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ABSTRACT: The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of
temperature and precipitation data is presented. The K-nearest neighbor weather generator essentially reshuf-
fles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to
preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is
also added to enhance the generation of extreme values. The Upper Thames River Basin in Ontario, Canada
is used as a case study and the model is shown to simulate effectively the historical characteristics at the site.
The KnnCAD Version 4 approach is shown to improve on the previous versions of the model and offers a major
advantage over many parametric and semiparametric weather generators in that multisite use can be easily
achieved without making statistical assumptions dealing with the spatial correlations and probability distribu-
tions of each variable.
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INTRODUCTION

Weather generators are stochastic simulation tools
that are commonly used to produce synthetic climate
data of any length with the same characteristics as
the input record. Such algorithms are often used for
hydrological applications (Dibike and Coulibaly, 2005;
Charles et al., 2007; Kwon et al., 2011). In recent
years, their application has been extended for statis-
tical downscaling of atmosphere-ocean coupled global
circulation model (AOGCM) outputs to investigate
the impacts of climate change at a basin scale (Dibike
and Coulibaly, 2005; Eum and Simonovic, 2012;
Hashmi et al., 2011).

There are several categories of stochastic weather
generators. Parametric models typically follow the
WGEN approach (Richardson, 1981; Soltani and Hoo-
genboom, 2003; Kuchar, 2004; Craigmile and Gut-
torp, 2011), which uses Markov chains to simulate
wet and dry spells and probability distributions for
temperature and precipitation amounts. Some other
parametric weather generator examples include SIM-
METEO (Geng et al., 1988; Soltani and Hoogenboom,
2003; Elshamy et al., 2006), WGENK (Kuchar, 2004),
AAFC-WG (Qian et al., 2004, 2008), and GEM (Han-
son and Johnson, 1998). A drawback of the paramet-
ric models is that they require careful statistical
checks to ensure the developed probability distribu-
tions are suitable to the study area (Sharif and Burn,
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2006). Furthermore, when the models are used with
low-order Markov dependence, they cannot ade-
quately simulate wet and dry spell lengths, under-
estimating the occurrence of prolonged drought or
rainfall events (Semenov and Barrow, 1997; Dibike
and Coulibaly, 2005; Mehrotra and Sharma, 2007;
Sharif and Burn, 2007). It is difficult to preserve mul-
tisite correlations across all variables of interest in a
parametric weather generator.

Several semiparametric models have been devel-
oped to overcome some of the limitations of the para-
metric models. Semiparametric weather generators
are generally comprised of both parametric and non-
parametric components (Apipattanavis et al., 2007).
Two of the commonly used models are SDSM (Wilby
and Dawson, 2007) and LARS-WG (Semenov and
Barrow, 2002). A drawback of these models is that
they may only be used for one site at a time, with a
requirement for additional modeling approaches to
utilize simulation results in a multisite application
(Wilby et al., 2003).

Due to the limitations associated with parametric
and semiparametric weather generators, nonparamet-
ric models have become increasingly popular. Non-
parametric weather generators can create multisite,
multivariate climate simulations without making
assumptions regarding the inter-site spatial correla-
tions or the probability distributions of the variables
(Sharif and Burn, 2006, 2007). Nonparametric models
typically use a K-Nearest Neighbor (K-NN) procedure
which resamples from the historical record, with
replacement (Yates et al., 2003; Sharif and Burn,
2006; Eum et al., 2010). The nearest neighbors to the
current day are selected by calculating a distance
metric between the current day and each of the days
within a temporal window centered on that day from
the entire N years of record. The closest K days are
retained and one is randomly chosen as the next
day’s weather, with a higher probability given to clo-
ser days (Yates et al., 2003; Sharif and Burn, 2006,
2007).

The K-NN models are capable of simulating sev-
eral climate variables at a time by employing unequal
weights for the contributing variables in the distance
calculation, as suggested by Karlsson and Yakowitz
(1987). A regional average is typically used to mini-
mize the dimensions when choosing the nearest
neighbor (Eum and Simonovic, 2012). The use of a
regional average presents a potential drawback as
the average daily climate condition in a very large
study area may not be representative of climatic con-
ditions at the more remote stations. Users of K-NN
weather generators should ensure that the spatial
correlations between climate stations are sufficiently
high so that a regional average is representative of
conditions throughout the basin.

