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Prologue

The McLeod-Hipel Time Series (MTS) Package provides a comprehensive decision
support system for the analysis and forecasting of many kinds of time series data. In
addition to a state-of-the-art approach to Box-Jenkins modelling and forecasting many
other topics are covered including: Forecasting, Simulation, Spectral Analysis, Periodic
Time Series Modelling, Smoothing and Seasonal Adjustment and much more. The MTS
Package does, in fact, furnish an unparalleled coverage of time series modelling and anal-
ysis. Many of the methods discussed in the textbook by Hipel and McLeod (1994) are
implemented in the MTS Package and this package makes an excellent companion for
the textbook.

Availability

There are three versions of the MTS Package:
1. Student Version
2. Professional Version
3. Network Version

With the Student Version, one can work with about 40 preselected datasets. The
Student Version is available at no charge. For the Professional Version, please contact
McLeod (e-mail: aim@uwo.ca) or Hipel (519-885-1211). The manual and the Student
Version are available on the Internet via anonymous ftp from fisher.stats.uwo.ca in the
files pub/mhts/mhts.zip. and pub/mhts/rmts.zip respectively.

You will need to use binary transfer and the -d option to pkunzip.
Assuming you have ftp and an Internet connection. Login as follows:

ftp fisher.stats.uwo.ca
Give anonymous as your login name and for password use your e-mail address. Next en-
ter the following ftp commands:
cd pub/mhts
get README
binary
get mhts.zip
get rmts.zip
quit
pkunzip -d mhts.zip
pkunzip rmts.zip

The Reference Manual for the MHTS Package is in the file rmts.ps which can be
viewed using the unix utility ghostview and can be printed on a postscript printer.

Please check the README file for any additional information.
If you don’t have pkunzip.exe on your PC, then you should also download

unzip.exe:
get unzip.exe
As with mhts.zip and rmts.zip binary ftp transfer is needed for dowloading unzip.exe.
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With the Professional Version any dataset may be used. This version is designed for
stand-alone PCs.

The Network Version is designed to be run on a local area network. It may also be
run on a stand-alone PC.

The Professional and Network Versions may be obtained by upgrading the Student
Version. This upgrade is accomlished by running the executable setup and using a pass-
word which will be given to you when you purchase the upgrade.

Updates to the Package

Please report bugs and/or suggests to A.I. McLeod via e-mail at aim@uwo.ca.
If you have the professional version, you can obtain updates by following the anony-

mous ftp instructions above. You should unzip the file mhts.zip in a fresh directory and
then replace the files mts.exe, mtsa.ovl, ..., mtse.ovl in your old directory with the new
ones.

Version Numbers

In general the version number to the program mhts.exe may be slightly larger than
the version number to the MTS Reference Manual since every time bug fixes or correc-
tions are made to the package, the package version number is incremented but the Ref-
erence Manual version number will not be changed unless changes to the Reference Man-
ual are also made.

McLeod-Hipel Datasets

Numerous interesting datasets which are designed to accompany this package and
the book by Hipel and McLeod (1994) are also available by anonymous ftp. There is
both a unix version, in shar format, and a PC version, in zip format. These datasets are
available via anonymous ftp from fisher.stats.uwo.ca in the files pub/mhts/mhsets.sh and
pub/mhts/mhsets.zip for the unix and PC versions respectively.

Getting Started

Simply change to the subdirectory MTS which contains program. Make sure that
the mouse driver is loaded. Then enter the command:

mts

MTS Directories

The program itself is normally located in a subdirectory mts . On networks, this
may be a network drive. The current working directory for mts contains further four
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subdirectories DATA, OUTPUT, FITS and STL. The DATA directory contains time se-
ries data files which can be input to the package. The OUTPUT directory contains tab-
ulations and analyses produced by mts . The FITS directory contains fitted models and
is used directly as input to the forecasting functions in the package. The STL directory
contains output from the Seasonal-Trend Loess Adjustment function. You should ensure
that there are no more than 80 files in either the DATA or the FITS directory. You may
use the Move function in the package to delete and move files to another location. The
DATA subdirectory may be changed to any directory located anywhere on the computer
system using Set New DATA Directory from the Utility menu.

Hardware Requirements

The minimal hardware configuration is a PC computer with an Intel 80386 proces-
sor and a 80387 math coprocessor, EGA or VGA display monitor, DOS 3.2 or greater,
640K RAM and a hard disk. A wide variety of dot-matrix and laser printers are sup-
ported.

It is desirable to have atleast 2 megabytes of extended memory available.
The package requires about 1.5 megabytes of disk space. When you run the package

you should try to have at least 580K of DOS RAM available (use the DOS CHKDSK
command to verify this). Extended or expanded memory will automatically be used if it
is present.

Main Menu

The Main Menu is comprised of two sections. The first section specifies the cur-
rent data directory and the Data Mode. The data directory may be changed by select-
ing Utilities and then selecting Set New Data Directory. The Data Mode may be
set to PROMPT or REMEMBER. When set to PROMPT, you will be prompted for a
new data set every time. If the Data Mode is set to REMEMBER, the same data set
may be used repeatedly with different menu choices after it has been initially selected. A
data set is initially selected the first time you run a time series analysis function such as
Trace in the the Exploratory Analysis. To select a new data set, return to Main Menu
and select Clear Current File. This former option, Clear Current File, is naturally
only available after an initial data set has been selected and the Data Mode has been
set to REMEMBER.

The second section of the Main Menu provides a series of time series analysis top-
ics:
• Exploratory Analysis
• Trend Analysis
• Correlation Function
• Spectral Analysis
• Model Estimation
• Diagnostic Checks
• Forecasting
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• Simulation
• Filters
• Utilities
• Quit Package

To quit, you can simply press ESC instead of selecting the menu item Quit Pack-
age. Also ESC will always pop you back out of a sub-menu.

MTS Installation

There are two methods of acquiring and then installing the Professional or Network
versions of the MHTS PC Package. The preferred method of distributing the Profes-
sional and Network versions of this software is via anonymous ftp on the Internet. This
method has three big advantages.

1. As a registered user of this software you are entitled to free updates so long as the
major version, which is currently set to 1, does not change. This software is under
active development. Improvements are constantly being made. However, the major
version number, 1, will probably not be changed for at least one or two more years.

2. It is more reliable than shipping out disks which may be damaged in the mail.
3. It reduces overhead.

If you do not have access to the Internet, then you can request three diskettes which
contain the software and Reference Manual.

Upgrading From Internet Version
First, you download the Student Version and the MHTS Reference Manual as was

explained above under Availability .
Next you upgrade the to the Professional or Network version by supplying the

ASCII file, sn.dat, and a password which will be sent to you.

Installing Using The Three Diskettes Method
If you are unable to access the Internet then you will received three diskettes which

are labelled INSTALL, PROGRAM I and PROGRAM II.
To install, insert the INSTALL diskette in drive a. Then enter,

a:

install

Notice that you must switch to the diskette drive before you run install.
Then you will be prompted for the necessary information to complete the setup.

Instead of drive a, you may also use drive b.
Once the MTS Package has been installed, you can back your copy up. Provided

you do not change the computer, the hardware configured on your computer or the logi-
cal drive and pathname then you can restore the backed-up copy.

The MHTS PC Reference Manual is available as a zipped postscript file on the third
diskette.

Network Installation Notes
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Before using, you should define and set the environment variable MTSHOME to the
location of MTS.EXE. For example, if MTS.EXE is in a subdirectory MTS on LAD or
virtual drive N: then enter

SET MTSHOME=N:\MTS

This line can be incorporated in a batch file, to invoke the program.
The MHTS PC package requires that it have disk read/write priviledges in the cur-

rent working directory and the DATA directory. The default setting for the DATA direc-
tory is a subdirectory DATA off the current working directory. Alternatively, you may
initialize the DATA subdirectory used by the MHTS PC Package to any convenient sub-
directory by putting its pathname in a file called MTS.CFG. The MTS.CFG file should
be put in the current working directory.

Running MTS Under Windows

The MTS Package can be conveniently run under Windows 3.1 as a full screen ap-
plication. It is also possible for the Package to run as a window in Windows 386 en-
hanced mode however this is much slower. Nevertheless, it is sometimes useful to run
the Package in a window in order to copy some of the graphics via the Windows Clip-
board to other documents.

An icon is provided for the MTS Package in the file MTS.ICO in the home directory.
Please see the Microsoft Windows User Guide for information on how to implement this
icon.

Printer Configuration

The MTS package can be configured to work with over 300 dotmatrix and laser
printers. The size of the plots produced can also be adjusted by the configuration pro-
gram. Two different printers must be configured: an online printer and a remote printer.
An online printer is one which is directly connected to the computer running MTS. A
remote printer is usually on a network (which is not connected while running MTS) or
on another computer. The configuration program is normally run only once when the
package is first installed. To run the configuration program, enter

psetup

from the directory where MTS is installed. If the printer configuration files ONLINE.PDT
and REMOTE.PDT are not present in the directory where MTS is installed, an error mes-
sage will be displayed when the package is run.

Menu Selection

The MTS Package normally works best with a mouse to make menu selections. Al-
ternatively if a mouse is not available, the SPACE-BAR can be used to make “mouse
clicks”.
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The only items in the menu’s which don’t use a mouse are items involving real num-
bers, such as Box-Cox transformation parameters λ and c. Use the keyboard to type in
the numerical values for such numbers.

In some items, a large integer (> 10) may be represented so that one can select the
number by clicking on each digit separately.

To speed up selection of items when faced with a long list, one can more easily use
the SPACE-BAR. Holding down the SPACE-BAR will rapidly move through the list.

Pressing the escape key, ESC, exits any menu.

Data Input to MTS

The data are stored in a regular ASCII files in the MTS subdirectory. By default
you are provided with the subdirectory DATA containing various time series. You may
also use other subdirectories. The use of other subdirectories for you data files is ex-
plained in Set New DATA Directory in the Utility section.

Data can either be typed in using an editor such as EDLIN or EDIT (or even
MTS’s own screen editor) or exported from another package and copied to the DATA
subdirectory.

The first line in the file is, normally, taken as the title. Do not omit the title since
this will cause the first line of data to be taken as a title! After the first line giving the
title string, comment lines can be inserted before the data to document other informa-
tion about the data. Comment lines begin with a # in column one. Comment lines are
skipped over when the data file is read by a MTS function. Unlike the title string in the
first line, comment lines are optional and may be omitted. The data follow the comment
lines or, when comment lines are not present, the data follow the first line. The data is
stored in free format. For a time series, chronological order is assumed. One exception
to the above rules for title and comments occur for the MTS menu items Screen Edi-
tor. In this case all character and numeric information on the file is available for screen
editing. Another exception occurs for the MTS utility Convert: Column to Row Format.
This utility is provided to help convert data which is stored in columns to the particular
row format used in .2 (or .3 etc.) files.

The name of the file can be any valid DOS filename but the extension should be .1
for most MTS menu functions. The extension .1 informs MTS that only one set of data
is on the file. For example, LYNX.1 is a valid filename. Some functions in the package
allow extensions .2, .3, . . ., etc. if there are more than one series on the same file. The
format for a .2 file is:

First line: title string
Next lines: any comments beginning with a # in column 1
Next lines: the y-series
Next lines: the x-series Similarly for .3 and higher files.
Next, after the file has been created, you must put this data file in the MTS subdi-

rectory DATA. You can do this with the DOS COPY command. For example,
copy lynx.1 data\*.*

copies the file lynx.1 from the current directory to the MTS subdirectory DATA.
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For best performance, avoid having too many data files on the MTS DATA direc-
tory (a maximum limit of 90 is allowed). Use the MTS Move File Function or the DOS
delete command to remove unwanted data files.

Initially, when the MTS package is installed the DATA directory is called DATA
and it is a subdirectory off the current working directory. However, any directory lo-
cated anywhere on the computer system may be used as a DATA directory. It does not
have to be named DATA. To use a different DATA directory from the default, select Set
New DATA Directory from the Utility menu.

Data Transformations in MTS

With most of the functions in the MTS package you can make a simple set of trans-
formations of the data sequence z1, z2, . . . , zn. The general form of these transformations
can be expressed by the equation

wt = ∇d∇dss z
(λ)
t ,

where,
wt is the transformed data sequence,
λ is the exponent in the Box-Cox transformation,
∇ is the first differencing operator,
d is the differencing parameter,
∇s is the seasonal differencing operator,
s is the seasonal period,
ds is the seasonal differencing parameter.

The default settings of these parameters is d = ds = s = 0 and λ = 1.0 which
corresponds to no transformation.

The general form of the Box-Cox transformation equation may be written

z
(λ)
t =

(zt + c)λ − 1)
λ

, if λ 6= 0,

= log(zt + c), if λ = 0.

In this transformation, c is usually 0, unless some of the original data values are 0
or negative in which case c is a small positive constant which is added to all the data
values to make them all positive. The default setting of c is c = 0 in the MTS package.

See Appendix 2for more about this family of transformations.

