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It is demonstrated that autoregressive moving average (Arma) models do preserve the rescaled adjusted
range (RAR) or equivalently the Hurst coefficient K. *.rma models are fit to 23 geophysical time series,
and by using Monte Carlo techniques and a specified statistical test it is shown that the observed RAR or
K is retained by the models. The empirical cumulative distribution function (ECDF) for these statistics
can be calculated as closely as is required to the theoretical distribution. Furthermore, the distribution of
the RAR is a function of the time series length N and the parameter values of the particular Arma process
being considered. Various estimates for the Hurst coefficient are compared for the 23 geophysical data
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sets.

INTRODUCTION

A major challenge in stochastic hydrology is to determine
models that preserve important historical statistics such as the
rescaled adjusted range (RAR), or equivalently the Hurst coef-
ficient K. In an accompanying paper labeled part | [McLeod
and Hipel, 1978a] the development of fractional Gaussian noise
(FGN) processes as one means of possibly retaining the RAR
and K is appraised by McLeod and Hipel [1978a]. Furthermore,
computer algorithms for exactly simulating FGN and obtain-
ing maximum likelthood estimates (MLE) for the model pa-
rameters are given by Hipel and McLeod [1978] in part 3. The
purpose of this paper is to demonstrate that the autoregressive
moving average (Arma) models do preserve the RAR and K
when these processes are fit to a wide range of geophysical time
series. Therefore in many practical situations it may be unnec-
essary to employ FGN processes in order to retain the Hurst
statistics.

The theory, model construction stages, and simulation of
Box-Jenkins models are briefly surveyed. Following the identi-
fication, estimation, and diagnostic check stages of model
development, Arma models are determined for 23 geophysical
time series. Simulation studies are then performed to deter-
mine the small sample empirical cumulative distribution func-
tion (ECDF) of the RAR or K for various Arma models. The
ECDF for these statistics is shown to be a function of the time
series length NV and the parameter values of the specific Arma
process being considered. Furthermore, it is possible to deter-
mine as accurately as desired the distribution of the RAR or K,
A theorem is given to obtain confidence intervals for the
ECDF in order to guarantee a prescribed precision. Then it is
shown by utilizing simulation results and a given statistical test
that Arma models do preserve the observed RAR or K of the
23 geophysical time series. Finally, various estimates for the
Hurst coefficient are estimated and compared for the 23 given
time series.

BOX-JENKINS MODELING
Theory

In 1970, Box and Jenkins published a text that describes a
family of linear stochastic models. These models are often
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collectively referred to as the Box-Jenkins models. However, if
the process is stationary, the label autoregressive moving aver-
age (Arma) is employed, while if differencing is required to
eliminate nonstationarity, the process is called an autoregres-
sive integrated moving average (Arima) model.

Research related to the Hurst phenomenon, RAR, and K
has involved the stochastic analysis of nonseasonal data such
as average annual river flows, tree ring indicies, and mud varve
data. Therefore only the mathematical theory of nonseasonal
Box-Jenkins models is now summarized.

Letzy, zy ***, 2121y 21y 2141, ** *, 2y De a discrete time series
measured at equal time intervals. Suppose z, can be modeled
by a nonseasonal multiplicative Box-Jenkins model of the
form

¢BNI(L — BY'z™] — u} = 8(B)a, (1
or
¢(B)(w: — u) = 8(B)a (2)
where

2V appropriate transformation of z, such as a Box-Cox
transformation [McLeod, 1974; Box and Cox, 1964] (no
transformation is a possible option);
t discrete time;
B backward shift operator defined by B%z2,™ = z,_,» for k
= ]’ 2’ cee
x mean level of the process, usually taken as the average of
the w, series;
a, identically independently distributed white noise resid-
ual with mean 0 and variance ¢,? (written as [ID (0,
a.?)), often the residuals are assumed to be normally
independently distributed (denoted by NID (0, o,%));
¢B) =1 —-¢.B — ¢,B— -+ — ¢pB” nonseasonal autore-
gressive (AR) operator or polynomial of order p such
that the roots of the characteristic equation ¢(B) = 0 lie
outside the unit circle for nonseasonal stationarity and

the ¢;, 1 = 1, 2, - - -, p are the nonseasonal AR parame-
ters;
(I — B)Y = V* nonseasonal differencing operator of order d

to produce nonseasonal stationarity of the dth differ-
ences, usually d = 0, 1, or 2;
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w, = Viz,X  stationary series formed by differencing the z,
series, n = N — d is the number of terms in the series;

6B)=1—6,B— 6,B2~ -+ — §,B7 nonseasonal moving
average (MA) operator or polynomial of order g such
that the roots of #(B) = 0 lie outside the unit circle for
invertibility and 6,, i = 1, 2, - -+, g are the nonseasonal
MA parameters.

