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Abstract 

 

The evaluation of traffic safety interventions or other policies that can affect road safety often 

requires the collection of administrative time series data, such as monthly motor vehicle collision 

data that may be difficult and/or expensive to collect. Furthermore, since policy decisions may 

be based on the results found from the intervention analysis of the policy, it is important to 

ensure that the statistical tests have enough power, that is, that we have collected enough time 

series data both before and after the intervention so that a meaningful change in the series will 

likely be detected.  In this short paper we present a simple methodology for doing this.  It is 

expected that the methodology presented will be useful for sample size determination in a wide 

variety of traffic safety intervention analysis applications.  Our method is illustrated with a 

proposed traffic safety study that was funded by NIH. 

 

Keywords:  Intervention analysis; data collection and planning; sample size; type II error rate 

 

 

 
 
 
  Page 2 of 21 
 



 
 
 
  Page 3 of 21 
 

 

1.  Introduction 

 Intervention analysis (Box and Tiao, 1976; Cook and Campbell, 1979, Ch. 6; Hipel and 

McLeod, 1994, Ch.19) provides a statistical method for quantifying the effect on known 

interventions on a time series.  It has been one of the most commonly used statistical procedures 

to evaluate traffic safety interventions or other policies that can affect road safety (e.g. Abdel-

Aty and Abdelwahab, 2004; Blose and Holder, 1987; Elder et al., 2004; Elder et al., 2002; 

Gruenewald and Ponicki, 1995; Hagge and Romanowicz, 1996; Hingson et al., 2000; Holder and 

Wagenaar, 1994; Holder et al., 2000; Langley et al., 1996; Mayhew et al., 2001; Murray et al., 

1993; Nathens et al., 2000; Vernon et al., 2004; Voas et al., 1997). Indeed, various applied 

researchers have written specifically on the value of using time series analyses in intervention or 

evaluation research (Biglan et al., 2000; Gruenewald, 1997; Rehm and Gmel, 2001) 

Often applied researchers are under pressure to evaluate the impact of a traffic safety 

intervention soon after its implementation. In these time series analyses, sample size may be 

limited.  For example, Vingilis and Salutin (1980) evaluated the impact of a spot-check 

enforcement program called R.I.D.E. (Reduce Impaired Driving in Etobicoke). This program 

was a one-year pilot project and sponsors of the program wanted an evaluation of the impact at 

the end of one year. The evaluation used a mixed-methods, multi-measures evaluation 

methodology. Among their measures was the time series analysis of collisions for two years 

prior to the R.I.D.E. program and for the one-year intervention, for a total of 36 data points -- 24 

month pre-intervention and 12 months post-intervention. The results of the time series analyses 



found a near significant downward trend at 10%p ≈  for alcohol-related collisions for the 

intervention area. The study concluded: “The ultimate change in alcohol-related accidents might 

not be in evidence because of contaminations mentioned previously or because of the need for a 

longer time period” (Vingilis and Salutin,1980, p.274).  This study is an example of how difficult 

it is to interpret a near significant finding as one cannot discern whether the program had little 

impact or whether statistical power was at issue. Thus, it is important to know whether a 

proposed time series analysis has a chance of detecting a meaningful change in the system.  

Power is the statistical term used for the probability that a test will reject the null 

hypothesis of no change at level α  for a prescribed change.  As the statistical literature 

contained no power computation methods for use with time series analyses, a method was 

developed for computing the power function for the general case of intervention analysis 

(McLeod and Vingilis, 2005).  When planning a future study only limited information is usually 

available and so the approach described in the next section is often useful for determining 

approximate sample sizes, that is, of the lengths of the pre-intervention and post-intervention 

series needed to ensure that the analysis can detect meaningful change caused by the 

intervention.   

It is important to understand that it is only statistically meaningful if the power 

computations are carried out before the data are analyzed (Lenth, 2001; Verrill and Durst, 2005). 

 The article of Verill and Durst (2005) demonstrates that as the sample size increases, the power 

rapidly approaches one.  This result underlines the importance of power computations in 

planning the collection of data.   
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Van Belle (2005, Ch.2) gives advice and rules of thumb for sample size computations for 

non-time series statistical tests and Lenth (2006) provides an online power calculator for many 

sorts of statistical tests.  Our online calculator (McLeod, 2007) implements the method described 

in this note. 

2.  Methodology 

2.1 Introduction 

 Let ty  denote the time series of interest such as monthly accident fatalities.  The null 

hypothesis is that the effect of some change introduced at time T  is zero and the alternative 

hypothesis is simply the negation of the null hypothesis.  There are many sorts of changes that 

could occur but one the most common types is a simple step change.  This means at time  there 

is a permanent increase in the mean level.  The size of the increment is denoted by 

T

ω  and the 

hypothesis testing problem can be written 0 : 0H ω =  vs : 0aH ω ≠ .  More complex types of 

interventions can sometimes occur and this problem is addressed in our earlier paper (McLeod 

and Vingilis, 2005).  Note that sometimes one-sided formulations of the alternative hypothesis 

are used but as pointed out by van Belle (2005, §1.8) we agree that this practice should be 

discouraged.   

