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Abstract. The problem of modelling time series driven by non-Gaussian innovations is
considered. The asymptotic normality of the maximum likelihood estimator is established
under some general conditions. The distribution of the residual autocorrelations is also
obtained. This gives rise to a potentially useful goodness-of-fit statistic. Applications of
the results to two important cases are discussed. Two real examples are considered.

Keywords. Autoregressive moving-average process; maximum likelihood estimation;
non-Gaussian innovations; residual autocorrelations.

l. INTRODUCTION

Time series processes driven by non-Gaussian innovations are common in real
situations. For example, in economics, Nelson and Granger (1979) considered a
set of 21 time series; among these, only six were found to be Gaussian. Usually
such time series exhibit ‘saw-tooth’ behaviour. Some well-known examples are
daily riverflow time series and various other geophysical time series such as the
Wolfer sunspot series (Weiss, 1977; Yakowitz, 1973). Simple monotonic trans-
formations will not rectify the asymmetry (Weiss, 1975). However, as shown in
Figure 1, an autoregressive model with positively skewed innovations will mimic
such asymmetric behaviour. Jacobs and Lewis (1978,a,b) and Lawrance and
Lewis (1980) represent steps towards modelling this type of time series. In these
papers, the authors considered the construction of models which have a predesig-
nated marginal distribution. Alternatively, Tong and Lim (1980) consider a non-
linear approach. A direct approach would be to consider time series driven by
innovations with a prespecified common distribution.

In hydrology it is well known that daily precipitation can usually be con-
sidered as gamma or log-normal distributed. Thus, some hydrologists, notably
Quimpo (1967) and O’Connel and Jones (1979) have considered fitting autore-
gressive models to riverflow series with log-normal disturbances. Their method,
however, is not maximum-likelihood; rather, the Yule—-Walker equation is used
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FiGURE 1. Sample path of an AR(1) process with log-normal innovations, ¢ = 0.8, n = 100.

to obtain the autoregressive parameters. Since in many situations the maximum-
likelihood estimators have many desirable properties, it is recommended that the
maximum-likelihood procedure be used. It will be shown that under some very
mild conditions on the distribution function of the innovations, maximum-
likelihood estimators for autoregressive moving-average processes are always
consistent and asymptotically normally distributed. Moreover, the asymptotic
distribution of the residual autocorrelations will always be normal with mean 0
and the variance—covariance matrix will always assume a particular form. The
above results will be applied to autoregressive models with log-normal and
gamma innovations. Previously, Davies et al. (1980) discussed in detail the gener-
ation of symmetric and asymmetric time series from skewed innovations.

In practice, the distribution of the innovation series will not usually be known
initially. However, since the standard least-squares methods are known to be
Gaussian efficient (Whittle, 1962), initial model and parameter estimates may be
obtained. Thus, the Gaussian assumption of the innovation series may be tested
as in Granger and Newbold (1977, p. 314). Should the Gaussian assumption be
rejected, then the new proposed techniques of this paper may be applied. Alterna-
tively, one may consider the use of robust techniques. However, such procedures
are designed mainly against symmetric departures from normality (Andrews et
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al., 1972) and therefore differ from the situation here. The proposed procedure fits
in well with the general framework for empirical modelling suggested by Box and
Jenkins (1976). The results of this paper suggest that if, at the model-criticism
stage, non-normal innovations are found, an improved model may be con-
structed by taking this into account in the model selection and calibration. Two
real-life examples are given in section 6.

Previously, Basawa et al. (1976) considered the consistency and asymptotic
normality of the maximum-likelihood estimator for stochastic processes under a
different set of conditions. However, they considered neither problems in actual
estimation nor problems in model diagnostic checking. Kabaila (1983) derived a
lower bound on the asymptotic covariance matrix. Ledolter (1979) considered the
sensitivity of ARIMA models to non-normal but symmetric error distributions.
Klimko and Nelson (1978) obtained asymptotic results for a conditional least-
squares approach.

