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Abstract:

Stochastic weather generators have evolved as tools for creating long time series of synthetic meteorological data at a site for risk
assessments in hydrologic and agricultural applications. Recently, their use has been extended as downscaling tools for climate
change impact assessments. Non-parametric weather generators, which typically use a K-nearest neighbour (K-NN) resampling
approach, require no statistical assumptions about probability distributions of variables and can be easily applied for multi-site
use. Two characteristics of traditional K-NN models result from resampling daily values: (1) temporal correlation structure of
daily temperatures may be lost, and (2) no values less than or exceeding historical observations can be simulated. Temporal
correlation in simulated temperature data is important for hydrologic applications. Temperature is a major driver of many
processes within the hydrologic cycle (for example, evaporation, snow melt, etc.) that may affect flood levels. As such, a new
methodology for simulation of climate data using the K-NN approach is presented (named KnnCAD Version 4). A block
resampling scheme is introduced along with perturbation of the reshuffled daily temperature data to create 675 years of synthetic
historical daily temperatures for the Upper Thames River basin in Ontario, Canada. The updated KnnCAD model is shown to
adequately reproduce observed monthly temperature characteristics as well as temporal and spatial correlations while simulating
reasonable values which can exceed the range of observations. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Stochastic weather generators are computational algorithms
that can be used to produce synthetic meteorological data of
any length with the same statistical characteristics as the
historical record for a site (Wilks and Wilby, 1999). The
advantage of the stochastic approach is that the simulated
datasets are long enough to be used in risk assessments of
extreme precipitation and temperature events (Semenov and
Barrow, 2002). Motivation for the development of such
algorithms comes mainly from the water sector— long time
series of climate data can be used in computer models to (1)
predict the response of crops to extreme heat, (2) assess
water availability for the supply of people and industry, (3)
understand the change in frequency and magnitude of
extremeflood and/or drought events and (4) quantify the risk
to water infrastructure due to changing conditions (Wilks
and Wilby, 1999; Semenov and Barrow, 2002; Soltani and
Hoogenboom, 2003; Dibike and Coulibaly, 2005; Sharif
andBurn, 2007; Eum et al., 2010). In recent years, the use of
weather generators has been extended for downscaling
global climate models to assess the local impacts of climate
change (Dubrovsky, 1997; Semenov and Barrow, 1997;
Soltani and Hoogenboom, 2003; Kuchar, 2004; Dibike and
Coulibaly, 2005; Eum and Simonovic, 2011; Eum et al.,
2011). Much of the current research involves the simulation
orrespondence to: Leanna M. King, Department of Civil and
ironmental Engineering, University of Western Ontario, London,
tario, Canada, N6A 3K7.
ail: leannamichelleking@gmail.com

pyright © 2012 John Wiley & Sons, Ltd.
of future climate data for impact assessments dealing with
the management of water resources systems.
There are three major categories of weather generators

in the literature: parametric, semi-parametric and non-
parametric. Some examples of parametric models that have
been employed to simulate temperature for single-site
applications are WGEN (Soltani and Hoogenboom, 2003;
Kuchar, 2004; Craigmile and Guttorp, 2011), WGENK
(Kuchar, 2004), AAFC-WG (Qian et al., 2004), SIMME-
TEO (Geng et al., 1988; Soltani and Hoogenboom, 2003;
Elshamy et al., 2006) and GEM (Hanson and Johnson,
1998). Parametric models require the user to make stronger
assumptions than the non-parametric approach and require
careful statistical diagnostic checks in order to ensure that
the statistical characteristics of the historical time series are
adequately captured in the resulting synthetic series.
There are a variety of different semi-parametric weather

generators that have been used to simulate temperature and
precipitation (Semenov and Barrow, 2002; Apipattanavis
et al., 2007). Two widely used algorithms are SDSM and
LARS-WG (Semenov and Barrow, 2002; Wilby and
Dawson, 2007). SDSM is a single-site, regression-based
model with a stochastic component where large-scale
atmospheric variables are used to linearly condition local
temperature or precipitation data (Wilby and Dawson,
2007). A drawback of SDSM is that each variable is
simulated independently so the relationships between them
are not preserved. LARS-WGuses a semi-empirical wet and
dry spell distribution to simulate precipitation occurrence
where chosen the amounts are chosen conditional on
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spell length (Semenov andBarrow, 2002). Temperatures are
simulated conditional on the day’s wet or dry status
(Semenov and Barrow, 2002); however, some studies have
found LARS-WGunderestimates the occurrence of extreme
temperature events (Mavromatis and Hansen, 2001; Qian
et al., 2004; Semenov, 2008).
A drawback associated with most of the popular

