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Abstract. Autoregressive and moving-average (ARMA) models with stable Paretian
errors are some of the most studied models for time series with infinite variance.
Estimation methods for these models have been studied by many researchers but the
problem of diagnostic checking of fitted models has not been addressed. In this article, we
develop portmanteau tests for checking the randomness of a time series with infinite
variance and for ARMA diagnostic checking when the innovations have infinite variance.
It is assumed that least squares or an asymptotically equivalent estimation method, such as
Gaussian maximum likelihood, is used. It is also assumed that the distribution of the
innovations is identically and independently distributed (i.i.d.) stable Paretian. It is seen
via simulation that the proposed portmanteau tests do not converge well to the
corresponding limiting distributions for practical series length so a Monte Carlo test is
suggested. Simulation experiments show that the proposed Monte Carlo test procedure
works effectively. Two illustrative applications to actual data are provided to demonstrate
that an incorrect conclusion may result if the usual portmanteau test based on the finite
variance assumption is used.

Keywords. ARMA model diagnostic check; portmanteau test; residual autocorrela-
tion function; stable paretian distribution; testing for randomness.

1. INTRODUCTION

Time-series models with stable Paretian errors have been studied by many
researchers. Adler et al. (1998) discussed many aspects of how to apply standard
Box–Jenkins techniques to stable autoregressive moving-average (ARMA)
processes. Adler et al. (1998) concluded that, in principle, the standard Box–
Jenkins techniques do carry over to the stable setting but a great deal of care needs to
be exercised. In Section 2 we briefly review the stable Paretian distribution and in
Section 3 we develop portmanteau tests for whiteness or randomness for an
identically and independently distributed (i.i.d.) series. The whiteness test is
illustrated with a brief application to daily returns on the S&P 500 stock index. In
Section 4 we develop portmanteau diagnostic checks for residuals of an AR model
fitted by least squares assuming that the true innovations are i.i.d.-stable Paretian-
distributed. This is extended to the ARMAmodel using the equality of residuals in
AR andARMAmodels. An illustrative example shows the differences in inferences
that may result between the finite-variance and infinite-variance portmanteau tests.
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2. THE STABLE PARETIAN DISTRIBUTION

A stable distribution is usually defined through its characteristic function. A
random variable Z, or Za(r,b,l), is said to have a stable distribution if its
characteristic function has the following form:

EðeitZÞ ¼ exp �rjtja 1� ib sgnðtÞ tan pa
2

� �
þ ilt

� �
if a 6¼ 1

exp �rjtj 1þ ib 2
p sgnðtÞ log jtj

� �
þ ilt

� �
if a ¼ 1,

�
ð1Þ

where i2 ¼ �1, t the parameter of the characteristic function, a the index of
stability or the characteristic exponent, satisfying 0 < a � 2, r > 0 the scale
parameter, b the skewness satisfying �1 � b � 1, l 2 R1 is the location
parameter, and

sgnðtÞ ¼
1 if t > 0
0 if t ¼ 0
�1 if t < 0.

(

3. PORTMANTEAU TESTS FOR RANDOMNESS OF STABLE PARETIAN TIME SERIES

In this section, we study portmanteau tests for checking randomness of a sequence
of stable Paretian random variables. We consider the stable analogues of
portmanteau tests of Box and Pierce (1970) as well as Peňa and Rodriguez (2002),
denoted by QBP and D̂, respectively. For this, we require some important
properties of sample autocorrelation functions (ACF) and sample partial
autocorrelation functions (PACF) of stable Paretian ARMA processes
(Brockwell and Davis, 1991, Ch. 13; Samorodnitsky and Taqqu, 1994; Adler
et al., 1998).

3.1. Asymptotic distribution of sample ACF

Let fZt: t ¼ 0, ±1, ±2, . . .g be an (i.i.d.) sequence of stable Paretian random
variables and Xt be a strictly stationary process defined by

