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Mean likelihood estimators
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The use of Mathematica in deriving mean likelihood estimators is discussed. Comparisons are made
between the mean likelihood estimator, the maximum likelihood estimator, and the Bayes estimator
based on a Jeffrey’s noninformative prior. These estimators are compared using the mean-square error
criterion and Pitman measure of closeness. In some cases it is possible, using Mathematica, to derive
exact results for these criteria. Using Mathematica, simulation comparisons among the criteria can
be made for any model for which we can readily obtain estimators.

In the binomial and exponential distribution cases, these criteria are evaluated exactly. In the first-
order moving-average model, analytical comparisons are possible only for n= 2. In general, we find
that for the binomial distribution and the first-order moving-average time series model the mean
likelihood estimator outperforms the maximum likelihood estimator and the Bayes estimator with a
Jeffrey’s noninformative prior.

Mathematica was used for symbolic and numeric computations as well as for the graphical display of
results. A Mathematica notebook which provides the Mathematica code used in this article is available:
http://www.stats.uwo.ca/mcleod/epubs/mele. Our article concludes with our opinions and criticisms
of the relative merits of some of the popular computing environments for statistics researchers.

Keywords: binomial distribution, exponential distribution, first-order moving-average time series
model, Mathematica in education and research, mean square error criterion, Pitman measure of
closeness, simulation comparison of estimators, unit root in MA(1) model

1. Introduction

The maximum likelihood estimator (MLE) is perhaps the most
common and widely accepted estimator of a parameter in a sta-
tistical model denoted by (S, Ä, f ), where S, Ä, f denote
respectively the sample space, the parameter space and the prob-
ability density function (pdf ). We will take S = Rn, X =
(X1, X2, . . . , Xn) ∈ S, and f (x , θ ). In the standard case of
independent and identically distributed observations, f (x, θ ) =
5n

i=1 f1(xi ), where f1(x) is the pdf of X1. Given data X , the like-
lihood function is L(θ̇ ) = f (X ; θ̇ ), θ̇ ∈ Ä and the MLE of the
parameter θ is defined as that value θ̇ which globally maximizes
L(θ̇ ). Mathematica (Wolfram 1996) has been widely used in the
study of fundamental and general aspects of maximum likeli-
hood estimation – see Andrews and Stafford (1993), Stafford
and Andrews (1993) and Stafford, Andrews and Wang (1994).
As well Mathematica has been used for obtaining symbolically
exact maximum likelihood estimators in situations where the
use of numerical techniques are less convenient such as with

grouped or censored data or logistic regression – see Cabrera
(1989) and Currie (1995).

For simplicity we will deal with the case where Ä is one-
dimensional. The multidimensional case may in general be
reduced to the one-dimensional case by using marginal, con-
ditional or concentrated likelihoods or by integrating over the
nuisance parameters whichever is more suitable in a particular
situation. Under the usual regularity conditions, the MLE, θ̂ , is
approximately normally distributed with mean θ and covariance
matrix I−1

θ , where Iθ denotes the Fisher information matrix. It is
also true that the mean likelihood estimator (MELE) is equally
efficient in large samples. In general the MELE θ̄ is defined by

θ̄ =
∫
Ä
θ̇L(θ̇ ) d θ̇∫
Ä

L(θ̇ ) d θ̇
,

where L(θ̇ ) is the likelihood function. It should be noted that
although the MELE is identical to the Bayes estimator with a
uniform prior, it is not often considered in frequentist settings.
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Pitman (1938) showed that when the problem is location invari-
ant, the MELE is the best invariant estimator. Barnard, Jenkins
and Winsten (1962) recommended the MELE for time series
problems and suggested that it will often have lower MSE than
the MLE. Another application of the MELE is to changepoint
analysis where the usual regularity conditions for the MLE do
not hold. In this situation, the MLE is actually statistically in-
efficient, even in large samples, however the MELE works well
(Ritov 1990, Rubin and Song 1995).

Unlike the MLE the MELE is not invariant under reparam-
eterization. Although the MELE has a Bayesian interpretation,
it is not the Bayesian estimator that is usually recommended.
In order that the Bayesian estimator share the MLE property
of being invariant under parameter transformation, the Jeffrey’s
noninformative prior is recommended when there is no prior
information available (Box and Tiao 1973, §1.3). The Jeffrey’s
prior is given by p(θ ) ∝ √I θ .