parametric and semi-parametric models is the underlying
statistical assumption about the probability distribution of
the weather variables, which can be highly site dependent.
Another issue is that spatial correlations must be assumed for
multi-site applications. Non-parametric weather generators
have evolved as away around these limitations and have been
employed successfully for multi-site simulation in various
regions (Young, 1994; Yates et al., 2003; Mehrotra et al.,
2006; Sharif and Burn, 2006; Eum et al., 2010). Many of
these algorithms are an extension of the Young (1994)
approach where a nearest-neighbour resampling scheme is
used to select the next days’ weather from a subset of
days with similar characteristics to the current day. Sampling
is done from the historical record, with replacement (Sharif
and Burn, 2006).
A more recent version of the Young (1994) approach

was developed by Yates et al. (2003) and later Sharif and
Burn (2006) in which the Mahalanobis distance metric is
used to retain the closest K neighbours from a subset of
days within a temporal window centred on the current day.
A probability distribution is then used to choose one of the
K-nearest neighbours (K-NN) as the weather for the next
day (Sharif and Burn, 2006). Multi-site application is done
by simply choosing the corresponding weather of all
stations so the spatial correlation are preserved. The K-NN
model of Sharif and Burn (2006), hereinafter referred to as
KnnCAD Version 1 (V1), was extended further by
Prodanovic and Simonovic (2008) to include a leap year
modification (KnnCAD V2). Eum and Simonovic (2008)
further modified the algorithm to allow for the inclusion of
more climate variables, without increasing computational
demand, by using only the first principal component in the
calculation of Mahalanobis distance (KnnCAD V3).
Our work shows that a limitation of these traditional

K-NN models results from the resampling of only one day
at a time: the temporal correlation structure of daily
temperatures is lost. Daily temperature simulations are
highly important for watersheds where winter snow
accumulation and spring melt events are the cause of major
floods. Accurate modeling of the stream flows requires a
time series of temporally correlated temperature data as well
as precipitation inputs. Furthermore, evaporation is one of
the major drivers of the hydrologic cycle and is directly
proportional to the temperature. For downscaling of global
climate model data, accurate simulations of temperature
data become increasingly important as the global climate
models are able to better represent daily temperatures than
precipitation amounts.
Another major drawback to the traditional K-NNmodels

is the inability of these algorithms to simulate values
outside of the observed record (Young, 1994; Yates et al.,
2003; Sharif and Burn, 2006; Apipattanavis et al., 2007;
Copyright © 2012 John Wiley & Sons, Ltd.
Furrer and Katz, 2008). Because the simulated data is
merely resampled, the three highest temperature values in
the observed record will be the same as those in the
simulated data; no values lying in between these individual
observations can be generated nor can values which exceed
the observed maximum and minimum (Furrer and Katz,
2008). Sharif and Burn (2006) modified the K-NN
approach of Yates et al. (2003) in KnnCAD V1 to include
perturbation by adding a noise term to smooth the
simulated precipitation values. The noise term is calculated
using a non-parametric density estimator or kernel with a
Gaussian distribution and a bandwidth according to the
Silverman (1998) rule of thumb. To avoid negative values
of precipitation, a maximum acceptable bandwidth is used
(see Sharif and Burn, 2006).
Eum and Simonovic (2011) used a similar approach in

KnnCAD V3 to perturb K-NN resampled temperature data,
employing maximum bandwidths corresponding to various
significance levels to prevent unrealistic values of
temperature from being simulated. For significance levels
ranging from 6% to 0.5%, it was found that while the
maximum bandwidth did improve the range of temperature
values simulated, unrealistic values were still generated by
the model (Eum and Simonovic, 2011). Furthermore the
determination of a ‘reasonable’ value of temperature is
somewhat ad hoc and would change depending on the
region in which the weather generator is employed.
The focus of this study is to develop a newmethodology

for simulating synthetic climate data using the non-
parametric K-NN approach of the KnnCAD algorithm.
Long time series of temperature data are highly important
for water resource management applications, and preserv-
ing the temporal correlation structure of the simulated data
is crucial, particularly in areas where snow accumulation
and melt can cause major flooding events. The existing
models do not have the ability to produce unprecedented
values for temperatures, so a smoothing of the simulated
data is necessary to produce unique values both within and
exceeding the historical range of observations. The next
section of this report provides details of KnnCADV3 (Eum
and Simonovic, 2008) and the proposed modifications to
the algorithm. Following, descriptions of the study area
and datasets used for this study are given. Next the results
are presented followed by concluding remarks.
METHODOLOGY