Xt ¼
X1

j¼�1
wjZt�j; t ¼ 1; . . . ; n; ð2Þ

where

X1
j¼�1

jj j wj

�� ��d<1; for some d 2 ð0; aÞ \ ½0; 1�: ð3Þ

The stable analogue of the autocorrelation function at lag k is defined as
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qk ¼
P

j wjwjþkP
j w2

j

; k ¼ 1; 2; . . . : ð4Þ

Equation (4) can be estimated by the sample autocorrelation function as
follows:

rk ¼
Pn�k

t¼1 XtXtþkPn
t¼1 X 2

t
; k ¼ 1; 2; . . . ; ð5Þ

for a > 0. According to Davis and Resnick (1986), for any positive integer k, the
limiting distribution of sample autocorrelation functions is given by

n
logðnÞ

� 	1
a

r1 � q1; . . . ; rk � qkð ÞT! Y1; . . . ; Ykð ÞT; ð6Þ

where �!� denotes convergence in distribution and

Yh ¼
X1
j¼1

qkþj þ qk�j � 2qjqk

� � Sj

S0
; h ¼ 1; . . . ; k; ð7Þ

where S0, S1, . . . are independent stable variables; S0 is positive with
S0 � Za=2ðC�2=aa=2 ; 1; 0Þ; and Sj are ZaðC�1=aa ; 0; 0Þ, where

Ca ¼
ð1� aÞ=ðCð2� aÞ cosðpa=2ÞÞ if a 6¼ 1
2=p if a ¼ 1.

�

Under the null hypothesis that Xt are a sequence of i.i.d. stable Paretian
random variables, we have q0 ¼ 1 and qk ¼ 0 for k � 1, so the limiting
distribution of sample ACFs can be further simplified as follows:

n
logðnÞ

� 	1
a

r1; . . . ; rkð ÞT! W1; . . . ;Wkð ÞT; ð8Þ

where Wh are given by

Wh ¼
Sh

S0
; h ¼ 1; . . . ; k: ð9Þ

Note that, for a > 1, we may also use the mean-corrected sample ACF at lag k,
denoted as ~rk, which is given by

~rk ¼
Pn�k

t¼1 ðXt � �X ÞðXtþk � �X ÞPn
t¼1ðXt � �X Þ2

; k ¼ 1; 2; . . . : ð10Þ

Davis and Resnick (1986) indicated that the limiting distribution of ~rk is the
same as that of rk.
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3.2. Asymptotic distribution of sample PACF

The sample PACF at lag k is defined as the sample estimate of the k-th element of
the Yule–Walker solution to an AR process. The sample PACF may also be
calculated using the Durbin–Levison algorithm.

Let pk be the sample PACF at lag k, and p(m) ¼ (p1, . . . , pm)
T. By the

Durbin–Levison algorithm, the vector p(m) can be expressed as a function of r(m),
p(m) ¼ w(r(m)), with the k-th element given by

pk ¼ wðrðkÞÞ ¼
rk � rTðk�1ÞR

�1
ðk�1Þr

�
ðk�1Þ

1� rTðk�1ÞR
�1
ðk�1Þrðk�1Þ

; ð11Þ

where r(p) ¼ (r1, . . . , rp)
T is the p � 1 vector of sample ACFs, R(p) ¼ (rji�jj)p�p is

the p � p sample autocorrelation matrix and r�ðkÞ ¼ ðrk; . . . ; r1ÞT.
Following the proof in Monti (1994), we can derive the asymptotic distribution

of sample PACFs. Under the null hypothesis that Xt are independent, the ACFs
are all zero, and according to Brockwell and Davis (1991, Ch. 13),

rh ¼ Op
n

logðnÞ

� 	�1=a !
; h ¼ 1; 2; . . . :

Therefore,

RðkÞ ¼ 1k þ Op
n

logðnÞ

� 	�1=a !
;

where 1k is a k � k identity matrix. By eqn (1),

pðmÞ ¼ rðmÞ þ Op
n

logðnÞ

� 	�2=a !
: ð12Þ

Using eqn (8), we have

n
logðnÞ

� 	1
a

p1; . . . ; pmð ÞT! W1; . . . ;Wmð ÞT: ð13Þ

3.3. Asymptotic distributions of QBP and D̂ tests

Under the assumption 1 < a < 2, Runde (1997) derived the limiting distribution
of QBP, based on the mean-corrected sample ACFs. His result is given by

QBPðmÞ ¼
n

logðnÞ


 �2=aXm

j¼1
~r2j ! W 2

1 þ 	 	 	 þ W 2
m ; ð14Þ

where fWk : k ¼ 1, . . . ,mg are defined in eqn (9). Note that if 0 < a � 1, the
limiting distribution of eqn (14) remains the same if ~rk are replaced by rk.
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Consider the D̂ test of Peňa and Rodriguez (2002) next. In the stable case we
may define the test statistic,

D̂ðmÞ ¼ n
logðnÞ


 �2=a

1� jRðmÞj1=m
� 


: ð15Þ

Using the results in Sections 3.1 and 3.2, and following the arguments of Peňa
and Rodriguez (2002), we may have the asymptotic distribution of eqn (15) in
Theorem 1

Theorem 1. D̂ðmÞ in eqn (15) is asymptotically distributed asXm

i¼1

mþ 1� i
m

W 2
i ;

where fWi : i ¼ 1, . . . ,mg are as defined in eqn (9).

