
Computational Statistics & Data Analysis 51 (2006) 1731–1738
www.elsevier.com/locate/csda
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Abstract

Several problems with the diagnostic check suggested by Peňa and Rodriguez [2002. A powerful portmanteau test of lack of fit
for time series. J. Amer. Statist. Assoc. 97, 601–610.] are noted and an improved Monte-Carlo version of this test is suggested. It
is shown that quite often the test statistic recommended by Peňa and Rodriguez [2002. A powerful portmanteau test of lack of fit
for time series. J. Amer. Statist. Assoc. 97, 601–610.] may not exist and their asymptotic distribution of the test does not agree with
the suggested gamma approximation very well if the number of lags used by the test is small. It is shown that the convergence of
this test statistic to its asymptotic distribution may be quite slow when the series length is less than 1000 and so a Monte-Carlo
test is recommended. Simulation experiments suggest the Monte-Carlo test is usually more powerful than the test given by Peňa
and Rodriguez [2002. A powerful portmanteau test of lack of fit for time series. J. Amer. Statist. Assoc. 97, 601–610.] and often
much more powerful than the Ljung–Box portmanteau test. Two illustrative examples of enhanced diagnostic checking with the
Monte-Carlo test are given.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let Xt, t = 1, 2, . . . be a stationary and invertible ARMA (p, q) model (Box et al., 1994),(
1 − �1B − · · · − �pBp

)
Xt = (

1 − �1B − · · · − �qBq
)
at , (1)

where B is the backshift operator on t, at is a sequence of independent and identical normal random variables with
mean zero and variance �2

a . After fitting this model to a series of length n, the residual autocorrelations,

r̂(k) =
n∑

t=k+1

ât ât−k/

n∑
t=1

â2
t , k = 1, 2, . . . , (2)

where ât denotes the fitted residuals, may be used for checking model adequacy. One of the most widely used model
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diagnostic checks (Li, 2004) is the portmanteau test of Ljung and Box (1978),

Qm = n(n + 2)

m∑
k=1

(n − k)−1r̂(k)2, (3)

where, under the assumption of model adequacy, Qm is approximately �2
m−(p+q) distributed.

A new portmanteau diagnostic test statistic, D̂m = n

(
1 −

∣∣∣R̂m

∣∣∣1/m
)

, based on the determinant of the residual

autocorrelation matrix,

R̂m =

⎛
⎜⎜⎝

1 r̂(1) · · · r̂(m)

r̂(1) 1 · · · r̂(m − 1)
... · · · . . .

...

r̂(m) · · · r̂(1) 1

⎞
⎟⎟⎠ , (4)

was suggested by Peňa and Rodriguez (2002).As noted by Peňa and Rodriguez (2002),
∣∣∣R̂m

∣∣∣ is the estimated generalized

variance of the residuals standardized by dividing by their standard deviation.

2. The Dm test and its limitations

Peňa and Rodriguez (2002, Theorem 1) showed that if the model is correctly identified, D̂m is asymptotically
distributed as

∑m
i=1 �i�2

1,i , where �2
1,i are independent chi-squared random variables with one degree of freedom, and

�i are the eigenvalues of QmWm, where Wm is a diagonal matrix with the ith diagonal elements, wi =(m− i+1)/m, i=
1, 2, . . . , m andQm is the asymptotic covariance matrix of the normalized residual autocorrelations

√
n(r̂(1), . . . , r̂(m))

given in McLeod (1978, Eq. 15). As pointed out by Peňa and Rodriguez (2002), this asymptotic distribution may be
computed using the method of Imhof (1961). We have implemented the computation of this asymptotic distribution for
the general ARMA(p, q) model in our R package gvtest. The cumulative distribution function for this asymptotic
distribution may be denoted by F (x; �1, . . . , �m).

Peňa and Rodriguez (2002) suggested evaluating D̂m by a gamma approximation distribution to the asymptotic
distribution. The approximation distribution is derived by equating the first two moments of a gamma distribution with
those of the corresponding asymptotic distribution. The density function for this gamma approximation may be written
f�(x; �, �) = e−x/�x�−1�−�/	(�), where

� = 3m{(m + 1) − 2(p + q)}2/[2{2(m + 1)(2m + 1) − 12m(p + q)}] (5)

and

� = 3m{(m + 1) − 2(p + q)}/{2(m + 1)(2m + 1) − 12m(p + q)}. (6)

Peňa and Rodriguez (2002) indicated that the approximation improves as m increases. In addition, it may be noted that
if m is too small then it can happen that ��0 or ��0 which is numerically infeasible. For example, if p + q = 3 then
we must have m�8 to make � > 0 and � > 0.