KnnCAD version 3 algorithm

The weather generator of Eum and Simonovic (2008),
KnnCAD V3 is a K-NN algorithm with principal
component analysis in order to include multiple variables
in the selection of the nearest neighbours. It was developed
byEum and Simonovic (2008) as an extension of themodels
of Sharif and Burn (2006), and Prodanovic and Simonovic
(2008). TheKnnCADV3 algorithm has the following steps:

(1) Compute the regional means of p variables (x) across
all q stations for each day in the historic record:
Hydrol. Process. 28, 905–912 (2014)
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�Xt ¼ �x1;t;�x2;t . . . ;�xp;t
� � 8t ¼ 1; 2; . . . ; Tf g (3)

where �xi;t ¼ 1
q

Xq
j¼1

x j
i;t 8i ¼ 1; 2; . . . ; pf g (4)
(2) Choose a temporal window of length w, and select a
subset of potential neighbours L days long for each day
in N years of record for all p variables, where
L=N* (w+1)� 1. Yates et al. (2003) used a temporal
window of 14days in the great lakes region, so if
January 20th is the current day, the potential neighbours
are all days that fall between January 13th and January
27th for allN years, excluding the value of the current day.

(3) Compute the regional means �Xl , of the L potential
neighbours for each day across all q stations.

(4) Compute the covariance matrix, Ct for day t using
the potential neighbours from (3) with a data block of
size L by p.

(5) The weather on the first time step (e.g. January 1)
consisting of p variables at q stations is randomly chosen
from the N current day values.

(6)
(6a) Calculate the eigenvector and eigenvalue from the

covariance matrix Ct.
(6b) Retain the eigenvector E which corresponds to the

highest eigenvalue which explains the largest
fraction of variance in the p variables.

(6c) Calculate the first principal component usingE from
Equation (6b):

PCt ¼ �XtE (5)

PCl ¼ �XlE; 8l ¼ 1; 2; . . . ; Lf g (6)

Where PCt and PCk are one-dimensional values for the
current day, t and the kth neighbour transferred from the
eigenvector in Equation (6b).

(6d) Calculation of the Mahalanobis distance using the
values obtained in Equations (5) and (6) as well as
the variance,Var(PC), between all L values of PCk.

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PCt � PCkð Þ2
Var PCð Þ

s
8k ¼ 1; 2; . . . ; Lf g (7)
(7) Select the number K of nearest neighbours to retain out
of the L potential values. Rajagopalan and Lall (1999)
and Yates et al. (2003) recommend taking K ¼ ffiffiffi

L
p

.
(8) Sort the Mahalanobis distance metric from smallest to

largest, and retain the closest K neighbours on the list.
Use a discrete probability distribution weighting
closest neighbours highest for resampling one of the
K values, following Equations (8) and (9).

wk ¼ 1=kXk

i¼1
1=i

8k ¼ 1; 2; . . . ;Kf g (8)

pj ¼
Xj

i¼1

wi (9)
Copyright © 2012 John Wiley & Sons, Ltd.
(9) Generate a random number, u(0,1) and compare this to
the cumulative probability, pj, to determine the current
day’s neighbour. The day j for which u is closes to pj is
selected as the neighbour, and the corresponding weather
is used for all stations in the region. Through this step,
spatial correlation among the variables is preserved.

(10) Steps 6 through 9 are repeated for each day in the
observed record to produce a synthetic output file of the
same length. Multiple simulations can be run to produce
long datasets of synthetic climate data for a site.

Proposed modifications to KnnCAD model

In order to preserve the temporal characteristics of
temperature data, a block resampling scheme is proposed
which resamples a specified number of days at a time.
The model, hereinafter referred to as KnnCAD V4,
follows the same steps as the KnnCAD V3 above, but
resamples a block of days of length B which follow the
selected day in the historical record. The choice of B
depends on the ability of the model to reproduce
temperature autocorrelations. It can change depending
on how correlated the day-to-day temperature values are
in the historical record (McLeod and King, 2012).
In order to ensure sequences of days are not repeated in the

record and to produce unprecedented values for temperature,
a perturbation scheme is also introduced. While some
successful attempts have been made for the perturbation of
precipitation data (Sharif and Burn, 2006; Eum et al., 2011),
results have been less satisfactory for the perturbation of
temperatures (Eum and Simonovic, 2011). The proposed
modifications for KnnCAD V4 are outlined below. Steps (1)
through (9) from KnnCAD V3 remain the same.