The proof of this theorem is given in Appendix A.

Remark 1. The limiting distributions of the QBP and D̂ tests can be computed
by making use of the change variable technique and some numerical algorithms of
calculating the probability density function of stable random variables, such as
Mittnik et al. (1999). This approach requires, however, intensive numerical
computations.

Remark 2. Another approach to obtaining the asymptotic distributions of the
QBP and D̂ tests is to simulate the aforementioned tests based on their asymptotic
distributions. For example, D̂ is simulated as defined in Theorem 1. This approach
also requires lengthy computations but it is much less intensive computationally
than the approach mentioned in Remark 1. This approach will be adopted in the
subsequent analysis based on 104 simulations.

Remark 3. Peňa and Rodriguez (2006) consider a slightly different
normalization for the D̂ statistic and an improved finite-sample approximation
to its limiting distribution is provided. In the stable case, the new test statistic may
be written,

D̂�ðmÞ ¼ � n
logðnÞ


 �2=a

jRðmÞj1=m: ð16Þ

It may be shown that the limiting distribution of D̂�ðmÞ is as stated in Theorem 1.
Moreover, identical results are produced if D̂�ðmÞ is used instead of D̂ðmÞ in the
Monte Carlo test given in Appendix B.

3.4. Simulation experiments

Based on 250 simulations, the 5, 10, 30, 50, 70, 90, 95, 97.5, 99 (%)
empirical quantiles of both QBP(m) and D̂ðmÞ tests with lag m ¼ 5 were
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calculated and plotted against the corresponding asymptotic distributions as
stated in Section 3.3. It is seen in Figures 1 and 2 that the empirical and
asymptotic quantiles do not agree very well unless n is very large. The practical
applications of both tests would be severely impeded by the slow convergence.
A solution to this problem is to use the Monte Carlo test or parametric
bootstrap.

Consider the simulation experiments: i.i.d. random sequence of Za(1,0,0) with
series length n ¼ 250 and a ¼ 1.9,1.7,1.5,1.3,1.1 was simulated. The empirical
sizes of both tests were calculated based on N ¼ 104 simulations and each
Monte Carlo test was simulated based on B ¼ 103 simulations – see Appendix B
for algorithm details. The results are tabulated in Table I. It is seen that the
empirical sizes of both tests are very close to the 5% nominal level even with
n ¼ 250.
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Figure 1. Quantile plot comparing the empirical and asymptotic distributions of D̂ðmÞ;m ¼ 5 defined
in eqn (15). Random sequences of series length n ¼ 1000,2000,5000,10,000 were simulated from
Sa(1,0,0), a ¼ 1.2 and empirical quantiles corresponding to 5, 10, 30, 50, 70, 90, 95, 97.5, 99 (%) are

shown.
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3.5. Illustrative example

The daily S & P 500 stock index from 2 January, 1999 to 29 December, 2006 was
obtained from Wharton Data Research Services. This results in a series with

TABLE I

Empirical Sizes (%) of Monte Carlo Tests for a Nominal 5% Test for Randomness of Stable

White Noise Innovations with Index a

a

D̂ QBP

m ¼ 5 m ¼ 10 m ¼ 15 m ¼ 5 m ¼ 10 m ¼ 15

1.9 5.30 4.66 4.78 4.96 4.71 4.87
1.7 5.18 4.44 4.44 4.82 4.43 4.41
1.5 4.82 4.99 5.13 5.07 5.27 5.30
1.3 4.80 5.03 5.18 5.04 5.00 5.27
1.1 5.26 5.33 5.12 5.33 5.25 5.15

The empirical size for each test was calculated based on N ¼ 104 simulations. Each Monte Carlo test
used B ¼ 103 simulations. Series length n ¼ 250 and lags m ¼ 5,10,15 were investigated.
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Figure 2. Quantile plot comparing the empirical and asymptotic distributions of QBP(m),m ¼ 5
defined in eqn (14). Random sequences of series length n ¼ 1000,2000,5000,10,000 were simulated
from Sa(1,0,0),a ¼ 1.2 and empirical quantiles corresponding to 5, 10, 30, 50, 70, 90, 95, 97.5, 99 (%)

are shown.
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length n ¼ 2011. The returns, log(ztþ1/zt), were computed and tested for
randomness. The consistent estimators of McCulloch (1986) were used to
estimate a and b for the returns. We obtained âM ¼ 1:587 and b̂M ¼ �0:081. It is
seen that b̂M is close to zero so the series is not highly skewed. Since âM is much
less than 2, the Monte Carlo test using the stable distribution should be used
(Appendix B). For comparison, the Monte Carlo tests were also performed using
normal random variables as well. The Ljung–Box tests based on the v2

approximation are shown in Table II. The Ljung–Box test (Ljung and Box,
1978) rejects at level a when QLB > v2mð1� aÞ, where