Traditional K-NN approaches have been found to
underestimate the occurrence of wet and dry spells
(Apipattanavis et al., 2007). Another drawback is that
the reshuffling procedure results in a loss of the tem-
poral correlation structure of daily climate variables.
The extreme values in the output data are also
limited by those in the input dataset since the values
are resampled (Yates et al., 2003). Sharif and Burn
(2006, 2007) developed a perturbation method to gen-
erate alternative extreme values for precipitation in
KnnCAD Version 1, however Eum and Simonovic
(2012) found that their methodology could not be eas-
ily extended for generation of alternative temperature
extremes because it would be capable of generating
unrealistically high or low temperature values.
Prodanovic and Simonovic (2008) improved on Knn-
CAD Version 1 by adding a leap year modification
in KnnCAD Version 2. Eum and Simonovic (2012)
improved on KnnCAD Version 2 by using principal
components analysis to allow for inclusion of multiple
climate variables without increasing computational
effort. Lee et al. (2012), used a gamma kernel density
estimate to successfully perturb the reshuffled precip-
itation data; however, their approach could not easily
be used for temperature outputs.

In this study, the KnnCAD Version 4 algorithm is
presented to address the issues associated with the
previous versions of the algorithm: (1) loss of tempo-
ral correlation in simulated temperatures and
(2) simulation of alternative extreme variable values.
A block resampling procedure is added to improve
temporal correlations of temperature variables. A
perturbation procedure is introduced to enhance the
generation of extreme temperature and precipitation
values. The model outputs for the CLIMDEX set of
statistics (CLIMDEX, 2012) are presented in a com-
parison with the previous version of KnnCAD (Ver-
sion 3). The following section presents the details of
the KnnCAD Version 4 weather generator algorithm,
with a description of the improvements made over
previous versions of the algorithm. The weather gen-
erators KnnCAD V3 and V4 are applied to simulate
precipitation and temperature of the upper Thames
River basin (UTRB) in Ontario, Canada. Finally con-
clusions of the article are presented.

METHODS

The KnnCAD Version 4 weather generator is an
extension of the model of Yates et al. (2003). The
model reshuffles the observed daily data, so applica-
tion to multiple sites is achieved by selecting the cor-
responding day’s weather at all stations. In this way,
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the spatial correlations of the climate variables are
inherently preserved.

The model proceeds in steps by creating a subset
of days from each year in the historical record that
are centered within a temporal window on the current
day of the simulation. The current day is removed to
prevent repeated daily values. This subset of “poten-
tial neighbours” has length L = N 9 (w + 1) � 1 for
N years of record and a temporal window of length w.
The regional average from all stations is computed
for each variable and day in the potential neighbors.
These potential neighbor averages are then compared
to the current day’s regional average using a distance
metric, the Mahalanobis distance (Yates et al., 2003;
Sharif and Burn, 2006). Based on their distance from
the current day, the potential neighbors are ranked
and the first K are selected, the “K-NNs.” Based on
the days’ ranks, a cumulative probability distribution
is developed. The next day’s weather is then selected
by generating a random number u(0,1) and compar-
ing this to the probability distribution, selecting the
closest day. As such, days which are more similar to
the current day have a greater probability of selec-
tion. In order to improve on KnnCAD V3 (Eum and
Simonovic, 2012), KnnCAD V4 resamples a block of B
days following the chosen neighbor in the historical
record in order to preserve the temporal correlation
structures of variables such as temperature. Each of
the resampled values is then perturbed to ensure
unique values are generated that do not necessarily
occur in the historical record. The simulation pro-
ceeds until a dataset of reshuffled values is gener-
ated, with the same length as the input dataset. The
simulation can be repeated several times to generate
ensembles of synthetic daily data. AOGCM simula-
tions can be generated by applying monthly change
factors to the input dataset.

KnnCAD V4 presents two major advantages over
KnnCAD V3: (1) an improvement in the temporal
correlation structure of simulated temperatures and
simulation of wet and dry spell sequences through
the use of block resampling and (2) an improved per-
turbation method that is also applicable for reshuffled
temperature values. The perturbation methodology of
KnnCAD V4 differs from V3 in that it uses the
standard deviation from the subset of nearest
neighbors along with a random variable to perturb
the daily climate variable. The user selects the
amount of perturbation desired to ensure unique
values are generated but daily autocorrelations are
maintained. The approach can be applied to both
temperature and precipitation values and generates
reasonable extreme values.

