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Abstract

Deseasonalized geophysical time series are often used in time series models (Hipel
and McLeod 1994). In this article an optimal method for selecting the deseasonalization
transformation is suggested and an R package implementation (McLeod and Gweon 2012)
is discussed. Our deseasonalization method may be used with the recently developed
periodic autoregression model for daily river flow suggested by Tesfaye, Anderson, and
Meerschaert (2011) and for the hierarchical Bayes modeling for multi-site daily tempera-
ture series discussed by Craigmile and Guttorp (2011).
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1. Introduction

Many geophysical time series are available on a monthly or daily basis and exhibit obvious
seasonal features. These time series are often quite long. Lattice graphics capabilities available
in R (R Development Core Team 2008) provide excellent multi-panel displays (McLeod, Yu,
and Mahdi 2012). The built-in R function stl() provides a seasonal-trend decomposition
that may be rendered in an attractive visual display as illustrated in McLeod et al. (2012)
and is discussed in more detail by Cleveland (1993) for the famous (Wikipedia 2011) monthly
Mauna Loa CO2 time series. Long time series may also be visualized dynamically, like a
movie, as illustrated in McLeod (2012b).

In this article our focus is on seasonal geophysical time series that are stationary after de-
seasonalizing by subtracting the seasonal mean and/or dividing by the seasonal standard
deviation. 1 Suppose our time series consists of n successive monthly or daily values denoted

1 Seasonal economic/financial time series are often more complicated due to non-stationarity and week-
day/holiday artifacts.
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2 Optimal Deseasonalization

by zt, t = 1, . . . , n where t is the observation number. Then for modeling purposes it is often
convenient to work with the deseasonalized version wt = (zt − µt)/σt, where µt and σt are
the seasonal mean and standard deviation. In the monthly case, often µt and σt are simply
estimated by the monthly means and standard deviations. When the seasonal variances are
constant, we may wish to use the detrended series, wt = zt − µt.
Empirical (McLeod 1993) and theoretical (Ledolter and Abraham 1981) analyses have demon-
strated that the principle of parsimony advocated for time series models by Box, Jenkins, and
Reinsel (2005) is useful in selecting models that provide the best forecasts. In summary, this
principle suggests that the time series model with the fewest number of parameters that ade-
quately fits the data is preferred. Following this principle Hipel and McLeod (1994, §13.3.3)
described a Fourier based approach for selecting the minimum number of Fourier components
to use in the deasonalizing transformation in the case of monthly hydrological time series.
In the case of monthly time the seasonal frequency and its harmonic multiples, 12k/n are
all Fourier frequencies so the problem reduces to an orthogonal regression that allows for
efficient computation (Bloomfield 2004, Ch. 4). With daily time series it is natural to take
the seasonal period to be s = 365.25 and so, in this case, the Fourier approach cannot be used
but instead we may use an harmonic regression Craigmile and Guttorp (2011).

2. Harmonic Regression

In general, we may use harmonic regressions to estimate µt and σt. To estimate µt, we fit,

zt = A(0)
µ +

Fµ∑
k=1

(
A(k)
µ cos(2πkt/s) +B(k)

µ sin(2πkt/s)
)

+ ut (1)

where A
(0)
µ is the overall mean, Fµ denotes the number of sinusoids used, A

(i)
µ , B

(i)
µ , k =

1, . . . , Fµ are the sinusoid parameters, s is the seasonal period with s = 12 or s = 365.25
corresponding to the monthly and daily cases respectively, and ut is the mean-zero error that
is assumed to be stationary. It is well-known that in this case the least-squares estimates for

the parameters A
(0)
µ , A

(k)
µ , B

(k)
µ , k = 1, . . . , Fµ are asymptotically fully efficient (Hannan 1970,

§VII, Theorem 11). The estimated seasonal mean may be written,

µ̂t = Â(0)
µ +

Fµ∑
k=1

(
Â(k)
µ cos(2πkt/s) + B̂(k)

µ sin(2πkt/s)
)
, (2)

where Â
(0)
µ , Â

(k)
µ , B̂

(k)
µ are the least-squares estimates. Similarly the estimated seasonal vari-

ances,

σ̂2t = Â(0)
σ +

Fσ∑
k=1

(
Â(k)
σ cos(2πkt/s) + B̂(k)

σ sin(2πkt/s)
)
, (3)

where Â
(0)
σ , Â

(k)
σ , B̂

(k)
σ , k = 1, . . . , Fσ are the least squares estimates in the regression,

û2t = A(0)
σ +

Fµ∑
k=1

(
A(k)
σ cos(2πkt/s) +B(k)

σ sin(2πkt/s)
)

+ vt (4)

where û2t is the squared residual, ût = (zt − µ̂t)2, and vt is the mean-zero stationary error
term. The deseasonalized time series, wt = (zt− µ̂t)/σ̂t may then be obtained. When Fµ = 0,
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we set µ̂t equal to the sample mean of the original series zt. Similarly when Fσ = 0, σ̂t is set
to the sample standard deviation of zt.