The notation (p, d, ¢g) is used to list the orders of the
nonseasonal operators of the Arima model given in (1) and
(2). When a nonseasonal process is stationary and requires no
differencing, the Arma model is denoted by (p, ¢) or equiva-
lently (p, 0, q). A pure nonseasonal AR process of order p
without differencing is often written as AR(p). Likewise, a
nonseasonal MA process of order ¢ is sometimes labeled as
MA(q). Of course, an AR(p) model can be equivalently repre-
sented by the notation (p, 0) or (p, 0, 0), while a MA(g) process
can also be denoted by (0, ¢) or (0, 0, ¢).

Model Construction

When determining a Box-Jenkins model for a particular
time series, it is recommended to adhere to the identification,
estimation, and diagnostic check stages of model development
(Box and Jenkins, 1970; Box and Tiao, 1973]. Recently, Hipel
et al. [1977a] have presented some new procedures to simplify
and also to substantiate the three stages of model construction.
For example, in addition to the autocorrelation function
{ACF) and partia! autocorrelation function (PACF) it is rec-
ommended to employ the inverse autocorrelation function
(IACF) and the inverse partial autocorrelation function
(IPACF) for model identification. At the estimation stage,
parameters can be estimated more efficiently by using the
modified sum of squares technique {[McLeod, 1977). Hipel et
al. [1977a] also describe sensitive diagnostic tests for checking
the assumptions of independence, homoscedasticity (i.e., con-
stant variance), and normality of the model residuals. For in-
stance, because the distribution of the residual autocorrela-
tion function is now known [McLeod, 1978], valuable
diagnostic checks are available for testing the key assumption
of independence of the model residuals.

In practice, heteroscedasticity and nonnormality of the re-
siduals can be removed by a Box-Cox transformation that is
defined by [McLeod, 1974, p. 14; Box and Cox, 1964]

zM = X"1[(z, + const} — 1] A #0
3)
z» = 1n (z, + const) A=0

where const is a constant. The parameter const is usually
assigned a magnitude that will cause all the values in the time
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series to be greater than zero. In many situations, all of the
observations are positive, and therefore the constant is set
equal to zero. If it is suspected what type of power transforma-
tion is required to remove anomalies in the residuals, then A
can be given a fixed value. For example, a square root trans-
formation (i.e., A = 0.5) or perhaps natural logarithms (i.e.,
A = 0) may be the appropriate transformation to invoke.
Alternatively, a MLE for A along with a corresponding stan-
dard error can be calculated at the estimation stage.

McLeod et al. [1977] have demonstrated the utility of the
contemporary modeling techniques given by Hipel et al.
[1977a] by applying these procedures to both nonseasonal and
seasonal time series. A constrained nonseasonal Arma model
is determined for average annual river flows, a non-
multiplicative Arma process is fit to a yearly sunspot series,
and a multiplicative Arima model is found for modeling
monthly international airline passengers data. In all three
cases a better model is obtained than was previously cited in
the literature. For a comprehensive presentation of the de-
velopment and use of the Box-Jenkins models in water re-
sources the reader should refer to the textbook by Hipel and
McLeod [1977].

Simulation Techniques

Recently, McLeod and Hipel [1978b] have developed im-
proved simulation procedures for generating synthetic traces
from Box-Jenkins models. These techniques have been labeled
WASIM (Waterloo simulation procedure 1) and WASIM?2
(Waterloo simulation procedure 2) and are used for the Monte
Carlo studies in the ensuing sections of this paper. The exact
theoretical development of WASIM1 and WASIM2 and the
types of situations where it is advantageous to use one simula-
tion technique in preference to the other are described in detail
by McLeod and Hipel [1978b]. In addition, the computer pro-
grams along with other supporting subroutines and documen-
tation for these contemporary simulation procedures have
been listed in the microfiche edition of the paper.

McLeod and Hipel [1978b] cite many distinct advantages for
using WASIM1 and WASIM2. Of prime importance is the
fact that random realizations of the underlying stochastic
process are employed as starting values. Because fixed initial
values are not utilized, systematic bias is not introduced into
the generated data.