Text Output With MTS

Tabulations of autocorrelations and of fitted models are some examples of text out-
put that may be generated. This output is also shown on the screen at the time it is
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generated and is saved in the directory OUTPUT. The filename for the output is shown
at the top of the screen when the file is displayed.

You can view the files in the OUTPUT directory at any time by selecting the sub-
menu Editor and Utilities in the Main Menu. Then select View File on OUTPUT di-
rectory.

To print a file you are viewing, press the key P. Alternatively, files in the OUTPUT
directory, can be printed with the DOS PRINT command.

All files are in ASCII format so they can be edited with a regular editor as well as
the screen editor provided in MTS.

Graphics Hardcopy With MTS

First, in order to obtain graphics hardcopies, it is necessary that the printer be con-
figured correctly. Normally this is done only once when the MTS package is first in-
stalled.

Two methods of making hardcopies are supported. If a suitable printer is connected
to LPT1: then you can obtain a hardcopy simply by pressing the key H when you see the
plot on the screen that you wish to make a copy of.

Another method of getting hardcopies is to save the graph in a file and then print
it later. This option is called the remote printer option. The remote printer option is
useful for getting hard copies made on network where the network driver takes too much
memory to run concurrently with MTS or if your printer is connected to a different PC
from the one that MTS is installed on. When you see the graph on the screen, just press
the key ‘‘S’’. This causes a dump of the information on the screen to be made to a file.
The name of this file is n.GRF, where n = 000, 001, 002, . . .. The first plot you save is in
000.GRF, the next in 001.GRF, etc. Since these are binary files, be sure to use the DOS
copy command rather than the DOS print command for sending your plots to the printer.
For example, to print all your graphics output files on a printer connected to the first
printer port, enter

copy ???.grf LPT1:
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Current Restrictions & Limitations

MTS Object Maximum Length or Size
length of series 1000
length of series for spectral analysis 1024
seasonal period 52
number of transfer functions 12
number of interventions 12
number of data values in

transfer-function modelling 2000
number of parameters estimated
(in ARIMA and TFN nonlinear estimation) 15
degree of differencing 5
degree of AR,MA,SAR,SMA operators 24
degree of seasonal plus nonseasonal

differencing operators 60
dimension of β 70
number of lags in autocovariance plots 60
forecasting lead time 200
autoregression order, spectral density 50
title string (number of characters) 80

Trouble Shooting

1. PROBLEM: An error message indicating DYNAMIC MEMORY ERROR ALLO-
CATION is given.
SOLUTION: You should increase the amount of DOS memory available. A min-
imum of about 560K is needed. Remove any unnecessary terminate-and-stay resi-
dent utilities.

2. PROBLEM: An error message stating the output file cannot be opened is given.
SOLUTION: You should increase the amount of DOS memory available. A min-
imum of about 540K is needed. Remove any unnecessary terminate-and-stay resi-
dent utilities.

3. PROBLEM: Mouse is not operational.
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SOLUTION: Make sure mouse driver is loaded prior to running MTS.

4. PROBLEM: Printer is not operational.
SOLUTION: It may be necessary to load the printer driver. For example, if the
printer is connected to
the first parallel port (this is the usual situation), then type the DOS command:

PRINT /D:LPT1

5. PROBLEM: Cannot print graphics output or graphics output is too small or too
big.
SOLUTION: Run the program PSETUP.

6. PROBLEM: When output files in the OUTPUT directory are printed, some of the
characters are not the same as when viewed on the computer screen.
SOLUTION: Make sure that your printer is configured to print the PC character
set.
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EXPLORATORY ANALYSIS
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Trace Plot

The trace plot for zt, t = 1, 2, . . . is simply a plot of zt vs. t. Although it is very
simple, it is very useful in practice. Many interesting features of the series are often visi-
ble such as outliers, variance changes or shifts, trends (deterministic or stochastic), inter-
ventions, seasonal effects, non-Gaussian or non-linear features.

Five styles of plots are available.
1. Join points with straight line and mark each point. By joining the points with lines,

the chronological order is emphasised. If there are not too many values, marking
each point is useful. This is the default.

2. Join points with straight line and do not mark points. This is useful when there is
so much data that marking each value produces too much clutter.

3. Plot points only. This is only useful if the exact chronological order is not of inter-
est and just the general relationship between zt and t is then the focus.

4. High density line plot. A series of vertical lines from the abscissa to the ordinate is
drawn. This provides an alternative to choices 1 and 2 above.

5. Points and lines. This is similar to the previous style number 1, i.e., join points
with a straight line and mark each point. However in style number 5, the lines just
point in the direction of the next point but do not actually connect the points. This
style of time series plot is used in the computing language S.

Significance limits for zt can be shown if appropriate. These limits are based on
z̄ ± 1.96s, where z̄ and s are the sample means and sample standard deviations. These
limits assume that the data is normal and independent. This assumption is useful for
residuals but perhaps less useful for most other types of data. Still these limits can serve
to emphasize the correlation or stochastic trends that exists in the non-independent case.
The choices for significance limits are
(i) at the 5% level (which corresponds to 1.96 sd.)
(ii) at the 0.27% level (which corresponds to 3 sd.)
(iii) at 1, 2 and 3 sd.

As another option, you may choose to look at the Tukey 4253H, twice smoother su-
perimposed on the plot.

Another option implements the Nelson pattern checks for nonrandomness. This
technique was developed for examining time series plots (Shewart charts) in industrial
quality control. The purpose of the Nelson pattern check is to detect an aberrant value
in a series assumed to be in a state of statistical control. This assumption means that
the series is essentially normally distributed with constant variance and successive ob-
servations are independent. The Nelson pattern checks are comprised of eight statistical
tests as follows:

1. a value beyond 3 sd.,
2. 2 out of 3 points in a row beyond 2 sd on the same side of mean,
3. 4 out of 5 points in a row beyond 1 sd on the same side of mean,
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4. 9 consecutive values on same side of mean,
5. 6 consecutive points all decreasing or increasing,
6. 14 points in a row alternating,
7. 15 points in a row less than 1 sd on either side of mean,
8. 8 points in a row beyond 1 sd on either side of mean.

Tests 1–3 reflect non-normality in the distribution function of the data; tests 4–6
lack of independence; tests 7–8 lack of constant variance (ie., heteroscedasticity). If this
option is selected any points failing one of these tests is flagged by marking it red when
plot styles 1 or 3 above is selected. In addition, an output file is produced and displayed
listing exactly which points failed which test. If all points passed all tests, no output file
is created or displayed.

Sometimes it may be desirable to fix the scale on the abscissa in the time series
plot. For example, one may wish to compare to closely related series such as before and
after an intervention or change. Complete control over the abscissa axis is provided if
you select NO for the option to Automatic Scale Selection For Abscissa.

A final option allows one to conveniently plot a consecutive sub-series of the original
series.

Bivariate Trace Plot

Given two time series yt and xt or a bivariate series (yt, xt), two trace plots are pro-
duced on the same screen. The first plot is a trace plot of yt and the second is a trace
plot xt.

In each case, the ordinate axis is omitted to avoid clutter. It is just the general
trends, shape and relationships that we seek to examine with this plot.

An important application of this plot is for identifying non-reversible time series,
see for example Lawrance (1991). Such time series are either generated by nonlinear or
nonGaussian or nonstationary models. For convenience, MTS allows one the option of
reversing the first series.

Sometimes it also is of interest to plot the raw and its transformed values (after dif-
ferencing and possible Box-Cox transformation) with the bivariate trace plot.

Bivariate Slug-Trace Plot

This is a sort of bivariate time series plot which features an animated slow motion
plot of a slug moving along the points (xt, yt), t = 1, . . . , n is shown. The time-ordering
is shown by the animation effect of drawing lines between the points at a relatively slow
speed. This plot is useful in detecting co-integrated series and other possible interrela-
tionships.

This type of plot was suggested by Ramsey (1988) as preferable to the usual bivari-
ate time series trace plot.

Time Series Scatter Plot
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The time series scatter plot shows a plot of zt versus zt−` for a selected value of `.
This plot graphically shows the autocorrelation at lag `. The plot is useful in detecting
outliers or values which unduly influence the correlation value. An instructive example is
the series of residuals when an AR(3) is fitted to SERIESJX. If the lag 1 scatter plot is
done of the squared-values, then it is clearly seen that the strong correlation effect is due
to 3 outliers. In fact if these values are set to 0, no correlation effect remains. Squared
values of the residuals are obtained by setting the parameter LAMBDA equal to 2.

Periodic Time Series Scatter Plot

The index t for a periodic or seasonal time series may be written t = r(s − 1) + m
where r = 1, 2, . . . , n, m = 1, . . . , s and s is the period or number of seasons. Thus zt
may be written as zr,m. For any ` ≥ 0, t − `, can also be written in the same form for
some values r′ and m′. For brevity of notation we denote the observation at time t − `
by zr,m−` where it is understood that if m − ` ≤ 0 then this observation corresponds to
zr′,m′ = zt−` for suitable r′ and m′.

The periodic time series scatter plot is then a plot of zr,m versus zr,m−` for some
fixed `. This plot is useful for examining autocorrelations which depend on t only
through the season, i.e. periodic autocorrelations. For more about periodic autocorre-
lations, see the later section on Periodic Autocorrelations.

Bivariate Time Series Scatter Plot

A bivariate time series scatter plot shows a plot of yt versus xt−` for some fixed
value of `. As in the other scatter plots, this function can be useful in examining the
cross correlation structure of a bivariate series.

In addition, a Cleveland Robust Loess smooth can be also be fitted to the data.
This function is intended to provide a general nonlinear regression modelling capability
for regression with one explanatory variable.

Seasonal Subseries Plot

The seasonal subseries plot shows on one plot the effect of seasonal variation and its
evolution over time. For each seasonal period, the subseries corresponding to that period
is plotted as vertical lines emanating from a horizontal line. The horizontal line is deter-
mined by the midmean of the seasonal period subseries. The midmeans, which are horzi-
tonal lines, clearly show the effects of seasonal any seasonal variation. The vertical lines,
show its evolution over time. Cleveland and Terpenning (1982) originally suggested this
plot for plotting the seasonal component of a time series as estimated by the classical de-
composition of a time series into trend, seasonal and remainder. In addition, this plot is
useful for examining a seasonal time series, or possibly, the differences or seasonal differ-
ences of an original series, to get a more precise idea about the seasonal effects. Another
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application of this plot is to intervention analysis. By looking at separate seasonal sub-
series plots before and after an intervention, we can get a better idea of what the effect
of the intervention might have been. Be sure to use the same scale, for the ordinate axis
on both plots.

Normal Probability Plots

Given data X1, X2, . . . , Xn we can assess whether or not this data is normally dis-
tributed by using a normal probability plot. Normally probability plots are usefully in
assessing not only batches of data but in diagnostic checking of many statistical models
such as in ANOVA, regression and time series. The MTS package can be used to pro-
duce Normal Probability Plots. The normal probability plot as well as the associated
statistical tests of Skewness, Michael and Wilk-Shapiro assume that the data is indepen-
dent. These tests are not affected very much by small departures from this assumption
but are completely vitiated for strong departures. For example, if the data follow a ran-
dom walk, then it is quite meaningless to look at the normal plot or the associated tests.

Empirical Quantiles
These are the ordered X-values: X(1) ≤ X(2) ≤ . . . ≤ X(n).

Plotting Positions
Each observed quantile X(i) corresponds to the percentile:

pi =
i− 1

2

n
.

Normal Quantiles
The normal quantiles q1, q2, . . . , qn are given by

qi = Φ−1(pi), i = 1, . . . , n,

where, Φ−1(p) denotes the inverse normal cumulative distribution function.

Normal Probability Plot
This is a plot of the the empirical quantiles X(i) versus expected normal quantiles

qi. That is we will put the empirical quantiles on the vertical axes and the normal quan-
tiles on the horizontal axes.

Interpretation of the Normal Probability Plot
If the data X1, . . . , Xn are normally distributed with a mean of µ and variance of

σ2 then the plot will appear to lie on a straight line with slope σ and horizontal axes
intercept µ.
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The normal probability plot sheds insights into the tail behaviour of the distribu-
tion. This tail behaviour can be visualized with the help of a straight line on the plot-
ting passing through the lower and upper quantiles of the empirical and normal quan-
tiles. Then tail, either right or left, of the observed distribution is thicker or thinner
than the theoretical normal distribution according as the plot is outside or inside this
line in the tail area. The technical terms for thin and thick tails are platykurtosis and
leptokurtosis.

In addition to the normal probability plot, MTS produces a boxplot with a jittered-
superimposed dotplot. The MTS package also calculates and tests three statistics
which are useful in detecting non-normality. The statistics are the skewness coefficient,
Michael’s Statistic and the Wilk-Shapiro Test Statistic.

Skewness Coefficient

g1 =
1
n

∑n
i=1(Xi − X̄)3

( 1
n

∑n
i=1(Xi − X̄)2)

3
2
.

If g1 > 0 this means the data is skewed to the right or positively skewed. Similarly,
a value g1 < 0 implies the data are skewed to the left. MTS calculates g1 and tests the
null hypothesis that the data is normally distributed with a two-sided test. The skew-
ness test has high power for alternative distributions possessing non-zero skewness. The
significance level is calculated using the method of D’Agnostino (1970).