2. PROPERTIES OF THE GENERAL MAXIMUM-LIKELIHOOD ESTIMATOR

Let X,,t = 1,..., n, be a stationary process satisfying

¢(B)X, = 0(B)a,, (1)
where B is the backward-shift operator, BX, =X, ,, ¢(B)=1—¢,B— -
—¢,B” and (B) =1 —0,B — -~ — ), B and it is assumed that ¢(B) and 6(B)

satisfy the condition that all their roots lie outside the unit circle and have no
common roots between them. The a, are assumed to be independent and identi-
cally distributed with finite fourth moments and mean y,. The range of g, is the
open interval (a, b) where a and b may be infinite. Denote the probability density
of a, by p, = p(a,| «). Without loss of generality, the parameter a-is assumed to be
a scalar. Denote expected values by (). Define n" = (¢,, ..., ¢,, 0, ..., 0,) =
(M, ..., m,), where r = p + q. Let AT = (", «). It is assumed that p, satisfies the
following assumptions (Kendall and Stuart, 1961, p. 43).

AssumpPTION 1. The derivatives
dlogp, dlogp, > logp, & logp, @ logp,
do ' da, ' 8x® ° da,0n’  oa?

exist, and are continuous for almost all a, and « in an open interval 4 of «
including the true value.

ASSUMPTION 2. At the true values of .

(Lo (128
podx/  \p da?/
1 {dp,\*
<pf(€d)>>0’

and
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1 &p, 1 6p,)2>
<P, 0ot aa!> =0 e <(pi da, .

and similarly

ASSUMPTION 3.

. . - g

lim p, = lim p,, similarly for e

ay=*a ag—h aat
It is clear that assumption 1 implies the existence of derivatives of p, with respect
to 7;. Given n successive observations X,, t = 1, ..., n, the log-likelihood condi-
tional on the first p observations is defined by

L=log [] o)=Y log pla,]a)

t=p+1
It is assumed that @, = y,, for t = 1, ..., p. Denote the maximum-likelihood esti-
mator of n" and « by f and & respectively. Define as in McLeod (1978) auxiliary
processes u, and v, by
¢(Bu, = —a,, G(B)l!, = .

Note that from assumption 2, <(—@*L/da-dn;> = (dL/dx+0dL/dn;) =
{0L/0a* AL/0a,* m,_;», where m,_; = v,_; or u,_;depending on #; = 6; 0or ¢;.

THEOREM. Under assumptions 1-3 the conditional maximum-likelihood estimator
4 of A exists and is consistent. Furthermore, \/r_:(i — A) is asymptotically normally
distributed and the (i, j)th element of the Fisher information matrix per observation I
of 4 is given by

Fii 2
IU=<(£) /P3>(TNU_‘}+P3/M% U‘I"‘{*I!J‘“{hr'

L 1 dp, dp, m_,dependsoniif I<i<r,j=r+1
L M) m,_,dependsonjif 1<j<ri=r+1;

2
Iu=<é(%%)>- ifi=j=r+1;

where y,,(k) is the lag k cross-covariance of u,, v, or u, and v, depending on n; and
n;. Similarly, M is either (1), 6(1)* or ¢(1)6(1) depending on n;and 1.

For convenience of presentation, the proof of the theorem is relegated to
appendix 1.
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3. DISTRIBUTION OF THE RESIDUAL AUTOCORRELATIONS

We remark that the fourth moments of {a,} are assumed to be finite. Define the
Ith innovation autocorrelation by

rdh) = C(1/C.(0),
where C () is the Ith innovation autocovariance,
Coh) =Y (@, — paXa,—; — p)/n.
Then it can be shown that
rl) = CD/C(0) + Oy(n~"),
where
Ch=n"" ¥ (a — M@ — o) + Ofln~ "),

where i, = Y a/n.
Similarly, it may be shown that

rl) = CD/<CL0)) + O,n™").

Thus, r,(l), C(1)/<C,0)> and C,(I)/C,(0) will have the same asymptotic distribu-

tion. As in McLeod and Li (1983), from theorem 14 of Hannan (1970, p. 228)

\/E-rT = \/ﬁ(r,,(l), ..., r(m)) is multivariate normal with covariance matrix 1,,.
The asymptotic cross-covariance of dL/d¢; and C,(]) is obtained by noting

j‘CaU) l—I prdap+1“'ango' (2}
t=p+1 N

Now [[i-,+1 p, is really the likelihood of X, y, ..., X, conditional on X4, ...,
X, and is therefore dependent on « and 6" = (¢,...., ¢,, 0,...., 0,). Differentiat-
ing equation (2) with respect to ¢, and interchanging the differential and integral
sign gives