In this paper it is assumed that the Box-Jenkins model
residuals are approximately normally distributed. When it is
necessary a Box-Cox transformation is invoked to insure that
the normality assumption is satisfied. WASIM|1 is employed

TABLE 1. Annual River Flows and Miscellaneous Geophysical Data

Code Name Type Location Period N
Mstouis Mississippi River St. Louis, Missouri 1861-1957 96
Neumunas Neumunas River Smalininkai, USSR 1811-1943 132
Danube Danube River Orshava, Romania 1837-1957 120
Rhine Rhine River Basle, Switzerland 1807-1957 150
Ogden St. Lawrence River Ogdensburg, New York 1860-1957 97
Gota Gota River Sjotarp-Vanersburg, Sweden 1807-1957 150
Espanola mud varves Espanola, Ontario —471to —820 350

Temp temperature data (Swedish time)
Precip precipitation English Midlands 1698-1952 255
Sunyr yearly sunspots London, England 1813-1912 100
Minimum minimum flows of sun 1798-1960 163
Nile River Rhoda, Egypt 622-1469 848
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TABLE 2. Tree Ring Indicies Data

Code Name Type of Tree Location Period N
Snake Douglas fir Snake River Basin 1282-1950 669
Exshaw Douglas fir Exshaw, Alberta, Canada 1460-1965 506
Naramata Ponderosa pine Naramata, B.C., Canada 1451-1965 515
Dell Limber pine Dell, Montana 1311-1965 655
Lakeview Ponderosa pine Lakeview, Oregon 1421-1964 544
Ninemile Douglas fir Nine Mile Canyon, Utah 1194-1964 771
Eaglecol Douglas fir Eagle, Colorado 1107-1964 858
Navajo Douglas fir Navajo National Monument 1263-1962 700

(Belatakin), Arizona
Bryce Ponderosa pine Bryce Water Canyon, Utah 1340-1964 635
Tioga Jeffrey pine Tioga Pass, California 1304-1964 661
Bigcone Big cone spruce Southern California 1458-1966 509
Whitemtn Bristlecone pine White Mountains, California 800-1963 1164

for the pure MA models, while WASIM?2 is utilized for pure
AR and mixed Arma models.

ARMA MODELING OF GEOPHYSICAL PHENOMENA

In this section, Arma models are determined for 23 geophys-
ical time series. Table 1 lists the average annual river flows and
miscellaneous geophysical phenomena that are modeled. The
river flows are the longer records that are available in a paper
by Yevjevich [1963]. Although the flows were converted to
cubic meters per second, it is irrelevant which units of méa-
surement are used, since the parameter estimates for the Arma
process fit to the data are independent of the measuring system
used. The mud varve, temperature, rainfall, sunspot numbers,
and minimum flows of the Nile River are obtained from arti-
cles by De Geer [1940], Manley [1953, pp. 255-260], Kendall
and Stuart [1963, p. 343), Waldmeier [1961], and Toussoun
[1925], respectively.

Table 2 lists 12 sets of tree ring indices comprising six
different species of trees from western North America. The
indices labeled Snake are from Schulman’s [1956, p. 77] book,
and the rest were selected from a report by Stokes et al.
[1973].

By employing the three stages of model construction that
are suggested by Hipel et al. [1977a) and McLeod et al. [1977]
the proper Box-Jenkins model is determined for each of the 23
time series. An inspection of the ACF for each data set at the
identification stage reveals that differencing of the data is not
required. Therefore stationary Arma (p, ¢) models, or equiva-
lently Arima (p, 0, q) processes, successfully model all the time
series considered.

When obtaining MLE estimates for the Arma model param-
eters, Hipel et al. [1977a] recommend employing the modified
sum of squares method which was recently developed by
Mcleod [1977]. McLeod et al. [1977] use the modified sum of
squares ‘technique when determining MLE of the parameters
of the models examined in their paper. Because the modified
sum of squares technique was evolved subsequent to the devel-
opment of the models in this article, the unconditional sum of
squares method [Box and Jenkins, 1970, chapter 7] was used to
obtain MLE for the parameters of the models for the 23
geophysical series. However, for the data sets considered, the
two estimation techniques produce almost the same results.
Nevertheless, as was demonstrated by McLeod et al. [1977], in
certain situations this may not be the case.

Table 3 catalogs the type of Arma model, Box-Cox transfor-
mation, and parameter estimates and standard errors for each
data set. The standard errors are given in parentheses. For all

the Box-Cox transformations, the constant is set equal to zéro.
When A = 1 there is no transformation, while X = 0 means that
natural logarithms are taken of the data. Whenever a MLE of
X is calculated, the standard .error is included in parentheses.