Michael’s Statistic
Michael’s DSP test statistic (Michael, 1983) enables significance limits to be drawn

on the normal probability plot and is much more powerful than the usual standard
Kolmogoroff-Smirnov approach. In fact, Michael’s statistic is derived by applying a
variance-stabilization transformation to the Kolmogoroff-Smirnov method. Let pi =
(i− 1

2 )/n, i = 1, . . . , n. Then DSP = max |g(fi)− g(pi)|, where g(x) = (2/π) sin−1(
√
x)

and fi = Φ((X(i) − X̄)/
√
v), where v =

∑
(Xi − X̄)2/n. Royston (1993) provides an al-

gorithm for determining the significance level of an observed value of DSP under the null
hypothesis that the data are independent normal with constant variance. Royston also
discusses plotting significance limits on the normal probability plot. The plot produced
by MTS shows the 0.5% significance limits. The value of DSP statistic and its two-sided
significance level are also displayed.

Wilk-Shapiro Test
The Wilk-Shapiro statistic W measures the goodness-of-fit of the straight-line in the

normal probability plot. Like R2, the coefficient of determination in regression, W has
the following properties:

0 ≤W ≤ 1

W close to 1, implies a good-fit

W not close to 1, implies a poor-fit.
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The MTS package, tests if the observed value of W is significantly smaller than that
for normally distributed data. The Wilk-Shapiro test represents the most-powerful all-
round test for normality. It is often very good even in small samples.
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Linear or Ratio Filter

Two basic empirical models for nonseasonal time series are the additive trend
model, zt = Tt + It, and the multiplicative trend model, zt = TtIt, where Tt represents
the trend and It is the irregular or random component. In the multiplicative model, zt
and It are assumed to be greater than zero. These empirical time series models are still
widely used today in seasonal adjustment methods as well as in trend analysis.

In either case trend component may be estimated by a symmetric double-sided mov-
ing average filter or data window,

T̂t =
q∑

i=−q
wizt+i,

where q is the half-length of the filter. By symmetry it is assumed that wi = w−i. Since
it is an average, we have also

q∑
i=−q

wi = 1.

The symmetric moving average is applied to the middle part of the series corre-
sponding to t = q + 1, . . . , n − q. The end-points are smoothed by a re-weighted asym-
metric smoother. The starting values in the series t = 1, . . . , q are smoothed using

T̂t =

q∑
i=1−t

wizt+i

q∑
i=1−t

wi

.

The ending values, t = n − q + 1, . . . , n are handled in a similar fashion. A limitation of
this treatment of end-effects, originally pointed out by Ozaki (1991), is that it sometimes
tends to overstate any upward or downward trends in the data near either end of the
series.

The rectangular-data window corresponds to choosing

wi =
1

2q + 1
.

As shown in Hamming (1977), better results are usually obtained by using the modified-
rectangular-data window is given by

wi =
1
2q
, if |i| < q,

=
0.5
2q
, if |i| = q.
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By iterating the rectangular or the modified-rectangular windows, a variety of bell-
shaped symmetry moving average filters can be obtained. For example, Spencer’s 15-
point formula, which is used in graduation, is equivalent to 3 iterations of rectangular
windows with q = 4, 4 and 5. For proof, see Kendall and Stuart (1968, p.372). Note
that by the linearity of the filtering operation, the order of application of the filters is
immaterial.

In linear filtering, the irregular component is simply estimated by

Ît = zt − T̂t

whereas in ratio filtering the irregular component is given by

Ît =
zt

T̂t
.

Notice by that taking logarithms of the original data a multiplicative model may be con-
verted into an additive model.

As an option, end-point smoothing can be performed to obtain estimates of T̂t, t =
1, . . . , q and T̂t, t = n− q + 1, . . . , n. In end-point smoothing,

T̂t =
∑
wizt+i∑
wi

,

where the summations are over those values of i in −q, . . . , 0, . . . , q such that t + i is in
1, . . . , n. Ozaki (1991) has pointed out that end-point smoothing can sometimes exager-
ate an apparent trend near the end of a series.

It is always best to show the smooth and the observed time series on the same plot
in order to judge of the relative magnitude of the trend.

Tukey Smooth

Tukey has suggested a variety of nonlinear robust smoothers for decomposing time
series data z1, . . . , zn into smooth and rough components. Symbolically, we can write

data = smooth + rough
or

zt = z̃t +Rt,

where z̃t denotes the smooth and Rt denotes the rough.
Trace plots of the smooth (z̃t vs. t) can reveal trends and changes in level of the

series more clearly than plots of the raw data (zt vs. t).
Of equal importance, trace plots of the rough (Rt vs. t) can reveal outliers, changes

in variance or other unusual features.
The MTS package always produces trace plots of both the smooth and the rough for

a time series.
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It is always best to show the smooth and the observed time series on the same plot
in order to judge of the relative magnitude of the trend.

Two different smoothers are available in MTS.

3RSSH,Twice

This smoother is recommended by Velleman and Hoalgin (1981) as a good smoother
to use when doing the calculations by hand. Here we take medians of 3 and repeat this
until convergence. Medians of 3 are used since they facilitate hand computation. Let zt
denote the original series. Then on the first pass we calculate yt = med(zt−1, zt, zt+1)
for t = 2, . . . , n − 1. The endpoints are smoothed by y1 = med(3y2 − 2y3, z1, y2) and
yn = med(3yn−1 − 2yn−2, zn, yn−1). Next replace the z’s by the y’s and repeat again
and again until there is no change in the resulting series. This yields 3R smoothing.
The main problem with medians of 3 is that it tends to generate mesas, which are two
consecutive points which form a local maximum or minimum. Mesas are not desirable
in the smooth, so at mesas, end-point smoothing is used. This is called splitting (S).
Then the 3R smooth is done again and any new mesas are split. This whole process is
repeated two times. H refers to Hanning which is defined as taking weighted averages at
time t − 1, t, t + 1 with weights 1

4 ,
1
2 ,

1
4 . This constitutes the first-pass smoother. Twice

means that the final smooth is obtained by applying 3RSSH to the residuals obtained
from the 3RSSH and adding this smooth to the first-pass smooth.

4253H,Twice

This is the preferred smoother when the computations are performed by com-
puter. It is much too laborious to attempt by hand! This is the MTS default choice.
As indicated by the name in involves taking medians of 4, then 2, then 5, then 3, then
Hanning and then applying 4253H to the residuals of the first pass and adding this
to the first pass smoother. In 4 smoothing and in 5 smoothing, lower order smooth-
ing is used near the ends of the series and the end-points themselves are just “copied
on”. In 2 smoothing the end-points are also just copied on. The endpoints, in the fi-
nal 3 smoother are obtained by end-point smoothing, y1 = med(3z2 − 2z3, z1, y2) and
yn = med(3zn−1 − 2zn−2, zn, yn−1). In this formula, notice that 3z2 − 2z3 corresponds to
an estimate of z0 derived by extrapolating backwards the line joining the points (2, z2)
and (3, z3). Hanning is defined as taking weighted averages at time t − 1, t, t + 1 with
weights 1

4 ,
1
2 ,

1
4 .

As an small illustrative example consider the hypothetical data sequence

5, 2, 4, 4, 0, 2, 3, 4

Applying 4 smoothing,

5, 3.5, 4, 3, 3, 2.5, 2.5, 3.5, 4

Applying 2 smoothing,

5, 3.75, 3.5, 3, 2.75, 2.5, 3, 4
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Applying 5 smoothing,

5, 3.75, 3.5, 3, 3, 3, 3, 4

Applying 3 smoothing with end-point smoothing,

4.25, 3.75, 3.5, 3, 3, 3, 3, 3

Hanning,

4.25, 3.8125, 3.4375, 3.125, 3, 3, 3, 3

Taking residuals,

0.75,−1.8125, 0.5625, 0.875,−3,−1, 0, 1

Applying 4 smoothing,

0.75,−0.53125, 0.65625,−0.625,−0.21875,−0.5,−0.5, 0.5, 1

Applying 2 smoothing,

0.75, 0.0625, 0.015625,−0.421875,−0.359375,−0.5, 0, 1

Applying 5 smoothing,

0.75, 0.0625, 0.015625,−0.359375,−0.359375,−0.359375, 0, 1

Applying 3 smoothing with end-point smoothing,

0.15625, 0.0625, 0.015625,−0.359375,−0.359375,−0.359375, 0, 0.71875

Hanning,

0.15625, 0.07421875,−0.06640625,−0.265625,−0.359375,−0.26953125,

0.08984375, 0.71875

Twicing, produces the final smooth,

4.40625, 3.88671875, 3.37109375, 2.859375, 2.640625, 2.73046875, 3.08984375, 3.71875

Sometimes it may be desirable to fix the scale on the abscissa in the time series
plot. For example, one may wish to compare to closely related series such as before and
after an intervention or change. Complete control over the abscissa axis is provided if
you select NO for the option to Automatic Scale Selection For Abscissa.

As option, you may choose to look at a plot of the original data superimposed on
the smooth.

Robust Loess Time Series Smoother
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Cleveland’s (1979) robust loess regression smooth is applied to the time series data
(zt, t). Smoothers with a smoothing parameter of around f = 0.8 are useful in looking
for long-term trends (McLeod et al., 1990). The residuals from the smooth can be saved
to a file and examined or modelled.

Since more of the data is taken into account when f = 0.8 than with the Tukey
4253H,twice smooth the plot always much smoother looking.

Since Appendix 1for a general discussion of Cleveland robust loess smoothing.
A limitation of this treatment of end-effects, originally pointed out by Ozaki (1991),

is that it sometimes tends to overstate any upward or downward trends in the data near
either end of the series.

It is always best to show the smooth and the observed time series on the same plot
in order to judge of the relative magnitude of the trend.

Runs Test

The Runs Test is a simple but often effective test of the null hypothesis that a time
series is random. Let Q denote some fixed value such as one of the quartiles of the data
series z1, z2, . . . , zn. If we replace each zt by a + or − according as zt ≤ Q or zt > Q
respectively, then a run is a string of consecutive + or −. The total number of runs, say
R, yields a test statistic for randomness. The exact expected number of runs is given by

E(R) = 1 +
2n1n2

n1 + n2
,

where n1 is the total number of + and n2 = n − n1. If there is persistence in the series,
the observed number of runs, R, will tend to be less than the expected. Other the other
hand for alternating behaviour the number of runs will exceed E(R). The exact variance
of R is given by

var(R) =
2n1n2(2n1n2 − n)

n2(n− 1)
.

Provided that n1 and n2 are both greater than 20, the normal approximation can be
used to compute the significance level (Swed and Eisenhart, 1943). A two-sided test is
used. The Runs Test could be computed about a value other than Q but it would have
less power.

When either n1 ≤ 20 or n2 ≤ 20 exact formulae given by Swed and Eisenhart (1943)
for the probability function of R are used to compute the exact significance level of a
two-sided test.

In general tests for lack of randomness based on the autocorrelation function are of-
ten the most powerful. In some other cases where a deterministic trend may be present,
the Mann-Kendall test is usually more powerful (Hipel, McLeod & Fosu, 1986). If cycli-
cal effects are present the cumulative periodogram test or Fisher test may be best. In
certain other cases, the Runs Test may be helpful. The Runs Test makes no distribu-
tional assumptions other than independence so in this sense it is slightly more general
than the other tests.
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Granger (1963) conjectures the Runs Test may have more power than other tests for
some forms of nonlinear dependence. An example of this is provided by Freedman’s tent
map, defined for t = 1, . . . , 50 with initial value 0 < z0 < 1,

zt = 2zt−1 if zt−1 ≤ 0.5,

= 2− 2zt−1, if zt−1 ≥ 0.5.

For the dataset FREEDMAN generated from this map, we found that while the time se-
ries trace and the time series scatter plots both showed clear non-random behaviour, the
autocorrelation function did not. Taking Q to the the upper data quartile we obtained
R = 26 with E(R) = 20.2 and a two-sided p-value of only 2.7%.

Lehmann (1959, pp.155–156) showed that the Runs Test is equivalent to a likeli-
hood ratio test for a binary time series produced by a Markov chain.

Nonseasonal Trend Tests

At present two tests for monotonic trend with nonseasonal time series are per-
formed. The first is the Mann-Kendall test. This is a test for monotonic trend which
was first suggested by Mann (1945). The test statistic is the Kendall rank correlation
of zt with t. The null hypothesis of no trend assumes that the zt are independently dis-
tributed.