1 d
;J‘ﬁ (Ca“) I1 p,) A
1 1
=;J.Z{al_ua}u[-l—-[ n p‘ _; '[Z u'_.l{a'_! — 'ua} 1_[ P

1 3}
+ p jZ afa,—; — pa) —%l_m

=0,
Note that the cumulant term is zero (Brilling_er, 1975, p. 19). Now, the first term

can be shown to be zero; the second term can be shown, as in McLeod (1978), to
be equal to ¥;_;{(C,0)) if i < I, where ) 2, y; = 1/¢(B); and the last term can
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be rewritten as

1 dL
;Z jat(a:—t —,U.a) 67’5; 1_[ Py dap+1 Tt Ay

Thus, the asymptotic cross-covariance of \/;-r,([} and n~ Y2 dL/0¢; is just equal
to Y|_;. Similar results hold for n~'/? dL/d6,. Furthermore, it can be seen
that n-{r-oL/dx) =0, so that asymptotically the marginal distribution of
ﬁ[(ﬁ — )", r"]" is normal with mean 0 and covariance matrix

[J JXT
X7 1, |

where J is the asymptotic covariance matrix of fj from section 2; X is given by

(=510 —Dmx (o> 2o 8 = 1/6(B), and Y2 o ¥i = 1/§(B).

The residual autocorrelations are defined by

Ay Z {al _ .ﬁalal—l — f‘l‘a}
M=""Fe-rF

where i1, = Y a,/n. ‘
By Taylor series expansion about A and evaluation at the true values of A,
#T = [#(1), ..., #(m)], can be shown (McLeod, 1978) to be

P=r—X@—n)+0,n"), 3)

By the martingale central limit theorem (Billingsley, 1961), any linear com-
bination of \/n*# is asymptotically normal, and it follows from equation (3) that

n+# is asymptotically multivariate normally distributed with mean 0 and
covariance matrix

1, — XJXT. 4

Thus, if an autoregressive moving-average process is driven by innovations
having finite fourth-order moments and probability densities satisfying assump-
tions 1 to 3, and the model parameters are estimated by the maximum-likelihood
method, the resulting residual autocorrelations will be asymptotically normally
distributed with covariance matrix given by (4). The result (4) reduces the
problem of the asymptotic distribution of the residual autocorrelations (in the
general situation) to the simpler problem of evaluating the quantities X and J.
Note that equation (4) is not necessarily idempotent as in the Gaussian situation.
Nevertheless, a portmanteau statistic can still be defined by

Qm = AT(lm ' X]{fl’)-l;

where X and J are the estimates of X and J when A is replaced by &. Q,, would be
approximately asymptotically chi-square distributed with m degrees of freedom.
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4. APPLICATIONS TO THE LOG-NORMAL AND GAMMA INNOVATION SITUATIONS

For simplicity, consider the autoregressive process
#B)X, = a,,
where the a, are log-normal distributed with probability densities
pla) = [an/270] " exp[ —4(log a)*/o?].
The moments of a, about 0 are given by
H, = exp(3a?r?).

The log-likelihood L conditional on the first p observations is

L = constant — Y loga, — r—p log ¢ .
t=p+1 2 2

Y (ogaye’  (9)
r=p+1

When a, is log-normal distributed with (loga,> =0 and {(log a)*) = o2,
assumptions 1 to 3 of section 2 are satisfied and the information matrix of 5 is
given by

(I)) = exp 20°(1 + o~ *)[p(k — j) + ua/d(1)],

where u? = exp o?. See Li (1981) for a more detailed discussion.
Note that the maximum-likelihood estimator for o is simply Y (log a)?/n;
thus, after maximizing over o2, the log-likelihood (5) can be written

Limaxy = constant — Y log a, — L ; P) log(}. (log a,)*/n).
1

pt

A non-linear optimization algorithm can then be used to find the maximum-
likelihood estimate #}. The two-parameter situation presents no additional
problem, but the three-parameter log-normal situation is much more difficult.
However, Hill (1963) has suggested maximum-likelihood estimates which may be
useful in this situation.