Peňa and Rodriguez (2002) found that the empirical distribution of D̂m did not agree very well with the gamma
approximation so they suggested a modified statistic,

Dm = n − n
∣∣R̈m

∣∣1/m
, (7)

where R̈m denotes the residual autocorrelation matrix replacing r̂(k)2 with r̈2
k , where

r̈(k)2 = (n + 2)(n − k)−1r̂(k)2.

This is similar in spirit to the modification suggested by Ljung and Box (1978) to the original Box and Pierce portmanteau
statistic (1970). Although, as shown by Peňa and Rodriguez (2002), this approximation works well when n�100 in
first-order autoregressive models, it does not provide a good approximation to the asymptotic distribution for more
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Fig. 1. Inaccuracy of the gamma approximation for AR(2) with m=10. F(Q�(0.05; �,�); �1, . . . , �10), where F is the cdf of asymptotic distribution
of D̂m and Q� is the quantile function for the gamma approximation, is plotted. The plot shows panels corresponding to �2 = ±0.3, ±0.6, ±0.9.
The parameter �1 extends over the whole admissible region corresponding to the �2. These plots demonstrate that the gamma approximation is not
conservative asymptotically. When n is large enough, the test based on the gamma approximation will overstate the true significance level.

Table 1
P-values of the upper 5% quantiles of the gamma approximation for ARMA (1, 1) models with �1 and �1 = ±0.9, ±0.6, ±0.3 evaluated by their
asymptotic distributions

�1| �1 −0.9 −0.6 −0.3 0.3 0.6 0.9

−09 0.105 0.091 0.083 0.085 0.109
−06 0.105 0.069 0.063 0.065 0.085
−03 0.091 0.692 0.060 0.063 0.083

03 0.083 0.063 0.060 0.069 0.091
06 0.085 0.065 0.063 0.069 0.105
09 0.108 0.085 0.083 0.091 0.105

complicated models if the number of lags, m, is small. As shown in Fig. 1, the gamma approximation can distort the size
of a 5% significance test relative to the asymptotic distribution for AR (2) models when m is 10. Similar distortions are
found for MA (2) models or higher orders AR and MA models. The distortions for ARMA (1, 1) with m = 10 models
were also investigated and the results were listed in Table 1. Moreover, this distortion would tend to make the tests
based on the gamma approximation reject more often than they should. In other words, the test based on the gamma
approximation is not conservative. So despite the fact that as shown by Peňa and Rodriguez (2002, Table 2) the small
sample performance is acceptable in some cases, the more general use of tests based on the gamma approximation
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Table 2
Asymptotic probability corresponding to the upper 5% quantile of the empirical distribution of D̂m with m = 50 for the first-order autoregressive
model with parameter � and series length n

n �

−0.8 −0.4 0.4 0.8

100 0.423 0.433 0.439 0.445
200 0.179 0.161 0.170 0.181
500 0.093 0.092 0.081 0.079
1000 0.060 0.059 0.051 0.062

Each entry in the table is based on 104 simulations.

cannot be recommended. The reader may investigate the accuracy of the gamma approximation for a particular m and
ARMA(p, q) using our gvtest package that is available on CRAN.

Another serious limitation to the use of Dm is that it is frequently undefined. This happens because R̈m is not always
positive definite (McLeod and Jimenéz, 1984). When we tried to replicate Table 4 in Peňa and Rodriguez (2002) we
frequently found cases where R̈m was not positive definite. For example, for model 7 listed in this table this happens
about 25% of the time with m = 10. This problem occurred with many other models listed in this table. Although only
very short time series were used in Table 4, this problem also occurs with longer time series particularly when m is also
larger. For this reason, it is better to concentrate on the original D̂m statistic.

3. Tests based on D̂m

In a modern high-level computing environment, such as R or Mathematica, it is not difficult to evaluate the asymptotic
distribution and so a test based directly on this asymptotic distribution might seem to be preferable. Unfortunately, the
convergence of D̂m to its asymptotic distribution is often very slow. In Table 2, we evaluated the asymptotic distribution
corresponding to the upper 5% point of the empirical distribution of D̂m for the first-order autoregressions with series
lengths n = 100, 200, 500 and 1000. Not until n is very large is the asymptotic distribution reliable. Fig. 2 shows
a QQ plot for these simulations which shows that the discrepancy between the empirical and asymptotic distribution
increases at the larger quantiles. The asymptotic distribution tends to understate the actual finite-sample significance
level while the gamma approximation errors in the opposite direction.