For simplicity, we will discuss the case where there are no ties in the values of zt.
The more general case, which is implemented in MTS is discussed in Ch. 4 of Kendall
(1970). In the case of no ties, Kendall’s rank correlation for a trend can be written

τ =
S(
n
2

) ,
where

S = 2P −
(
n

2

)
,

where P is the number of times that zt2 > zt1 for all t1, t2 = 1, . . . , n such that t2 > t1.
Thus τ = 2πc − 1, where πc is the relative frequency of positive concordance, i.e., the
proportion of time for which zt2 > zt1 when t2 > t1. Equivalently, the relative frequency
of positive concordance is given by πc = 0.5(τ + 1). In the case where there are no ties
in either ranking, it is known (Kendall, 1975, p.51) that under the null hypothesis, the
distribution of S may be well approximated by a normal distribution with mean zero
and variance,

var(S) =
1
18
n(n− 1)(2n+ 5),

provided that n ≥ 10. Valz and McLeod (1990) have given a simplified derivation of
this formula for var(S) and Valz, McLeod and Thompson (1994) have examined the ade-
quacy of the normal approximation in the case where there are possible ties.
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In the MTS package, the Kendall rank correlation and its significance level are eval-
uated using the more general formula of Kendall (1970, Ch.4) which allows for ties in the
rankings.

In the simple linear trend model zt = α+βt+et, where et is Gaussian white noise, it
is known that the Mann-Kendall trend test has 98% efficiency relative to the usual least
squares method of testing β = 0. An empirical simulation study of Hipel, McLeod and
Fosu (1986) showed that the Mann-Kendall test outperformed the lag one autocorrela-
tion test for detecting a variety of deterministic trends such as a step-intervention or a
linear trend.

The second test is due to Abelson and Tukey (1964). The test statistic may be writ-
ten

Z =
∑
αtzt√

c0
∑
α2
t

,

where c0 is the sample variance of zt and

αt =

√
t(1− t

n
)−

√
(t+ 1)(1− t+ 1

n
),

where n is the length of the series. Under the null hypothesis of no trend, the statistic Z
is asymptotically normally distributed with mean 0 and variance 1. Large values of |Z|
indicate the null hypothesis is untenable and hence there is the possibility of a trend in
the series. The trend is increasing or decreasing according as Z is > 0 or < 0. The func-
tion αt contrasts the values between each end of the series so values near the beginning
are given weight close to −1 while those near the other end are given a weight close to
+1.

Both the Abelson-Tukey and the Mann-Kendall trend tests assume that under the
null hypothesis, the data zt are iid. When this is not the case, the true signficance level
is overstated. Thus the test may indicate the presence of a monotonic trend when in
fact there is no trend but the data is autocorrelated. To overcome this, one can either
use the modification to the Abelson-Tukey test suggested by Brillinger (1989) and avail-
able as a separate trend test or one could use a suitable systematic sample of the orig-
inal data. Many autocorrelated time series can be modelling as q-dependent processes,
which means that observations separated by more that q lags are independent. Hence if
we systematically sample observations from the original series separated by q + 1 lags,
we obtain a series which is iid under the null hypothesis for no monotonic trend. Note
that the command editor in the utility menu has the capability of constructing a sys-
tematic sample for the data. However, for convenience, we have including the systematic
sampling option in the menu for this test. The parameters for systematic sampling are
the offset parameter, denoted by h, and the period, denoted by k. For these parameters,
the systematic sample is the zh+k(r−1), where r = 1, 2, . . . .

A nice example is provided by the dataset GREATLP which consists of mean an-
nual precipitation for the Great Lakes, 1900–1986. Both the Mann-Kendall and Abelson-
Tukey tests reject the null hypothesis of no trend.

Seasonal Trend Test
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This is a test for monotonic trend in a time series with seasonal variation. Hirsch,
Slack and Smith (1982) developed such a test by computing the Kendall score sepa-
rately for each month. The separate monthly scores are then summed to obtain the test
statistic. The variance of the test statistic is obtained by summing the variances of the
Kendall score statistic for each month. In this test, the null hypothesis is that the time
series is of the form zt = µm + et where et is white noise error and µm represents the
mean for period m.

Brillinger Trend Test

This test is developed in the article “Consistent detection of a monotonic trend su-
perimposed on a stationary time series” published in Biometrika (1989). The important
advantage of this test over the Mann-Wald test is its validity in the presence of autocor-
relation.

The basic underlying model considered can be written

zt = st + ηt,

where zt is the observed time series, st represents a signal or trend component and ηt
represents an autocorrelated error component. Under the null hypothesis it is assumed
that st is a constant. The alternative hypothesis to be tested assumes that st is either a
nondecreasing (st ≤ st+1) or nonincreasing (st ≥ st+1) function of time t.

The test statistic Brillinger develops may be written

ZB =
∑
ctzt

est.sd.(
∑
ctzt)

,

where

ct =

√
t(1− t

n
)−

√
(t+ 1)(1− t+ 1

n
),

where n is the length of the series. Under the null hypothesis of no trend, the statistic
ZB is asymptotically normally distributed with mean 0 and variance 1. Large values
of |ZB | indicate the null hypothesis is untenable and hence there is the possibility of a
trend in the series. The trend is increasing or decreasing according as ZB is > 0 or < 0.
The function ct contrasts the values between each end of the series so values near the be-
ginning are given weight close to −1 while those near the other end are given a weight
close to +1. It can be shown that

var(
∑

ctzt) = 2πfη(0)
∑

c2t ,

where fη(0) denotes the spectral density function of the autocorrelated error component
evaluated at 0.
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In order to estimate fη(0) it is first necessary to estimate η. Assuming there are no
outliers, an estimate the of trend component is given by the running average of order V :

ŝt =
V∑

i=−V

1
2V + 1

zt+i.

The practitioner should normally choose a value of V to give a reasonable estimate of
the trend component. To assist in verifying the choice of V the MTS Package produces
a plot of the trend component for the user-specified choice of V . In some cases where
there are outliers in the series, a suitable Box-Cox transformation may be used to make
the data more normally distributed. The normal probability plot or range-mean analysis
may be used to choose the transformation.

After the trend component, st, has been estimated the autocorrelated error compo-
nent, ηt, can be estimated by η̂t = zt − ŝt. Then an estimate of fη(0) is given by

f̂η(0) =

L∑
j=1

1
2πn |ε̂j |

2

L∑
j=1

(1− aj)2

,

where

ε̂j =
n−1−V∑
t=V+1

η̂texp{−2πitj
n
},

where i =
√
−1 and

aj =
sin{ 2πj(2V+1)

2n }
(2V + 1) sin(2πj

2n )
.

The parameter L determines the degree of smoothing of the periodogram component.
To assist in the choice of L the MTS Package plots the periodogram of the estimated
autocorrelated error component η̂t at the low frequencies and shows the bandwidth cor-
responding to L.

Finally

est.sd.(
∑

ctzt) =
√

2̂πf̂η(0)
∑

c2t .

In practice the Fourier transform ε̂j may either be computed using the Discrete
Fourier Transform (DFT) or the Fast Fourier Transform (FFT). If the FFT is used,
the series is padded with zeros at both ends until it is of length n′ = 2p, where p =
[log2(n)] + 1, where [•] denotes the integer part. In this case, to avoid leakage it is rec-
ommended that data tapering be used. This involves multiplying the series η̂t by the
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cosine tapering function ut, where

ut =
1
2

(
1− cos

π(t− 1
2 )

`

)
, for t = 1, . . . , `,

= 1, for t = `+ 1, ...n′ − `− 1,

=
1
2

(
1− cos

π(n′ − t+ 1
2 )

`

)
, for t = n′ − `, . . . , n′

to form the tapered series η̂′t = η̂tut. The Fourier transform for the tapered series is then
evaluated. The percentage of data tapered, say Γ, is then Γ = 200`

n′ . Tukey recommends
choosing Γ = 10 or 20. Tapering is normally not needed when the DFT method is used.
In the MTS Package the user may chose between the DFT or FFT methods.

Seasonal-Trend Loess Decomposition

The seasonal adjustment method, known as seasonal-trend loess or STL given by
Cleveland et al. (1991) is implemented. This is a state of the art seasonal adjustment
technique which has several advantages over other methods. It is conceptually much
simpler than the traditional X-11 method and yet gives results of equal reliability. More-
over STL can be performed for series with any seasonal period not just quarterly or
monthly as is the case with X-11. Cleveland et al. (1991) have made the basic Fortran
code available by anonymous FTP so it is more accessible than X-11. With suitable ex-
tensions such as allowing for trading day and holiday effects and extending the series at
both ends using a fitted SARIMA model this technique is expected to perform as well as
X-11-ARIMA.

The seasonal decomposition of an observed time series zt, t = 1, . . . , N can be
written

z
(λ)
t = Tt + St +Rt,

where z(λ)
t denotes the Box-Cox transformation,

z
(λ)
t =

(z + c)λt − 1
λ

, if λ 6= 0,

= log(zt + c), if λ = 0,

and Tt, St and Rt are respectively the trend, seasonal and remainder.
Following the notation of Cleveland et al. (1991) we will denote the cycle period

by np. For seasonal time series, the cycle period is just the same as the seasonal pe-
riod which we have previously denoted by s. The cycle period is a more general concept
which applies for example to diurnal data such as that which arises in the study of circa-
dian rhythms.
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The primary goal of seasonal adjustment and the basic STL algorithm is to estimate
the seasonal component, St, and the seasonally adjusted series. The seasonally adjusted
series in the transformed domain is given by

z(λ) − St

and in the original data domain by

(z(λ) − St)[λ],

where x[λ] denotes the inverse Box-Cox transformation,

x
[λ]
t = (λx+ 1)

1
λ − c, if λ 6= 0,

= ex − c, if λ = 0.

On the other hand if the interest is primarily on estimating a long-term trend, then
it is better to first seasonally adjust and then apply loess smoothing to the seasonally
adjusted series. See the section below on Post-Trend Smoothing .

The general STL algorithm consists of no iterations of an outer loop and ni itera-
tions of an inner loop.

INNER LOOP

Each iteration, k = 0, 1, . . . , ni of the inner loop consists of the following steps:

Step 1. Detrending .
Let T (k) denote the final estimate of trend from Step 6 in each iteration of the
inner loop. Initially, T (0)

t is set equal to the final trend estimate at the ni-th
iteration of inner loop in the previous iteration of the outer loop. For the first
iteration of the outer loop, set T (0)

t = 0. In Step 1 the detrended series

z
(λ)
t − T (k)

t ,

is calculated.

Step 2. Cycle Subseries Smoothing .
There are np cycle subseries corresponding to each of the separate seasonal
periods or cycles. For example, with monthly data, the series of all January
values is the first cycle subseries, February values are the next etc. Each cycle
subseries is smoothed using a loess smoother with window size, ns. The win-
dow size, ns, indicates the total number data points used in the loess smoother
rather than the fraction as was used in the Cleveland Robust Loess Smoother.
The default setting is to use half the data available. The resulting smoothed
cycle subseries are denoted by C(k+1)

t .
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Step 3. Low Pass Filtering of Smoothed Cycle Subseries.
The low pass filter consists of: a running average filter of length np followed by
another running average filter of length np followed by loess smoothing with a
window size of n`. The output from the low-pass filtering is denoted by L(k+1)

t

and can be calculated for t = 1, . . . , N by extending smoothed cycle subseries,
C

(k+1)
t , obtained in Step 2.

Step 4. Detrending of Smoothed Cycle Subseries.
L

(k+1)
t is subtracted from C

(k+1)
t to form the estimate of the seasonal compo-

nent, S(k+1)
t ,

S
(k+1)
t = C

(k+1)
t − L(k+1)

t .

Step 5. Deseasonalizing .
An estimate of the deseasonalized series

z
(λ)
t − S(k)

t ,

is calculated.

Step 6. Trend Smoothing .
Loess smoothing with a window size, nt, is applied to the deseasonalized series
from Step 5 to obtain a new estimate of the trend, T (k+1)

t .

OUTER LOOP: ROBUSTNESS ITERATIONS

After ni iterations of the inner loop have been performed, one iteration of the outer
loop is performed. Firstly, in the outer loop, the remainder component

Rt = z
(λ)
t − T (ni)

t − S(ni)
t ,

is calculated. Next, robustness weights are calculated as in Cleveland’s robust loess
method, viz.

δt = B(
Rt
6h

),

where B(z) is the bisquare function defined by

B(z) = (1− |z|2)2, for |z| < 1,

= 0, for |z| ≥ 1,
,

and h denotes the median of |R1|, |R2|, . . . , |RN |. Now ni iterations of the inner loop are
performed using the robustness weights just calculated in the loess smoothing in Steps 2
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and 6. The outer loop is iterated a total of no times. At the conclusion of the outer loop
final estimates of Tt, St and Rt are obtained.

CHOICE OF SMOOTHING PARAMETERS

Cleveland et al. (1991) have provided a detailed mathematical analysis of the prop-
erties of STL which suggests good values for most of the required parameters.

Cleveland et al. (1991) showed that nt, the smoothing window size for the trend
smoothing in Step 6 should satisfy

1.5np ≤ nt ≤ 2np

and that in most situations a reasonable choice of nt is given by

nt = [
1.5np

1− 1.5
ns

]odd,

where [•]odd denote the integer part rounded up to the nearest odd integer. The Trend
Diagnostic Plot , described in the next section, can be used to check or improve upon the
default choice.