By utilizing (1) and (3) and the parameter estimates in Table
3 the finite difference equation can be writtén in operator form
for each model. For instance, the Arma model for Ogden
River is

(1 — 0.626B — 0.184B8%°)(z, — 6818.69) = a, 49

where 6818.69 is the mean level of the Ogden data. As was
explained by McLeod et al. [1977], ¢, is constrained to zero in
order to have a parsimonious model. If a (3, 0) process is
estimated with ¢, not set equal to zero, the ¢, parameter is not
significantly different from zero and therefore should not be
included in the model. It is interesting to note that an examina-
tion of the ACF, PACF, IACF, and IPACF reveals at the
identification stage that probably a (3, 0) model with ¢, con-
fined to zero is the best model to estimate. Notice also for
Sunyr that the selected model is (9, 0) with ¢;-¢s constrained
to zero.

DISTRIBUTION OF THE RAR orR K

Suppose the determination of the exact distribution of the
RAR (i.e., Ry*) or K is required. The expected value of Ry* is
now known theoretically for both an independent and a
symmetrically correlated Gaussian process [Anis and Lloyd,
1976]. At present the cumulative distribution function (CDF)
of Ry* for a white noise process and in general any Arma
model is analytically intractable. However, by simtulation it is
possible to determine as accurately as is desired for practical
purposes the CDF for Ry*. Because both Ry* and K are
functions of N, their CDF are defined for a particular length of
series N. The CDF for Ry* is

F = F(r; N, ¢, 8) = PrRy* < 1) 5
where
N length of each individual time series;
¢ set of known AR parameters;
0 set of known MA parameters;
r any possible value of Ry*.

As was mentioned previously, when simulating a time series
of length N it is recommended to employ the improved simula-
tion techniques of McLeod and Hipel [19785]. In this section,
WASIMI is utilized for the (0, ¢) models, while WASIM2 is
used for the (p, 0) and (p, ¢) processes. Because the RAR of K




512 HipEL AND McLEOD: STOCHASTIC HYDROLOGY

TABLE 3. Arma Models Fit to the Geophysical Data

Code Name Model A Parameter Value* Parameter Value* Parameter Value*
. —-0.309
Mstouis ©, 1) 1.0 8, ((gg%;)
Neumunas ©, 1) 0.0 8, (0:086)
Danube (0,0) 1.0
Rhine (0,0) 1.0
0.626 0.184
Ogden (3.0) Y 12 (0.083) 2 0.0 s (0.086)
. —0.27
Gota 2.0 L0 2 (g.(s)gsl)) ¢2 (0.(2)83)
Espanola (L, 1) 0.0 'R 0.963 6, 0.537
(0.016) (0.051)
-0.115 -0.202
Temp 0,2) 1.0 0, (0.063) 0, (0.057)
Precip (0,0) 0.0
1.219 -0.508 0.232
Sunyr ©.0 1.0 ¢ 00s0) P ©0s6) P (0.029)
. ~0.778 1.254 -0.279 0.842
Minimum @D o316y * 00y = oy % o)
. 0.093 0.100
Snake G0 10 S oot oo B ©0®)
, 0.725 0.395
Exshaw (L1 1.0 N (0.067) 6, (0.090)
Naramata 2,0) 1.0 0 (3(1)32) e (g:(l)ﬂ)
0.367 0.185
Dell (2,0) 1.0 b oo & (0.039)
. 0.717 0.525 0.143
Lakeview GO o0y oy 00 $ (0,039
. . 0.684 1.225 -0.274 0.850
Ninemile @Y os0) P o) P o B 0o
0.624 1.156 -0.237 0.693
Eaglecol @D gossy B o4y P oy P 0103
Navajo 1) 1.0 & (31333) 8, (8:‘;’(2)‘3‘)
Bryce 1.0 ((1):?8% 2 (8:(5)32)
. 1.458 0.556
Tioga 0 0o9sy P (0.033)
. 0.375 0.159
Bigcone 2,0) 1.0 &, (0.044) b2 (0.044)
. 1.414 0.641 0.408
* The parenthetical values are standard errors.
is independent of the variance of the innovations, any value of ~ where

g, may be used. Consequently, it is simplest to set 0,2 = 1
and hence to assume that the residuals are NID (0, 1).

