forecasts as more data become available. Moreover, for many models, one-step-
ahead forecast errors are independent of one another. Hence, one-step forecasts are best for dis-
criminating among competing models. Additionally, in most previous forecasting experiments with
time series, one-step forecasts have been used. A simple comparison of the performance of the
methods is given by simply comparing the MSE or RMSE of the forecasts. Median absolute error,
mean absolute percentage error and other criteria have been used in previous forecasting studies
(Hipel and McLeod, 1994, section 15), and there are many other possibilities.

Comparing forecasts from competing models
Methods for rigorously comparing forecasts between FFNN models and statistical models are
required for properly carrying out forecasting experiments. In this paper, we introduce two
approaches—a statistical test and a visualization method.

Since the one-step forecast errors under a valid model are theoretically uncorrelated, we can use
Pitman’s test for testing the equality of variances in the paired sample case (Hipel and McLeod,
1994, section 8.3.2). This test can indicate if the forecasting performance as measured by MSE is
significantly different between two models.

Visualization and graphical methods often provide insights that complement significance tests by
indicating the magnitude of differences, revealing unexpected outliers and other features of the data.
Cleveland (1993) stresses the use of visualization methods as diagnostic methods to check the 
statistical assumptions behind fitting and also for exploratory data analysis (Tukey, 1977), where no
explicit probability model is entertained. We adapt the RFS plot discussed by Cleveland (1993) to
compare the out-of-sample forecasting performance.

First, we look at time series plots showing the observed values and forecasts. This is an obvious
plot to provide a quick examination of the forecasting capability of a model. However, the time series
plot is not very good at revealing differences between competing models.

The RFS plot provides a visual summary of the amount of variability accounted for by a model
and is readily adapted to out-of-sample forecast comparisons. The RFS plot is comprised of two
panels. The left panel shows the quantile plot of the targets minus their mean. The right panel is a
quantile plot of the forecast errors. For comparing the forecasting performance of two models, we
keep the scales identical on both parts of the RFS plots.
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FORECASTING EXPERIMENTS WITH LYNX DATA

Previous time series analysis studies
The lynx data consist of the set of annual numbers of lynx trappings in the Mackenzie River 
District of North-West Canada for the period from 1821 to 1934. It is assumed by ecologists that
these data indicate the relative magnitude of the lynx population and are, therefore, of great interest
to ecological researchers. The data are plotted in Figure 1. Ecologists believe that cycles in popula-
tion, such as those observed with the lynx series, occur when there is a strong predator–prey rela-
tionship. The predator causes the prey to decline and this is followed by a decline in the predator
population. The prey population recovers and this causes an increase in the predator population and
so the cycle continues.

This lynx data are one of the most frequently used time series. It is actually part of a much larger
collection of time series derived originally from Hudson Bay Company archives and first published
by Elton (1927) and analysed by Elton and Nicholson (1942). The first modern time series analysis
was carried out by Moran (1953) who fit an AR(2) model to the logged data. Almost every type of
nonlinear time series model has been shown to produce a better fit than the AR(2) model. In an
extensive review, Tong (1990, section 7.2) discusses the numerous nonlinear models that have been
tried. Tong (1990, section 7.2) favours the self-exciting threshold autoregression (SETAR) model.
Tong (1983) used the SETAR model for some out-of-sample forecast comparisons with other non-
linear models. Lin and Pourahmadi (1998) analysed this data by additive and projection pursuit
regression (PPR) and concluded that again Tong’s SETAR model performed much better than the
PPR and other models. Nonetheless, in this paper, it is shown that the FFNN model is just as good
or better than SETAR models for one-step out-of-sample forecasting of the lynx data. The FFNN
model is also compared to the AR(2) model to further justify this claim.

Forecasting results
We divide the lynx data into three data sets, consisting of training, validation and test data. The
number of test data is set to 14 and its predicted values are compared with the predicted values gen-
erated employing the model reported by Tong (1983). Because Tong (1983) discussed his results for
the lynx data in the transformed domain, Pitman’s test and RFS plots are presented here for the trans-
formed domain.
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The histograms of the lynx data were skewed to the right and, hence, it is recommended to use
the transformation ln(x + a), where a is a constant (SPSS, 1998). In fact, Tong (1983) used log with
base 10, which makes the lynx data more symmetrical looking.