There are situations, such as in the first-order moving-average
model, MA(1), where the MLE in finite samples has non-zero
probability of lying on the boundary of the parameter region but
this phenomenon does not happen with the MELE as can be seen
from the following result.

Theorem 1. Let Ä = [a, b] then Pr{θ̄ ∈ (a, b)} = 1.

Proof: The likelihood function, L(θ̇ ), defined below, is easily
seen to be continuous and differentiable in the interval [a, b] and
non-negative. It then follows from the generalized mean-value
theorem (Borowski and Borwein 1991, p. 371) that θ̄ ∈ (a, b).

¤

Under suitable restrictions on the prior distribution, Theo-
rem 1 can be extended to Bayesian estimators.

In many cases the MLE is easy to compute using pen and
paper. However with Mathematica we can now easily obtain the
MELE by numerical integration and sometimes symbolically. In
fact, for problems where the likelihood function is complicated
or difficult to evaluate the MELE may be computationally easier
to compute than the traditional MLE. As shown in Theorem 2,
both the MLE and MELE are first order efficient.

Theorem 2. Under the usual regularity conditions for maxi-
mum likelihood estimators, θ̄ = θ̂ + Op(1/n).

Proof: The likelihood function, L(θ̇ ), is to Op(1/n) equal to the
normal probability density function with mean θ and variance
I−1
θ (Tanner 1993, p. 16). The result then follows directly from

this approximation. ¤

Now consider an estimator θ̂1 of θ . The mean-square er-
ror (MSE) of an estimator θ̂1 is defined as σ 2(θ̂1 | θ ) =
E{(θ̂1 − θ )2}. The relative efficiency of θ̂1 vs θ̂ is defined as
R(θ̂1, θ̂ | θ ) = σ 2(θ̂ | θ )/σ 2(θ̂1 | θ ). Clearly, from Theorem 2, as
n →∞, R(θ̄ , θ̂ | θ ) = 1. Barnard, Jenkins and Winsten (1962)
suggested that in many small sample situations the MELE is

preferred by the mean-square error criterion and hence at least
for some values of θ , R(θ̄ , θ̂ | θ ) > 1, where θ̂ and θ̄ denote the
MLE and MELE respectively.

Pitman (1937) formulated a useful alternative to the MSE in
the situation where no explicit loss function is known. Consider
two estimators, θ̂1 and θ̂2, and assume that with probability one,
θ̂1 6= θ̂2 then the Pitman measure of closeness for comparing θ̂1

vs θ̂2 is defined as

PMC(θ̂1, θ̂2 | θ ) = Pr{|θ̂1 − θ |< |θ̂2 − θ |}. (1.1)

When PMC(θ̂1, θ̂2 | θ ) > 1/2, θ̂1 is preferred to θ̂2. The mono-
graph of Keating, Mason and Sen (1993) provides an extensive
survey of recent work and applications of the PMC. Addition-
ally, volume 20(11) of Communications in Statistics: Theory and
Methods contains an entire issue on the PMC.

Unlike the MSE and relative efficiency, the PMC depends
on the bivariate distribution of the two estimators. The PMC is
more appropriate in many scientific and industrial applications
in which the estimator which is closer to the truth is required.
Sometimes it is felt that the MSE and other risk criteria give
too much weight to large deviations which may seldom occur.
Rao and other researchers (Keating, Mason and Sen 1993, §3.3)
have found that risk functions such as MSE and mean-absolute-
error can often be shrunk but that this shrinkage occurs at the
expense of the PMC. The MSE or some other risk function is
more appropriate than PMC in the decision theory framework
when there is some economic or other loss associated with the
estimation error. In practice it is often useful to consider both
the PMC and MSE and in many situations there appears to be
a high level of concordance between these estimators (Keating,
Mason and Sen 1993, §2.5). In complex models, the PMC like
the MSE may be evaluated by simulation.

As originally pointed by Pitman (1937) the PMC criterion is
intransitive but it is arguable whether this is a practical limitation.
This point as well as other limitations and extensions of the PMC
are discussed by Keating, Mason and Sen (1993, ch. 3)

Theorem 3. θ̄ and θ̂ are not necessarily asymptotically equiv-
alent under the PMC.

