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Abstract. A symbolic method which can be used to obtain the asymptotic bias and
variance coefficients to order O(1/n) for estimators in stationary time series is discussed.
Using this method, the large-sample bias of the Burg estimator in the AR(p) for p ¼ 1, 2, 3
is shown to be equal to that of the least squares estimators in both the known and
unknown mean cases. Previous researchers have only been able to obtain simulation
results for the Burg estimator’s bias because this problem is too intractable without using
computer algebra. The asymptotic bias coefficient to O(1/n) of Yule–Walker as well as
least squares estimates is also derived in AR(3) models. Our asymptotic results show that
for the AR(3), just as in the AR(2), the Yule–Walker estimates have a large bias when the
parameters are near the nonstationary boundary. The least squares and Burg estimates are
much better in this situation. Simulation results confirm our findings.

Keywords. Asymptotic bias and variance; autoregression; autoregressive spectral
analysis; symbolic computation.

1. INTRODUCTION AND SUMMARY

Tj�stheim and Paulsen (1983, Correction 1984) showed that the Yule–Walker
estimates had very large mean-square errors in strongly autocorrelated AR(2)
models and that this inflated mean-square error was caused by bias. This result
was demonstrated by Tj�stheim and Paulsen (1983) in simulation experiments as
well as by deriving the theoretical bias to order O(1/n). It was also mentioned by
Tj�stheim and Paulsen (1983, p. 397, Sect. 5) that the bias results from simulation
experiments for the Burg estimates were similar to those obtained for least
squares estimates but that they had not been able to obtain the theoretical bias
term. For the AR(p) with p ¼ 1, 2, 3 we are now able to symbolically compute
the theoretical bias for Burg estimates as well as the least squares and
Yule–Walker estimates. It is found that the order n)1 bias coefficient of the
Burg estimator is equal to that of the least squares estimator while the
Yule–Walker estimator has the largest bias. For strongly autocorrelated AR(p)
models with p > 2, Tj�stheim and Paulsen (1983, p. 393, Sect. 3) suggested that
the bias for the Yule–Walker estimator is at least as bad as that for the AR(2)
case. The theoretical large-sample bias obtained using our computer algebra
methods confirms that this is the case.
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As pointed out by Lysne and Tj�stheim (1987), the Burg estimators have an
important advantage over the least squares estimates for autoregressive spectral
estimation since Burg estimates always lie in the admissible parameter space
whereas the least squares estimates do not. Burg estimators are now frequently
used in autoregressive spectral estimation (Percival and Walden, 1993, Sect. 9.5)
since they provide better resolution of sharp spectral peaks. As the Yule–Walker
estimators, the Burg estimators may be efficiently computed using the
Durbin–Levinson recursion. Our result provides further justification for the
recommendation to use the Burg estimator for autoregressive spectral density
estimation as well as for other autoregressive estimation applications.

It has been shown that symbolic algebra could greatly simplify derivations of
asymptotic expansions in the independent and identically distributed (i.i.d.) case
(Andrews and Stafford, 1993). Symbolic computation is a powerful tool for
handling complicated algebraic problems that arise with expansions of various
types of statistics and estimators (Andrews and Stafford, 2000) as well as for exact
maximum likelihood computation (Currie, 1995; Rose and Smith, 2000). Cook
and Broemeling (1995) show how symbolic computation can be used in Bayesian
time-series analysis. Smith and Field (2001) described a symbolic operator which
calculates the joint cumulants of the linear combinations of products of discrete
Fourier transforms. A symbolic computational approach to mathematical
statistics is discussed by Rose and Smith (2002). In the following sections,
through deriving the order n)1 bias coefficient of the Burg estimator in AR(2)
models, we develop a symbolic computation method that can be used to solve a
wide variety of problems involving linear time-series estimators for stationary
time series. Using our symbolic method, we also perform an asymptotic bias
comparison of the Burg, least squares and Yule–Walker estimators in AR(3)
models.

2. ASYMPTOTIC EXPECTATIONS AND COVARIANCES

Consider n consecutive observations from a stationary time series, zt, t ¼ 1, . . . , n,
with mean l ¼ E(zt) and autocovariance function ck ¼ cov(zt, zt)k). If the mean
is known, it may, without loss of generality, be taken to be zero. Then one of the
unbiased estimators of autocovariance c (m ) k) may be written as

Sm;k;i ¼
1

nþ 1� i

Xn

t¼i

zt�mzt�k; ð1Þ

where m, k and i are non-negative integers with max(m, k) < i � n. If the mean is
unknown, a biased estimator of c(m ) k) may be written as

�Sm;k;i ¼
1

n

Xn

t¼i

ðzt�m � �znÞðzt�k � znÞ; ð2Þ
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where �zn is the sample mean.