Cleveland et al. (1991) showed that n`, the smoothing window for loess in the low
pass filter, Step 4, can be chosen as n` = [np]ODD.

The least automatic and most difficult parameter to select is ns the size of the win-
dow for the loess filter for cycle subseries smoothing, Step 2. Cleveland et al. (1991)
showed that ns should be an odd integer greater than or equal to 7. Also it is clear that

ns ≤
N

np
.

As a reasonable default choice, we recommend

ns = [
N

2np
]ODD.

The Seasonal Diagnostic Plot , described in the next section, can be used to check or im-
prove upon the default choice.

The jump parameters, njump
s , njump

` , njump
t , determine the spacing in the evaluation

of the weighted regression calculations in loess. The default choices, njump
s = 1, njump

` =
1, njump

t = 1, correspond to evaluating the weighted regression at every data point.
To save computer time, the following settings could be used, njump

s = ns
10 , n

jump
` =

n`
10 , n

jump
t = nt

10 .
The default choice for the iteration parameters is ni = 1 and no = 2. If there are no

outliers present then ni = 2 and no = 0 could be used. For more radical outliers ni = 1
and no = 5 or even ni = 1 and no = 10 are recommended.
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DIAGNOSTIC PLOTS

To examine the basic effect of the seasonal adjustment we can examine trace plots
of the components Tt, St and Rt as well as trace plots of the data and the seasonally ad-
justed data in both the transformed domain, if λ 6= 1, and also in the original domain.

An additional very useful plot to show the effect of the seasonal adjustment is the
Cycle Subseries Plot which was first presented in the article by Cleveland and Terpen-
ning (1982). For each cycle, the cycle subseries of the seasonal component, St, is plot-
ted as vertical lines emanating from a horizontal line. The horizontal line is determined
by the midmean of the cycle subseries. The Cycle Subseries Plot exhibits the degree of
seasonality present, the effectiveness or usefulness of the seasonal adjustment and any
trends the seasonal component.

The Trend Diagnostic Plot is useful for checking on the adequacy of the choice of nt
the trend smoothing parameter used in Step 6. The Trend Diagnostic Plot is comprised
of two plots. The first panel show the points Tt + Rt with the a solid curve obtained
by connecting the points Tt. If the choice of nt is valid there should be no systematic
departure from the curve apparent. The second panel is a trace plot of the remainder
Rt. Again there should be no systematic or wandering behaviour present. One should
also check for possible outliers and increase the robustness iterations if needed.

The Seasonal Diagnostic Plot is useful for checking on the correctness of the choice
of ns. Actually, the choice of ns is somewhat subjective and is determined by consid-
ering what part of the variation in the data belongs to the seasonal component. If the
data analyst believes that the seasonal component is rapidly evolving then ns will be
quite small. In this case, some of the variation that might otherwise go into the remain-
der, Rt, will be put in the seasonal component, St. On the other hand if the data an-
alyst believes that the seasonal component is quite stable then ns will be chosen fairly
large. The Seasonal Diagnostic Plot shows a separate plot for each cycle or seasonal pe-
riod. Let t = t(r,m) where r denotes the year and m denotes the seasonal period. So
m = 1, . . . , np and r = 1, . . . , Nnp . Let s̄m denote the mean of the seasonal component, St,
for the m-th period. Then for each period, we examine plots of the points St + Rt − s̄m
with the curve obtained by joining straight lines through the points St − s̄m. Based
on these plots the analyst can choose what part of the variation belongs in the seasonal
component.

POST-TREND SMOOTHING

If the primary object is trend estimation instead of estimation of the seasonal and
the seasonally adjusted series then the estimate of the trend component given by STL
should be further smoothed. This is called post-trend smoothing. To perform this sim-
ply take the seasonally adjusted output from the STL function and input this data to
the Cleveland Robust Loess Function in the menu section on Exploratory Tech-
niques.

View File in STL Directory
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This utility is used to view or print a text file in the STL directory. Time series
data files may be viewed with the MTS screen editor.
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Sample Autocorrelation Function

The sample autocorrelation at lag ` of the observed time series z1, z2, . . . , zN is de-
fined by

r` =
∑N
i=`+1(zt − z̄)(zt−` − z̄)∑N

i=1(zt − z̄)2
,

where

z̄ =
1
n

N∑
t=1

zt.

If no mean correction is made (for example, when the series represents residuals or
differences) then

r` =
∑N
i=`+1 ztzt−`∑N

i=1 z
2
t

.

In practice, we often look at the autocorrelations of such transformed series. The plot
of r` vs. ` is referred to as the sample autocorrelation function (SACF). If the data (or
transformed data) is independent and identically distributed with constant variance then

r` ∼ NID(0, N−1).

To test for whiteness then we can examine the plot of r` versus ` with benchmark
standard limits at ±1.96/

√
N . Note that we can expect about 1 in 20 of the r’s to lie

outside these limits even for white noise. Often we pay particular attention to the value
of r` at ` = 1 and at seasonal lags.

A wider simultaneous 95% limit is also shown. This limit has the property than
95% of the time all values are inside this limit assuming that the time series is indepen-
dent and identically distributed white noise. See Appendix 3 Simultaneous Significance
Intervals for the method of determining this interval.

An overall test across a number of lags is given by the Portmanteau Test. In this
test we choose a number, M , typically M = 15 or M = 30. Two modified Portmanteau
Tests are available: first, the Ljung-Box Modified Portmanteau Statistic, given by

Q
(1)
M = N(N + 1)

M∑
i=1

r2
i

N − i

and second the Li-McLeod Modified Portmanteau Statistic, given by

Q
(2)
M =

M∑
i=1

r2
i +

M(M + 1)
2N

.
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Under the null hypothesis of independence both of these statistics are χ2-distributed on
M degrees of freedom. These portmanteau statistics and their significance levels are tab-
ulated for M = 1, 2, . . . on the output file.

If the data (or transformed data) is instead assumed to be such that all theoretical
autocorrelations after lag Q are zero then Bartlett’s large-lag formula gives

est.sd.(r`) =

√√√√ 1
N

(1 +
Q∑
i=1

r2
i ).

Revised benchmarks limits are then drawn for ` = Q + 1, Q + 2, . . . . On the input
screen, Q, is referred to as the large-lag in Bartlett’s large-lag formula. This capability
is useful in identifying moving-average models and determining if high-order autocorrela-
tions are still large when allowance is made for autocorrelation in the data.

When Q is chosen > 0, the limits shown at lags 1, . . . , Q are the maximum theo-
retically attainable values of the theoretical autocorrelations in a MA(Q) process (see,
Davies et al., 1974). This also aids in moving-average identification. If the sample values
are outside the limits, the model can not be represented as an MA(Q).

Two tests for ARCH effects are also available. One can either test using absolute
values of the data or squared values.

Sample Partial Autocorrelation Function

The sample partial correlation function (SPACF) at lag k is the correlation between
zt and zt−k, when the intervening zt−1, . . . , zt−k+1 are held constant. The SPACF at lag
k is denoted by φk,k. It can be shown that φk,k can be estimated by fitting an AR(k),

zt = µ+ φ1,1(zt−1 − µ) + . . .+ φk,k(zt−k − µ) + at.

Thus by fitting successive AR(k) models for k = 1, 2, . . . the sequence of sample
partial autocorrelations φ̂k,k, k = 1, 2, . . . is generated.

The default fitting algorithm used is the Burg algorithm. Alternatively, the Yule-
Walker method can also be selected.

It can be shown that if an observed series of length N can be fitted by an AR(p)
then φ̂k,k ∼ NID(0, N−1), for k > p. The plot of φ̂k,k vs. k shows benchmark confidence
limits at ±1.96/

√
N .

A wider simultaneous 95% limit is also shown. This limit has the property than
95% of the time all values are inside this limit assuming that the true model is an
AR(p). See Appendix 3 Simultaneous Significance Intervals for the method of determin-
ing this interval.

If file output tabulations are requested with this function, the partial autocorrela-
tions φ̂k,kk = 1, 2, . . . is also tabulated along with other model selection criteria. The
other model selection criteria tabulated include the AIC, BIC, and Residual Variance.

Sample Inverse Autocorrelations
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Consider then ARMA(p,q) model defined by

φ(B)(zt − µ) = θ(B)at,

where,
φ(B) = 1− φ1B − . . .− φpBp,

θ(B) = 1− θ1B − . . .− θqBq,

at ∼ NID(0, σ2
a).

Then the theoretical inverse autocorrelation function (TIACF), denoted by ρi(`), ` =
1, 2, . . . , is defined as the theoretical autocorrelation function (TACF) for the
ARMA(q, p) defined by

θ(B)(zt − µ) = φ(B)at.

The first model can be referred to as the primal model and the second model is the cor-
responding dual. Notice, that the dual of the dual gives back the primal.

The sample inverse autocorrelation function (SIACF) can be estimated by fitting a
high–order autoregression and then calculating the autocorrelations in the dual model.
More specifically, we select a value of P , often P = 20 or 30 and then fit an AR(P),

π(B)(zt − µ) = at,

where π(B) = 1 − π1B − . . . − πPBP . Then using the estimated values, π̂1, . . . , π̂P , the
SIACF is given by

ri(`) =
−π̂` +

∑P
i=`+1 π̂iπ̂i−`

1 + π̂2
1 + . . .+ π̂2

P

if ` ≤ P

= 0 if ` > P.

The user may supply their own value of P or use the default value specified in the
function.

The SIACF is a useful additional tool in ARMA model identification. As an exam-
ple, consider the problem of identifying a model such as

(1− φ1(B)− φ5(B)(zt − µ) = at.

In this case the TACF is rather complicated. However for the TIACF, there are nonzero
values only at lags 1,4,5,6 and the largest values are at lags 1 and 5. Another example
of a situation where the IACF most clearly identifies the model is for the ARMA(2,1).
For the ARMA(1,2) we expect that the TACF will damp out as a damped exponential
starting at lag 2 but that the values ρ0 = 1 and ρ1 will not necessarily follow this pat-
tern. Hence, for the ARMA(2,1) the SIACF may be expected to shown a similar pat-
tern. Similarly, the SIACF could be expected to be useful for identifying ARMA(p,1)
models.

As pointed out by Chang & Dickey (1994), the SIACF is very useful in identify-
ing over-differenced time series. In this situation, there is a moving-average root near
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the unit circle, so the SIACF damps out very slowly just like the SACF would for data
which needs differencing.

The large–sample distribution of the SIACF has been shown to be identical to that
of the SACF from the dual model.

Sample Inverse Partial Autocorrelations

Given the SIACF, ρi(`), ` = 1, 2, . . . , the SIPACF φi`,`, ` = 1, 2, . . . , may be calcu-
lated using the same algorithm that obtains the SPACF from the SIACF. The SIACF is
sometimes helpful in identifying MA(q) models. If the true model is MA(q), the SIACF
should cut-off after lag q and this can readily be checked from the confidence limits
shown on the plot. The SACF also cuts of after lag q, but to check the significance of
higher-order lags it is necessary to look at the revised confidence limits using Bartlett’s
formula. McLeod (1984) derived the large-sample distribution of the SIACF and dis-
cussed its use in testing for MA(q) models.

Sample Cross Correlation Function

Given two time series ut, t = 1, . . . , n and vt, t = 1, . . . , n the sample cross-
correlation function (SCCF) at lag ` is given by

cu,v(`) =
∑n−`
t=1 (ut − ū)(vt+` − v̄)√∑n

t=1(ut − x̄)2
∑n
t=1(vt − ȳ)2

,

where,

ū =
1
n

n∑
t=1

ut,

and

v̄ =
1
n

n∑
t=1

vt.

The SCCF is an estimate of the theoretical cross-correlation function which is de-
fined as

ρu,v(`) =
cov(ut, vt+`)√
var(ut)var(vt)

Notice that the SCCF unlike the SACF is not symmetric, i.e. in general cu,v(`) 6=
cu,v(−`).

Also it should be observed that for ` > 0, cu,v(`) measures the linear relationship
between current values of the u-series and future values of the v-series. Similarly for ` <
0, cu,v(`) measures the linear relationship between current values of the u-series and past
values of the v-series.
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On the computer output produced by the cross-correlation function, the u-series is
called the first series and the v-series is called the second series.

The main distributional result for the SCCF states that if the ut and vt series are
uncorrelated white noise sequences then cu,v(`) ∼ NID(0, n−1). More precisely, it is
required that ut ∼ IID(0, σ2) vt ∼ IID(0, σ2) and ρu,v(`) = 0 for all `. For this reason
the SCCF plot shows benchmark confidence limits at ±1.96

√
n. Often it is of interest

to check for dependence at lags ` = −1, 0, 1 and other lags as well. The following overall
portmanteau tests are calculated:

QM =
M∑

i=−M
c2u,v +

M(M + 1)
2n

.

Under the null hypothesis, H0 : ρu,v(`) = 0, for , ` = −M,−M + 1, . . . ,M − 1,M, the
test statistic QM is approximately χ2-distributed with degrees of freedom 2M + 1. This
test is appropriate if on is primarily interested in testing for no relationship between the
u-series and the v-series.