Proof: See equation 2.3. ¤

The next theorem shows that the MELE minimizes the mean
likelihood of the squared error.

Theorem 4. Choosing θ̇ = θ̄ minimizes δ(θ̇ ), where

δ(θ̇ ) =
∫
Ä

(θ̇ − θ )2L(θ̇ ) d θ̇ .

Proof: Using calculus, the result follows directly. ¤

Theorem 5. θ̄ is a function of the sufficient statistic for θ, S,
if there is one.

In general, the MELE is a biased estimator.
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Theorem 6. If Ä has compact support and 0 < Var (θ̄ ) <∞
then E{θ̄} 6= θ .

Theorems 5 and 6 are derived in Quenneville (1993). The
MELE is formally equivalent to the Bayes estimator under
a locally uniform prior with the squared error risk function.
Theorems 2–6 have well-known Bayesian analogues.

Frequentist analysis of Bayesian estimators is not often done
but Dempster (1998) and Quenneville and Singh (2000) have
argued that frequentist considerations are obviously informative
even in the Bayesian setting. We are now going to make com-
parisons between these three estimators each of for three statis-
tical models: Bernouilli trials, exponential lifetimes and MA(1)
time series. The symbolic, numeric and graphical computations
will all be done using Mathematica. The interested reader can
reproduce or extend our computations using the Mathematica
notebooks we have provided (McLeod and Quenneville 1999).

2. Bernoulli trials

We will now examine the performance of these three estimators
in the estimation of the parameter p in a sequence of n Bernoulli
trials where X is the observed number of successes and p is the
probability of success. The probability function is

fx (n, p) =
(

n
x

)
px (1− p)n−x .

So if X successes are observed in n trials, the likelihood function
may be written L(p) = pX (1 − p)(n−X ) and the MLE may be
derived by calculus, p̂ = X/n. Using Mathematica it is easily
shown that the MELE of p is p̄ = (X + 1)/(n + 2) and that
R( p̄, p̂ | p) > 1 provided

p ∈
(

2n −√2n2 + 3n + 1+ 1

2(2n + 1)
,

2n +√2n2 + 3n + 1+ 1

2(2n + 1)

)
.

As shown in Fig. 1, the MELE is always more efficient over most
of the range and the relative efficiency tends to 1 as n→∞.

It is interesting to compare the MELE with Bayes estimator
under a Jeffrey’s prior. The Jeffrey’s prior for p is (Box and Tiao
p. 35),π (p) = 1/

√
p(1− p). Combining with the likelihood we

can use Mathematica to show that the resulting Bayes estimator
is p̃ = (1 + 4X )/(2 + 4n). From Fig. 1, we see that the Bayes
estimator with Jeffrey’s prior tends to have smaller mean-square
error over an even slightly larger range of p than the MELE but
the gain in efficiency with the MELE can be greater. As with the
MELE, the relative efficiency tends to 1 as n→∞. Once again,
using Mathematica we can show that R( p̃, p̂ | p) > 1 provided

p ∈
(

1+ 5n −√1+ 9n + 20n2

2(1+ 5n)
,

1+ 5n +√1+ 9n + 20n2

2(1+ 5n)

)
.

The PMC criterion given in equation (1.1) is not applicable
in the case of the binomial since due to the discreteness there

Fig. 1. Relative efficiency of alternative binomial estimators. Top
panel: MELE, relative efficiency, R( p̄, p̂ | p) for n= 10, 30. Bottom
panel: Bayes estimator with Jeffrey’s prior, relative efficiency, R( p̃,
p̂ | p) for n= 10, 30

can be ties in the values of the estimators. Keating, Mason and
Sen (1993, §3.4.1) and one of the referees have suggested the
following modified version of Pitman’s measure of closeness,

PMC(θ̄ , θ̂ | θ ) = Pr{|θ̄ − θ | < |θ̂ − θ |}

+ 1

2
Pr{|θ̄ − θ | = |θ̂ − θ |}. (2.2)

With this modification, PMC is symmetric and reflexive.
Figure 2 suggests the following asymptotic result,

lim
n→∞PMC( p̄, p̂ | p) =


1 p = 1/2
1
2 p 6= 1/2, 0, 1

0 p = 0, 1

(2.3)

In the Appendix, it is shown how, using the Geary-Rao Theorem
(Keating, Mason and Sen p. 103), these asymptotic limits may
be established. For PMC( p̃, p̂) the same asymptotic limits hold.
These results shows that for discrete distributions, estimators
which are asymptotically first-order efficient are not necessarily
asymptotically equivalent under the PMC criterion.