Theorem 1. Let the time series zt be the two-sided moving average,

zt ¼
X1

j¼�1
ajet�j; ð3Þ

where the sequence fajg is absolutely summable and the et are independent N(0, r2)
random variables. Then for i � j,

lim
n!1

n covðSm;k;i;Sf ;g;jÞ ¼
X1

h¼�1
Th; ð4Þ

where Th ¼ c(g ) k þ i ) j þ h)c(f ) m þ i ) j þ h) þ c(f ) k þ i ) j þ h)
c(g ) m þ i ) j þ h).

Theorem 2. Let a time series fztg satisfy the assumptions of Theorem 1. Then

lim
n!1

nEð �Sm;k;i � cðm� kÞÞ ¼ �ji� 1jcðm� kÞ �
X1

h¼�1
cðhÞ ð5Þ

and

lim
n!1

n covð �Sm;k;i; �Sf ;g;jÞ ¼
X1

h¼�1
Th; ð6Þ

where Th ¼ c(g ) k þ i ) j þ h)c(f ) m þ i ) j þ h) þ c(f ) k þ i ) j þ h)
c(g ) m þ i ) j þ h).

These two theorems may be considered as the extensions of Theorem 6.2.1 and
Theorem 6.2.2 of Fuller (1996). Letting p ¼ m ) k and q ¼ f ) g, the left side of
eqn (4) or eqn (6) can be simplified,

X1

h¼�1
Th ¼

X1

h¼�1
cðhÞcðh� p þ qÞ þ cðhþ qÞcðh� pÞ: ð7Þ

There is a wide variety of estimators which can be written as a function of the
autocovariance estimators, Sm,k,i or �Sm;k;i, such as, autocorrelation estimator, least
squares estimator, Yule–Walker estimator, Burg estimator, etc. The asymptotic
bias and variancemay be obtained by the Taylor expansion.Unfortunately, inmost
cases, those expansions include a large number of expectations and covariances of
the autocovariance estimators. It is too intractable manually. Theorems 1 and 2
provide the basis for a general approach to the symbolic computation of the
asymptotic bias and variance to orderO(1/n) for those estimators. The definition of
eqns (1) or (2) allows an index set fm, k, ig to represent an estimator so that
Theorem 1 or 2 can be easily implemented symbolically.
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3. BIAS OF BURG ESTIMATORS IN AR(2)

The stationary second-order autoregressive model may be written as zt ¼
/1zt)1 þ /2zt)2 þ at, where at are normal and independently distributed with
mean zero and variance r2 and parameters /1 and /2 are in the admissible region,
|/2| < 1, /1 þ /2 < 1 and /2 ) /1 < 1. The Burg estimate for /2 may be
obtained directly from Percival and Walden (1993, eqn. 416d) and then the
estimate for /1 may be obtained using the Durbin–Levinson algorithm. After
simplification, these estimates may be written as

/̂2 ¼ 1� CD2 � 2ED2

CD2 þ 8F 2G� 4FHD
; /̂1 ¼

2F
D

ð1� /̂2Þ ð8Þ

where

C ¼ 1

n� 2

Xn

t¼3

ðz2t þ z2t�2Þ; D ¼ 1

n� 1

Xn

t¼2

ðz2t þ z2t�1Þ; E ¼ 1

n� 2

Xn

t¼3

ðz2t z2t�2Þ;

F ¼ 1

n� 1

Xn

t¼2

ðztzt�1Þ; G ¼ 1

n� 2

Xn

t¼3

z2t�1; H ¼ 1

n� 2

Xn

t¼3

ðztzt�1 þ zt�2zt�1Þ:

Using a Taylor series expansion of /̂1 and /̂2 about lA ¼ E(A), where A ¼
C, D, E, F, G and H, the order n)1 bias coefficient, limn!1 nEð/̂ � /Þ, may be
expressed in terms of the order n)1 expectation coefficients of products and cross-
products involving C, D, E, F, G and H. There are six squared terms and 15
cross-product terms involved in each expansion, i.e. it is required to compute and
simplify for each of these 21 expansions involving C, D, E, F, G and H. These
terms may all be written in terms of the unbiased estimate of the autocovariance,
Sm,k,i. The required asymptotic expectation coefficients of each term in the
expansions are obtained by Theorem 1, i.e.