Detailed steps of KnnCAD V4 are presented below.
Full details of KnnCAD Version 3 can be found in
Eum et al. (2009).

1. Compute the regional means of p variables (x)
across all q stations for each day (t) in the
historic record of length T, following Equa-
tions (1) and (2):

�X t ¼ ½�x1;t; �x2;t; . . .; �xp;t� 8t ¼ f1; 2; . . .;Tg ð1Þ

where

�xi;t ¼ 1

q

Xq
j¼1

xji;t 8i ¼ f1; 2; . . .;pg ð2Þ

The variables that are typically used in the
KnnCAD V4 approach are precipitation, maxi-
mum temperature, and minimum temperature.
Other variables may also be considered in some
applications.

2. Choose a temporal window of length w, and select
a subset of L potential neighbors to the current
day of simulation, where L = N 9 (w + 1) � 1 for
N years of record. The potential neighbors are the
days within the temporal window centered on the
current day of the simulation, t, and contain
p variables for a total of L days. Yates et al.
(2003) used a temporal window of 14 days in the
Great Lakes region, so if January 20 is the
current day, the potential neighbors are all days
that fall between January 13 and January 27 for
all N years, excluding the value of the current
day to prevent repeating weather sequences.

3. Randomly choose p variables at q stations from
one of the N years of historical record for the
first time step day (e.g., January 1).

4. Compute the regional means �X l, of the L poten-
tial neighbors (l = 1, 2, . . ., L) for each day
across all q stations.

5. Compute the covariance matrix, Ct, for day t
using the potential neighbors from (3) with a
standardized data block of size L by p.

6a. Calculate the eigenvector and eigenvalue from
the covariance matrix Ct.

6b. Retain the eigenvector E which corresponds to
the highest eigenvalue which explains the larg-
est fraction of variance in the p variables.

6c. Calculate the first principal component using E
from (6b):

PCt ¼ �XtE ð3Þ

PCl ¼ �X lE; 8l ¼ f1; 2; . . .;Lg ð4Þ

where PCt and PCl are one-dimensional values
transferred from the eigenvector in (6b) for
the current day, t, and the lth of L potential
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neighbors. Only one principal component is
retained following the recommendation of Eum
and Simonovic (2012).

6d. Calculation of the Mahalanobis distance using
the values obtained in Equations (3) and (4) as
well as the variance, Var(PC), between all L
values of PCl.

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPCt � PClÞ2Þ

VarðPCÞ

s
8l ¼ f1; 2; . . .;Lg ð5Þ

7. Select the number K of nearest neighbors to
retain out of the L potential values. A value of
K ¼ ffiffiffiffi

L
p

is recommended (Lall and Sharma,
1996; Rajagopalan and Lall, 1999; Yates et al.,
2003). Sort the Mahalanobis distance metric
from smallest to largest, and retain the first K
neighbors on the list. Use a discrete probability
distribution as described in Equation (6) from
Yates et al. (2003), which weights closest neigh-
bors highest for resampling one of the K values.

8. Generate a random number, u(0,1), and com-
pare this to the cumulative probability, pm, to
determine the current day’s nearest neighbor.
The day m for which u is closest to pm is
selected as the nearest neighbor and the corre-
sponding weather is used for all stations in the
region. Through this step, spatial correlation
among the variables is preserved.

9. Resample B days from the historical record
which follow the selected day (m) from Step
(8). B is the block length and is selected based
on the observed autocorrelations of daily tem-
peratures (lag 1, lag 2, etc.). It should be as
large as required for the model to reproduce
the observed temperature autocorrelations. If
the selected day (m) is January 1, and the
block length is B = 5, the climate variables
from January 1, and the following daily vari-
ables on January 2, January 3, January 4, and
January 5 will be sampled. The next day to be
sampled from the nearest neighbors is then
January 6 and this will occur following pertur-
bation (Step 10). In KnnCAD V3, B = 1 and
only one day is resampled at a time.