Suppose that N simulations of length N are generated for a
specific Arma model and the N RARs Ry,*, Ry.*, - - -, Rys*
are calculated for each of the simulated series. If the sample of
RAR is reordered such that Ry,* < Ryp* € -+ - < Ry)*, it
is known that the MLE of F is given by the ECDF [Gnedenko,
1968, pp. 444-451]:

Fy =Fx(r;N,$,0)=0 rSRN(I)*
Fr=Fr(r, N, $,0)=k/N RN(k)* <r< RN(IH—I)* (6)

Fr=Fx(r;N,$,0)=1 r> Ruw)*
The Kolmogoroff theorem [Gnedenko, 1968, p. 450] can be
used to obtain confidence intervals for Fy and to indicate the
number of samples N necessary to guarantee a prescribed

accuracy. This theorem states that if N is moderately large (it
has been shown that N > 100 is adequate), then

Pr(max |Fz — F| < ¢/N'?) = K(e) @)

K(e)=0 e<O

K(e) = i (—1)e 2% ¢>0

k=~

For example, when ¢ = 1.63, then K(¢) = 0.99. If N = 10*
simulations are done for a series of length N, then by Kol-
mogoroff’s theorem, all the values of F are accurate to at least
within 0.0163 with probability 0.99.

In actual simulation studies it is useful to examine the con-
vergence of Fy by printing out a summary of the ECDF for
increasing values of N (such as N = 100, 200, 500, 1000, 2000,
-+ +) until sufficient accuracy has been obtained. To curtail the
computer time required in simulations, there are efficient al-
gorithms available called ‘quicksorts’ [Knuth, 1973] for order-
ing the sample values for the RAR.

If simulation studies are done for Ry*, the ECDF for K can
be obtained from the transformation

K = log Ry*/log (N/2) (8)
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Alternatively, when the ECDF for K is known then the ECDF
for Ry* can be calculated by substituting each value of K into

Ry* = (N/2) )

The tables of various ECDF for different types of Arma
models are listed in the appendix on microfiche.! In Table 1 of
the appendix (on microfiche) the ECDF of K is shown for
various values of N for white noise that is NID (0, o,%). For
each value of N (i.e., each row) in that table an ECDF is
determined using N = 10* samples of length N. By substituting
all values for K in this table into (9) the ECDF for the RAR
can be found for each value of V.

When a particular time series is modeled by an Arma proc-
ess other than white noise, the ECDF for either Ry* or K can
be calculated by simulation for each desired value of N. For
example, Tables 2-10 of the appendix show the ECDF for the
RAR for various values of N for Markov processes with ¢, =
0.1,0.2, ---, 0.9, respectively. In all the tables for a particular
value of N the number of samples N simulated is 10¢.

The ECDF tables (in the appendix) ¢an be used to make
statistical inferences about Ry*, or equivalently K. For in-
stance, the 95% confidence interval for Ry* with N = 100 for a
Markov (1, 0) process with ¢, = 0.4 can be determined by
utilizing Table 5 of the appendix. Opposite N = 100 select the
values of Ry* below the 0.025 and 0.975 quantiles. The 95%
confidence interval for the RAR is then 9.85-24.02. By
substituting these interval limits into (8) the 95% confidence
interval for K is 0.585-0.813.

The ECDF tables illustrate certain properties of the RAR or
K. In Table | of the appendix an examination of the median
for K for white noise definitely shows that K slowly decreases
asymptotically toward 0.5 with increasing ¥ and is con-
sequently a function of N. Because of this a separate ECDF
must be developed for each value of N for a specified process.
Note that the median values for K in Table | of the appendix
are almost identical with the values of K tabulated in Table 6
in part 1 [McLeod and Hipel, 1978a]. These latter values of K
are calculated by using (8) when the exact theoretical expected
values of Ry* are found from a formula given by Anis and
Lloyd [1976] and also by employing simulation techniques to
estimate E(K). As can be seen from a perusal of Table 6 of
MecLeod and Hipel [1978a], the expected value of K is obviously
a function of N and decreases in magnitude with increasing N.

[t can be proven theoretically that for any Arma process the
RAR or K is a function of the time series length N and the AR
and MA parameters [Hipel, 1975, Appendix B]. This fact is
confirmed by the ECDF for the RAR for various Markov
nrocesses in Tables 2-10 of the appendix. It can be seen that
the median and all other values of the RAR at any quantile
for all of the models increase in value for increasing N. Fur-
thermore, the distribution of the RAR is also a function of the
value of the AR parameter ¢,.

PRESERVATION OF THE RAR AND K BY ARMA MODELS

By employing the ECDF of the RAR or K in conjunction
with a specified statistical test it is now shown that Arma
models do preserve the historically observed Hurst statistics.
Because the Hurst coefficient K is widely cited in the literature,
the research results for this statistic are described. However, K

' The appendix is available with entire article on microfiche. Order
from American Geophysical Union, 1909 K Street, N.W., Washing-
ton, D. C. 20006. Document W78-003; $1.00. Payment must ac-
company order.
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and Ry* are connected by the simple transformation given in
(9), and therefore preservation of either statistic automatically
implies retention of the other by an Arma model.