(10a) Resample B days from the historical record which
follow the selected day (j) from step (9). For
example, if the selected neighbour to the current day
is January 21st, 1979 from the historical record and
B= 10 days, the days January 21st, 1979 to January
30th, 1979 are resampled from the historical record.
The days in B may extend outside of the temporal
window described in Step (2).

(10b) Perturbation of the reshuffled temperature values

xji;tþb

� �
for temperature variable i, station j and day

b (where b = 1,2,. . .,B), following Equation (10):

y j
i;tþb ¼ lx j

i;tþb þ 1� lð ÞZ (10)

(10c) Where y j
i;tþb is the simulated perturbed value for

day b of the block, and l is chosen between 0 and 1
(1 gives an unperturbed result and 0 yields a result
based entirely on perturbation). Z is a normally
distributed value with a mean of x j

i;tþb and a
standard deviation of s j

i;t, where s
j
i;t is the standard

deviation of the K-NN for day t, station j and
temperature variable i. To prevent minimum
temperature (TMIN) from exceeding maximum
temperature (TMAX), the same random normal
variable is used for both TMAX and TMIN across
Hydrol. Process. 28, 905–912 (2014)
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all stations, along with the variables’ correspond-
ing x j

i;tþb and s j
i;t values. In order to adequately

preserve the inter-site spatial correlations and the
variable autocorrelations, l should be chosen as
large as possible but less than 1 (which would
result in no perturbation). A value of l = 0.9 will
produce a result that is 10% based on perturbation
and contains 90% of the original resampled value.

(11) Repeat steps 6 through 10 until the end of the
historical record is reached. Multiple simulations
can be done to produce long synthetic datasets.

Evaluation of weather generator performance

In order to evaluate the performance of KnnCAD V4
with the proposed block resampling and perturbation
scheme, the ability of the model to simulate historical
climate characteristics is investigated. This is done using
25 independent simulations, each with the same length as
the historical record. The ability of the updated model to
reproduce temporal correlations of temperatures is in-
vestigated using monthly boxplots, and results are
compared to KnnCADV3 to demonstrate the improvement
made by the block resampling procedure. KnnCAD V4-
simulated monthly mean temperatures are compared to
historical means through the use of boxplots. Line plots of
simulated and observed monthly standard deviations, 99th

percentile values, 1st percentile values and absolute
maxima and minima are plotted. The ability of the updated
KnnCAD V4 to preserve inter-site spatial correlation with
the new perturbation component is also evaluated as this is
a key advantage of the non-parametric models.
Figure 1. The Upper T

Copyright © 2012 John Wiley & Sons, Ltd.
APPLICATION

The Upper Thames River basin

The Upper Thames River basin (UTRB), shown in
Figure 1 (Census of Canada, 2006a,2006b) is located in
southwestern Ontario, between the great lakes of Erie and
Huron. The River runs in two main channels, the North
Thames and the South Thames, which meet in London,
Ontario and flow as a single channel through the Lower
Thames into Lake St. Clair (Wilcox et al., 1998). The basin
drains an area of 3482 km2, which is mainly agricultural
land with some heavily urbanized regions and a few
remaining forested areas (Wilcox et al., 1998).
The UTRB has a history of major floods, which

typically occur in the early spring from the combination
of rainfall and snowmelt, or in summer after major rainfall
events. Because snow accumulation and melt play an
important role in the prediction of runoff, long time series
of both temperature and precipitation data are required
for flood risk assessment purposes. Simulated temperature
data must adequately preserve the observed temporal
correlation in order to provide accurate hydrologic
models that account for snow accumulation and melt
events. Many studies have indicated that the UTRB is
vulnerable to climate change in terms of extreme
precipitation and flooding (Sharif and Burn, 2006;
Prodanovic and Simonovic, 2007; Simonovic, 2010;
Solaiman et al., 2010; Eum et al., 2011). As such, climate
impact assessments for water resources management in the
UTRB will play an important role for future development
of this region.
hames River Basin

Hydrol. Process. 28, 905–912 (2014)
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Data