10. Perturbation of the reshuffled variable values
for days t to t + b (where b = 0, 1,. . ., B). A
new perturbation component is introduced to
ensure simulation of unique but reasonable
values for temperature and precipitation
amount that can lie outside of the observed
ranges. See Eum and Simonovic (2012) for a
description of the perturbation methodology
used in KnnCAD V3. Because precipitation has
a non-negativity constraint, it must be dealt
with differently from temperature. As such,

the same interpolation equation is used for
both precipitation and temperature with dif-
ferent randomly distributed variables, Zt+b, as
shown in Steps (10a) and (10b).

10a. Perturbation of the reshuffled temperature

values xji;tþb for temperature variable i, sta-

tion j and day t+b following Equation (6):

yji;tþb ¼ ktempx
j
i;tþb þ ð1� ktempÞZtþb ð6Þ

where yji;tþb is the simulated perturbed value
and ktemp is chosen between 0 and 1 during
calibration (1 gives an unperturbed result and
0 yields a result based entirely on perturba-
tion). For preservation of temporal correla-
tions, ktemp should be as large as is reasonable.
Zt+b is a normally distributed value with a

mean of xji;tþb and a standard deviation of rji;t,

calculated from the K-NNs for day t, station j,
and temperature variable i. To prevent mini-
mum temperature from exceeding maximum
temperature, the same random normal vari-
able z is used for both maximum and mini-
mum temperature across all stations and its
value is transformed using the variables’ cor-

responding xji;tþb and rji;t values.

10b. Perturbation of the reshuffled non-zero precipi-

tation values xjppt;tþb for station j and day t+b

(where b = 1, 2, . . ., B), following Equation (7):

yjppt;tþb ¼ kpptx
j
ppt;tþb þ ð1� kpptÞZtþb ð7Þ

where Zt+b comes from a two-parameter log-
normal distribution. The parameters for the
lognormal distribution are calculated using
the method of moments from Singh (1998). The
Singh (1998) equations use a mean equal to the
unperturbed precipitation value and a stan-
dard deviation equal to that of the non-zero val-
ues in the potential neighbors subset (the days
that lie within a temporal window centered on
the current day t). kppt is chosen between 0 and
1 and should be as large as is reasonable to pre-
serve spatial correlation. The proposed pertur-
bation scheme inherently produces values
above zero while still producing perturbed pre-
cipitation amounts that can be either higher or
lower than the unperturbed value.

11. Repeat Steps 6 through 10 for time step
t + B + 1. The simulated value on day t + B
will be compared to the potential neighbors of
day t + B + 1 to determine the selection of
nearest neighbors for day t + B + 1 as outlined
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in Steps 6 through 7. Selection of the next day
and perturbation of the block will follow as out-
lined in Steps 8 through 10. This process is
repeated until the end of the historical record
is reached, at which point additional simula-
tions can be performed to generate long
synthetic datasets.

The KnnCAD program is coded in R programming
language and has a Visual Basic decision support sys-
tem to aid researchers in applying the program for
the study area. The user may vary parameters such
as the block length, B, and the interpolation parame-
ters, ktemp and kppt, to determine which combination
of parameters provides the best calibration based on
the outputs provided by the decision support system.
B should be selected as large as required to reproduce
daily temporal correlations in the observed tempera-
ture series. Parameters ktemp and kppt (which are cho-
sen between 0 and 1) should be selected as large as is
reasonable to preserve spatial correlations while still
producing values outside of the historical range.

APPLICATION

To illustrate the utility of the KnnCAD V4 model,
a case study of the UTRB is presented. KnnCAD V4

outputs are compared with outputs from the previous
version of the weather generator, KnnCAD V3. The
UTRB, shown in Figure 1, is located between the
Great Lakes of Erie and Huron and has a population
of 515,640, the majority residing in London, Ontario,

FIGURE 1. The Upper Thames River Basin.

TABLE 1. Upper Thames River Stations.