In other situations, more specific tests may be relevant. For example, if ut rep-
resents mean riverflow per unit time and vt represents the precipitation then it may
be assumed that ρu,v(`) = 0, for ` = 1, 2, . . . since riverflow does not cause fu-
ture precipitation. In this situation our interest would focus on the null hypothesis,
H0:ρu,v(`) = 0, for , ` = −M,−M + 1, . . . ,−1. The relevant portmanteau test statistic
is then

Q−M =
−1∑

i=−M
c2u,v +

M(M + 1)
2n

.

which is approximately χ2-distributed with degrees of freedom M under our null hypoth-
esis.

To illustrate another application, suppose that ut represents the residuals from a
transfer-function noise time series model and vt is a pre-whitened input series. Then to
check that there is no feedback present (that is that the ut series is not causally linked
to future values of the input series vt), we would be interested in testing the null hypoth-
esis the null hypothesis, H0:ρu,v(`) = 0, for , ` = 1, . . . ,M. The relevant portmanteau
test statistic is then

Q+
M =

M∑
i=1

c2u,v +
M(M + 1)

2n
.

which is approximately χ2-distributed with degrees of freedom M under this null hy-
pothesis.

These tests are performed if a tabulation is requested in addition to the SCCF plot.
The value of M used is the same as the number of lags chosen for the plots.

Periodic Autocorrelation Function

Let zt, t = 1, . . . , N be N consecutive observations of a seasonal time series with
seasonal period s. Let nm denote the number of years of data for period m.
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The time index parameter, t, may be written t = t(r,m) = (r − 1)s + m, where
r = 1, . . . , nm and m = 1, . . . , s. Thus r and m denote the year and month respectively.

If

µm = E{zt(r,m)} (1.1)
and

γ`,m = cov(zt(r,m), zt(r,m)−`)

exist and depend only on ` and m, zt is said to be periodically correlated (Gladyšev,
E.G., 1961). The case where µm and γ`,m do not depend on m reduces to an ordinary
covariance stationary time series.

In general it is understood that m obeys modular arithmetic, for example, µ0 = µs.
The sample periodic autocorrelation function (PeACF) is given by

r`,m =
c`,m√

{c0,mc0,m−`}
,

where
c`,m =

1
nm

∑
r

(zt(r,m) − µ̂m)(zt(r,m)−` − µ̂m−`),

where µ̂m =
∑
r zt(r,m)/n.

A schematic plot which shows the lag values ` on the ordinate axis and each period
on the abscissa is produced. This plot marks each correlation value with a small hori-
zontal line. The vertical lines show benchmark limits of 1.96 /

√
nm. Under the assump-

tion of independence of the zt series, r`,m is approximately normally distributed with
mean zero and variance 1/nm and r`,m are statistically independent for different values
of ` and m.

The presence of periodic correlation is indicated if the periodic correlations vary
markedly between periods.

The user may optionally selected a tabulation of the numerical values of the sample
PeACF and sample PePACF if desired.

Periodic Partial Autocorrelation Function

After the presence of periodic correlation has been detected, a suitable Periodic Au-
toregression (PAR) model can be selected either by examining plots of the sample pe-
riodic partial autocorrelation (PePACF). The PePACF can be efficiently implemented
using the methods developed by Sakai (1982).

Sakai (1982) extended the celebrated Durbin-Levinson recursion for autoregressive
models to PAR models and derived the distribution of the sample PePACF. Let ρ̂•`,m
denote the sample PePACF for lag ` and period m. Sakai showed that if the correct or-
der is pm for period m, Est.Sd.(ρ̂•`,m) = 1/

√
n, ` > pm. The order pm can be identified

by finding the lowest lag for which the sample PePACF cuts off.
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A schematic plot similar to that for the sample PeACF is displayed. A tabulation
of the numerical values of the sample PeACF may be obtained from the tabulation that
can be produced using the Periodic Autocorrelation Function menu item.

Theoretical Autocorrelation Function

The theoretical autocorrelation function (TACF), denoted by ρ` is defined by

ρ` =
γ`
γ0
,

where, γ` = cov(zt, zt−`), ` = 1, 2, . . . for general multiplicative ARMA models defined
by

φ(B)Φ(Bs)(zt − µ) = θ(B)Θ(Bs)at,

where,
φ(B) = 1− φ1B − . . .− φpBp,

θ(B) = 1− θ1B − . . .− θqBq,

Φ(Bs) = 1− Φ1B
s − . . .− ΦpBsps ,

Θ(Bs) = 1−Θ1B
s − . . .−ΘqB

sqs ,

and at is white noise. The algorithm of McLeod (1975) is used.
The TACF is of interest in the identification and interpretation of fitted models.

Theoretical Partial Autocorrelation Function

The theoretical partial autocorrelation function (TPACF) is determined from the
TACF sequence ρ`, ` = 1, 2, . . . , by the Pagano algorithm (1974).

Impulse Response or Inverted Form Coefficients

The general form of the SARIMA(p, d, q)(ps, ds, qs)s model equation for a data se-
ries, zt, t = 1, . . . , N , may be written,

φ(B)Φ(Bs)∇d∇dss zt = ϑ0 + θ(B)Θ(Bs)at,

where, ϑ0 allows for a possible deterministic trend component. In many applications,
there is no deterministic component so ϑ0 = 0. The regular autoregressive operator and
regular moving-average components are:

φ(B) = 1− φ1B − . . .− φpBp
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and
θ(B) = 1− θ1B − . . .− θqBq.

The seasonal period parameter is s. For example, s = 12, for monthly seasonal data.
The seasonal autoregressive operator and seasonal moving-average components are:

Φ(Bs) = 1− Φ1B
s − . . .− ΦpBsps

and
Θ(Bs) = 1−Θ1B

s − . . .−ΘqB
sqs .

The differencing and seasonal differencing operations are:

∇ = 1−B,

and
∇s = 1−Bs.

In the above B refers to the backshift operator on t, Bkzt = zt−k,∀k.
Neglecting the deterministic component, the SARIMA(p, d, q)(ps, ds, qs)s model may

be written in impulse response form as follows,

zt = ψ(B)at,

where

ψ(B) =
θ(B)Θ(Bs)

φ(B)Φ(Bs)∇d∇dss
.

A recursive algorithm to calculate the coefficients, ψ1, ψ2, . . . in

ψ(B) = 1 + ψ1B + ψ2B
2 + ψ3B

3 + . . . ,

is easily obtained. The ψk are computed recursively using the equation

φ(B)∇dψk = −θ′k,

where
θ′k = θk, for k = 1, . . . , q

= −1, for k = 0,
= 0, otherwise,

and B is the backshift operator on k. The extenstion to the SARIMA case is obvious.
Similar impulse response functions arise in transfer-function models.
A plot of ψk vs. k can be produced.
The theoretical coefficients in the inverted form of the ARIMA(p, d, q) or

SARIMA(p, d, q)(ps, ds, qs)s model can also be plotted. In the ARIMA(p, d, q) case the
inverted form of the model is written

π(B)zt = µ(t) + at,
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where µ(t) is the deterministic part and

π(B) = 1−
∞∑
k=1

πkB
k

=
∇dφ(B)
θ(B)

.

The πk are computed recursively using the equation

θ(B)∇dπ′k = φ′k,

where
φ′k = φk, for k = 1, . . . , p

= −1, for k = 0,
= 0, otherwise,

π′k = πk, for k ≥ 0,
= −1, for k = 0,

and B is the backshift operator on k. The extenstion to the SARIMA case is obvious.
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Cumulative Periodogram Analysis

Given a data sequence z1, z2, . . . , zN the periodogram function, I(fj), fj = j/N, j =
1, . . . , N ′, N ′ = [N/2], may be defined by

I(fj) =
1
n

∣∣∣ n∑
t=1

zte
−2πfj(t−1)

∣∣∣2,
where | • | denotes complex absolute value and i =

√
−1.

The units of fj are cycles per unit time. The period corresponding to fj is Tj =
1/fj . Alternatively, some researchers prefer to work with angular frequencies given by
ωj = 2πfj which has units radians per unit time. In MTS the user may select which
units fj , Tj or ωj are used on the abscissa when the spectral function is plotted.

Basically, I(fj) measures the strength of the relationship between the data sequence
zt and a sinusoid with frequency fj . Notice that frequencies fj satisfy 0 < fj ≤ 0.5.

The cumulative periodogram is defined by

C(fj) =

∑j
`=1

(
I(f`) + I(f`)

)
∑N
t=1(zt − z̄)2

Note that,
N ′∑
j=1

(
I(fj) + I(−fj)

)
=

N∑
t=1

(zt − z̄)2,

where

z̄ =
1
N

N∑
t=1

zt.

Thus if the data sequence zt is white noise a plot of C(fj) vs. fj should lie on the
straight line joining the origin (0, 0) with (1, 0.5). The plot produced shows significance
limits at 25%, 10%, 5% and 1%. The significance limits are determined using a method
suggested by Bartlett (1955). The cumulative periodogram test is useful for detecting
departures from whiteness due to periodicity. It should be noted that the cumulative
periodogram is a consistent estimator for the spectral distribution function even though
the periodogram itself is not a consistent estimator for the spectral density function.

Fisher Periodicity Test

Given an observed time series, z1, z2, . . . , zn, this is a test for the presence of a sinu-
soidal components of the form A cos(2πfj + B), where fj denotes the Fourier frequency
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fj = j
n . The test assumes that the time series is only made up of such deterministic si-

nusoidal components. In this situation the Fisher-Whittle test detects which ones are
statistically significant.

Perhaps, more often, it is more accurate to assume that the spectrum is continuous
with some peaks rather than discrete. In this case, Bartlett’s test for whiteness would
be more suitable. Nevertheless, there are cases in practice where periodicities are more
readily detected by the Fisher-Whittle-Priestley test.

For brevity of notation, we will call the Fourier frequency, fj , the j-th harmonic.
Then the Fourier frequencies of interest correspond to the harmonics 1, . . . ,m, where
m = [ (n−1)

2 ], where [•] denotes the integer part.
First suppose we are interested in testing for the presence of a single sinusoidal

term. Then Fisher’s test statistic, g, is the ratio of the maximum periodogram ordinate
divided by the sum of all the periodogram ordinates for harmonics 1, . . . ,m. That is,

g =
max
j
I(fj)∑n

t=1(zt − z̄)2 ,

where z̄ denotes the sample mean and

I(fj) =
1
n

∣∣∣ n∑
t=1

zte
−2πfj(t−1)

∣∣∣2.
If z1, . . . , zn is assumed to be Gaussian white noise then Fisher (1929) showed that the
exact probability of observing a value of g as large or larger is given by

m(1− g)m−1 − m(m− 1)
2

(1− 2g)m−1 + . . .+ (−1)a
(
m
a

)
(1− ag)m−1,

where a = [g−1].
If a periodicity is detected, then as pointed out by P. Whittle, we can modify

Fisher’s g-statistic to test for a second periodicity. The modified g statistic is obtained
by omitting the periodogram ordinate which was significant. In fact as suggested by
Priestley (1981), in practice the periodogram ordinates surrounding the one which is sig-
nificant should also be removed on account of possible leakage when the true periodicity
differs from the detected Fourier frequency.

The above modification can be extended to detect multiple periodicities. In the
MTS package up to ten distinct harmonics can be tested for in this way.

Periodogram Smoothing

This is the so-called frequency domain approach because in this approach one works
with the Fourier transform of the data sequence rather than the original data sequence.
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It is the most natural approach to estimating p(f) although the other approach by Au-
toregressive Modelling will often produce a more accurate overall estimate in the sense of
the integrated mean-square error criterion.

The Discrete Fourier Transform (DFT) of the sequence z1, . . . , zn, is defined as

Zj =
n∑
t=1

zte
−2πitfj , j = −[(n− 1)/2], . . . , 0, . . . , [n/2],

where [•] denotes the integer part and fj = j/n. The frequencies fj are referred to as
the Fourier frequencies. The functions cos(2πfjt) and sin(2πfjt) are orthogonal with
respect to the usual inner product when evaluated at the Fourier frequencies.

The periodogram is given by

I(fj) =
1
n
|Zj |2.

It follows from the orthogonality mentioned above that

[n/2]∑
j=−[(n−1)/2]

I(fj) =
n∑
t=1

z2
t .

Thus I(fj) can be interpreted as analysis of variance of the data. I(fj) shows the
amount of variation due to each frequency component. Since the periodogram is sym-
metric about zero, in practice only positive frequencies need be considered.

The periodogram smoothing approach to the estimation of p(f) is based on the fol-
lowing two large-sample results:

< I(fj) >≈ p(fj),

and
cov(I(fj), I(fk)) ≈ p2(fj), whenj = k,

≈ 0, whenj 6= k.

From the above two equations we see that although I(fj) is an unbiased estimator of
p(fj), it is not consistent. If p(f) is assumed to be a smooth function of f , an estimator
with smaller mean-square error can be obtained by averaging values of the periodogram.