The Arma models fit to 23 geophysical time series ranging in
length from N = 96 to N = 1164 are listed in Table 3. For
exactly the same N as the historical data, 10* simulations are
done for each model to determine the ECDF of K, or equiva-
lently Ry*. The probability p, of having K for the ith model
greater than the K calculated for the jth historical series is
determined from the ith ECDF as

PrK > K| model) = p, (10)

where K,°% is the K value calculated for the ith observed
historical time series. If the chosen Arma model is correct,
then by definition, p; would be uniformly distributed on (0, 1).
For k time series it can be shown [Fisher, 1970, p. 99] that

k

-2 ; In pr = xa® (i1)

Significance testing can be done by using (11) to determine
whether the observed Hurst coefficient or the RAR is pre-
served by Arma models. The test could fail if the incorrect
model were fit to the data (for example, if the Ogden data were
incorrectly modeled by a (1, 0) process with ¢, = 0.4) or if
Arma models do not retain the Hurst K. Careful model selec-
tion was done, thereby largely eliminating the former reason
for test failure. If it is thought (as was suggested by Mandelbrot
and Wallis [1968]) that the observed K is larger than that
implied by an appropriate Brownian domain model, then a
one-tailed rather than a two-tailed test may be performed.

The results of the x* test in (11) for the 23 geophysical
phenomena confirm that there is no evidence that the observed
K, or equivalently the RAR, is not adequately preserved by the
ARMA models. Table 4 summarizes the information used in
the test. The observed Hurst coefficient, E(K), from the simula-
tions and the p, value are listed for each of the time series. In
Table 5 it can be seen that the calculated x? value from (11) is
not significant at the 5% level of significance for the 23 time

TABLE 4. Geophysical Time Series Calculations

Observed Arma
Code Name N K Model £(K) J2
Mstouis 96 0.648 0.667 0.624
Neumunas 132 0.660 0.649 0.420
Danube 120 0.633 0.613 0.534
Rhine 150 0.614 0.609 0.468
Ogden 97 0.894 0.832 0.149
Gota 150 0.689 0.659 0.283
Espanola 350 0.855 0.877 0.674
Temperature 255 0.694 0.646 0.157
Precip 100 0.618 0.610 0434
Sunspot numbers 163 0.723 0.768 0.728
Minimum 848 0.815 0.786 0.264
Snake 669 0.687 0.693 0.559
Exshaw 506 0.637 0.702 0.938
Naramata StS 0.595 0.649 0.905
Dell 655 0.687 0.694 0.569
Lakeview 544 0.706 0.729 0.709
Ninemile 771 0.740 0.726 0.378
Eaglecol 858 0.645 0.747 0.995
Navajo 700 0.653 0.670 0.660
Bryce 625 0.732 0.698 0.203
Tioga 661 0.701 0.687 0.362
Bigcone 509 0.611 0.695. 0.981
Whitemtn 1164 0.695 0.648 0.095
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TABLE 5. Results of the x* Test for Geophysical Time Series
Degrees of
Data Set Freedom —2InYp
River flows 12 11.78
Miscellaneous 10 9.46
Tree rings 24 16.08
Total 46 37.32

series for either a one-sided or a two-sided test. Therefore on
the basis of the given information, Arma models do preserve K
or the RAR when considering all the time series. Furthermore,
when the set of annual river flows, miscellaneous data, and tree
ring indicies are inspected individually, it can be seen from
Table 5 that Arma models preserve the historical Hurst statis-
tics for all three cases.

In Table 4 the average of the observed K is calculated to be
0.693 with a standard deviation of 0.076. The E(K) from the
simulations has an average of 0.698 with a standard deviation
of 0.068. The average of the observed K is therefore slightly
less than that for the simulated case, but this difference is not
statistically different.

If the results of the RAR had been given rather than K, only
columns 3 and 4 of Table 4 would be different, due to the
transformation in (9). The p, values and the results of the x?
test in Table 6 would be identical. Therefore preservation of
either K or Ry* infers retention of the other statistic by Arma
models.