3. Exponential lifetimes

Consider a sample of size n denoted by X1, . . . , Xn from an
exponential distribution with mean µ and let T = ∑n

i=1 Xi .
The likelihood function forµ can be written L(µ) = µ−ne−T/µ,
the MLE of µ is given by µ̂ = T/n and the MELE of µ is
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Fig. 2. Pitman measure of closeness for alternative binomial estima-
tors. Top panel: MELE, PMC ( p̄, p̂ | p) for n= 10, 30. Bottom panel:
Bayes estimator with Jeffrey’s prior PMC ( p̃, p̂ | p) for n= 10, 30

µ̄ = T/(n − 2). The Jeffrey’s prior for µ can be taken as µ−1

which produces a Bayesian estimator, µ̃ = T/(n − 1).
A simple computation with Mathematica gives the relative

efficiency,

R(µ̄, µ̂) = 1

n
+ n − 5

n + 4

= 1− 8

n
+ 36

n2
− 144

n3
+ 576

n4
− 2304

n5
+O

(
1

n

)6

.

Fig. 3. Relative efficiency R of the MELE and Bayes estimator vs the
MLE of the mean µ in a random sample of size n from an exponential
distribution

Fig. 4. Pitman Measure of Closeness, PMC, of the MELE and Bayes
estimator vs the MLE of the mean µ in a random sample of size n from
an exponential distribution

Similarly, R(µ̃, µ̂) = 1+ 1/n + 4/(n + 1). Figure 3 shows that
the MELE and Bayes estimator are less efficient that the MLE.

Since T has a standard gamma distribution with shape pa-
rameter n and scale parameter µ, the PMC is easily evaluated
using the Geary-Rao Theorem (Keating, Mason and Sen 1993,
p. 103). Letting a = µ̄ or a = µ̃, we can write

PMC(a, µ̂ |µ) =
∫ bµ

0

e−x/µxn−1µ−n

0(n)
dx

where b = n(n−2)/(n−1) or b = 2n(n−1)/(2n−1) according
as a = µ̄ or a = µ̃. Notice that without loss of generality we
may take µ = 1 since PMC(µ̄, µ̂ |µ) = PMC(µ̄, µ̂ | 1). From
Fig. 4, PMC(a, µ̂ |µ) < 1/2 for both a = µ̄ or a = µ̃.

It is sometimes mistakenly thought that Theorem 4 or its
Bayesian analogue guarantees that at least over some region
of the parameter space, the MELE or the Bayes estimator will
outperform the MLE but, as this example shows, this need not
be the case.

4. MA(1) process

4.1. Introduction

The MA(1) time series with mean µ may be written Zt =
µ + At + θ At−1, where Zt denotes the observation at time
t = 1, 2, . . . and At , the innovation at time t , is assumed to
be a sequence of independent normal random variables with
mean zero and variance σ 2

A. The parameter θ determines the
autocorrelation structure of the series and for identifiability we
will assume that |θ | ≤ 1. When |θ | < 1, the model is invert-
ible (Brockwell and Davis 1991, §3.1). For simplicity we will
examine the case where µ = 0. Such MA(1) models often arise
in practical applications as the model for a differenced nonsta-
tionary time series. The noninvertible case θ = 1 occurs when
a series is over-differenced.

In large-samples, standard asymptotic theory suggests that the
maximum likelihood estimate for θ , denoted by θ̂ , is approxi-
mately normal with mean θ and variance (1− θ2)/n where n is
the length of the observed time series. Cryer and Ledolter (1981)
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established the somewhat surprising result that Pr{θ̂ = ±1} > 0.
This result holds for all finite n and for all values of θ . For
example when n = 50, Pr{θ̂ = 1 | θ = 0} = 0.002 and
Pr{θ̂ = 1 | θ = 0.8} = 0.13 (Cryer and Ledolter 1981, Ta-
ble 2). Let θ̄ denote the mean likelihood estimator of θ . In view
of Theorem 1, this problem does not occur with θ̄ .