QLBðmÞ ¼ nðnþ 2Þ
Xm

k¼1

r2k
ðn� kÞ ; ð17Þ

and v2mð1� aÞ denotes the 1 � a quantile of a v2 distribution with m degrees of
freedom. As expected the Ljung–Box test agrees very well with the Monte Carlo
test using the Box–Pierce statistic QBP for the Monte Carlo test using normal
random variables. There is a striking difference in the stable/normal Monte Carlo
tests when m ¼ 50. Under the normality assumption both D̂ and QBP indicate that
the randomness assumption is strongly rejected whereas the P-value is only about
5% when the stable assumption is made.

Remark 4. Portmanteau tests based on the nonparametric bootstrap
procedure could also be used but it is expected that they would be less
powerful since less information is used. In addition, the proposed parametric
bootstrap test procedure can be used to test nonlinear time series driven by stable
Paretian innovations.

4. DIAGNOSTIC CHECK FOR MODEL ADEQUACY OF AR(p) MODELS

WITH STABLE PARETIAN ERRORS

4.1. Some asymptotic results

In this section, we consider QBP and D̂ tests for diagnostic checks in model
adequacy of AR(p) models with stable Paretian errors.

TABLE II

P-values Using Monte Carlo Portmanteau Tests and Ljung–Box v2

Test, QLB, for Testing

Randomness of Returns of S&P 500 Stock Index

Test Statistic Method m ¼ 5 m ¼ 10 m ¼ 20 m ¼ 50

D̂ Monte Carlo/stable 0.104 0.087 0.068 0.049
D̂ Monte Carlo/normal 0.151 0.117 0.050 0.006
QBP Monte Carlo/stable 0.078 0.136 0.053 0.048
QBP Monte Carlo/normal 0.107 0.237 0.019 0.005
QLB v2 0.112 0.251 0.018 0.003
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Define the general AR(p) process as follows:

/ðBÞXt ¼ Zt; ð18Þ

where fZt : t ¼ 0, ±1, ±2, . . .g is an i.i.d. sequence of stable Paretian random
variables, B denotes the backward operator, and /(B) ¼ 1�/1B � 	 	 	 � /pB

p.
Let /̂ðpÞ ¼ ð/̂1; . . . ; /̂pÞT denote the estimates of autoregressive coefficients. The
residuals of the fitted model are given as follows:

Ẑt ¼ Ztð/̂ðpÞÞ ¼ Xt � /̂1Xt�1 � 	 	 	 � /̂pXt�p ¼ /̂ðBÞXt; ð19Þ

and the corresponding residual autocorrelation at lag k is given by

r̂k ¼
P

ẐtẐt�kP
Ẑ2

t

:

Consider the estimators of /̂ðpÞ satisfying

/̂ðpÞ ¼ /ðpÞ þ Op
n

logðnÞ

� 	�1=a !
:

From Lin and McLeod (2007, Appendix B) the residual autocorrelation at lag
k, r̂k, can be approximated by the first-order Taylor expansion about error ACFs,
rk. Specifically, the approximation is

r̂k ¼ rk þ
Xp

j¼1
ð/j � /̂jÞwk�j þ Op

n
logðnÞ

� 	�2=a !
; ð20Þ

where wj is the impulse response coefficient at lag j and

rk ¼
P

ZtZt�kP
Z2

t

is the error autocorrelation at lag k. Equation (20) can also be written in matrix
form, to order Op([n/ log(n)]

�2/a),

r̂ðpÞ ¼ rðpÞ þ Xð/ðpÞ � /̂ðpÞÞ; ð21Þ

where

X ¼

1 0 	 	 	 0

w1 1 . .
.

0

..

. ..
. . .

.
0

..

. ..
. . .