The results of the forecasting experiments are summarized in Tables II and III. Table II shows the
models which produce the smallest RMSEs for the test data. SETAR(2; 6, 3) means that there are

Table II. Comparison of the RMSEs among AR(2) model, SETAR(2; 6, 3) and several FFNN models for the
logged lynx data with base 10. FFNN models, which produce the smallest RMSEs for out-of-sample
forecasts, are selected. The number of test data is set as 14. The sum of the training and validation is set as
100. The NV is the number of the validation data, the st is the RMSE of the training data, sv is the RMSE of
the validation data and sp is the RMSE of the test data

Model Type NV st sv sp

FFNN(1:1) F 80 0.342 0.361 0.221
FFNN(1:2) A 80 0.343 0.359 0.218
FFNN(1, 2 :1) C 35 0.209 0.289 0.130

D 35 0.209 0.289 0.130
FFNN(1, 2 :2) A 50 0.199 0.240 0.095
FFNN(1, 2 :3) A 5 0.209 0.399 0.091
FFNN(1, 2, 3 :1) F 10 0.229 0.312 0.139
FFNN(1, 2, 3 :2) B 15 0.201 0.325 0.123
FFNN(1, 10:1) F 5 0.321 0.522 0.214
FFNN(1, 10:2) A 15 0.327 0.313 0.208
FFNN(1, 2,10:1) E 15 0.229 0.299 0.151
FFNN(1, 2, 10:2) C 50 0.173 0.253 0.118

AR(2) 0.238 0.134
SETAR(2; 6, 3) 0.220 0.122

Table III. Comparison of RMSEs among AR(2) model, SETAR model and several FFNN models for the
logged lynx data with base 10. The number of validation data is selected such that the larger RMSE between
training and validation becomes smallest. The NV is the number of the validation data, the st is the RMSE of
the training data, sv is the RMSE of the validation data and sp is the RMSE of the test data

Model Type NV st sv sp

FFNN(1:1) B 70 0.352 0.353 0.240
FFNN(1:2) C 70 0.344 0.348 0.245
FFNN(1, 2 :1) F 70 0.240 0.241 0.138
FFNN(1, 2 :2) B 65 0.196 0.229 0.114
FFNN(1, 2 :3) D 65 0.209 0.235 0.129
FFNN(1, 2,3 :1) A 65 0.210 0.249 0.161
FFNN(1, 2, 3 :2) D 65 0.201 0.244 0.159
FFNN(1, 10:1) F 55 0.302 0.356 0.250
FFNN(1, 10:2) C 55 0.291 0.347 0.280
FFNN(1, 2, 10:1) F 60 0.215 0.260 0.220
FFNN(1, 2, 10:2) D 55 0.166 0.246 0.138

AR(2) 0.238 0.134
SETAR(2; 6, 3) 0.220 0.122
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two switching regimes, one of which has six lagged variables and the other three lagged variables.
Among these models, the FFNN(1, 2; 2) model has the smallest RMSEs for the test data. Because
the RMSEs for the validation data are also smallest, there is a higher chance to select a FFNN(1, 2;
2) structure compared with other FFNN structures. However, there is no guarantee on selecting the
numbers of training and validation data sets. Table III shows the results of the models with the rec-
ommended number of validation data. The number of validation data is selected such that the larger
RMSE between training and validation becomes smallest. We can see that the FFNN(1, 2; 2) model
performs best again in both validation and test, and it outperforms SETAR(2;6,3) in terms of the
RMSEs of forecasts.

Figure 2 shows that the RMSEs of FFNN(1, 2; 2) models are mostly smaller than the SETAR
model even if the number of validation data is changed. Overall, the forecasting findings support the
employment of the best FFNN model, FFNN(1, 2; 2) with a logarithmic transformation, to obtain
smaller RMSE values than those from the SETAR model.