Station Latitude (°N) Longitude (°W) Elevation (m)

Blyth 43.72 81.38 350.5
Brantford 43.13 80.23 196.0
Chatham 42.38 82.2 198.0
Delhi CS 42.87 80.55 255.1
Dorchester 43.00 81.03 271.3
Embro 43.25 80.93 358.1
Exeter 43.35 81.50 262.1
Fergus 43.73 80.33 410.0
Foldens 43.02 80.78 328.0
Glen Allan 43.68 80.71 404.0
Hamilton A 43.17 79.93 238.0
Ilderton 43.05 81.43 266.7
London A 43.03 81.16 278.0
Petrolia Town 42.86 82.17 201.2
Ridgetown 42.45 81.88 210.3
Sarnia 43.00 82.32 191.0
Stratford 43.37 81.00 354.0
St. Thomas 42.78 81.21 209.0
Tillsonburg 42.86 80.72 270.0
Waterloo
Wellington

43.46 80.38 317.0

Woodstock 43.14 80.77 282.0
Wroxeter 43.86 81.15 355.0
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the major urban center in the region. The basin has a
history of major flooding events, often occurring in
March or April following snowmelt. Floods can also
occur after a sudden peak in temperatures during the
winter or in the summer after extreme precipitation
events (Wilcox et al., 1998). There have been a num-
ber of studies assessing the potential impacts of cli-
mate change on the UTRB, indicating vulnerability of
the basin to future extreme precipitation events and
flooding (Sharif and Burn, 2006, 2007; Simonovic,
2010; Solaiman et al., 2010; Eum and Simonovic,
2012; King et al., 2012).

A total of 22 stations around the basin are used in
this study based on the availability and completeness
of the Environment Canada datasets (Government of
Canada, 2014). A 27-year historical record from 1979

to 2005 is gathered from each station. The selected
record length is chosen based on the availability and
completeness of Environment Canada data at each of
the 22 weather stations. The station locations can be
found in Figure 1. Table 1 provides the names, eleva-
tions, latitudes, and longitudes of each station. The
historical data from each of these stations is used as
input to the KnnCAD V3 and V4 algorithms which are
then used to produce 25 ensembles of synthetic histori-
cal climate data. Each ensemble has the same length
as the input dataset (27 years) so in total 675 years of
synthetic historical climate data is output by the
weather generator. It is important to generate a num-
ber of ensembles due to the random component of the
program as each simulation is different. By varying
the KnnCAD V4 parameters for block length and

FIGURE 2. KnnCAD V3 and V4-Simulated and Observed Total Monthly Precipitation and Daily Precipitation Characteristics at London A.
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interpolation, it was found that B = 10 days and
kppt = ktemp = 0.9 provided the best calibration result.
For more details on the validation procedure for Knn-
CAD V4, please refer to King (2012).

The ability of the algorithm to simulate historical
climate characteristics is investigated in terms of
total monthly precipitation, daily precipitation char-
acteristics, extreme precipitation events, wet spell
lengths, as well as mean and extreme daily tempera-
tures. Monthly boxplots are used to demonstrate
some of the results, with historical medians shown as
a line plot. The upper and lower lines in the boxplots
represent the quartiles, the middle line represents
the median and the whiskers extend to 1.5 times the
interquartile range. Dot plots are also used in order
to show the spread of results from the different simu-
lation ensembles. The observed values are shown as a

line plot and each dot clustered over the historical
observation represents the result for one ensemble of
climate data, for a total of 25 dots in each grouping.

In order to demonstrate the utility of KnnCAD V4
as a climate simulation tool, the results for the
London A station have been compared with simulated
outputs from KnnCAD V3. Historical data are
compared to KnnCAD V3 using CLIMDEX indices.

Figure 2 shows the precipitation results for total
monthly precipitation and daily precipitation charac-
teristics from the London A station in the UTRB from
KnnCAD V3 and V4. Results at other climate stations
are similar. Results indicate that both KnnCAD
V3 and V4 perform well at simulating mean total
monthly precipitation amounts. KnnCAD V4 is able
to generate slightly higher extreme monthly precipi-
tation values as a result of the improved perturbation

FIGURE 3. KnnCAD V3 and V4-Simulated and Observed Extreme Daily Precipitation and Wet Spell Lengths at London A.
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method. For the plots showing monthly means and
standard deviations of the daily precipitation
amounts, the spread of points is generally centered
on the historical observation indicating good perfor-
mance of both KnnCAD V3 and V4. KnnCAD V4
simulates increased variability in the standard devia-
tions over V3 due to the perturbation methodology
applied; however, there is a slight overestimation in
the standard deviations for April and October. Knn-
CAD V3 slightly underestimates the standard devia-
tions in April, May, and November. It is clear from
the figures that while there are slight over- and
underestimations in some months, both KnnCAD V3
and V4 simulate daily and monthly precipitation
characteristics quite well.