The standard Bayesian estimator, θ̃ , is derived by Box and
Jenkins (1976, p. 250–258) utilizing the Jeffrey’s prior, π (θ ) =
1/
√

1− θ2. Since this prior tends to infinity at the endpoints, we
see that the Bayes estimator also cause an undesirable pile-up
effect like the MLE. This phenomenon is also investigated in
our simulations.

Now we will show that the MELE dominates the MLE and
Bayes estimator for both criteria when n = 2. When n = 50,
the MELE is again better than the MLE and Bayes estimator
unless the parameter θ is very close to ±1. But this is due to
undesirable pile-up effect of the MLE. We can conclude that
MELE is generally a better estimator. Further mean-square error
computations which support this conclusion for other values of
n are given by Quenneville (1993) and can be verified by the
reader using (McLeod and Quenneville 1999).

4.2. Exact results for n = 2

Consider a Gaussian time series with n = 2 and let Z1, Z2, be
generated from the first-order moving average, Zt = At−θ At−1,
where At are independent normal random variables with mean
zero and variance σ 2

A. Let W = −Z1 Z2/(Z2
1 + Z2

2). Then given
data, Z1, Z2, the exact concentrated likelihood function for θ is
(Cryer and Ledolter 1981, Quenneville 1993),

L(θ |W ) =
√

1+ θ2 + θ4

1+ θ2 − 2θW
and

θ̂ =


−1 W ∈ [−0.5,−0.25]
1−√1−16W 2

4W W ∈ (−0.25, 0.25),W 6= 0

0 W = 0

1 W ∈ [0.25, 0.5].

Unfortunately θ̄ and θ̃ , cannot be evaluated symbolically.
However using NIntegrate we can obtain it numerically. From
Fig. 5, we see visually the pile-up effect for the MLE and that
θ̄ and θ̃ are either a linear or close to a linear function of W .
To speed up our computations for the mean-square error of θ̄ ,
we use the FunctionInterpolation in Mathematica to construct
θ̄ = θ̄ (W ). The MSE and PMC for θ̄ and θ̂ are easily evaluated
numerically using the pdf of W , fW (x), derived by Quenneville
(1993),

fW (x) = 2
√

1+ θ2 + θ4

π
√

1− 4x2(1+ θ2 − 2θx)
, |x | ≤ 1/2.

From Figs. 6 and 7, it is seen that both the MELE and Bayesian
estimator dominate the MLE both for the MSE and PMC criteria.
The MELE is slightly better according to the MSE but according
to the PMC the Bayes estimator is slightly better than the MELE.

Fig. 5. MLE, MELE and Bayes estimate for θ as a function of W =
−Z1 Z2/(Z 2

1 + Z 2
2) when n= 2 in MA(1)

Fig. 6. Relative efficiency, R, of MELE and Bayes estimator with
Jeffrey’s noninformative prior in the MA(1) model with n= 2

Fig. 7. Pitman measure of closeness, PMC, of MELE and Bayes estima-
tor with Jeffrey’s noninformative prior in the MA(1) model with n= 2

4.3. Exact symbolic likelihood

Consider the MA(1) process defined by Zt = At − θ At−1,
where θ ≤ 1, At is assumed to be normal and independently
distributed with mean zero and variance σ 2

A. Given n observa-
tions Z ′ = (Z1, . . . , Zn) the exact log likelihood function of an
MA(1) process can be written (Newbold 1974),

log L
(
θ, σ 2

A

) = −n

2
log

(
σ 2

A

)− 1

2
log(D)− 1

2σ 2
A

S(θ ),
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where h′ = (1, θ, θ2, . . . , θn), D = h′h and

S(θ ) = (Lz − hh′Lz/D)′(Lz − hh′Lz/D),

where L is the (n + 1) by n matrix,

L =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

θ 1 0 · · · 0 0

θ2 θ 1 · · · 0 0
...

...
... · · · ...

...

θn−2 θn−3 θn−4 · · · 1 0

θn−1 θn−2 θn−3 · · · θ 1


.

Maximizing over σ 2
A the concentrated log likelihood is given by

log L M (θ ) = −n

2
log[S(θ )/n]− 1

2
log(D).

This expression for the concentrated loglikelihood is just as easy
to write in Mathematica notation as it is in ordinary mathe-
matical notation. Moreover, it can be evaluated symbolically or
numerically.

