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DO 360 II = 1, N

DO 360 JJ = 1, N
360 A(II, JJ) = C(II, JJ)

A(I, I) = CS *# CS * CIT + SN * SN * CJJ + TWO * CS * SN #* CIJ
IF(ABS(A(I, I) - ONE) .GT. EPS) GOTO 30
M(NN, 1) = I
NK = NK + 1
A(Jd, J) = CS * CS * CJJ + SN * SN * CII - TWO * CS * SN * CIJ
A(d, I) = (CS * CS - SN * SN) *# CIJ + CS * SN * (CJJ - CII)
A(I, J) = A(J, I)

DO 370 L = 1, N
IF(L .EQ. I .OR., L .EQ. J) GOTO 370

A(I, L) = CS *# C(I, L) + SN * c(J, L)
A(J, L) = -SN * C(I, L) + CS * C(J, L)
A(L, I) = A(I, L)

A(L, J) = A(J, L)
370 CONTINUE

DO 380 II = 1, N

DO 380 JJ = 1, N
380 C(II, JJ) = A(II, JJ)
390 SUM = SUM + C(I, I)

400 CONTINUE

SET THE REMAINING DIAGONAL ELEMENT TO BE (N-SUM) AND
SEE IF IT IS WITHIN THE SPECIFIED PRECISION LIMIT

aoaan

C(N, N) = FLOAT(N) - SUM

IF(ABS(C(N, N) - ONE) .GT. EPS) GOTO 30
RETURN

END
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Wichmann and Hill (1982) claim that their generator RANDOM will produce uniform pseudo-
random variables which are strictly greater than zero and less than one. However, depending on
the precision of the machine, some zero values may be produced due to rounding error. For
example, in a sequence of 10° variables generated by RANDOM on a PRIME-400 Computer
starting with initial seeds IX = [Y = IZ = 1, it was found that 364 of them were exactly 0.0 while
the remainder were in the open interval (0, 1) as required. We will now show that this behaviour
is explained by the fact that the PRIME-400 uses chopped arithmetic with only 23 bits for the
representation of the fractional part of a real variable (another 8 bits are used for the exponent
and one more bit is used for the sign). See Golub and Van Loan (1983, p. 33) for a precise
definition of the above terminology.
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In RANDOM, the sum of the standardized output from three prime modulus generators is cal-
culated. Let us call this quantity SUM. Now, p;' +p;,' +p;' >272 where p, =30269,
py = 30307 and p, = 30323 are the moduli. Thus the value of SUM will never be 0.0 or 3.0 on
any computer which has at least 23 bits for the fractional part. The difficulty arises when the
value of the sum is very close to 1.0 or 2.0.

Suppose that Uy, U, and U, are independent uniform (0, 1) random variables and let
§=Uy + Uy, +U,. Then the probability that S has a floating point representation exactly equal to
1.0 or 2.0 if only 23 bits are used for the fractional part and chopped as opposed to rounded
arithmetic is used is respectively p; =P{1<S<1+272} and p, =P{2<S<2+272}
Using the distribution of § given by Johnson and Kotz (1970, p. 64, equation 19),
py = 1.19209 x 1077 and p, =2.38418 x 1077. Thus it may be expected that RANDOM will
produce zero values about once in every (p; +p,) ' =2.8 x 10° calls on average on the
PRIME-400. The function RANDOM was slightly modified so that the value of SUM was assigned
and this modified function was called 10° times starting with initial values IX = IY = IZ = 1. The
results, summarized in Table 1, are in good agreement with the hypothetical probabilities p; and
p2. These results, which produce a value of the usual x* goodness-of-fit statistic of 1.73 on 2 d.f.,
also provide an amusing additional test of the generator.

TABLE 1
Observed and expected number of times that the value
of SUM is 1.0 or 2.0 in 10° calls

SUM Observed Expected
1.0 110 119.2
2.0 254 238.4

It is of interest that some other 32-bit computers, VAX and IBM for example, use rounded
arithmetic with 24 bits for the fractional part of a single-precision variable. In this case,

py=P{1-2"5<§<1+27%}=45%x10"%
and
P, =P{2-2"7<85<2+28}=89x 1078.

So a zero value might be expected to occur only about once in every 7.4 x 10° calls. Note also
that, in this case about one-third of the zero values produced will correspond to values which
should in fact be very close to one, whereas in the previous situation with chopped arithmetic, all
zero values correspond to values which were in fact very close to zero.

In some situations the zero values possibly produced by RANDOM could cause program errors.
A naive remedy would then be to discard such values. However, it is desirable that the same
random sequence should be generated on any computer and so in order to maintain portability the
following amendment to RANDOM is proposed:

insert the statements

IF (RANDOM .GT. 0.0) RETURN
RANDOM = DMOD(DBLE(FLOAT(IX))/30269.0D0+

*  DBLE(FLOAT(IY))/30307.0D0+DBLE(FLOAT(IZ))/30323.0D0, 1.0D0)
IF (RANDOM .GE. 1.0) RANDOM =0.999999

immediately prior to the RETURN statement.

Provided that at least 47 bits are available for the fractional part of a double precision variable,
as is the case, for example, on the PRIME-400, this amendment is guaranteed to produce a result



200 APPLIED STATISTICS

different from 0.0. To see this, note that a value of SUM equal to 1.0 could occur only if there
exist integers iy, iy, and i, such that 0 <i, <p,,0 <iy <py,0<i; <p; and

f1-= - X -2 1<, (1)

But (1) holds only if
lpxpypz - ixpypz _iypxpz —ipxpy | <1

S PxPyDz ~ixPyDz ~IyDxPz — iIzPxDy =0

®pypz(Px —ix)= px(iypz + izpy)~
But p, cannot be a factor of the left-hand side of the last equation. Therefore there are no such
integers iy, iy, and I,. Similarly SUM cannot equal 2.0.

Note that the third statement of the amendment may be needed on computers with rounded
arithmetic in order to avoid producing an output value exactly equal to one when the conversion
from double to single precision is made. Also in this statement, the largest machine representable
single precision floating point number which is less than one could be used instead of 0.999999.

In addition to portability considerations, the proposed amendment will not unnecessarily
ignore extreme values in the sequence which would happen if zero values were naively discarded.
In hydrological simulation, for example, it is often extreme events which are of interest (see, for
example, Askew, Yeh and Hall, 1971).

Finally, it should be noted that for some applications, output values of zero may do no harm
apart from a possible slight lack of portability to 32-bit machines with rounded arithmetic. In this
case, if portability is not crucial, no amendment would be needed.

Helpful comments from the referee are acknowledged.
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