Historical climate data for Canada is available from
Environment Canada’s Canadian Daily Climate Data
archives. Table I provides a list of the stations used in this
study along with the latitudes, longitudes and elevations
of each location. Figure 1 shows the locations of the
stations in the watershed. Stations are chosen based on
the length and completeness of the historical record.
Based on the availability of data, 27 years of records from
1979–2005 are used in this study. This dataset provides
three time series each of length 9862 corresponding to the
daily values of precipitation, TMAX and TMIN over the
period 1979–2005. The variables used are precipitation,
TMAX and TMIN. Our focus is on the two temperature
variables.
RESULTS

The updated KnnCAD algorithm (KnnCAD V4) with
block resampling and perturbation is used to produce 25
independent simulations of 27-year length based on the
observed record, for a total of 675 years of synthetic
climate data. The ability of KnnCAD V4 to adequately
reproduce historical temperature characteristics was in-
vestigated through sensitivity analysis using several
values of l for perturbation (see Equation (10)). A value
of l= 0.9 which yields a result that is 10% based on
perturbation is found to adequately preserve inter-site
correlations and historical characteristics while still
producing temperature values outside of the observed
range. As such, l = 0.9 is employed in KnnCADV4 for the
remainder of this study.
The choice of block length B was investigated by

examining the effect of the block bootstrap for
Table I. Location of stations in the UTRB

Station
Latitude
(degN)

Longitude
(degW)

Elevation
(m)

Blyth 43.72 81.38 350.5
Brantford 43.13 80.23 196.0
Chatham 42.38 82.2 198.0
Delhi CS 42.87 80.55 255.1
Dorchester 43.00 81.03 271.3
Embro 43.25 80.93 358.1
Exeter 43.35 81.50 262.1
Fergus 43.73 80.33 410.0
Foldens 43.02 80.78 328.0
Glen Allan 43.68 80.71 404.0
Hamilton A 43.17 79.93 238.0
Ilderton 43.05 81.43 266.7
London A 43.03 81.16 278.0
Petrolia Town 42.86 82.17 201.2
Ridgetown 42.45 81.88 210.3
Sarnia 43.00 82.32 191.0
Stratford 43.37 81.00 354.0
St. Thomas 42.78 81.21 209.0
Tillsonburg 42.86 80.72 270.0
Waterloo Wellington 43.46 80.38 317.0
Woodstock 43.14 80.77 282.0
Wroxeter 43.86 81.15 355.0

Copyright © 2012 John Wiley & Sons, Ltd.
autocorrelations likely to be found in daily temperature
series (McLeod and King, 2012). Various choices of
B were tested, and for temporal correlations in the
temperature series of up to 0.7, it was found that
B = 10 days is an adequate block length (McLeod and
King, 2012). This was confirmed in the application of
KnnCAD V4. In the selection of B, there is a tradeoff
between choosing a value large enough to preserve
temporal correlation but small enough to ensure
diversity between the values in subsequent simulations.
While perturbation does reduce this effect to an extent,
B should be a value large enough to preserve temporal
correlation but as small as possible. The lag-1
autocorrelation within each block is inherently pre-
served, but at the interface between subsequent blocks,
autocorrelation is not preserved. With a sufficiently large
block length such as B= 10 days, used in this study, the
effect of this is very small (one instance every 10 days)
and thus is undetectable, as seen in the results. The use
of block resampling also inherently helps to preserve wet
and dry spell lengths.
Figure 2 shows the simulated and observed values for

monthly lag-1 autocorrelations from the London A
station. Results from the other stations and other lags
are similar. The boxplots represent simulated correlations,
and the solid line shows the observed median. The left
column contains KnnCAD V4 results for TMAX and
TMIN, and the right column contains results from
KnnCAD V3 of Eum and Simonovic (2010). It is clear
from the figure that the updated algorithm provides a
major advantage over the one-day resampling approach
which greatly underestimates lag-1 autocorrelations.
While there is still a slight underestimation in the medians
for some months, the medians of the observed data all lie
within the interquartile ranges of the simulated data from
KnnCAD V4. Because 10 days are resampled at a time,
the proposed algorithm inherently preserves the temporal
characteristics of daily temperatures.
Figure 3 shows the simulated and observed monthly

temperature characteristics for the London A station from
KnnCAD V4. The previous version KnnCAD V3 of Eum
and Simonovic (2010) produced similar results, as did the
outputs from different stations. The first column contains
boxplots of simulated TMAX (top) and TMIN (bottom)
with the historical medians shown as a line plot. From the
figure, it is clear that KnnCAD V4 is able to adequately
simulate monthly average temperatures with very little
deviation from the observed values.
The second column in Figure 3 shows the monthly

standard deviations in TMAX (top) and TMIN (bottom).
While there are some very slight over and under-
estimations in certain months, KnnCAD V4 performed
very well for standard deviations. The third column of
Figure 2 shows the 99th percentile (top) and 1st percentile
(bottom) of simulated monthly TMAX and TMIN values.
There is a very close agreement between observed and
simulated values.
The last column in the figure shows the absolute

maximum (top) and minimum (bottom) monthly TMAX
Hydrol. Process. 28, 905–912 (2014)