As described in Hipel and McLeod (1994, §6.3 and §13.3) we may use the aic (Akaike 1974)
or bic (Schwarz 1978) criterion to select Fµ and Fσ, the number of harmonics used. More
generally we may use generalized aic , defined as gicα = −2 logL+ αk, where L denotes the
maximized value of the log-likelihood function and α is the tuning parameter with α = 2 for
the aic and α = log(n) for the bic . Other choices for α have been discussed by (Taniguchi
and Hirukawa 2012; Xu 2010; Xu and McLeod 2012).

For any fixed choices of Fµ and Fσ, the deseasonalized stationary time series, wt, is assumed
to be adequately modeled using an AR(p). The R package FitAR (McLeod, Zhang, and Xu
2011) is used to automatically select p and determine the value of the gicα, denoted by
gicα(Fµ, Fσ).2 As Fσ changes, the scale changes for wt and so it is necessary to adjust
gicα(Fµ, Fσ) in order to be able to compare the effect of different choices of Fσ. This in-
volves accounting for the transformation wt ←→ zt in the evaluation of the likelihood. The
determinant of the logarithm of the Jacobian for the transformation wt ←→ zt is

log J = −
n∑
i=1

log σ̂t. (5)

Hence the gicα(Fµ, Fσ) corresponding to a specific choice of Fµ and Fσ on the same scale as
the original data zt is given by

gic(z)
α (Fµ, Fσ) = gicα(Fµ, Fσ)− 2 log J, (6)

where gicα(Fµ, Fσ) is computed using the transformed series.

For monthly time series we may enumerate gic
(z)
α (Fµ, Fσ) for Fµ = 0, 1, . . . , 6 and Fσ =

0, 1, . . . , 6 and select the optimal deseasonalization according to our chosen gicα -criterion.
In this case Fµ = 6 would correspond to simply using the monthly means while Fσ = 6
corresponds to using the monthly seasonal standard deviations. Note that Fµ, Fσ ≤ 6 to
avoid aliasing (Bloomfield 2004; McLeod 2012a).

With daily time series often only a few harmonics are required for deseasonalization since the
seasonal term is usually not too complicated. Hence we may choose a upper limits Um and Us
and evaluate gic

(z)
α (Fµ, Fσ) for Fµ = 0, . . . , Um and Fσ = 0, . . . , Us. In practice, Um = Us = 6

is often reasonable for many daily time series.

3. R Package

Our R package (McLeod and Gweon 2012) implements the methods discussed in §2. By default
the bic is used to select the optimum transformation although other criteria are available in
the package as well.

Often it may be of interest to compare the optimum transformation with transformations that
are close to it since if there is only a small difference, a simpler transformation may be more
desirable. A good way to compare possible transformations is to use the relative plausibility.

2 Occasionally, it may happen that σ̂2
t < 0 defined in eqn. (3) is negative. This usually happens when Fσ or

Fµ are too small or when the series needs a logarithmic or other type of transformation. When this happens
we may simply set the value of the gicα to ∞ so this transformation will not be selected.
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The relative plausibility of models, i = 1, . . . , I with generalized aic, gicα(i), i = 1, . . . , I, is
defined as

Pi = exp{−0.5(gicα(i)− gic?α)}, (7)

where gic?α = mini gicα(i) (Akaike 1978; Hipel and McLeod 1994). This concept is similar
to relative likelihood (Sprott 2000, §2.4). The output for the code snippets in §4 numerically
illustrates the use of the relative plausibility.

All computations reported in §4 took only a few seconds. If necessary, with longer or more
complicated seasonal time series or for Monte-Carlo applications, the enumeration to find the
best gicα model could be vastly speeded up by using the R built-in package parallel.

4. Illustrative Examples

4.1. Monthly Saugeen River Flow

As an illustrative application, consider the mean monthly flow of Saugeen River at Walkerton
in cumecs (m3/sec) over the period from January 1915 to December 1979. There are n = 744
consecutive values. The ratio of maximum/minimum is about 56, so Tukey’s rule-of-thumb
(Tukey 1977, p. 397) suggests that a logarithmic transformation is in order and this was
confirmed using a Box-Cox analysis (Hipel and McLeod 1994, §13.4.2). The lattice style
boxplot in Figure 1 demonstrates that the log transformation makes the data distribution
more symmetrical.
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Figure 1: Comparing boxplots for original and log-transformed monthly flows for the Saugeen
River

The lattice-style multipanel time series plot in Figure 2 shows the log series exhibits strong
seasonality but no time trends or outliers.

Another useful plot for monthly time series obtained using the built-in R function monthplot()

and is illustrated in Figure 3. This plot displays not only the seasonal pattern but the time
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Figure 2: Lattice time series plot for monthly Saugeen flows.
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Figure 3: Monthplot for monthly Saugeen River flows.
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series plot for each month separately. From this plot we don’t see any evidence of trend-
like changes occurring in the monthly subseries so the type of deseasonalizing transformation
suggested in §2 is appropriate.