For these reasons, a Monte-Carlo test procedure (Gentle, 2002, Section 2.3) is recommended when n < 1000. This
procedure is quite practical on typical computers now available.This test is essentially equivalent to a parametric
bootstrap test (Davison and Hinkley, 1997, Ch.4). The steps in this procedure are indicated below:

1. After fitting model in Eq. (1) obtain D̂m.
2. Select the number of Monte-Carlo simulations, N. Typically 100�N �1000.
3. Simulate the model in Eq. (1) using the estimated parameters obtained in Step 1 and obtain D̂m after estimating

the parameters in the simulated series.
4. Repeat Step 3 N times counting the number of times k that a value of D̂m greater than or equal to that in Step 1 has

been obtained.
5. The P-value for the test is (k + 1)/(N + 1).
6. Reject the null hypothesis if the P-value is smaller than a predetermined significance level.

It should be noted that nuisance parameters are present in our proposed procedure and this could cause size distortion
in the Monte-Carlo test (Jöckel, 1986). The empirical size of the Monte-Carlo test for the first-order autoregressive
model was investigated by simulation. The results were summarized in Table 3 and it is seen that the empirical sizes
are very close to their nominal level. In general, it has been shown (Dufour, 2006; Dufour and Khalaf, 2001) that
if consistent estimators are used then the Monte-Carlo test produces an asymptotically correct size as n → ∞. The
asymptotic validity of the Monte-Carlo test follows immediately.

Alternatively since the gamma approximation is asymptotically correct as both n and m get large, it follows that D̂m

is asymptotically pivotal and hence does not depend on nuisance parameters.
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Fig. 2. Slow convergence of empirical distribution of D̂m. The AR(1) with parameter �1 = 0.5 was simulated 103 times for series of lengths
n = 100, 200, 500, 1000 and the empirical distribution of D̂m with m = 20 was compared with its asymptotic distribution using a QQ plot with
quantiles corresponding to 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.98, 0.99.

Table 3
Empirical significance levels of D̂m under first-order autoregressive models

� = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9

� = 0.05
m = 10 0.050 0.049 0.059 0.055 0.049
m = 20 0.049 0.047 0.046 0.050 0.058

� = 0.01
m = 10 0.016 0.014 0.011 0.012 0.008
m = 20 0.009 0.012 0.014 0.014 0.012

The empirical power for the MC test is based on 1000 simulations. Each MC test also used 250 simulations.

4. Empirical power comparisons

In many cases the Monte-Carlo test outperforms the Dm test based on the gamma approximation. As an illustration,
in Table 4 the simulation results for the Monte-Carlo test are compared with Dm test for the GARCH models Peňa
and Rodriguez (2002, Table 12). We see that the Monte-Carlo test has always has higher power than the gamma
approximation in Table 4.

Peňa and Rodriguez (2002) indicated that the advantage of their test over the Ljung–Box test, denoted as Qm, may
disappear in heteroscedastic data with long persistence. The results in Table 5 confirm this fact. For example, D̂m has
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Table 4
Power comparison of MC test and Dm test for GARCH time series

Model n m = 12 m = 24 m = 32

D̂m Dm D̂m Dm D̂m Dm

A 250 0.387 0.268 0.397 0.244 0.381 0.213
B 250 0.878 0.821 0.859 0.782 0.841 0.731

A 500 0.574 0.522 0.566 0.501 0.566 0.479
B 500 0.992 0.986 0.990 0.981 0.987 0.973

A 1000 0.843 0.807 0.843 0.802 0.829 0.776
B 1000 1.000 1.000 1.000 1.000 1.000 1.000

The empirical power for the MC test is based on 1000 simulations. Each MC test also used 1000 simulations. The empirical power reported by Peňa
and Rodriguez (2002, Table 9) is shown in the column Dm. Models A and B refer to the two GARCH models used by Peňa and Rodriguez (2002).