The periodogram smoother may be written

p̂(fj) =
i=q∑
i=−q

wiI(fj+i),

where q is the half-length of the smoother and the weights wi satisfy the following condi-
tions:
(i) wi ≥ 0,
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(ii) wi = w−i,
(iii)

∑q
i=−q wi = 1.

The Daniell or Rectangular window uses wi = (2q + 1)−1, i = −q, . . . , 0, . . . , q. As
shown by Hamming (1977, §5.8), the Modified Rectangular,

wi = 1/(2q), if |i| < q,

= 0.5/(2q), if |i| = q,

is generally even better. These smoothers can be iterated several times to produce
smoothers which yield very smooth and generally more desirable estimates of the spec-
tral density. These iterated smoothers correspond to a single non-iterated smoother
whose weights, wi, form a symmetric bell-shaped like function. It is sometimes of inter-
est to plot these weights, wi. Since the weights are symmetric, it is sufficient to plot the
weights for i = 0, ..., q. When the weights are plotted on the same graph as the spectral
density, it is convenient to rescale the weights since it is just the shape and width of the
weight function that we are primarily interested in.

The equivalent degrees of freedom, denoted by edf, is given by

edf =
2

q∑
i=−q

w2
i

.

For the Rectangular smoother edf = 4q + 2. An approximate 95% confidence interval for
p(fj) is (

edf p̂(fj)
χ2

0.975(edf)
edf p̂(fj)
χ2

0.025(edf)

)
,

where χ2
0.025(edf) and χ2

0.975(edf) denote the 2.5% and the 97.5% points of the χ2-
distribution on edf degrees of freedom. The percentage point for fractional degrees of
freedom are obtained by linear interpolation. It is important to note that this is not a
simultaneous confidence interval.

These confidence limits are useful as an additional diagnotic check for fitted ARMA
models (McLeod and Hipel, 1995). For this diagnostic check, the spectral density of
the fitted ARMA model is plotted with 95% limits determined by the nonparametric
smoother. To perform this diagnostic check with the MTS package, simply fit the appro-
priate ARIMA model (in Model Estimation menus) and save it in the FITS directory.
Next select Periodogram Smoothing in the Spectral Analysis menus. After choosing
confidence limits, you will be prompted with Display Fitted ARMA Spectral Density
for which you select Yes. Finally, you will then be prompted for the fitted model saved
in the FITS directory.

The Fast Fourier Transform (FFT) may be used instead of the DFT to calcu-
late the periodogram. In this approach the mean-corrected series z̃t = zt − z̄, where
z̄ = n−1∑ zt is calculated. Then this series is padded with 0’s on both sides until the
length of the series can be expressed as a power of 2. Then the FFT is calculated. The



50 PERIODOGRAM SMOOTHING

FFT is algebraically equivalent to the DFT but it is uses a numerical algorithm which
requires much fewer calculations. In addition, the FFT is typically, more accurate nu-
merically. Notice that the padding by 0’s does not affect the sample autocorrelations in
the time-domain however this padding can lead to distortions in the frequency-domain
periodogram. The term given to the effect of these distortions is leakage. To overcome
leakage, Tukey (1967) suggested tapering. Tapering has also been shown to be helpful
when the DFT is used. With tapering it is possible to resolve individual peaks in the
spectrum which would otherwise be masked by leakage. For a rigorous discussion on the
effects of tapering, see Brillinger (1981, Chapters 4 and 5).

Tapering the mean-corrected series z̃t involves multiplying z̃t and ut, where

ut =
1
2

(
1− cos

π(t− 1
2 )

`

)
, for t = 1, . . . , `,

= 1, for t = `+ 1, ...n− `− 1,

=
1
2

(
1− cos

π(n− t+ 1
2 )

`

)
, for t = n− `, . . . , n

to form the tapered series z̃′t = z̃tut. The percentage of data tapered, say Γ, is then Γ =
200m/n. Tukey recommends choosing Γ = 10 or 20. Next the FFT of the tapered series
is obtained. As shown in Brillinger (1981, p.124) the periodogram should be adjusted by
dividing the periodogram of the tapered data series by

∑
t u

2
t . In the case of the cosine

bell taper, Bloomfield (1976, p.194–5) showed that
∑
t u

2
t = 1 − 5Γ/8. In addition, the

equivalent degrees of freedom should be adjusted (Bloomfield, 1975, p.195):

edf =
U4

U2
2

n′

n

2
q∑

i=−q
w2
i

,

where U2 = 1 − 5Γ/8 and U4 = 1 − 93Γ/128. See Hurvich (1988) for a recent discussion
on choosing Γ, the percentage data tapered.

Then periodogram is then smoothed as in the DFT case.
When trends are present in the data, such as is the case with the Beveridge wheat

price index, the series may be assumed to be non-stationary and so the spectrum of the
series does not exist. In this case, it may be of interest to examine the first-difference
of the data series if the first differences look stationary. This corresponds to analyzing
the changes rather than the levels. This approach has been advocated by Blackman and
Tukey (1959) and Box and Jenkins (1976).

Another traditional approach involves removing the trend with a symmetric two-
sided moving average filter. See Linear or Ratio Filter for more discussion on the
methods available. In this case a trend is estimated and the residuals from the trend are
estimated. The spectral analysis is then carried out on the residuals.

Some researchers have noted that estimation by periodogram smoothing is the best
approach when one is searching for small peaks. In this case, an additional useful option
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is to plot the spectral density function over a smaller range than the standard (0, 0.5)
Hertz interval.

An optional output file may be created in the OUTPUT directory which lists the
estimates of the spectral density, frequencies and periods.

See Appendix 4for an overview of spectral density estimation.

Autoregressive Spectral Density Estimation

This is the time-domain approach. Here we estimate p(f) simply by fitting an au-
toregression,

φ(B)(zt − µ) = at,

where φ(B) = 1 − φ1B − . . . − φpBp and at is white noise with variance σ2
a. Then p(f)

can be determined from the equation

p(f) =
σ2
a

|φ(e2πif )|2
.

Akaike (1969) first suggested this approach and most researchers now agree that this ap-
proach often produces the best estimate of the spectral density function. A recent paper
by Mackisack and Poskitt (1979) suggests that this is a good method for detecting nar-
row peak frequencies in data.

Four methods of choosing the autoregression are available in this function. The de-
fault method is one proposed by Akaike (1979) and is referred to as the “AIC-Bayes”
filter. With this method all autoregressions of orders p = 0, 1, . . . ,K, where K is some
upper limit are determined. The weighted average of all spectral functions forms the fi-
nal estimate of the spectral function. Each spectral density in the average is weighted
according to the quasi-likelihood or Bayes posterior given by

e−
1
2 AIC.

The other methods involve choosing a fixed model order, p. Two popular criterion
are available the AIC or BIC. When one of these criterion is selected, the best model
from all autoregressions of orders p = 0, 1, . . . ,K, where K denotes some maximum value
whose default value is 20, is selected.

A final alternative is to select the model order manually oneself. This is done by
specifying K the maximum order of autoregression. In this case, an autoregressive of
order K is fit.

In all of the above autoregressive methods the default maximum order of the au-
toregression is set to 20 but this value can be increased by the using up to a preset max-
imum limit which is given in the section on Current Restrictions & Limitations.

An optional output file in the OUTPUT directory may also be created which tabu-
lates the autoregressive parameters and the period and frequency of all peaks or troughs
present in the autoregressive spectral density estimate. Troughs at frequencies of 0.0833
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often arise with seasonally adjusted monthly data. Peaks correspond to cyclic behaviour
and occur in many diverse series.

An optional output file in the FITS directory may also be created for use with other
functions in the package such as Periodogram Smoothing or Theoretical Autocorre-
lation Function of Fitted ARMA Model.

An optional residual file in the DATA directory may also be created. This is useful
for prewhitening a data series or in diagnostic checking the fitted AR model.

See Appendix 4for an overview of spectral density estimation.

Theoretical Spectral Density Function

Let zt = µ+ ψ(B)at, at ∼ NID(0, σ2
a) denote a multiplicative ARMA process with

ψ(B) =
θ(B)Θ(Bs)
φ(B)Φ(Bs)

.

Then the spectral density function may be defined as

f(λ) = σ2
a|ψ(e−2πiλ)|2, 0 ≤ λ ≤ 0.5,

where | • | denotes complex absolute value and i =
√
−1.

The units of λ are cycles per unit time. The period corresponding to λ is tλ = 1/λ.
Alternatively, some researchers prefer to work with angular frequencies given by ω = 2πλ
which has units radians per unit time. In MTS the user may select which units λ, tλ or
ω are used on the abscissa when the spectral function is plotted.

This function is evaluated via the FFT and plotted. In general, estimating the a
general linear process via an ARMA model and then evaluating the spectral density
function often produces a useful estimate of the underlying spectral density function.
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ARIMA Estimation

The general form of the SARIMA(p, d, q)(ps, ds, qs)s model equation for a data se-
ries, zt, t = 1, . . . , N , may be written,

φ(B)Φ(Bs)(wt − µw) = θ(B)Θ(Bs)at,

where,
wt = ∇d∇dss z

(λ)
t ,

and

z
(λ)
t =

(z + c)λt − 1
λ

, if λ 6= 0,

= log(zt + c), if λ = 0.

The regular autoregressive operator and regular moving-average components are:

φ(B) = 1− φ1B − . . .− φpBp

and
θ(B) = 1− θ1B − . . .− θqBq.

The seasonal period parameter is s. For example, s = 12, for monthly seasonal data.
The seasonal autoregressive operator and seasonal moving-average components are:

Φ(Bs) = 1− Φ1B
s − . . .− ΦpBsps

and
Θ(Bs) = 1−Θ1B

s − . . .−ΘqB
sqs .

The sequence at is assumed to be informationless white noise with mean zero and
variance σ2

a. In practice, it is often the case that to a good approximation,

at ∼ NID(0, σ2
a).

The parameter µw represents a deterministic component in the model. If d = 0
and ds = 0 this deterministic component is simply the mean of zt. Otherwise, if d 6= 0
or ds 6= 0 and if µw 6= 0 then there is a deterministic polynomial trend in t of degree
D = d+ dss which is included in the model. The trend coefficient term is

ϑ0 = φ(1)Φ(1)µw.

For convenience, we can think of the ARIMA parameters

φ1, . . . , φp, θ1, . . . , θq,Φ1, . . . ,Φps ,Θ1, . . . ,Θqs
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in terms of the β–vector defined by

β =



φ1
...
φp
θ1
...
θq
Φ1
...

Φps
Θ1
...

Θqs


Note that the order of β–parameters is p, q, ps, qs which is the same as in the model or-
der specification.

INPUT SCREEN

The input screen gives the basic ARIMA parameters and their default values as fol-
lows:

p = 0, ds = 0, q = 0, ps = 0, ds = 0, qs = 0, s = 0, λ = 1.0, c = 0.0.

In addition, there are several more prompts for input, viz.,

Estimate Optimal Box-Cox Transformation: No
Select Yes if the optimal value of λ is to be determined. The method of Box and

Cox (1964) which was modified for ARIMA models by McLeod (1974) is used. See also
Hipel, McLeod and Lennox (1977).

Constrain Some β-parameters to zero: No
If the setting is changed to Yes then another input screen will appear later which

prompts for the particular β-parameters to constrain to zero.

Estimation Algorithms
The following are available:

• McLeod approximate maximum likelihood. See McLeod (1977) and McLeod and
Salas (1983) for details. This provides a good approximation to exact maximum
likelihood and often uses significantly less computer time. This algorithm is the de-
fault.

• Ansley Exact maximum likelihood. See Ansley (1980) for details. In most cases
the only difference is that more computer time is used.
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• Box-Jenkins unconditional sum of squares. This is given in the textbook by
Box and Jenkins (1975). It is provided for comparison but it is no longer recom-
mended .
• Box-Jenkins conditional sum of squares. Again, this is for interested user’s

only. Not recommended for general use.

Filename For Output
The output file is of the form fname.nnn, where fname is the filename of the input

time series data and nnn is a counter from 000 to 999. The counter starts at 000 and
increases by 1 for each new model which is fitted. This output file will be placed in the
MTS OUTPUT directory.

Output Residuals As A Time Series Data File: No
If Yes is selected, a data file containing ât, t = 1, . . . , n will be created in the MTS

DATA directory.

Output File For Input To The Forecasting Algorithm: No
If Yes is selected, a binary file containing all relevant information will be created in

the MTS INPUT directory. This file can be used as the input to the forecasting, simula-
tion and residual-autocorrelation functions.

Estimate Trading Day Effects: No
This option is only available for monthly time series, i.e. where s = 12. In this case,

you will be prompted with a special menu. This menu, will determine whether or not
you wish to estimate the trading day effects and the exact month and year in which the
series started. Only dates on or after January 1900 can be used.

Bell & Hillmer (1984) have discussed the use of trading-day effects in ARIMA mod-
elling.