 The next step is the collection and assembly of the required data.  In some cases this may 

be laborious and expensive.  The purpose of this paper is to provide a simple method for 

estimating how much data to collect before and after the intervention so that the subsequent 

analysis has a good chance of detecting a meaningful change.  For convenience we may set the 
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time series origin to , the series length to and the intervention time to t .  So the pre-

intervention series corresponds to 

1t = n

T

T=

,  1,..., 1ty t = −  and is of lengthT .  Similarly, the post-

intervention series ,  t ,...,y t T n=  is of length n T− .  For adequate power both  and T n T−  need 

to be chosen large enough.  The purpose of this note is to show how to provide a method of 

selecting suitable T  and  which is useful in many applications. n T−

2.2 Model formulation 

The intervention analysis model may be written, 

          (1) ( )T
t ty Sξ ω= + + te

nwhere  indicates the observation number, 1,2,...,t = ty  is the dependent variable,   is a step 

intervention which occurs at time t, 

( )T
tS

    ( ) 0
1

{T
t

t T
S

t T
<

=
≥

      (2) 

and  is the autocorrelated error with mean zero.  In this model the means of the pre/post 

intervention series are respectively 

te

ξ  andξ ω+ .  The autocorrelated error, , is assumed to be 

generated by an AR(1) process, 

te

1 a t te e tφ −= + , where  is a sequence of independent normal 

random variables with mean zero and standard deviation 

ta

aσ .  The parameterφ  in this model 

equals the lag-one autocorrelation and it may be estimated by the sample lag-one autocorrelation 

in the pre-intervention series.  Alternatively, sometimes an approximate value of this lag-one 

autocorrelation coefficient is known from previous studies and this value may be used.   

 In summary, it is assumed that there are n observed time series values in total with T 
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occurring before the intervention and n T−  occurring after the intervention.  The intervention 

component  is illustrated in Figure 1.  The effect of this intervention is to shift the mean of 

the series by an amount

( ) T
tSω

ω . When 0φ =  this model reduces to the two-sample test for equality of 

means (Moore, 2007, Ch. 19). 

2.3 The power computation 

 The variance of  ω̂  may be written (McLeod and Vingilis, 2005), 

     2 2 2
ˆ 1,1 1,1 2,2 1,2/( )a I I I Iωσ σ= − ,       (3) 

where 2
1,1 (1 )I n φ= − ,  and 2

2,2 ( )(1 )I n T φ= − − +1 1,2 2,2I I φ= − .  If n, T,φ  and aσ  are known, the 

power function for the test of the statistical significance of the intervention, 0 :H 0ω =  vs. 

: 0aH ω ≠ , can be computed.  Usually for planning purposes it is more convenient to work with 

the scaled intervention parameter / eδ ω σ= , where eσ  is the standard deviation of the pre-

intervention time series or equivalently the standard deviation of .  Basically we are measuring 

the size of the intervention effect we wish to detect in units corresponding to standard deviations 

of the pre-intervention series.  In this case the power function for 

te

δ depends only on the 

parameters n, T and φ .  The power function for a two-sided test  0H : 0δ =  vs. :a 0H δ ≠  at 

level α may now be written 

 1 / 2 1 / 2( ) 1 (  ) (  )Z Zα αδ τ δ τ δ− −Π = +Φ − − −Φ − , (4) 

where 2 2 ))1,1 2,2 1,2 1,1( ) /( (1I I I Iτ φ= − − 2,   is the upper 11 / 2Z α− /α−  quantile of the standard 

normal distribution and  denotes the cumulative distribution of the standard normal ( )zΦ
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distribution.  This power function is easily evaluated using a programmable calculator or a 

suitable quantitative programming environment.  An online Javascript is also available for 

computing the power function (McLeod, 2007).    

2.4 Numerical Illustration 

 Suppose that a researcher has collected 20 data values before and after an intervention 

has occurred.  If it is assumed that values before and after are statistically independent then the 

two-sample t-test may be used to test the null hypothesis .  If, in fact, an effect had 

occurred equal to one standard-deviation, the probability of detecting this change using a pooled 

two-sample t-test can be determined using the online power calculator of Lenth (2006).  For a 

two-sided 5% level pooled t-test we obtained that the probability of detecting a change of one 

standard deviation was 87%.  Using our online software (McLeod, 2007) with parameter n, T, ø 

= 40, 20, 0, indicates this probability is 88%.  This slight difference of 1% is due to the fact that 

in the present case our intervention analysis model simplifies to the standard Z-test rather than 

the t-test assumed in Lenth (2006). 