Using RFS plots, we can visually compare the out-of-sample forecasts with the observed data.
The plots offer more information than just reporting sp, the RMSE of the out-of-sample predictions
or simply plotting time series of observed and predicted values as in Figure 3. The RFS plots in
Figure 4 show that the FFNN(1, 2; 2) model draws our attention to only one positive outlier, while
the SETAR(2; 6, 3) model is suffering from not only one positive outlier but also one negative outlier.
This indicates that there is a pattern of the series that the FFNN(1, 2; 2) model can detect, but the
SETAR(2; 6, 3) cannot.

Then, we examined Pitman’s test for 14 predicted values from SETAR(2; 6, 3) and FFNN(1, 2;
2) models. The difference between the SETAR(2; 6, 3) and FFNN(1, 2; 2) forecast errors is not sta-
tistically significant in the transformed domain for which Pitman’s test r = 0.122, = 1.292 indi-
cates a significance level of 2Pr(t > ) = 0.220. In terms of the Pitman statistical test, the FFNN
model does not significantly outperform the SETAR in out-of-sample forecasting for the lynx data
at the 5% level of significance. However, the SETAR model building explained in Tong (1983) shows
that it takes a long time to find the appropriate SETAR model. On the other hand, FFNN models do
not take much time to design the most suitable model.

t̂
t̂

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of Validation Data

R
M

S
E

s 
of

 F
or

ec
as

ts

Min
Average
Max

Figure 2. RMSEs of the test data for FFNN(1, 2; 2) with the various numbers of validation data sets



Forecasting with Feed-Forward Neural Networks 113

Copyright © 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 105–117 (2005)

Overall, when one takes into account the results of RMSE performance, RFS plots and model
building speed for the lynx data, the FFNN model performs well when compared to its competitors.
Kajitani (1999) presents the results of forecasting experiments when various types of FFNN models
are compared to other time series models for actual seasonal time series and nonlinear data com-
posed of deterministic trends. Once again, FFNN models perform well.

CONCLUSIONS

This study examines the forecasting performance of FFNN models compared to other competing
statistical models. From the previous studies on time series forecasting with FFNN models, it is
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shown that FFNN models work well even when the signal to noise ratio is small. Therefore, we
selected the lynx data, which looks nonlinear and less noisy, as suitable data for testing and showing
the usefulness of the FFNN modelling approach in time series forecasting. Because of the complex
nonlinearity of the lynx data, considerable effort has been expended by many statisticians and ecol-
ogists to model this interesting time series.

In terms of modelling speed, FFNN models work well. There are sensible approaches to construct
FFNN models but, in fact, there are not many restrictions for building FFNN models because of
their black box characteristics. One can obtain a comparatively reasonable model more quickly than
when one builds a competitive statistical model. In this paper, the structure of a FFNN model is
experimentally found by considering its autocorrelation, and we simply set a rule to select the number
of validation data such that the larger RMSE between training and validation becomes smallest. Even
this simple rule is enough to show the high forecasting performance of FFNN models, and it is
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demonstrated that FFNN models outperform an AR(2) model and a SETAR(2; 6, 3) model in terms
of RMSEs with respect to forecasting the lynx data. Previously, the SETAR(2; 6, 3) model of Tong
(1983) was the most recommended statistical model for applying to the lynx data.

Comparison of RMSEs is one useful approach to determine forecasting accuracy between com-
peting models. However, it is recommended to use appropriate statistical tests or other complemen-
tary approaches when carrying out a thorough forecasting study. In this paper, RFS plots and Pitman’s
statistical test are proposed as useful comparison techniques which do not have to satisfy any random
error assumptions for the residuals. As a result of Pitman’s test, it is not clearly shown that the FFNN
model statistically outperforms the SETAR model. However, RFS plots indicate that the FFNN
model possesses only one outlier, while the SETAR model has two outliers. For these two outliers
produced by the SETAR model, one is recognized as a deterministic pattern by the FFNN model.
Since outliers tend to influence statistical test results, it is important to complement the test by this
type of visualization techniques.

Overall, our research findings demonstrate that the FFNN can perform as well as or even outper-
form competing statistical models, especially in nonlinear and non-Gaussian situations. Moreover,
the simple rules for constructing FFNN models and visual comparison techniques are helpful for
allowing FFNN models to be conveniently employed in forecasting studies.
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