Figure 2. Observed and simulated monthly lag-1 autocorrelations of TMAX and TMIN from KnnCAD Versions 3 and 4

Figure 3. Monthly characteristics of observed and simulated temperatures for London Airport station from KnnCAD V4. The first column shows
boxplots of the monthly averages for maximum (top) and minimum (bottom) temperatures with the historical median shown as a solid line. The second
column shows the standard deviation of observed and simulated maximum (top) and minimum (bottom) temperatures. The third column shows the 99th

(top) and 1st (bottom) percentiles of simulated and observed maximum and minimum temperatures. The remaining column shows the absolute maximum
(top) and minimum (bottom) of the observed and simulated data
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Figure 4. Observed and simulated spatial correlations between London A
and all other stations for January

Figure 5. Observed and simulated spatial correlations between London A
and all other stations for July
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and TMIN values. While the simulated extreme tempera-
tures are close to the observed records, there are some
values which lie reasonably outside of the historical
range, indicating satisfactory performance of the perturb-
ation component.
Table II shows the observed and simulated results for

selected climate indices from CLIMDEX (WCRP, 2009).
Results are the average yearly occurrence of each index
from the 27 year historical dataset and the averaged
results from all ensembles of simulated data. There is a
slight underestimation, just under 3 days, in the simulated
annual number of frost days but all other indices are
simulated quite well, indicating good performance of the
perturbation mechanism in preserving the occurrence of
extreme temperature conditions.
Figures 4 and 5 show observed and simulated spatial

correlations between 21 stations and London A for
TMAX in January and July, respectively, from KnnCAD
V4. Results from KnnCAD V3 are similar. The solid line
with X marks show the historical average correlations,
and the points show the simulated correlation results
from each of the 25 independent simulations. In both
figures, it is clear that the spread of the simulated
correlation values is centred on the historical observation
for most station pairs, indicating good performance of the
algorithm for spatial correlation. Simulations for the
station pairs with historically lower correlations (due to
inter-site distance or prevailing wind tendencies), such as
Blyth-London A, generally had a greater spread than
those with higher historical correlations. Overall the
simulations reproduced station correlations quite well.
Similar results are found for all other months using both
TMAX and TMIN. As such, the performance of KnnCAD
V4 in preservation of inter-site spatial correlations is
deemed satisfactory.
CONCLUSIONS

In this study, a new methodology for K-NN weather
generation is presented (KnnCAD V4). The weather
generator is applied to the UTRB in southwestern Ontario,
Canada. Meteorological data from 22 stations and several
variables are used as inputs to the algorithm to produce 25
simulations of synthetic climate data for a total of 675 years.
The proposed algorithm is found to adequately reproduce

historical monthly temperature characteristics and simulates
reasonable values that lie outside of the historical range.
Spatial correlations are also adequately preserved by the
model. The modifications to the KnnCAD V3 of Eum and
Simonovic (2010) are found to significantly improve
Table II. Observed and simulated C

Index Frost days Summer days

Definition Min. temperature <0 �C Max. temperature >25
Observed 140.8 days/year 62.6 days/year
Simulated 143.3 days/year 63.0 days/year

Copyright © 2012 John Wiley & Sons, Ltd.
simulation of temporal autocorrelations. This is of crucial
importance for hydrologic modeling in the study area where
snow accumulation and sudden melt events have historically
resulted in high flood levels.
KnnCAD V4 can be easily applied to any site and has

excellent potential for use as a downscaling tool in climate
change impact assessments for agricultural and hydrological
applications. Future work should focus on the development
of a perturbation scheme for the resampled precipitation
data. Downscaling of data from Atmosphere-Ocean
Coupled Global Circulation Models with KnnCAD V4 to
develop synthetic temperature and precipitation series for
climate change impact assessments is another important
research topic.
LIMDEX indices for London A

Icing days Tropical nights

�C Max. temperature <0 �C Min. temperature >20 �C
57.9 days/year 5.3 days/year
58.9 days/year 5.4 days/year

Hydrol. Process. 28, 905–912 (2014)
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