Figure 3 shows the KnnCAD V3 and V4-simulated
extreme daily precipitation events at London A on the
left and wet spell lengths on the right. Both KnnCAD
V3 and V4 simulate 95th and 99th percentile precipita-
tion events quite well, with the spread of the points
generally centered on the historical observation. Knn-
CAD V3 slightly underestimates the 99th percentile
events for the months of May, June, and October to
December. There is more variation observed in the
99th percentile simulations from KnnCAD V4, and this
may be a result of the perturbation method used. Knn-
CAD V4 overestimates 99th percentile precipitation in
April but for most of the other months the spread of
ensemble points is generally centered over the histori-
cal value. KnnCAD V4 outperforms KnnCAD V3 in the

FIGURE 4. KnnCAD V3 and V4-Simulated and Observed Extreme Daily Maximum and Minimum Temperatures at London A.
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simulation of mean and maximum monthly wet spell
lengths, shown on the right of Figure 3. KnnCAD V3
underestimates mean and maximum wet spell lengths
in several months. KnnCAD Version 4 performs very
well as the points are centered on the historical obser-
vation in all months but the maximum wet spell length
for October. Results for dry spell lengths are similar.
The improvement over KnnCAD V3 is likely due to the
block resampling addition in the program which helps
preserve wet and dry spell structure. In KnnCAD V3,
resampling occurs on a daily basis and therefore spell
sequences are less likely to be preserved.

Figure 4 shows the results for extreme high and
low temperature values from KnnCAD V3 and V4.

Because the median values are simulated quite well
by both KnnCAD V3 and V4, they are not presented.
It is clear in the figures that the simulated dots for
both KnnCAD V3 and V4 are very close to the
observed values which are shown as line plots. There
is increased variability in the simulated extreme tem-
perature values from KnnCAD V4 due to the addition
of temperature perturbation. KnnCAD V3 does not
perturb reshuffled temperature values and is unable
to produce temperature values which fall outside of
the observed range.

Figures 5 and 6 show the KnnCAD V3 and V4-
simulated 95th and 5th percentile temperatures on
wet and dry days, respectively. Both models are able

FIGURE 5. KnnCAD V3 and V4-Simulated and Observed 95th Percentile Daily Maximum
and Minimum Temperatures on Wet Days at London A.
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to simulate temperatures on wet and dry days very
well, with slightly more spread in the values simu-
lated by KnnCAD V4.

Figure 7 shows the lag-1 autocorrelations for daily
maximum and minimum temperatures at the London
A station. It is clear that by adding block resampling,
the ability of the model to preserve the temporal cor-
relation structure in the observed record is signifi-
cantly improved. This is an important factor in the
UTRB where snow accumulation and melt lead to
major flooding events. Hydrologic models often use
temperature-index methods for prediction of snow-
melt (Buttle, 2009; Jenicek et al., 2012; Kumar et al.,
2013) so the use of a temporally correlated series of

temperatures could significantly improve snowpack
prediction and accuracy of snowmelt timing and
magnitude. Other weather generators, such as SDSM
and LARS-WG, are inherently unable to simulate
temporally correlated temperature series due to their
stochastic nature (King, 2012).

Figure 8 contains plots of snow accumulation, simu-
lated using a rudimentary temperature-index model
(see Cunderlik and Simonovic, 2004) to demonstrate
the improvement in timing and quantity of snowmelt
resulting from the implementation of block resampling.
The mean, 95th, and 5th percentile daily snowpack
amount was calculated from the observed record and
simulated KnnCAD V3 and V4 results are shown as a

FIGURE 6. KnnCAD V3 and V4-Simulated and Observed 95th Percentile Daily Maximum
and Minimum Temperatures on Dry Days at London A.
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scatterplot overlaying the historical observation. It is
clear that KnnCAD V4 offers a significant improve-
ment in simulation of snowpack and runoff timing.