As an example, consider the ARMA(1, 0) process

(1- ¢B)Zx = a,,

where log a, is N(0, 1). Then straightforward calculation yields

[ & -ei-9
’_[—e,f(l—qb} : ] “

_{ele—1) e 3
o= (I e

where
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TABLE 1
EMPIRICAL RELATIVE EFFICIENCY OF GAUSSIAN ESTIMATOR TO MAXIMUM-LIKELIHOOD FOR ¢,

Empirical Empirical

mean variance  Empirical Empirical Theoretical Empirical Theoretical
Gaussian  Gaussian mean variance variance relative relative
n ¢, estimator estimator MLE MLE MLE efficiency  efficiency

50 08 0.72892  0.01190 0.80077  0.00007 0.000025 0.00582 0.00348
04 0.36235  0.01408 0.40308  0.00049 0.000131 0.03486 0.00779
0 —002277 001728 0.00603  0.00095 0.000212 0.05482 0.01060

200 08 0.78339  0.00214 0.80043  0.00001 0.000006 0.00425 0-00348
0.4 0.39364  0.00584 0.40199  0.00006 0.000033 0.00987 0.00779
0 —000076 000535 —0.00176  0.00005 0.000053 0.00947 0.01060

This implies that the asymptotic variance of #(k), k > 0, is
l [1 _ .La- l¢2(k- I}]
n 2 ’

where A is the determinant of (6). Hence the asymptotic variance for k) should
be much closer to 1/n than in the corresponding Gaussian situation.

Simulation experiments have been performed to compare the performances of
the conditional Gaussian estimator and the approximate maximum-likelihood
estimator, in the first-order autoregressive case, for sample sizes n = 50, and 200,
when the innovations are log-normal distributed with ¢ = 1. The values of ¢,
used are 0, 0.4, 0.8. There are 1000 replications for each combination of values of
¢, and n. The random number generator Super-Duper (Marsaglia, 1976) is used
with the method of Box and Muller (1958), to generate normal variates which are
then exponentiated to give the log-normal innovations. The simulation results
are summarized in Table L. It can be seen that the Gaussian estimator may be
heavily downward-biased for small sample sizes and large ¢, values.

It may also be seen that the maximum-likelihood estimator performs much
better for this range of values of n, although values of the empirical variance of
the maximum likelihood estimator are somewhat larger than those obtained from
theoretical calculations. However, it appears that these discrepancies are getting
smaller as n increases. In fact, when n = 200 and ¢, = 0, the theoretical and
empirical variances of the maximum-likelihood estimator are virtually identical.
The general pattern of the simulation results confirms that the maximum-
likelihood estimator is greatly superior to the Gaussian estimator. On the other
hand, even in the Gaussian situation, McLeod (1974, p. 79) has demonstrated
that there may be great discrepancies between the theoretical and empirical
variances of the estimated parameters. Simulation experiments have also been
performed to compare the asymptotic variance and the sampling variance of #(1)
about zero for ARMA(1, 0) models, when ¢, =0, 0.2, 04, 0.6, and 0.8 and ¢
equals to 1. The length of each series is 200 and the number of replications for
each value of ¢, is 500. The IMSL subroutine GGNLG was used to generate the
log-normal variates. The results are summarized in Table II. Values inside the
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TABLE I

EMPIRICAL VARIANCE OF H{1) FOR AUTOREGRESSIVE
ProCESS OF ORDER 1. LOG-NORMAL INNOVATIONS

Theoretical variance Empirical variance
b, of /1) of /1)
0 0.0049 0.0046 ( +0.0007)
02 0.0049 0.0045 (£0.0007)
04 0.0050 0.0043 (+0.0007)
0.6 0.0050 0.0043 (+0.0006)
0.8 0.0050 0.0045 (+0.0007)

Series length = 200
Number of replications = 500
at=1

bracket are two times the standard error of the empirical variance of #(1). It can
be seen that the empirical variances are closer to the predicted values if ¢ is
small. As a whole the empirical variances are somewhat downward-biased. On
the other hand, most predicted values are within the 95% confidence limits.

Now suppose that the innovations g, in

$(B)X =0

are gamma-distributed with probability densities given by
a; "' exp(—a)
I'(2) ’

Then, if « > 2, it can be shown that the conditions in section 2 are all satisfied. In
this case the log-likelihood L conditional on the first p observations is given by

pla) =

a, > 0.

L= i (x—1)log a, — i a, — (n — p) log I'(a).