0 :  no effectH

 If these data were collected as a time series then the independence assumption is not 

likely to hold and consequently the t-test power could be seriously inflated.  The first-order 

autoregressive model provides a more realistic model than independence and a simple step 

intervention model provides a much improved method for statistical analysis.  Based either on 

experience with previous data or on the pre-intervention series, an estimate can be made of the 

lag-one autocorrelation.  For moderate autocorrelation, such as in many past traffic safety time 
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series studies, 0.5φ =  is a conservative estimate, that is, we usually have 0 0.5φ< < .  Using 

inputs n, T, ø = 40, 20, 0.5, for our online program we find that the probability of detecting a one 

standard deviation change is now only 51%.  Increasing the lengths of the pre-intervention and 

post-intervention series to 50 so we have   n, T, ø = 100, 50, 0.5, results in a substantial increase 

in power.  The probability of detecting a one standard deviation change is now 85%. 

 In summary, this example shows that the effect of positive autocorrelation is to increase 

the amount of data needed to have a high probability of detecting a change.  By experimenting 

with different choices for  and , the researcher can select how much data is needed to obtain 

adequate power. 

n T

2.5 Model estimation and diagnostic checking 

After the data is collected, the intervention model may be fit and the test of the hypothesis 

0 : 0H ω =  vs : 0aH ω ≠  may be carried out.  In practice, a confidence interval for the parameter 

ω  should also be considered since it is more informative about the magnitude as well as the 

statistical significance of the change.  Many software packages such as SPSS can be used to fit 

the model given in eqn. (1).  More complex types of intervention models as discussed by Box 

and Tiao (1979) and Hipel and McLeod (1994, Chapter 19) may also be fit using a variety of 

software packages such as SAS or the MHTS package (McLeod and Hipel, 2005). 

2.6 The effect of model mis-specification 

 We have assumed a simple step intervention model with first-order autoregressive errors. 

 Both of these assumptions are just working approximations.  The most common type of 
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intervention, likely to be of scientific interest to traffic safety researchers is likely to be a step 

intervention which corresponds to a permanent change.  Testing for pulse and other dynamic 

effects is most likely of secondary interest. 

 The other assumption is that the error term is assumed to follow a first-order 

autoregression.  This simple form of Markovian dependence arises in a wide variety of stationary 

time series observed in practice but occasionally other forms of dependence may arise in which 

case more complicated ARMA or other time series models may be needed.  Monthly time series 

frequently occur in traffic safety studies.  Less frequently these monthly time series may exhibit 

significant seasonal variation.  In this case, the monthly means of the pre-intervention time series 

may be used to deseasonalize this series and φ  can be estimated as the lag-one autocorrelation 

for the deseasonalized pre-intervention series.  If pre-intervention series exhibits other 

pronounced effects not consistent with a first order autoregression, such as slowly decaying 

autocorrelations or non-regular cyclic behaviour, then the more general method discussed in 

McLeod and Vingilis (2005) should be used. 

2.7 Illustrative example of the effect of mis-specification 

 Suppose that we inadvertently make the wrong assumption and that the true 

autocorrelation model is not a first order autoregression but rather a more complex ARMA(1,1). 

 As in §2.4 we will assume the lag-one autocorrelation is 0.5.  In the ARMA(1,1) case, the model 

equation for the error term may be written, 1 1t t t te e a aφ θ− −= + − , where 2~ (0,ta NID )σ , | | 1φ <  

and | | 1θ < .  The lag-one autocorrelation coefficient is given by 
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 1 2

( )( 1
1 2

)φ θ φθρ
θ φθ

− −
=

− −
 

Setting 1 0.5ρ =  we can solve for the parameters φ  and θ .  It is found that valid and unique 

solutions for θ  exist for each 0 1φ< < .  Figure 2 shows the value of the θ  parameter 

corresponding to each φ .  When 0.5φ = , 0θ =  and the ARMA(1,1) reduces to the first-order 

autoregressive case.  However when 0 0.5φ< < , the ARMA(1,1) has weaker autocorrelations 

which are even smaller than the first-order autoregression.  For 0.5 1φ< < , the autocorrelations 

are stronger at higher lags.  When 0.9φ = , the autocorrelations are slowly decaying and the 

series exhibits wandering near-nonstationary behavior similar to financial time series such as 

stock market prices.  Taking  and 100n = 50T = , the more general algorithms given in McLeod 

and Vingilis (2005) were used to compute the probability of detecting a one-standard deviation 

change for each possible parameter combination of  φ  and θ  satisfying the condition 1 0.5ρ = .  

