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Abstract

A simple condition, which is expressed directly in terms of the ARMA model pa-

rameters, is given for determining ARMA model redundancy.
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The stationary and invertible ARMA((p, ¢) model, which may be written in operator
notation as,

#(B)zy = 0(B)ay,

where, $(B) =1—-¢p1B—...— ¢,BP,0(B)=1—-6,B — ... — 0,89, a; is white noise with
variance o2 and B is the backshift operator on ¢, is said to be not redundant if and only
if (B) = 0 and 6(B) = 0 have no common roots. Due to stationarity and invertibility,
all roots of the equation ¢(B)#(B) = 0 are assumed to be outside the unit circle. As
shown in Box and Jenkins (1975, p.240) the large sample Fisher information matrix per

observation may be written,

a

where Ay = (V1,00 Vpepy Up—1,y ..., Ut—q), G(B)vy = —ay, 6O(B)uy = a; and the
superscript T denotes the transpose. Poskitt and Tremayne (1981) showed that the in-
formation matrix I(¢,6) is nonsingular if and only if the model is not redundant and
that the number of common roots is equal to the nullity of I(¢,0). In fact, this condi-
tion holds for a much simpler matrix .J.

The auxiliary matrix, JJ, of an ARMA(p, ¢) model is defined by
p q
J:p+Q<9¢—j —¢¢—j>’

where, pg =0y =—1, ¢;=0 (i<O0ori>p), 6;,=0 (i<O0ori>q)and the (i,j)
entry in each partitioned matrix is indicated. The matrix J plays an important role in
the duality theory for ARMA time series models (McLeod, 1984).

The autoregressive adjoint of the ARMA (p, ¢) model is defined by
¢*(B)wy = ar,

where,
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Then from McLeod (1984),
1(6,0) = J1(6*)J7.

Since I(¢*) is positive definite, the result follows from the result of Poskitt and
Tremayne (1981) and Sylvester’s law of conservation.

Simple algebraic conditions which give a necessary and sufficient condition for lack
of model redundancy can be derived by setting the determinant of J not equal to zero.
This is easily implemented using the Mathematica programming language (Wolfram,
1988). Using Mathematica, the following condition was derived for the ARMA(2,2)

model:

B2’ + P1pabh — 201> — 1205 — 2205 + $1010 + 0% # 0.

It should be noted that the result given in this paper is mostly of theoretical inter-
est. In practice, when fitting models to data, model redundancy is indicated when the
covariance matrix of the parameters is nearly singular or the estimates of the standard
deviations of the parameters are quite large. Exact model redundancy of the type dis-
cussed in this note does not arise when fitting models to data due to the uncertainty in

the parameter values.
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