.
0

wm�1 wm�2 	 	 	 wm�p

2
6666664

3
7777775
: ð22Þ

By making use of eqn (20) or (21) as well as following the proof in Peňa and
Rodriguez (2002), we may derive the asymptotic distributions of the
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aforementioned portmanteau tests for diagnostic checks in AR(p) models. This
distribution, however, is usually very complicated and may not be traceable unless
the AR(p) models of interest are fitted by least squares (LS). For simplicity,
therefore, we only consider the case that eqn (18) is estimated using least squares
in the subsequent analysis.

According to Section 4 in Davis (1996), if the ARMA parameters, b, are
estimated using least squares, we have ½n=logðnÞ�1=aðb̂LS � bÞ converge in
distribution, where b̂LS denotes the LS estimates of b. Hence, in terms of our
notation, we have /̂ðpÞ � /ðpÞ ¼ Opð½n=logðnÞ��1=aÞ. Then, by Box and Pierce
(1970), fẐtg in eqn (19) satisfy the orthogonality conditions and, to order
Opð1=

ffiffiffi
n
p ½n=logðnÞ��1=aÞ,

r̂TðpÞX ¼ 0: ð23Þ

If we now multiply eqn (21) on both sizes by

Q ¼ XðXTXÞ�1XT;

then using eqn (23) we have

r̂ðpÞ ¼ ð1m �QÞrðpÞ ð24Þ

approximately, where 1m is an m � m identity matrix and Q ¼ X(XTX)�1XT. It
was shown by Box and Pierce (1970) that 1m � Q is idempotent of rank m � p.
Hence, the asymptotic distribution of the QBP test is given by

n
log n


 �2=aXm

1

r̂2k !WT
mð1m �QÞWm; ð25Þ

where Wm ¼ (W1, . . . ,Wm)
T and fWi : i ¼ 1, . . . ,mg are defined in eqn (9).

Consider the asymptotic distributions of residual partial autocorrelations next.
Let p̂ðmÞ be the vector of the first m residual partial autocorrelations and p(m) the
vector of error partial autocorrelations. The Taylor expansion of wðr̂ðmÞÞ around
r(m) yields

p̂ðmÞ ¼ pðmÞ þ
@pðmÞ
@rðmÞ

ðr̂ðmÞ � rðmÞÞ þ Op
n

log n

� 	�2=a !
: ð26Þ

By eqns (11) and (12), eqn (26) becomes

p̂ðmÞ ¼ r̂ðmÞ þ Op
n

log n

� 	�2=a !
: ð27Þ

Consider the Peňa–Rodriguez test as the form of

D̂ ¼ n
log n


 �2=a

ð1� jR̂ðmÞj1=mÞ; ð28Þ
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where R̂ðmÞ ¼ ðr̂ji�jjÞm;m is the m � m residual autocorrelation matrix. By eqn (27)
and following the proof in Peňa and Rodriguez (2002), the limiting distribution of
eqn (28) is WT

mAmWm, where Am ¼ (1m � Q)TWm,m(1m � Q) and Wm,m is an
m � m diagonal matrix with (i, i)-th element equal to (m � i þ 1)/m for i ¼
1, . . . ,m.

Remark 5. It is shown in Lin and McLeod (2007, Appendix B.4) that the
residuals in a fitted ARMA model are asymptotically equivalent to those in a
particular AR model. Hence the asymptotic results for the AR may be extended
to the ARMA case.

4.2. Some size and power calculations

As in Section 3.4, the slow convergence of QBP and D̂ tests to their asymptotic
distributions is also present at the residual autocorrelations. The first-order
autoregressive process Xt ¼ 0.5Xt�1 þ Zt with Zt � Z1.2(1,0,0) was simulated
and AR(1) models were fitted to the data. Then the 5, 10, 30, 50, 70, 90, 95, 97.5,
99 (%) empirical quantiles of r̂1 were compared with the corresponding
asymptotic quantiles. It is seen from Figure 3 that the empirical quantiles of r̂1
get closer to the asymptotic quantiles as n increases. The slow convergence of
residual autocorrelations to their asymptotic distribution may cause difficulties in
using portmanteau tests in practice. Therefore, as in Section 3.4, we suggested
using the Monte Carlo test to improve the effectiveness of portmanteau tests.

We now investigate the effectiveness of QBP and D̂ tests for diagnostic check in
fitted AR models with stable Paretian errors. The empirical sizes of D̂ and QBP

tests for a 5% significance test were first calculated via simulation. In this
experiment, AR(1) models, Xt ¼ /1Xt�1 þ Zt, were simulated, where Zt �
Z1.5(1,0,0) and /1 ¼ 0, ±0.1, ±0.3, ±0.5, ±0.7, ±0.9 and AR(1) models were
fitted to the simulated data by the Burg algorithm. The empirical size for each test
was calculated based on N ¼ 104 simulations and each Monte Carlo test used 103

simulations. Series length n ¼ 100 and lags m ¼ 5,10,20 were investigated. It is
seen in Table III that the empirical sizes of both tests are very close to their
nominal level.