LogLikelihoodMA1[t_, z_] :=
Module[{n = Length[z], Lz, h, detma1, v,
Sumsq},

Lz = Join[{0},
Table[Sum[z[[i]]] t^(j-i), {i, 1, j}],
{j, 1, n}]];

h = Table[t^j, {j, 0, Length[z]}];
detma1 = h . h;
v = -h . Lz/detma1;
Sumsq = (Lz + h v). (Lz + h v);
-n/2 Log[Sumsq/n /. t -> t] -
1/2 Log[detma1 /. t -> t]

];

4.4. Efficient numeric likelihood computations

Newbold’s algorithm can be made much more efficient when
only numerical values of the log likelihood are needed by using
the Mathematica Compiler and by re-writing the calculations
involved to make more use of efficient Mathematica functions
such as NestList, FoldList and Apply. First consider the com-
putation of the vector Lz which is of length n + 1. After some
simplifications, we see that Lz = (α j )′, where α0 = 0 is the first
element and the remaining elements are defined recursively by
α j = θα j−1 + Z j , j = 1, 2, . . . , n, where Z0 = 0. This com-
putation is efficiently performed by Mathematica’s FoldList.
When we are just interested in numerical evaluation we use the
compile function to generate code which runs much faster.

GetLz=Compile[{{t, _Real},{z, _Real, 1}},
FoldList[(#1 t + #2)&, 0, z]];

The determinant, D = 1+ θ2 + θ4 + · · · + θ2n , is efficiently
computed using NestList to generate the individual terms and
then summing.

DetMA =Compile[{{t, _Real},{n, _Integer}},
Apply[Plus,NestList[#1 t &, 1, n]^2]];

Next, we evaluate the term hLz/D. Since hLz = θα1+θ2α2+
· · · + θnαn we can use Horner’s Rule to efficiently compute this
sum. Horner’s Rule is implemented in Mathematica using the
function Fold.

Getu0 =Compile[{{t, _Real},{Lz, _Real, 1},
{detma, _Real}},

-Fold[#1 t + #2&, 0, Reverse[Lz]]/detma];

The computation of the sum of squares function S(θ ) =
(Lz−hh′Lz/D)′(Lz−hh′Lz/D) is straightforward. The Math-
ematica compiler can be used to optimize the vector computa-
tions.

GetSumSq = Compile[{{t, _Real},{Lz, _Real, 1},
{u, _Real},{n, _Integer}},
Apply[Plus,(Lz+NestList[#1 t &, 1, n] u)^2]];

Finally, the concentrated loglikelihood function is defined.
The computation speed is increased by about a factor of 50
times when n = 50 and is even larger for larger n.

logLMA1F[t_, z_] :=
Module[{n=Length[z]},
Lz=GetLz[t,z];
detma=DetMA[t,n];
u=Getu0[t,Lz,detma];
S=GetSumSq[t,Lz,u,n];
-(1/2) Log[detma]- (n/2)Log[S/n]];

The maximum likelihood estimate can be obtained using
Mathematica’s nonlinear optimization function FindMinimum.
However as noted by Cryer and Ledholter (1981) the likeli-
hood function can have multiple minima unlike the situation
for the AR(1) likelihood function (Minozzo and Azzalini 1993).
Thus we found it helpful to use our specialized function which
locates the global optiminum in (−1, 1) using a preliminary
extensive grid-search followed by quadratic inverse interpola-
tion optimization. Details are given in McLeod and Quenneville
(1999).

The mean likelihood estimator θ̄ can be evaluated using
NIntegrate.

Meanle[z_]:=
NIntegrate[t E^logLMA1F[t, z],{t,-1,1}]/
NIntegrate[E^logLMA1F[t, z],{t,-1,1}]

Notice that in the above expression the loglikelihood function
is evaluated separately in both the numerator and denomina-
tor. Hence, we can save function evaluations by using our own
numerical quadrature routine.