ESTIMATES OF THE HURST COEFFICIENT

From empirical studies of approximately 690 geophysical
time series, Hurst [1951, 1956] found the RAR to vary as
Ry* < N2 (12)
where 4 is a constant often referred to as the generalized Hurst
coefficient. The above equation can be written in the general
form
Ry* = aN* (13)
where a is a coefficient. Hurst assumed the coefficient a to have
a value of (1/2) and then estimated 4 by K in (9) and (8).
Recently, Siddigqui [1976] has employed the functional cen-
tral limit theorem and the theory of Brownian motion to
derive many statistical formulae that may be of interest to
hydrologists. Of particular importance is the asymptotic result

for calculating E(Ry*) for Arma processes. This formula is
given as

E(Ry*) =~ dN'*

a = 1.253370-”2<1 - 0,)/(1 - qus,)
i=1 i=1

and %, is the theoretical autocovariance function at lag 0 that
is evaluated by using the algorithm of McLeod [1975] with ¢,*
= |. If the random variables are [1D, a special case of (14) that
was previously derived by Feller [1951] is

E(Ry*) ~ 1.2533N/2

(14)

where

(15)
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By comparing (14) and (13) a possible alternative method of
evaluating 7 may be to employ the equation

ENt = g'NSH

(16)

where SH is Siddiqui’s estimate of the generalized Hurst coef-
ficient h. When logarithms are taken of (15), Siddiqui’s esti-
mate for & is [Siddiqui, 1976}

SH = (log Ry* — log a')log N)! (17)

It should be noted that due to the way Hurst [1951, 1956]
and Siddiqui [1976] calculate the coefficient a in (13), the Hurst
coefficient K and the Siddiqui coefficient SH are in fact two
different statistics. Nevertheless, as was suggested by Siddigui
[1976], it may be of interest to determine whether 4 exhibits the
Hurst phenomenon if the estimate SH is employed. Accord-
ingly, for the 23 geophysical time series given in Tables | and 2
the K and SH statistics are compared.

Table 3 lists the Arma models fit to the 23 time series. If a
Box-Cox transformation is included in a model, then K and
SH are calculated for the transformed series to which the
model is fit. This is because the formula for calculating SH in
(17) does not have the capability of incorporating a Box-Cox
transformation in order to get an estimate of SH for the
untransformed data. Table 6 displays the values of K and SH
that are calculated for each time series by using (8) and (17),
respectively. Notice that the entries for K in Table 6 differ from
the K values in Table 4 wherever the data used in Table 6 have
been transformed by a Box-Cox transformation.

An examination of Table 6 reveals that in all cases except
three the value of SH is less than K for the corresponding time
series. The K statistic has an arithmetic mean of 0.701 with a
standard deviation of 0.084. However, the mean of the SH
statistic is 0.660 and possesses a standard deviation of 0.131.
The mean value of SH is therefore well within 2 standard
deviations of 0.500.

Another technique to estimate & can be found by comparing
(15) and (13). Accordingly, Gomide [1975] suggests the follow-
ing equation to evaluate A: '

Ry* = 1.2533N7H (18)
TABLE 6. Estimates of the Hurst Coefficient
Code Name K SH YH
Mstouis 0.648 0.591 0.500
Neumunas 0.677 0.591 0.535
Danube 0.633 0.495 0.495
Rhine 0.614 0.484 0.484
Ogden 0.894 0.929 0.709
Gota 0.689 0.636 0.549
Espanola 0.928 0.927 0.779
Temp 0.694 0.640 0.567
Precip 0.615 0.473 0.473
Sunyr 0.723 0.949 0.580
Minimum 0.817 0.746 0.699
Snake 0.687 0.663 0.579
Exshaw 0.637 0.580 0.530
Naramata 0.595 0.543 0.492
Dell 0.687 0.667 0.579
Lakeview 0.703 0.706 0.590
Ninemile 0.727 0.642 0.617
Eaglecol 0.761 0.701 0.650
Navajo 0.653 0.584 0.550
Bryce 0.734 0.727 0.620
Tioga 0.704 0.691 0.594
Bigcone 0.611 0.595 0.507
Whitment 0.695 0.623 0.595
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where YH is Gomide’s estimate of the generalized Hurst coef-
ficient h. By taking logarithms of (18), Gomide’s estimate of
is

YH = (log Rv* — log 1.2533)(log N)~! (19)

When (19) is utilized to estimate the Hurst coefficient, Go-
mide {1975] obtains an average value for YH of 0.57 for the
690 series considered by Hurst [1951, 1956]. On the other
hand, Hurst [1951, 1956] calculated K to have an average of
0.73 for the 690 series. Therefore lower values are obtained for
the Hurst coefficient & if YH is employed rather than K.