The empirical powers of D̂ and QBP tests as diagnostic tools were also
investigated via simulation. Twelve ARMA (2,2) models of series length n ¼ 100
in Table IV of Peňa and Rodriguez (2002) were simulated and AR(1) models were
fitted to the simulated data using the Burg algorithm. Both tests with lags m ¼
5,10,20 were calculated using the parametric bootstrap procedure. The empirical
powers were calculated based on N ¼ 103 simulations and each Monte Carlo test
used 103 simulations. It is seen in Table IV that the empirical powers of both tests
are reasonably good for most models. Some of them are even better than the
powers listed in Peňa and Rodriguez (2002). In addition, increasing the series
length can also improve the effectiveness of the proposed test procedure. For
example, with model 3 in Table II, if the series length was increased to n ¼ 250,
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the empirical powers of the D̂ test at lags m ¼ 5,10,20 were increased significantly
from 23.37%, 20.10% and 17.61% to 58.27%, 43.71% and 35.52%, respectively.
Similar improvement was also found in the QBP test. Finally, as in Peňa and
Rodriguez (2002), our simulation experiments show that D̂ is more powerful than
QBP as a diagnostic tool.

Remark 6. It is well known that the Burg estimate of /1 is close to the LS
estimate. The advantage of using Burg estimate is that it is always in the
stationary region and this is needed for the Monte Carlo test.

4.3. Illustrative application

Consider the monthly simple returns of CRSP value-weighted index from January
1926 to December 1997, n ¼ 864 (Tsay, 2002, Ch. 2). After fitting an AR(5), we
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Figure 3. Quantile plot r̂1 and its asymptotic approximation. The AR(1) process, Xt ¼ 0.5Xt�1 þ Zt,
of series length n ¼ 100,500,10,000 was simulated with stable innovations, fZtg � S1.2(1,0,0). For each
n, 104 simulations were performed and AR(1) models were then fitted to simulated series. The 5, 10, 30,
50, 70, 90, 95, 97.5, 99 (%) empirical quantiles of r̂1 are plotted and the corresponding asymptotic

distribution is shown.
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obtained â ¼ 1:635 using the method of McCulloch (1986). So the infinite
variance hypothesis is plausible for this data. In Table V we compare the P-values
obtained for the Monte Carlo tests with D̂ and QBP for both the stable and normal
cases with m ¼ 10,20,30. The P-value for the QLB test using the v2 approximation
is also shown. As expected the Monte Carlo test using QBP agrees well with the
QLB test using the v2 approximation since n is quite large. It is interesting that
when m ¼ 10 all tests have similar P-values but when m ¼ 20,30 the P-values of

TABLE III

Empirical Sizes (%) of D̂ and QBP for a 5% Significance Test

/1

m ¼ 5 m ¼ 10 m ¼ 20

D̂ QBP D̂ QBP D̂ QBP

0.9 4.90 4.60 4.75 4.71 4.88 4.96
0.7 4.97 4.95 5.20 4.94 5.16 5.42
0.5 5.37 5.55 5.32 5.12 5.14 5.16
0.3 5.11 5.13 4.90 4.80 4.82 5.26
0.1 4.92 5.14 5.01 4.75 5.20 4.86
�0.1 5.30 5.25 5.45 5.08 5.29 4.90
�0.3 5.00 4.79 5.20 5.30 5.33 5.45
�0.5 5.00 5.00 4.93 4.93 5.10 5.26
�0.7 5.62 5.20 5.73 5.45 5.65 5.41
�0.9 5.21 5.01 5.02 5.00 5.07 5.30

D̂ and QBP tests for checking model adequacy of AR(1) models fitted by the Burg algorithm. Both tests
were implemented by the parametric bootstrap procedure. The empirical size for each test was cal-
culated based on N ¼ 104 simulations. Each Monte Carlo test also used B ¼ 103 simulations. Series
length n ¼ 100 and lags m ¼ 5,10,20 were investigated.