CLIMDEX extreme climate indices (CLIMDEX,
2012) have been included in Table 2 to provide a com-
parison between KnnCAD V3 and V4. A description
of each index is provided in the table. The mean val-
ues of selected indices are presented for the historical
dataset, as well as for the simulated outputs. For
some of the monthly indices, mean annual values are
shown in order to effectively compare outputs from
KnnCAD V3 and V4.

Both models performed quite well in reproducing
CLIMDEX extreme climate indices, with mean values
that were quite close to the historical values in most
cases. KnnCAD V4 simulations produced values that
were closer to the historical record for annual total
precipitation amount as well as maximum dry and wet
spell lengths. Both models performed very well in sim-
ulation of r10 mm and r20 mm indices, with V3
slightly outperforming V4. Monthly maximum one-day
and five-day values were slightly overestimated by
both V3 and V4, with V3 generating values that were

closer to the historical average. This is likely due to
KnnCAD V4 simulating increased variability in
extreme daily precipitation events, as shown in Fig-
ures 1 and 2. The simple precipitation intensity index
was slightly overestimated by both models. For tem-
perature indices TNn, TNx, TXn, TXx, and DTR, both
models performed very well and KnnCAD V4 outper-
formed V3 in most cases. Both models performed well
in the simulation of frost days, icing days, summer
days, and tropical nights, however, KnnCAD V3
slightly outperformed V4 for each of these indices
excluding summer days. For warm spell duration
index and cold spell duration index, it is clear that
KnnCAD V4 simulates values much closer to the his-
torical average. This is likely a result of the block re-
sampling which preserves temperature auto-
correlations, as shown in Figure 8. Overall, both mod-
els performed very well in simulation of the CLIMDEX
indices, with the most major discrepancy in the Knn-
CAD V3 simulation of warm and cold spells.

Figures 9 and 10 present the simulated and histor-
ical correlations of daily maximum and minimum
temperatures across all station pairs from KnnCAD

FIGURE 7. Simulated and Observed Lag-1 Autocorrelations in Daily Maximum
and Minimum Temperatures at London A from KnnCAD V3 and V4.
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V3 and V4, respectively. Results are presented for
one ensemble (of a total of 25) as results from the
other ensembles are similar. For 22 stations there
are a total of 253 station pairs and the correlations
between daily maximum and minimum temperature
between each of these pairs was computed from the
historical and simulated dataset. It is clear from the
plots that correlations are preserved very well. This
is an inherent advantage of the KnnCAD algorithm
over the parametric and semiparametric weather
generators; it is able to accurately simulate spatial
correlations without making any statistical assump-
tions.

Figures 11 and 12 present the simulated and
historical correlations of maximum and minimum
temperatures at the monthly time step, across all
station pairs for KnnCAD V3 and V4, respectively.
Both models slightly overestimate the correlations;
however, KnnCAD V4 outperforms V3 with correla-
tion values that are closer to the 1:1 line.

Figures 13 and 14 present the simulated and
historical correlations of annual precipitation totals
across all station pairs for KnnCAD V3 and V4,
respectively. Both models generally simulate the
spatial correlations well. However, there is a slight
improvement in the results for KnnCAD V4.

CONCLUSIONS

The KnnCAD Version 4 weather generator pro-
vides an improvement over Version 3 by adding block
resampling to improve the temporal correlation struc-
ture in temperatures. KnnCAD V4 is able to simulate
temperature autocorrelations quite accurately while
these are not reproduced well in V3. Temporally
correlated temperature data is of particular impor-
tance for inflow forecasting in study basins such as

FIGURE 8. Mean, 5th, and 95th Percentiles of Observed Daily Snowpack (January through April,
November and December) Compared with Simulation Outputs from KnnCAD V3 and V4.
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the UTRB, where snowmelt events can cause major
floods. Temperature-index hydrologic models rely on
accurate time series of temperature data to predict
snow accumulation and melting. KnnCAD V4 was
shown to improve simulation of snow accumulation
and melt in the basin. The block resampling in V4 is
also shown to enhance simulation of wet and dry
spell lengths as well as cold and warm spells. Knn-
CAD V4 also includes an improved perturbation

scheme to enhance the simulation of extreme temper-
ature and precipitation values. Both of the KnnCAD
models are shown to simulate effectively the histori-
cal climate variables and extreme climate indices at
several sites simultaneously, while preserving spatial
correlations. The nearest neighbor models can be
applied to multiple sites without making statistical
assumptions regarding variables’ probability distribu-
tions and spatial correlations between weather

FIGURE 9. KnnCAD V3-Simulated and Historical Correlations
of Daily Maximum and Minimum Temperatures for All Possible

Station Pairs, First Ensemble (results similar for other ensembles).