Table 6 lists the values of YH for the same 23 geophysical
time series that are considered for SH. Therefore if a Box-Cox
transformation is included with an Arma model in Table 3,
then YH is determined for the transformed series to which the
model is fit. Obviously, because YH, as calculated in (19), is
not a function of the Arma model parameters, it is not in
general necessary to consider the transformed series. However,
the aforementioned procedure is adopted so that appropriate
comparisons can be formulated for the three estimates given in
Table 6.

A perusal of Table 6 shows that for each time series the
value of YH is consistently less than the magnitude of K. For
the series to which white noise models are fit in Table 3 (i.e.,
Danube, Rhine and Precip) the values of YH and SH in Table
6 are equivalent. However, for all the other data sets the
magnitudes of YH are less than SH. The mean of the 23 YH
values is 0.577 with a standard deviation of 0.078. The YH
statistic is within 1 standard deviation of 0.500. Therefore it
can perhaps be argued that for the data considered, the Hurst
phenomenon is not significant for the YH statistic. A similar
argument can be made for the SH estimate of A.

CONCLUSIONS

Arma models preserve the observed RAR and K when fit to
a variety of geophysical time series. Because important sto-
chastic characteristics of hydrologic time series are retained by
Box-Jenkins models, this should give engineers confidence in
water resource projects that are designed with the aid of simu-
lation techniques. In particular, the RAR statistic is directly
related to storage problems, and this makes Arma models
desirable for reservoir design, operation, and evaluation,

Following the identification, estimation, and diagnostic
check stages of model development it is a straightforward
procedure to develop a model for a particular time series
[Hipel et al., 1977a; McLeod et al., 1977]. If the phenomenon
being modeled has been influenced significantly by external
interventions, these effects can be incorporated into the model
[Hipel er al., 1975, 19776]. By employing Monte Carlo tech-
niques the ECDF of statistics such as the RAR or K can be
developed to any desired accuracy. The ECDF are used in
conjunction with a specified statistical test to check for the
preservation of historical statistics. This testing procedure can
be used to check for the retention of any observed statistics by
Arma or by other types of stochastic models.

Besides considering Hurst’s estimate K of the coefficient 4 it
is possible to consider other types of estimates. For the 23 time
series examined in this paper the Siddiqui coefficient SH [Sid-
digui, 1976] and Gomide’s statistic YH [Gomide, 1975] possess
a mean value less than K. By examining the standard devia-
tions of the SH and YH statistics the Hurst phenomenon is
seen to be less pronounced for these estimates (especially for
YH) than it is for K.
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NOTATION

a coeflicient used in (13).
a'  coefficient used in (14).
a, white noise time series value at time ¢.
AR(p) autoregressive process of arder p.
B backward shift operator.
const additative constant for a Box-Cox transformation.
d order of the nonseasonal differencing operator.
E(K) expected value of K.
F theoretical CDF for Ry*.
FGN fractional Gaussian noise.
% ECDF for F.
h  generalized Hurst coefficient.

IID identically independently distributed variable.
K(e) limit approached for Kolmogoroff's theorem.
K% K value calculated for the ith observed time series.

K Hurst’s estimate of the generalized Hurst coefficient.
MLE maximum likelihood estimates.
MA(g) moving average process of order g.
N number of data in a time series.
n length of the w, time series.
N Number of simulated series of length V.
normally independently distributed variable.
p order of the nonseasonal AR operator.

p; probability that K > K,°™ for a particular model.
(p,d, q) ordersof the operators of a nonseasonal Arima model.
(p,q) orders of the operators of a nonseasonal Arma model.

g order of the nonseasonal MA operator.
r any possible value of Ry*.

Ry* rescaled adjusted range.
Ry:*  value of the RAR for the jth simulated series of length
N.
Ryw*  ith largest value of the RAR when the RAR for N
simulated series of length N are put in ascending order.
SH Siddiqui’s estimate of the generalized H urst coefficient

h.

t discrete time. »
w, stationary series formed by differencing the z,*' series.
Gomide estimate of the generalized Hurst coefficient A.
z, discrete time series value at time ¢.
transformation of the z, series.
v» autocovariance function at lag .

€ increment.

0 set of unkonwn MA parameters,
nonseasonal MA operator of order g.
6; ithnonseasonal MA parameter,
A exponent for a Box-Cox transformation.
4 mean level of the w, series.
og,2 variance of a,.

¢ set of unknown AR parameters.

; ithnonseasonal AR parameter.
nonseasonal AR operator of order p.
x,. chi-squared random variable with v degrees of
freedom.

V¢ nonseasonal differencing operator of order 4.
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