1=p+1 t=p+1

As in the log-normal case the (j, k)th element in the information matrix for n is

given by
1/ &L \ _ s o\ [“a—1a"" exp(—a)
" <6¢J a¢k> . “(””‘ —A qs(l)‘) .[ Z Tw
oo e
=-(W‘—J)+W)/(a—2) 7
where

: Hy Ha
We=j)= <(X“" - ¢(1))(X"" N ¢(1))>'

Similar results can be obtained for other derivatives. It may be noted that if
o < 1, then assumption 3 is not satisfied and if « < 2, then the integral in (7) does
not exist.
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Evaluation of the likelihood for the ARMA parameters 1 can then be
obtained using & = ) a,/n. Estimation becomes more difficult if the distribution
of a, is given by the three-parameter gamma,

a, — 7" exp[—(a, — 7)/B]
BT ()
where x>0, >0, a,>y. When y is known, however, the solution to the

maximum-likelihood equation is always possible and n = 1 is given by substitut-
ing f = A/a into

pla) = (

y = log o — Y(a),

where y(x) = d log I'(a)/da, y =log A — log G, where A is the arithmetic mean
and G the geometric mean of a, — y, respectively. Note that if y is unknown it
may be estimated by the smallest observation.

Greenwood and Durand (1960) have provided tables of yx as a function of y
and from these tables values of & can be obtained from interpolation. Choi and
Wette (1968) suggested using a series expansion of y(a) and /(). However, we
have obtained satisfactory estimates of « using the series expansion of 1/T(x) as
given by Abramowitz and Stegun (1965, p. 256).

5. TWO APPLICATIONS

As a demonstration of the potential of the non-Gaussian innovation approach,
we consider fitting such models to the Wolfer yearly sunspot numbers and the
Canadian lynx data. It has been pretty well known that both data sets exhibit
non-Gaussian or perhaps non-linear behaviour (see, for example, Tong, 1983),
and various authors have proposed different models for both. We consider first
the sunspot series from 1770 to 1955. The best linear Gaussian model for the
sunspot series is that of an AR(9) with an estimated residual variance of 199.27.
Tong and Lim (1980) considered a threshold model that gives a residual variance
of 153.71. Gabr and Subba Rao (1981) considered a subset bilinear model with an
estimated residual variance of 124.33. Here we consider the simple AR(2) model
which has been considered by Box and Jenkins (1976). A two-parameter log-
normal distribution was considered for the innovations. Powell’s (1964) conjugate
direction algorithm was used to obtain the conditional maximum-likelihood esti-
mates. Approximate Gaussian estimates of ¢, and ¢, were used as initial values.
The resulting model is

X, = 1.6759X,_, — 0.7840X,_, + a,,

where a, is log-normal distributed with estimated mean 13.88 and variance
153.39. The residual variance is obtained using the method of Finney (Johnson
and Kotz, 1970) as the usual product moment estimate can be very inefficient.

The residual variance of 153.39 is comparable to that of the threshold model,
although it is still greater than that of the subset bilinear model. The AR(2) model
is certainly more parsimonious.
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Next, we consider the Canadian lynx data from 1821 to 1934. Moran (1953)
considered an AR(2) model for the log,,-transformed data set with a residual
variance of 0.0459. The Yule-Walker equations were used to estimate the auto-
regressive parameters. Nicholls and Quinn (1982) considered a random coefficient
autoregressive model of order 2 that gives a residual variance of 0.0391. Here an
AR(2) model with two-parameter gamma innovations is considered. As in other
works, the log, ,-transformation is applied first to the original data. Denote the
transformed observations by X, and let X; = X, — 1.591 where 1.591 is just
slightly smaller than the smallest value log, 4(39) of X,. The resulting model is

Xi= LATTIXG. | —O6210K; 5 4+ d;;

where q, is distributed as a two-parameter gamma with estimated shape and scale
parameters equal to 2.658 and 0.1183 respectively. These values together give an
estimated residual variance of 0.0372. This is a 5% reduction of residual variance
over the random coefficient model.

Although our experience with real data is still quite limited, the above two
examples demonstrate that linear time series model with non-Gaussian innova-
tion can be a useful tool in time series modelling.