FIGURE 10. KnnCAD V4-Simulated and Historical Correlations
of Daily Maximum and Minimum Temperatures for All Possible

Station Pairs, First Ensemble (results similar for other ensembles).

TABLE 2. Historical and Simulated Mean Values of CLIMDEX Climate Extreme Indices from KnnCAD V3 and V4.

CLIMDEX Extreme Climate Index Description Historical KnnCAD-V3 KnnCAD-V4

PRCPTOT (mm) Annual total precipitation 977.18 951.96 973.92
CDD (days) Maximum dry spell length (PPT < 1 mm) 14.37 15.61 14.81
CWD (days) Maximum wet spell length (PPT > 1 mm) 6.56 5.98 6.04
r10 mm (days) Annual count of days with PPT < 10 mm 30.93 30.93 30.47
r20 mm (days) Annual count of days with PPT < 20 mm 9.85 9.96 10.18
rx1 day (days) Monthly maximum 1-day PPT 49.71 50.99 55.61
rx5 day (days) Monthly maximum 5-day PPT 78.91 81.23 84.22
SDII (mm/day) Simple precipitation intensity index 7.56 7.89 7.76
TNn (°C) Annual minimum value of daily minimum temperature �23.45 �23.41 �23.97
TNx (°C) Annual maximum value of daily minimum temperature 21.78 22.04 21.99
TXn (°C) Annual minimum value of daily maximum temperature �14.05 �14.25 �14.18
TXx (°C) Annual maximum value of daily maximum temperature 32.77 34.22 33.95
DTR (°C) Diurnal temperature range 9.71 9.73 9.72
FD (days) Frost days (annual count of days with Tmin < 0) 140.78 141.15 143.27
ID (days) Icing days (annual count of days with Tmax < 0) 57.93 58.17 58.88
SU (days) Summer days (annual count of days with Tmax > 25) 62.63 63.21 62.96
TR (days) Tropical nights (Tmin > 20) 4.96 4.89 5.37
WSDI (days) Warm spell duration index (annual

count of 6-day periods with Tmax > 90th percentile)
3.67 0.37 2.15

CSDI (days) Cold spell duration index (annual
count of 6-day periods with Tmin < 90th percentile)

0.78 0.28 0.79
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stations. As such, the nearest-neighbor models
provide a major advantage over the semiparametric
and parametric weather generators.

Currently, the KnnCAD Version 4 model is being
validated for other climatic regions such as the Grand
River Basin, Ontario and two watersheds in Brazil.
Applications of the model employing a wavelet
autoregressive model could improve simulation of

low-frequency variability in the simulated data (see
Kwon et al., 2007; Steinschneider and Brown, 2013),
and should be considered in future research. A new
methodology for developing AOGCM-modified input
datasets for KnnCAD Version 4 from daily AOGCM
data is another important area for future research, as
the current weather generator cannot create future
climate scenarios that take into account changes in

FIGURE 11. KnnCAD V3-Simulated and Historical
Correlations of Monthly Maximum and Minimum
Temperatures for All Possible Station Pairs, First
Ensemble (results similar for other ensembles).

FIGURE 12. KnnCAD V4-Simulated and Historical Correlations
of Monthly Maximum and Minimum Temperatures

for All Possible Station Pairs, First Ensemble
(results similar for other ensembles).

FIGURE 13. KnnCAD V3-Simulated and Historical Correlations
of Annual Precipitation Totals for All Possible Station Pairs,

First Ensemble (results similar for other ensembles).

FIGURE 14. KnnCAD V4-Simulated and Historical Correlations
of Annual Precipitation Totals for All Possible Station Pairs,

First Ensemble (results similar for other ensembles).
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the variability of future daily temperatures and pre-
cipitation amounts.
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