lim
n!1

n covðSm;k;i;Sf ;g;jÞ ¼
X1

h¼�1
Th; ð9Þ

where

Th ¼ cðhÞcðh� p þ qÞ þ cðhþ qÞcðh� pÞ; p ¼ m� k; q ¼ f � g

and

cðhÞ ¼
f2

1þh � f1
2f2

1þh þ f1
1þh f2

2 � 1
� �

f1
2 � 1

� �
f1 � f2ð Þ f1f2 � 1ð Þ f2

2 � 1
� � ; ð10Þ

where h � 0, f1 and f2 are the roots, assumed distinct, of the polynomial
f2 ) /1f ) /2 ¼ 0. The order n)1 coefficient of the covariance expansion of Sm,k,i

and Sf,g,j given in eqn (9) may be evaluated symbolically by defining an operator
of Sm,k,i and Sf,g,j, LCOV[fm, k, igff, g, jg]. To illustrate this symbolic method
consider the evaluation of limn!1 n cov(2C, H) which is one of the 21 order n)1
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expansion coefficients involving C, D, E, F, G and H mentioned above. It may be
obtained by

lim
n!1

n covð2C;HÞ ¼ 2fLCOV½ðf0; 0; 3g þ f2; 2; 3gÞðf0; 1; 3g þ f2; 1; 3gÞ�g

¼ 2fLCOV½f0; 0; 3gf0; 1; 3g� þ LCOV½f0; 0; 3gf2; 1; 3g�
þ LCOV½f2; 2; 3gf0; 1; 3g� þ LCOV½f2; 2; 3gf2; 1; 3g�g;

since C ¼ S0,0,3 þ S2,2,3, H ¼ S0,1,3 þ S2,1,3, and LCOV[Æ] follows the linearity
and the distributive law.

After algebraic simplification, the order n)1 bias coefficients are found to be

lim
n!1

n Eð/̂1 � /1Þ ¼ �ðf1 þ f2Þ

and

lim
n!1

n Eð/̂2 � /2Þ ¼ ð3f1f2 � 1Þ

More simply, in terms of the original parameters, we have the large-sample
biases,

Eð/̂1 � /1Þ¼
: �/1=n ð11Þ

and

Eð/̂2 � /2Þ¼
: �ð1þ 3/2Þ=n: ð12Þ

We verified, using the same approach, that eqns (11) and (12) also hold for the
case of equal roots of the polynomial f2 ) /1f ) /2 ¼ 0.

For the stationary second-order autoregressive model with an unknown mean,
the Burg estimators can be written as the same ratio function of the biased
estimators of the autocovariances, �Sm;k;i, as given in eqn (8). The symbolic
approach is similar to the known mean case, but includes one more inner product
associated with the biases of those autocovariance estimators, �Sm;k;i: The required
asymptotic biases and covariances of �Sm;k;i are obtained by Theorem 2. The order
n)1 bias coefficients are found to be

lim
n!1

n Eð/̂1 � /1Þ ¼ ðf1f2 � f1 � f2Þ � 1

and

lim
n!1

n Eð/̂2 � /2Þ ¼ ð4f1f2 � 2Þ:

That is

Eð/̂1 � /1Þ¼
: �ð/2 þ /1 þ 1Þ=n ð13Þ

and
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Eð/̂2 � /2Þ¼
: �ð2þ 4/2Þ=n: ð14Þ

Once an estimator of a stationary time series is written as a well-defined
function composed of Sm,k,i or �Sm;k;i, by expanding it by a Taylor series, the
asymptotic bias and variance to order n)1 may be obtained by Theorem 1 or 2
with symbolic computation. This approach can be applied in the bias derivation
of the Burg estimator, q̂, in the first-order autoregressive model, AR(1). In this
case, our method produced )2q/n in the zero mean case and )(1þ3q)/n in an
unknown mean case for the large-sample bias. Therefore, for both AR(1) and
AR(2) cases, the large-sample biases of the Burg estimators are the same as the
least squares estimators for a known mean case as well as for an unknown mean
case. These results are consistent with those of the simulation study reported by
Tj�stheim and Paulsen (1983).

4. BIAS OF BURG AND OTHER COMMONLY USED LINEAR ESTIMATORS IN AR(3)

For generality, we discuss the unknown mean case. The stationary third-order
autoregressive model may be written as

zt � l ¼ /1ðzt�1 � lÞ þ /2ðzt�2 � lÞ þ /3ðzt�3 � lÞ þ at;

where at are normal and independently distributed with mean l and variance r2

and parameters /1, /2 and /2 are in the admissible region,

j/3j< 1; /1þ/2þ/3 < 1; �/1þ/2�/3 < 1 and /3ð/3�/1Þ�/2 < 1:

The Burg estimates for /i, i ¼ 1, 2, 3 may be obtained from Percival and
Walden (1993, eqn 416d). The explicit forms for the Burg estimates are much
more complicated in AR(3) models than in AR(2) models. For example, the Burg
estimate /̂3 for the unknown mean case may be written as

/̂3 ¼
N
D
; ð15Þ

where

N ¼ 2ð �S3;0;4 � /12ð �S2;0;4 þ �S3;1;4 � �S2;1;4/12Þ
� ð �S1;0;4 þ �S3;2;4 � ð �S1;1;4 þ �S2;2;4Þ/12Þ/22 þ �S2;1;4/

2
22Þ

and

D ¼ �S0;0;4 þ �S3;3;4 þ /12ð�2ð �S1;0;4 þ �S3;2;4Þ þ ð �S1;1;4 þ �S2;2;4Þ/12Þ
� 2ð �S2;0;4 þ �S3;1;4 � 2 �S2;1;4/12Þ/22 þ ð �S1;1;4 þ �S2;2;4Þ/2

22:

Using eqn (8), /12 and /22 may be written as,
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/22 ¼ 1�
�S0;0;3 � 2 �S2;0;3 þ �S2;2;3

�S0;0;3 þ �S2;2;3 � 2/11ð �S1;0;3 þ �S2;1;3 � �S1;1;3/11Þ
;

/12 ¼
ð �S0;0;3 � 2 �S2;0;3 þ �S2;2;3Þ/11

�S0;0;3 þ �S2;2;3 � 2/11ð �S1;0;3 þ �S2;1;3 � �S1;1;3/11Þ

where

/11 ¼
2 �S1;0;2

�S0;0;2 þ �S1;1;2

:

After the simplification, /̂3 includes 856 indivisible sub-expressions in terms of
�Sm;k;i. The order n)1 bias coefficient may be obtained by Theorem 2 through
defining

cðhÞ ¼ A1f
h
1 þ A2f

h
2 þ A3f

h
3 ð16Þ

where

A1 ¼ � f21
ðf21 � 1Þðf1 � f2Þðf1f2 � 1Þðf1 � f3Þðf1f3 � 1Þ

A2 ¼
f2

ðf1 � f2Þðf1f2 � 1Þðf22 � 1Þðf2 � f3Þðf2f3 � 1Þ

A3 ¼ � f23
ðf1 � f3Þðf2 � f3Þðf1f3 � 1Þðf2f3 � 1Þðf23 � 1Þ

;

and h � 0, f1, f2 and f3 are the roots, assumed distinct, of the polynomial
f3 ) /1f

2 ) /2f ) /3 ¼ 0. It has turned out that the order n)1 bias coefficient
of the Burg estimate /̂3, limn!1 nEð/̂3 � /3Þ, includes 1,745,350 indivisible
subexpressions in terms of f1, f2 and f3. Using a similar method for /3, the
order n)1 bias coefficient of the least squares or Yule–Walker estimate,
limn!1 nEð/�

3 � /3Þ or limn!1 nEð/þ
3 � /3Þ, includes 95,457 or 77,649 indi-

visible subexpressions in terms of f1, f2, f3 respectively. It is not practical to
work with such formulae except by using symbolic algebra software. These
formulae were evaluated numerically for selected parameter values and the
results are given in Table I. The parameters in the AR(3) models were
chosen using the partial autocorrelations, /k,k, k ¼ 1, 2, 3 taking /1,1 ¼
/2,2 ¼ /3,3.

For all three autoregressive coefficients /1,/2 and /3, results from Table I
show that the large-sample bias of Burg estimates is equal to that of least
squares estimates while Yule–Walker estimate is considerably worse when the
partial autocorrelation /3,3 is relatively strong; overall, the biases get larger
when the partial autocorrelation /3,3 becomes stronger. Simulation results
confirmed the findings in Table I although for larger partial autocorrelation
values the difference between theoretical and simulated results is fairly large.
Tj�stheim and Paulsen (1983, p. 394, Sect. 3) observed the same phenomena
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in deriving the theoretical bias of Yule–Walker estimates in case of AR(2)
models.

5. CONCLUDING REMARKS

We used our computer algebra method to verify the bias results reported by
Tj�stheim and Paulsen (1983, correction, 1984). Since many quadratic statistics in
a stationary time series can be expressed in terms of Sm,k,i or �Sm;k;i, our computer
algebra approach can be applied to derive their laborious moment expansions to
order O(1/n). As examples, using our method, we can easily obtain the results by
Bartlett (1946), Kendall (1954), Marriott and Pope (1954), White (1961) and
Tj�stheim and Paulsen (1983).

Mathematica (Wolfram, 2003) notebooks with the complete details of our
derivations and simulations are available from the authors.
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