SimpsonQuadratureWeights[k_,a_, b_]:=
With[{h=(2 k)/3},
{a+(b-a)Range[0,2 k]/(2k),
Prepend[Append[Drop[Flatten[Table[{4,2},{k}]],

{-1}],1],1]}]
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Fig. 8. Empirical relative efficiency based on 10 4 simulations of the MA(1) with µ= 0 and n= 50. In all cases the length of the 99.9% confidence
interval for the estimate is less than the size of the plotting symbol

{X,W}=SimpsonQuadratureWeights[100,-1,1];

GETMEANLEF=
Compile[{{z, _Real, 1},

{W, _Real, 1},{X, _Real, 1},{f,
_Real, 1}},
Plus@@(X f)/Plus@@f];

MEANLEF[z_]:=
With[{f=Plus@@W E^(logLMA1F[#1,z]&/@X)},
GETMEANLEF[z, W, X, f]];

Our tests indicate acceptable accuracy and about a 70% im-
provement in speed as compared with Mathematica’s more so-
phisticated NIntegrate function.

4.5. Simulation results for n = 50

We compared the MELE and Bayesian estimator with the
MLE. Using the Mathematica algorithms derived above, we
determined 99% confidence intervals for the relative effi-
ciency and Pitman measure of closeness of each estimator
with respect to the MLE. For each of the 41 parameter val-
ues θ = −1,−0.95,−0.90, . . . , 0.95, 1, 104 simulations were
done. Complete details are available in the Mathematica note-
books which supplement this article (McLeod and Quenneville
1999). Figures 8 and 9 show that the MELE dominates the MLE
except for the cases θ = ±1,±0.95. The fact that the MLE
outperforms near the endpoints is due to the pile-up effect of
the MLE (Cryer and Ledholter 1981). We can safely conclude
that the MELE is a better overall estimator than the MLE or the
usual Bayesian estimator. Of course, as already pointed out an-
other cogent reason for preferring the MELE to the MLE or the
Bayes estimator is that it does not produce noninvertible models.

As a check of our MLE computations we compared the prob-
ability of getting an estimate equal to±1 in our simulations with
the probability derived from the approximate formula of Cryer
and Ledholter (1981, Table 2). Figure 10 shows the agreement
is very close.

If prior information is available then the Bayesian estimator
with a suitable informative prior is better. Marriott and Newbold

Fig. 9. Empirical Pitman measure of closeness based on 104 simula-
tions of the MA(1) with µ= 0 and n= 50. In all cases the length of the
99.9% confidence interval for the estimate is less than the size of the
plotting symbol

Fig. 10. Estimated Pr{θ̂ =±1} in the simulations compared with the
probability from the approximate formula of Cryer and Ledholter
(1981)

(1998) have developed an approach to the standard unit root
problem in autoregressive time series by utilizing this fact.

The simulations were repeated with the mean µ estimated by
the sample average and there was no major change in the results.

5. Concluding remarks

Previously Copas (1966) found that for the first-order autore-
gression, AR(1), the MELE had lower MSE over much of the
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parameter region. Our results show that for the MA(1) the
improvement is even better. The MSE is lower over a broader
range and the pile-up effect of the MLE is avoided. Quenneville
(1993) investigated the small sample properties of the MELE
for many other time series models and gave a general algorithm
for the MELE in ARMA models and found that in many cases
the MELE produced estimates with smaller MSE over most of
the parameter region.

Many Bayesian textbooks recommend the Jeffrey’s noninfor-
mative prior on the grounds of parameter invariance. In view
of our results for the MA(1) and the Bernouilli model, it seems
that perhaps invariance is an unnecessary purely mathematical
requirement if our primary interest is in the natural parameter,
θ or p.

We would also like to mention that in our opinion Mathemat-
ica provides an excellent and indeed unparalleled environment
for mathematical statistical research. In comparison, no other
computing environment provides such high quality capabilities
simultaneously in: symbolics, numerics, graphics, typesetting
and programming. Typically most researchers need to develop
some code to implement their methods. Often the researcher’s
code will only be executed a few times and the researcher’s
main consideration is his time and effort as opposed to pro-
ducing an cpu-efficient stand-alone software product. The im-
portance of a powerful user-oriented programming language for
researchers is sometimes lacking in other environments. Iverson
(1980) discussed the importance of the programming language
to researchers and illustrated the advantages of APL over pro-
cedural programming languages. Procedural programming lan-
guages include Fortran, Cobol, C, Pascal, C, Java and SAS. A
study carried out by IBM reported that APL programmers were
about 15–20 times as efficient as programmers using a COBOL
where efficiency is taken as the time needed by the programmer.
Similar comments have been made by research statisticians on
the ease of programming in S and Splus as opposed to SAS.
If the programming language is a natural extension of mathe-
matical notation, this translates into ease and speed of develop-
ment. This was found to be true in the past with APL, Splus and
XLISP-STAT. We have found that Mathematica provides even
more capability.