This power as a function of φ  is shown in Figure 3.  It is seen that when 0 0.7φ< < , the first-

order autoregressive approximation provides a reasonable estimate of power.  But in the case of 

slowly decaying autocorrelations, 0.7 1φ≤ < , the power quickly declines.  In this situation the 

more general method given in McLeod and Vingilis (2005) should be used. 

3.  Illustrative Application to NIH Study of the Impact of Extended Drinking Hours 

 Drinking hours in Ontario were extended from 1 AM to 2 AM on May 1, 1996.  This 

change provided an opportunity to assess the effect of extended drinking hours on monthly late-

night automobile fatalities and serious trauma.  Initially, it was planned to use monthly time 
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series over the period from January 1994 to December 1998 which corresponds to  and 

.  Data collection for this project was a major part of the expense and it was important to 

collect enough data to be reasonably certain of detecting if there was a meaningful change or 

shift in the fatalities.  It was decided to compare the initial design with an enlarged study from 

January 1992 to December 1998 which corresponds to 

60n =

36T =

80n =  and 48T = .  If drinkers spread 

their drinking out over a longer period of time, it might be expected that the intervention might 

actually result in a decrease in automobile fatalities associated with drinking.  On the other hand, 

if more alcohol was consumed, then an increase would be expected.  So a two-sided test is 

needed.  From previous work with motor vehicle collision time series (Vingilis et al., 1988) it is 

reasonable to assume the first-order autocorrelation is in the range 0 0.5φ≤ ≤ .  Assuming 60n = , 

, 36T = 0.5φ =  and 0.05α =  the power function for a two-sided test may be obtained by 

evaluating eqn. (4),  to obtain ( ) 1 ( 1.96 ( )2.362 ) 1.96 2.362δ δ δΠ = +Φ − − −Φ − . The power 

function for a range of δ from 0 to 2 and for 0, 0.25 0.5 and φ =  is given in Table 1.   It is seen 

that the power decreases as the autocorrelation, ,φ  increases but that even when 0.5φ =  the 

probability of detecting a change corresponding to 1δ = ±  on a two-sided 5% test is about 79% 

with the second plan ( , ) and only 65.6% with the original plan ( n , T80n = 48T = 60= 36= ).  

Note that the power function for a two-sided test is symmetric, that is, ( ) ( )δ δΠ = Π − , so it is 

only necessary to show 0δ ≥ .  Based on these power computations, the second plan with 80n =  

and T  was preferred. 48=

4.  Conclusion 
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 The simple step intervention model is the time series generalization of the widely used t-

test for the two-sample problem.  The first order autoregression provides a realistic model for 

many traffic safety time series occurring in practice.  These initial assumptions seem reasonable 

for a wide variety of applications and they allow the researcher to make simple power 

calculations to decide how long the pre and post intervention series should be in order to have a 

high probability of detecting a meaningful change.  This power computation is implemented in 

an online calculator or it can be done with a hand-calculator using eqn. (4).  The accuracy of this 

computation has been extensively tested by simulation and works well even for quite small 

samples (McLeod and Vingilis, 2005). 

 The method given in this note is not suitable for highly autocorrelated time series with 

slowly decaying autocorrelations or for more complex types of interventions such as ramp 

interventions or interventions with a dynamic response.  McLeod and Vingilis (2005) provide a 

more general methodology applicable to such cases.    
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          T=36  ,     n=60             80n =  and  48T =δ   
0φ =  0.25φ =  0.5φ =   0φ =  0.25φ =  0.5φ =  

0  0.050 0.050 0.050  0.050 0.050 0.050 
0.25  0.159 0.117 0.091  0.206 0.144 0.106 
0.5  0.480 0.324 0.219  0.624 0.430 0.281 
0.75  0.817 0.616 0.425  0.927 0.762 0.543 
1.  0.968 0.853 0.656  0.995 0.946 0.787 
1.25  0.998 0.964 0.839  1.000 0.994 0.931 
1.5  1.000 0.995 0.943  1.000 1.000 0.985 
1.75  1.000 1.000 0.985  1.000 1.000 0.998 
2.  1.000 1.000 0.997  1.000 1.000 1.000 
 

 

Table 1.  Power function for two-sided tests for the two possible intervention analysis data sets. 

In this case, the power function is symmetric so only the power for 0δ ≥  needs to be shown. 
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Figure 1. The simple step intervention model.  This model is the time series analogue of the 

widely used two-sample t-test.
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Figure 2.  ARMA(1,1) parameter values which correspond to a lag-one autocorrelation equal to 

0.5.
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Figure 3.  Probability of detecting a one standard deviation change when lag-one autocorrelation 

is assumed to be 0.5 but the underlying error time series is assumed to be ARMA(1,1).  The 

length of each of the pre and post intervention series is assumed to be 50.  The dashed line shows 

the power making the AR(1) assumption.  It is seen that the power decreases significantly in the 

more highly autocorrelated cases when 0.7φ > . 
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