The output for the deseasonalization function, given in the code snippet below, shows that
using the aic results in Fµ = 5 and Fσ = 4. This result agrees with that given by Hipel
and McLeod (1994, §13.4.2) who also found that the optimal transformation was Fµ = 5 and
Fσ = 4 using an arma (1, 1) model instead of selecting the best fitting ar . If the bic criterion
is used a more parsimonious deseasonalization with Fµ = 1 and Fσ = 1 is obtained and only
one other model has BIC-plausibility greater than 1%.

Code Snippets

The R code snippet below generates the lattice-style boxplot in Figure 1.

R >require("deseasonalize")

R >require("lattice")

R >n <- length(Saugeen)

R >i<-as.vector(cycle(Saugeen))

R >m<-month.abb[i]

R >Saugeen.df <- data.frame(z=c(Saugeen,log(Saugeen)), m=c(m,m),

+ which=rep(c("raw","log"), rep(n, 2)))

R >bwplot(m~z|which, data=Saugeen.df, scales=list(x=list(relation="free")),

+ xlab="data")

The following R command generates Figure 2,

xyplot(log(Saugeen),cut=TRUE)

The script below shows how monthly Saugeen river flow series is deseasonalized using the
aic criterion. The optimal transformation Fµ = 5 and Fσ = 4 is indicated by the ∗ in the
left column. The full output has been edited to show only the best 5 models as ranked by
plausibility. This script took about 32 seconds. But when the bic was used, the time was
reduced to about 12 seconds. The difference in time reflects the fact that the bic choose more
parsimonious ar models than did the aic.

R >out<-ds(log(Saugeen), ic="AIC")

R >summary(out)

Fm Fs p AIC Plausibility %

* 5 4 3 -1171.936 100.0

6 4 3 -1171.065 64.7

5 5 3 -1171.029 63.5

5 3 3 -1170.261 43.3

6 5 3 -1170.013 38.2
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4.2. Daily Saugeen River Flow

A panel from a dynamic time series plot for a subseries of the mean daily flow Saugeen River
at Walkerton, Jan 1, 1915 to Dec 31, 1979 is shown in Figure 4.3 The series is comprised on
23, 741 consecutive values.

Out[8]=

number of days 774
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Number of Fourier Components 4
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Figure 4: Dynamic time series plot of fitted harmonic regression to the daily Saugeen River
flows.

For this series the bic optimal deseasonalizing transformation was found to be with Fµ =
4, Fσ = 0. All models with relative plausibility greater than 1% agreed with the choice
Fσ = 0. The choice of the parameter Fµ may be explored visually using the dynamic time
series plot illustrated in Figure 4.

As an additional check, the deseasonalized series was aggregated by month and Figure 5 shows
resulting the boxplot. No seasonal variation is noticeable either the means or variances, so
the deseasonalization appears to be effective.

Code Snippet

R script used to deseasonalize the Saugeen daily series. The output has been edited to show
only the top five most plausible models. since the full output is rather length showing all
combinations of Fµ, Fσ = 0, 1, . . . , 6. This script only took about 10 seconds which was less
than for the monthly series. The reason for this is that the ar models selected were much
simpler than in the monthly case.

R >out<-ds(log(SaugeenDay), Fm=6, Fs=6)

R >summary(out)

Fm Fs p BIC Plausibility (%)

* 4 0 6 -82621.80 100.0
3 See the subdirectory /inst/doc located in the installation directory of our R package (McLeod and Gweon

2012) for instructions on how to view this plot dynamically on your computer.
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5 0 6 -82617.37 10.9

3 0 6 -82615.34 4.0

6 0 6 -82613.19 1.3

The next script shows how the daily deseasonalized series is aggregated into months and the
boxplot used to check for seasonality.

require("lubridate")

require("lattice")

w<-ds(log(SaugeenDay), Fm=4, Fs=0, searchQ=FALSE, standardizeQ=FALSE)$z

d<-rownames(SaugeenDay)

m<-month(d, label = TRUE, abbr = FALSE)

w.df <- data.frame(w=w, m=m)

bwplot(m ~ w, data=w.df, xlab="deseasonalized flow")
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Figure 5: Boxplots of the detrended daily Saugeen River flows.
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5. Concluding Remarks

The R function stl() provides another method for deseasonalizing monthly time series based
on loess regression. This method is especially useful for time series that have a strong trend
as well as a seasonal component but this method is less automatic and more complex than the
method described in this article and it is only applicable to monthly series. The method we
have described is preferable for time series models used for applications involving forecasting,
simulation and intervention analysis as are described in Hipel and McLeod (1994) or in recent
methods for time series modeling of daily series (Cressie and Wikle 2012; Craigmile and
Guttorp 2011; Tesfaye et al. 2011).

Hipel and McLeod (1994); McLeod (1994) also discussed the application of periodic autore-
gression for modeling monthly geophysical time series. This type of correlation often occurs
with river flow series when the spring runoff occurs either in March or April resulting in a
reduced or even negative correlation between these two months whereas other months are
positively correlated. The optimal selection using an AR(p) could be modified to use peri-
odic autoregression. The R package pear (McLeod and Balcilar 2011) is available for fitting
these models. But this approach is not likely to have any noticeable impact on the final
deseasonalized series.
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