TABLE IV

Empirical Powers (%) of D̂ and QBP for a 5% Significance Test

Model

m ¼ 5 m ¼ 10 m ¼ 20

D̂ QBP D̂ QBP D̂ QBP

1 53.32 29.59 38.31 21.76 32.77 19.25
2 99.01 94.53 98.56 70.46 98.01 59.61
3 23.37 21.62 20.10 16.71 17.61 15.17
4 77.13 60.82 59.38 40.29 48.12 35.15
5 93.22 84.66 87.62 66.68 79.84 58.46
6 13.74 10.68 11.17 9.13 10.05 8.61
7 26.51 17.56 26.25 13.80 24.92 13.05
8 33.92 27.36 26.68 20.60 23.57 19.25
9 99.44 98.71 99.27 93.17 99.16 78.88
10 76.71 40.62 58.06 28.39 48.50 25.94
11 99.01 94.02 98.46 67.04 97.87 57.11
12 99.89 99.86 99.87 99.63 99.48 99.48

D̂ and QBP tests for checking model adequacy of twelve ARMA(2,2) models in Table 3 of Peňa and
Rodriguez (2002) fitted by AR (1) using the Burg algorithm. Both tests were implemented based on the
parametric bootstrap procedure. The empirical power for each test was calculated based on N ¼ 104

simulations. Each Monte Carlo test also used B ¼ 103 simulations. Series length n ¼ 100 and lags
m ¼ 5,10,20 were investigated.
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the normal-based tests are much smaller, by a factor of about 10, than the more
correct test based on the stable distribution. In general it appears that using tests
based on the assumption of normally distributed innovations may produce
P-values which are too small when the innovations are generated by a stable
distribution. In other words, the test based on the normal distribution would err
in the opposite direction as a conservative test and lead to an inflated type I error
rate. We may conclude that in fitting ARMA time series with stable innovations,
it is important to use the Monte Carlo diagnostic test presented in this article.

5. CONCLUDING REMARKS

McLeod and Li (1983) considered using a portmanteau diagnostic test based on
the squared residuals. Li (2004, Ch. 5) shows that this test is also useful for testing
for the presence of conditional heteroscedasticity in the residuals of fitted ARMA
models. The Monte Carlo test presented in this article is generalized to the
squared residuals case in Appendix B and implemented in our R package (Lin and
McLeod, 2007).

APPENDIX

A. PROOF OF THEOREM 1

First, by decomposing the determinant of the sample autocorrelation matrix R(m), Pena and
Rodriguez (2002) showed that jR(m)j1/m is a weighted function of the first m partial
autocorrelations. Specifically,

jRðmÞj1=m ¼
Ym
i¼1
ð1� p2

i Þ
ðmþ1�iÞ=m: ð29Þ

TABLE V

An Example Using the Monthly Simple Return of CRSP Value-Weighted Index Data from

Tsay (2002)

Test statistic Method m ¼ 10 m ¼ 20 m ¼ 30

D̂ Monte Carlo/stable 5.1 3.1 1.7
QBP Monte Carlo/stable 5.0 2.5 2.6
D̂ Monte Carlo/normal 6.6 1.4 0.1
QBP Monte Carlo/normal 4.8 0.2 0.2
QLB v2 test 4.7 0.2 0.2

The data were fitted by an AR(5) model. The entries in the first two columns are the P-values, in
percent, of D̂S and Q̂S in Section 4 based on the Monte Carlo test; those in the third and fourth
columns are the P-values, in percent, of the Monte Carlo test for D̂N and Q̂N based on the normal
distribution and in the last column the P-value for the standard asymptotic Ljung–Box test based on
the normal assumption is given.
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Suppose that under the null hypothesis, D̂ is asymptotic distributed as X. By applying the
d-method to g(x) ¼ log(1 � x), it follows that �(n/log(n))2/a log (jR(m)j1/m) is
asymptotically distributed as X. From eqn (29), we can have

� n
logðnÞ


 �2=a

logðjRmj1=mÞ ¼ � n
logðnÞ


 �2=aXm

i¼1

m� iþ 1

m
logð1� p2

i Þ: ð30Þ

Next suppose that

n
logðnÞ


 �2=a

p2
1; p

2
2; . . . ; p2

m

� �T�! Y ; ð31Þ

and apply the multivariate d-method to

gðp2
1; p

2
2; . . . ; p2

mÞ ¼ �
Xm

i¼1

m� iþ 1

m
logð1� p2

i Þ;

it follows that

�
Xm

i¼1

m� iþ 1

m
logð1� p2

i Þ ! 1;
m� 1

m
; . . . ;

1

m


 �
Y : ð32Þ

From the Cramer–Wold theorem, it follows that

1;
m� 1

m
; . . . ;