However, for advanced state-of-the-art research and teaching
in applied statistics and data analysis, R, Splus or XLISP-STAT
may still be advantageous due to the wide usage by many lead-
ing researchers and the high quality functions for standard and
advanced statistical methods that are available in the associ-
ated infrastructure (Statlib 1999). Furthermore, R and XLISP-
STAT are freeware. However from the educational viewpoint,
this advantage may not be so important since many students
and researchers like to understand the principles involved. With
Mathematica it is as easy to write out the necessary functions in
Mathematica notation as it would be to explain the procedures
in a traditional mathematical notation. In summary, Mathemat-
ica’s superior programming language is, in our opinion, one of
its key strengths and advantages.

6. Appendix: Asymptotic PMC for binomial
estimators

Consider the binomial probability function,

fX (n, p) =
(

n
X

)
pX (1− p)n−X .

and the estimators p̂ = X/n and p̄ = (X + 1)/(n+ 2). We now
show that,

lim
n→∞PMC( p̄, p̂ | p) =


1 p = 1/2
1
2 p 6= 1/2, 0, 1

0 p = 0, 1

(6.4)

Since Pr{ p̄ = p̂} → 0 as n→∞, we can work with the simpler
original definition,

PMC( p̄, p̂ | p) = Pr{| p̄ − p| < | p̂ − p|}. (6.5)

At the endpoints p = 0,1, equation (6.4) follows from the fact
that p̂ = p and p̄ 6= p.

The Geary-Rao Theorem is used to derive equation (6.7) be-
low which is then used to establish equation (6.4) for other values
of p. Using the notation of Keating, Mason and Sen (1993, p.
103) for the Geary-Rao Theorem and taking first the case, 0 ≤
p ≤ 1/2, we can write

PMC( p̄, p̂ | p) = Pr{R1} + Pr{R3},
where

R1 =
{

X :
X + 1

n + 2
<

X

n
,

X + 1

n + 2
+ X

n
> 2p

}
and

R3 =
{

X :
X + 1

n + 2
>

X

n
,

X + 1

n + 2
+ X

n
< 2p

}
.

After simplification, R1 = {X : X > x2} and R3 = {X : X < x1}
where

x1 =
⌈

2pn(n + 2)− n

2(n + 1)

⌉
, (6.6)

and x2 = bn/2c, where d•e and b•c denote the ceiling and floor
functions.

Hence,

PMC( p̄, p̂ | p) =
x1−1∑
x=0

fx (n, p)+
n∑

x=x2+1

fx (n, p). (6.7)

For p ≥ 1/2, PMC( p̄, p̂ | p) = PMC( p̄, p̂ | 1 − p). Our Math-
ematica notebook (McLeod and Quenneville 1999), provides a
check on this formula by computing the PMC directly from equa-
tion (6.5) and also by simulation and then comparing with (6.7).

When p = 1/2, using equation (6.7) we obtain,

PMC( p̄, p̂ | p = 1/2) =
{

1 n odd

1− fn/2(n, 1/2) n even
(6.8)
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Hence PMC( p̄, p̂ | p = 1/2)→ 1 as n→∞.
Next taking 0 < p < 1/2 it follows that

x1∑
x=0

fx (n, p)→ 1/2 as n→∞. (6.9)

Since x1 = µ+O(1), whereµ=np, equation (6.9) is established
by using the standard normal approximation. Finally,

n∑
x=x2+1

fx (n, p)→ 0 as n→∞, (6.10)

since x2 = µα, whereα = 1/(2p) > 1 and so x2 is arbitrarily far
out in the tails as n→∞. Hence, PMC( p̄, p̂ | p ∈ (0, 1/2))→
1/2 as n→∞. By symmetry, equation (6.4) follows.

Using the above approach, the same limits may be derived
for PMC( p̃, p̂ | p) where p̃ = (1 + 4X )/(2 + 4n) is the Bayes
estimator under a Jeffrey’s prior.
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