6. CONCLUSIONS

Non-Gaussian time series are important in many applications. It has been shown
that under mild restrictions on the probability density of the innovation series,
conditional maximume-likelihood estimators for autoregressive moving-average
parameters are consistent and asymptotically normal. The asymptotic distribu-
tion of the residual autocorrelations under this general situation is also obtained.
This is found to assume a particularly simple form. Simulation experiments also
indicate the superiority of the maximum-likelihood estimator to the Gaussian
estimator. As real examples, autoregressive models with log-normal and gamma
innovations are fitted to the sunspot and the Canadian lynx data respectively.
The results of this paper answer, to a certain extent, the question raised by
Granger (1979) on non-Gaussian time series modelling. It is believed that these
results will contribute to this important area of time series analysis.

ACKNOWLEDGEMENTS

The authors are grateful to Drs K. W. Hipel, E. McKenzie, I. B. MacNeill and G.
Tunnicliffe Wilson, and to a referee for helpful comments. This research was sup-
ported by a NSERC Grant.

APPENDIX I

We now present a proof of the theorem stated in section 2.

Denote by 7, and & parameter values of n; and = satisfying assumptions 1 to 3, of the model (1) in a
closed interval R consisting the true parameters in its interior. Denote the corresponding a, by 4, and
similarly denote i, and o,.
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The first-order derivatives of L evaluated at f) and & are given by

aL lﬁp, aL lﬁp,l_’ oL 13,
o, “p, 6a a0, poa, " G “pon
The second-order derivatives of L are given by
.a:g et _.1._ iﬁi i Z ;1 % 2‘
do? p, oa? pi\ da
2L 1 ap, ap, 1 &, %
%o LTromdaitLly i
da dep; da da, b, da da, da,
L ik 1 2, ﬁp; ; 1 &,
o 6, 2 Ou da, b, da da, “rots
i 10%, 1 (dp\*] e i
dep; Oy & b, al 7 \da, d S
#L i%ﬁ_p! ia*p,b Wy lob P,
a¢, 80, = |p?da da, P, oat | TF! p, da, o, 86,
&L 1 &%, (LAY
——m Y| —e e Dpi-
a0, 26, b, oa? Ba, ]
The above equations follow from the fact that
oa,  3a,
3, 0p; 06,00,
It can be seen that by assumption 3 that
14 14
<—ﬁ> =j—3ip, da, = lim p(a,|a) — lim p(a, | o) =
p, da, p, da, ay-b e
Similarly, it can be shown that {(é%p,/@a})/p,> = 0. Thus the quantities W, = (ép,/da,"

“;—_;)fl’: arc

uncorrelated over t and this implies that n~' 6L/d¢, and n~' L/a8, converge to zero in probability.

Since {v,}, {u,} are stationary and {p,} is independent,

i 0L » ap
— m n — m, _ N
o G, 0, da, i

- L . r 1 ap, 2
= - m_o
o O M p‘ du 6a

e ()

—lim —7fn = (=[—1

- pi \oa
where m,_, = v,_; or u,_; depending on n, = ¢; or #;. A similar result holds for derivatives of L with
respect to 2

Now, expanding n~ " - dL/é) about the true parameter } and evaluating at % gives

n=Y-BL/ON|% = n~ - AL/AN |k + n~ '+ A2L/AN AT AR — W),

where A* lies between A and L. By assumption 2, the first term converges stochastically to zero with
variance equal to —n~ ' (expected value of n™'+8L/dA #1"). Thus, as in Crowder (1976), the condi-
tional maximum-likelihood estimator & of A exists and can be shown to be consistent. Furthermore,

by the martingale central limit theorem (Billingsley, 1961)

J/n(k — 1) is asymptotically normally dis-
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tributed. The Fisher’s information per observation of & is given by I = (I,;) where

azL ap 2 #2
L — 1 s = P iy L Fa I.fl-ﬁ,ﬁ.
¢ uln:: ! an; on; <(&a,) j:’!> <fWU o M> S

_<1§&% > m,_,dependsoniif 1<i<r,j=r+1
Y by m,_,dependsonjif 1 <j<ri=r+1;

NGAY P
I,-j=<E(a—!) >. fi=j=r+1;

where 7, (k) is the lag k cross-covariance of u,, v, or u, and v, depending on #, and n,. Similarly, M is
either ¢(1), 0(1)* or ¢(1)0(1) depending on »;and ;.
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