1

m


 �
n

logðnÞ


 �2=a

p2
1; . . . ;

n
logðnÞ


 �2=a

p2
m

 !T

�! 1;
m� 1

m
; . . . ;

1

m


 �
Y ð33Þ

Under the null hypothesis that Xt are a sequence of i.i.d. stable Paretian random
variables, we have q0 ¼ 1 and qk ¼ 0 for k � 1 so the limiting distribution of sample ACFs

can be further simplified as follows:

n
logðnÞ

� 	1
a

r1; . . . ; rkð ÞT! W1; . . . ;Wkð ÞT; ð34Þ

where Wh are given by

Wh ¼
Sh

S0
; h ¼ 1; . . . ; k: ð35Þ

Note that, for a > 1, we may also use the mean-corrected sample autocorrelation

function at lag k, denoted as ~rk , which is given by

~rk ¼
Pn�k

t¼1 ðXt � �X ÞðXtþk � �X ÞPn
t¼1ðXt � �X Þ2

; k ¼ 1; 2; . . . : ð36Þ

Using eqn (8), we have

n
logðnÞ

� 	1
a

p1; . . . ; pmð ÞT! W1; . . . ;Wmð ÞT: ð37Þ

it follows that
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1;
m� 1

m
; . . . ;

1

m


 �
n

logðnÞ


 �2=a

p2
1; . . . ;

n
logðnÞ


 �2=a

p2
m

 !T

�! W 2
1 þ

m� 1

m
W 2

2 þ 	 	 	 þ
1

m
W 2

m ; ð38Þ

Finally, from eqns (33) and (38),

1;
m� 1

m
; . . . ;

1

m


 �
Y !

Xm

i¼1

mþ 1� i
m

W 2
i ;

and from eqn (31), we have

D̂!
Xm

i¼1

mþ 1� i
m

W 2
i :

B. MONTE CARLO TEST FOR RANDOMNESS AND GOODNESS-OF-FIT OF ARMA MODELS

The Monte Carlo test procedure for diagnostic checking of AR and ARMA models with

stable Paretian errors can be summarized below.

Step 1. Fit an AR model to data using least squares or the Burg algorithm or for
ARMA, an approximate Gaussian maximum likelihood algorithm is used.

Calculate residuals fẐtg and the portmanteau test of interest, say D̂m.
Step 2. Estimate the parameters of the stable distribution from residuals fẐtg in step 1.

The quantile estimator given by McCulloch (1986) may be used or the MLE

implemented in the R package fBasics.
Step 3. Select the number of Monte Carlo simulations, B. Typically 100 � B � 1000.
Step 4. Simulate the fitted model using the estimated AR or ARMA parameters in step 1

and â in step 2. Obtain D̂m after estimating the parameters in the simulated series.

Step 5. Repeat step 4 B times counting the number of times k that a value of D̂m greater
than or equal to that in step 1 has been obtained.

Step 6. The P-value for the test is (k þ 1)/(B þ 1).

Step 7. Reject the null hypothesis if the P-value is smaller than a predetermined sig-
nificance level.

This algorithm is easily modified to handle the problem of testing a time series for
randomness as well as for Monte Carlo testing when the normality assumption is made.

Simulation of ARMA models with stable innovations

The stable parameters may be estimated using the method of McCulloch (1986).

Independent and identically distributed stable random variables may be simulated using
the fBasics package. The ARMA(p,q) model may be approximated as a high-order moving-
average model,

615PORTMANTEAU TESTS

� 2008 The Authors
Journal compilation � 2008 Blackwell Publishing Ltd.

JOURNAL OF TIME SERIES ANALYSIS Vol. 29, No. 3



Yt¼: Zt þ w1Zt�1 þ 	 	 	 þ wQZt�Q: ð39Þ

Initial values Y1, . . . ,Yr,r � max(p, q) are obtained from eqn (39) using the fast Fourier
transform to compute the convolution. The remaining portion of the time series may be

computed recursively. For speed, these recursions are implemented in C and interfaced to
our R functions. The function simulatearma implements these ideas in our R package.

Nonlinear test

In steps 1 and 4 of the algorithm in Appendix B, square the residuals, compute the mean-
corrected sample autocorrelations and use these autocorrelations to compute the test
statistic D̂m.

R package

The R package prtest that implements all methods described above is available from our
online supplement (Lin and McLeod, 2007). Scripts are also given (Lin and McLeod, 2007)

for generating all figures and tables which were given in our paper.
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