Table 5
Empirical power comparison of Monte-Carlo test using D̂m and Ljung–Box test, Qm, for fractional noise time series with n=256, 512 and d=0.2, 0.3

d n m = 5 m = 10 m = 20 m = 30 m = 40

0.2 256 0.283/0.274 0.274/0.247 0.227/0.202 0.192/0.176 0.171/0.153
0.3 256 0.539/0.517 0.540/0.486 0.464/0.411 0.419/0.329 0.374/0.307
0.2 512 0.620/0.614 0.609/0.557 0.547/0.455 0.476/0.406 0.446/0.377
0.3 512 0.888/0.880 0.894/0.848 0.851/0.804 0.823/0.736 0.778/0.708

The empirical power is based on 1000 simulations and each Monte-Carlo test also uses 1000 replications. The first entry corresponds to D̂m and the
second to Qm.

Table 6
Empirical power of Monte-Carlo tests D̂m/Qm when a first-order autoregressive model is fit to various indicated autoregressive-moving average
models denoted by models 1–12 in Peňa and Rodriguez (2002, Table 3)

Model m = 10 m = 20

1 0.464/0.259 0.361/0.175
2 0.988/0.705 0.974/0.539
3 0.993/0.757 0.990/0.574
4 0.584/0.414 0.472/0.303
5 0.584/0.414 0.472/0.303
6 0.798/0.490 0.702/0.361
7 1.000/0.981 1.000/0.846
8 1.000/0.821 0.998/0.621
9 0.246/0.169 0.196/0.130
10 0.876/0.743 0.820/0.575
11 0.252/0.119 0.192/0.083
12 0.989/0.664 0.979/0.472

The series length was n = 100 and 1000 simulations were used for each test.

power 0.888 for m=5 and d =0.3 with respect to a power of 0.880 for Qm. However, it is interesting to note that, as can
be seen in Table 5, the difference in power increases as n and m increase, so that, for example, when n = 512, m = 40,
D̂m is about 100 × (0.446 − 0.377)/0.377

.= 18% more powerful than Qm.
In another simulation experiment, shown in Table 6, we compared the power of Monte-Carlo tests using both D̂m and

Qm for 12 models examined by Peňa and Rodriguez (2002, Table 3). Overall our results are similar to those reported
by Peňa and Rodriguez (2002, Table 3). There are some differences though and this is due the limitations discussed in
Section 2. Specifically, incorrect size when the gamma approximation was used or bias in the simulations caused by
the fact that Dm frequently does not exist. We also investigated Monte-Carlo tests based on the Ljung–Box test, Qm.
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Table 7
Comparison of p-values for portmanteau tests

m 20 30 40 50

Ninemile Qm 0.9% 8.0% 22.3% 32.2%
D̂m 0.4% 0.5% 1.1% 1.4%

m 5 10 15 20
Series E Qm 4.6% 10.0% 9.0% 21.7%

D̂m 2.3% 4.3% 4.3% 5.3%

The Ljung–Box Qm test and the Monte-Carlo D̂m test are compared for the ARMA(2, 1) model fit to the Ninemile time series and the AR(2) model
fit to Series E.

As shown in Table 6, the Monte-Carlo test using D̂m outperforms this test. The empirical power for the Monte-Carlo
test for the Box–Pierce test (Box and Pierce, 1970) was also computed but it was not significantly different from the
results for the Qm test.

5. Illustrative examples

Our Monte-Carlo test is implemented in an R package available on CRAN, GVTest. Hipel and McLeod (1978) fit
an ARMA(2, 1) model a tree-ring time series denoted by Ninemile. There were n = 771 annual values. As can be
seen from Table 7, if one uses the Ljung–Box portmanteau test with m = 40, the model appears adequate although
for m = 20 the test does strongly suggest model inadequacy. In this case the D̂m Monte-Carlo test provides a clearer
indication since it indicates to reject for m = 20, 30, 40, 50.

Fitting an AR(2) model to the sunspot series in Box et al. (1994, Series E) we again found that the Ljung–Box test
suggests the model is adequate but the Monte-Carlo D̂m test indicates model inadequacy. Note that with m = 5, the
Ljung–Box test does have a p-value of about 5% but usually m is taken to be larger since only for large enough m is
the covariance matrix idempotent. For this reason, the result for m = 5 might be discounted. When a Monte-Carlo test
is used, no such difficulties arise. The results are summarized in Table 7.

6. Concluding remarks

The implementation of the generalized variance portmanteau test statistic suggested by Peňa and Rodriguez (2002)
is unsatisfactory because it frequently does not exist and there are important limitations to the gamma approximation.
These difficulties are rectified by using a Monte-Carlo test. Further simulation experiments have indicated that the
Monte-Carlo portmanteau test using simulated Gaussian innovations often works well even when the true distribution
is non-normal. This is the case for thicker tail distributions such as double exponential and the t distribution on 5 df.
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