The ARIMA model with trading day effects may be represented as

zt =
8∑
i=1

tdi m
(i)
t + ηt,

where ηt is an ARIMA model, tdi is the trading-day effect for the i-th variable and m
(i)
t

is the i-th trading-day variable for the t-th observation. Define m(8)
t as the number of

days in the month corresponding to the t-th observation. Now in order to define remain-
ing m(i)

t , let us first define n(i)
t for i = 1, . . . , 7 to be the number of Mondays, Tuesdays,

Wednesdays, Thursdays, Fridays, Saturdays and Sundays respectively which are in the
month corresponding to the t-th observation. Notice that since

m
(8)
t =

7∑
i=1

n
(i)
t ,

there are really only seven independent parameters. For convenience, we set m(i)
t =

n
(i)
t − n

(7)
t . So td(7)

t = 0. Thus the trading day parameters tdi, i = 1, . . . , 7 show the
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trading-day or economic effect of weekdays relative to a zero-effect for Sunday and td8
shows the economic effect of the number of days in the month. Notice that the variables
m

(j)
t , j = 1, . . . , 6 take on values of zero and one only and that m(8)

t takes on the values
28,29,30 and 31. The trading-day variables are tabulated on the printout.

The standard errors of the trading-day coefficients is not available in the current
MTS version but the statistical significance of the effects can be judged by using the
AIC, BIC or a likelihood ratio test.

The airline data series (Series G, from Box & Jenkins, 1976) shows pronounced and
significant trading day effects. The original identified SARIMA model for the logged
data is (0, 1, 1)(0, 1, 1)12. Next, the model was re-fit to estimate the trading-day effects.
The estimated parameters are shown in the table below.

Estimated Trading-day Parameters for the Airline Data.

Trading-Day Variable Estimate

Monday −0.0065
Tuesday −0.0029
Wednesday −0.0033
Thursday −0.0021
Friday 0.0020
Saturday 0.0043
Sunday 0.0000
No. Days 0.0432

From the above table, it is clear that travellers prefer Saturdays most for travelling
with Fridays and Sundays as their second and third choices. The number of days in the
month as a positive effect.

A comparison with the models estimated with and without trading-day variables is
shown in the table below.

Comparison of Fitted Models.

method AIC BIC σ2
a Sum of Squares

without trading-day variables 670.11 720.60 1.3510−3 11935.456
with trading-day variables 657.12 728.40 1.1210−3 9895.405

The AIC selects the trading-day variable model by a large margin. According to
the AIC, the relative plausibility of the original model vs. the model with trading-day
effects is exp−1

2 (670.11− 657.12) = 0.0015. The AIC selection is confirmed by an hy-
pothesis test. Using the sum-of-squares presented in the table above, one can calculate
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the likelihood-ratio test to test the joint significance of the trading-day variables. This
yields a χ2 = 24.5 on 7 df which corresponds to a p-value of about 0.09%. As is often
the case, the BIC criteria favours the most parsimonious model — even though as we
have seen the trading-day effects are highly significant statistically. Using the BIC crite-
ria, the relative-plausibility of the model with trading-day effects vs. the original model
is exp−1

2 (728.40− 720.60) = 0.0202.

OUTPUT

Sum of Squares

This is the modified sum of squares,

Sm(β̂) = F

N∑
t=−∞

â2
t ,

where F is a factor which is determined from the estimated covariance determinant
and/or the Box-Cox transformation. In principle, F , is determined so that the log likeli-
hood is given by

logL = −n
2

log
Sm(β̂)
n

,

where n = N −D. The quantity Sm(β̂) is useful in constructing likelihood ratio tests.

Residual Variance

σ̂2
a =

1
n

N∑
t=−∞

â2
t .

AIC

The observed value of the Akaike Information Criterion is given by

AIC = −2δ logL+ 2κ,

where κ is the number of parameters estimated and δ = N
n . The δ term is a fudge factor

which is introduced to make the AIC’s comparable for ARIMA models which contain
different orders of differencing. The best model according to the AIC criterion, is the
one with the smallest AIC value.

BIC

The observed value of the Bayes Information Criterion is given by

BIC = −2δ logL+ 2κ log(n).
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As with the AIC, the model with the smallest BIC is selected. The best model chosen
with the BIC usually has fewer parameters than the AIC. For forecasting purposes, the
BIC is recommended.

Deterministic Component

The estimated values of µw and θ0 are given along with their standard errors. If
Sample Mean Correction was set to No, then the values are assumed to be µw = θ0 = 0
and no output is given here.

Estimated β Parameters

β̂ and se(β̂) are tabulated. The covariance matrix of β̂ is also given.

Residual Skewness

g1 =
1
n

∑
â3
t

( 1
n

∑
â2
t )

3
2

So g1 is calculated and is tested for being significantly different from zero using the
method of D’Agnostino, R.B. (1970). Sometimes the use a suitable Box-Cox transfor-
mation is useful in reducing the residual skewness.

Residual Kurtosis

g2 =
1
n

∑
â4
t

( 1
n

∑
â2
t )2
− 3

So g2 is calculated and is tested for being significantly different from zero. The large-
sample approximation g2 ∼ N(0, 24n−1) is used.

Tests For Heteroscedasticity

Two tests for changes in variance are performed. In the first test it is assumed that

var(at) ∝ eτzt−1(1),

where zt−1(1) denotes the one-step forecast of zt at time t − 1. This test is useful for
detecting changes in variance which depend on the level of the series. In the second test,

var(at) ∝ eτt.

So this test will pick up a trend in the variance over time. For each test, τ̂ , is given
along with its estimated standard error. If τ̂ is significantly different from zero, then a
variance change has likely occurred. These tests were developed by McLeod (1974) and
are described further in Hipel, Lennox and McLeod (1977).

Residual and Squared-Residual Autocorrelations
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The following are tabulated for l = 1, 2, . . .,

r̂l =
∑
âtât−l∑
â2
t

the standard error of r̂l

Ql = n
l∑
i=1

r̂2
l +

l(l + 1)
2n

r̂aa(l) =
∑
â2
ta

2
t−l∑
â4
t

Q
(aa)
l = n

l∑
i=1

r̂aa(l)2 +
l(l + 1)

2n

The standard errors of r̂l, l = 1, 2, . . . are calculated from equation (15) of McLeod
(1978) using estimated values of the β–parameters.

The modified portmanteau statistics, Ql and Q
(aa)
l are approximately χ2-distributed

on degrees of freedom l − kβ and l respectively, where kβ is the number of estimated
β-parameters (normally, kβ = p + q + ps + qs, unless some β-parameters have been
constrained to zero). This specific form of the modified portmanteau statistic was in-
troduced by Li and McLeod (1981) and its performance compares favourably with other
tests as shown in Kheoh and McLeod (1991).

The use of squared-residual autocorrelations has been discussed by McLeod and Li
(1984) and other researchers as well. Basically, these tests are useful in detecting nonlin-
earities as well as observational outliers.

Residual and Squared-Residual Seasonal Autocorrelations

The values tabulated as QAS and QAAS are defined respectively as

Ql,s = n
l∑
i=1

r̂2
si

and

Q
(aa)
l,s = n

l∑
i=1

r̂2
aa(si).

Assuming all β-parameters have been estimated and there is no seasonal residual
autocorrelation then

Ql,s ∼ χ2
(l−ps−qs)

and
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Q
(aa)
l,s ∼ χ

2
(l).

These provide more sensitive tests of model inadequacy due to seasonality.

Test For Periodic Correlation At Lag 1

Assuming s > 1 then we can write t = (r−1)s+m, where r = 1, 2, . . . , n′ corresponds
to year and m = 1, 2, . . . , s corresponds to the season (for example, month). Then

Q1(periodic) = n′
s∑

m=1

r2
m(1),

where,

rm(1) =
∑
âr,mar,m−1√∑
â2
r,m

∑
â2
r,m−1

.

Assuming model adequacy,
Q1(periodic) ∼ χ2

(s).

Transfer-Function Noise Estimation & Intervention Analysis

The transfer-function noise and intervention analysis model may be written

y
(λ)
t = µ+

k∑
i=1

ωi(B)
δi(B)

Bbix′i,t +
k+h∑
i=k+1

ωi(B)
δi(B)

Bbiξi′,t +Nt

where

y
(λ)
t =

(y + c)λt − 1
λ

, if λ 6= 0,

= log(yt + c), if λ = 0.

k is the number of transfer functions

h is the number of interventions

i′ = i− k denotes the i′-th intervention

ωi(B) = ω
(i)
0 − ω

(i)
1 B − · · · − ω(i)

vi (Bvi)

vi is the degree of the ωi(B) operator

δi(B) = 1− δ(i)
1 B − · · · − δ(i)

ui (Bui)

ui is the degree of the δi(B) operator

bi ≥ 0 is the delay parameter



62 Transfer-Function Noise Estimation & Intervention Analysis

and Nt is the dynamic-disturbance noise term which is generated by the ARIMA model

φ(B)Φ(Bs)∇d∇dss Nt = θ(B)Θ(Bs)at,

The i-th input series, xi,t, may be used directly or else the transformed input series
x′i,t,

x′i,t = xλi,t − x̄ if λ 6= 0,

= log(xi,t)− x̄, if λ = 0.

where x̄ denotes a possible mean correction. Usually a mean correction is applied to
each input series, but this term can be omitted if necessary.

Several types of intervention terms, denoted by ξi′,t, may be specified. Each inter-
vention series is specified by a parameter T which indicates the observation number at
which the intervention occurred. An additional parameter π may be used to specify a
seasonal or periodic intervention effect. If π is 0 or 1, no periodic effect is assumed. The
simplest intervention is a pulse intervention, ξt which is specified by

ξt = 0, t 6= T,

= 1, t = T.

Pulse interventions are useful for dealing with missing values or outliers. Perhaps, the
most common intervention type is a step intervention which is defined by

ξt = 0, {t < T} ∨ {t 6≡ 0 mod π},

= 1, otherwise.

The third type of intervention is a ramp intervention,

ξt = 0, {t < T} ∨ {t 6≡ 0 mod π},

= (t− T + 1), otherwise.

In all cases the exact intervention series used is tabulated on the output file.
Current limitations include h+ k ≤ 15, N ≤ 1000 and Nk ≤ 2000.
The regular autoregressive operator and regular moving-average components are:

φ(B) = 1− φ1B − . . .− φpBp

and
θ(B) = 1− θ1B − . . .− θqBq.

The seasonal period parameter is s. For example, s = 12, for monthly seasonal data.
The seasonal autoregressive operator and seasonal moving-average components are:

Φ(Bs) = 1− Φ1B
s − . . .− ΦpBsps



Transfer-Function Noise Estimation & Intervention Analysis 63

and
Θ(Bs) = 1−Θ1B

s − . . .−ΘqB
sqs .

The sequence at is assumed to be informationless white noise with mean zero and
variance σ2

a. In practice, it is often the case that to a good approximation,

at ∼ NID(0, σ2
a).

The parameter µ represents a deterministic component in the model. If d = 0 and
ds = 0 this deterministic component is simply the mean of zt. Otherwise, if d 6= 0 or
ds 6= 0 and if µ 6= 0 then there is a deterministic polynomial trend in t of degree D =
d+ dss which is included in the model. The trend coefficient term is

θ0 = φ(1)Φ(1)µ.

For convenience, we can think of the ARIMA parameters

φ1, . . . , φp, θ1, . . . , θq,Φ1, . . . ,Φps ,Θ1, . . . ,Θqs

in terms of the β–vector defined by

β =



φ1
...
φp
θ1
...
θq
Φ1
...

Φps
Θ1
...

Θqs


Note that the order of β–parameters is p, q, ps, qs which is the same as in the model or-
der specification.

Similarly with each transfer-function component, the associated β-vector is defined
by

βi =



δ
(i)
1
...
δ

(i)
vi

ω
(i)
1
...

ω
(i)
ui
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INPUT SCREEN

The input screen gives the basic ARIMA parameters and their default values as fol-
lows:

p = 0, ds = 0, q = 0, ps = 0, ds = 0, qs = 0, s = 0, λ = 1.0, c = 0.0.

In addition, there are several more prompts for input, viz.,

Constrain Some β-parameters to zero: No
If the setting is changed to Yes then another input screen will appear later which

prompts for the particular β-parameters to constrain to zero.

Estimation Algorithms
The following are available:

• McLeod approximate maximum likelihood. See McLeod (1977) and McLeod and
Salas (1983) for details. This provides a good approximation to exact maximum
likelihood and often uses significantly less computer time. This algorithm is the de-
fault.

• Ansley Exact maximum likelihood. See Ansley (1980) for details. In most cases
the only difference is that more computer time is used.

• Box-Jenkins unconditional sum of squares. This is given in the textbook by
Box and Jenkins (1975). It is provided for comparison but it is no longer recom-
mended .

• Box-Jenkins conditional sum of squares. Again, this is for interested user’s
only. Not recommended for general use.

Filename For Output
The output file is of the form fname.nnn, where fname is the filename of the input

time series data and nnn is a counter from 000 to 999. The counter starts at 000 and
increases by 1 for each new model which is fitted. This output file will be placed in the
MTS OUTPUT directory.

Output Residuals As A Time Series Data File: No
If Yes is selected, a data file containing ât, t = 1, . . . , n will be created in the MTS

DATA directory.

Output File For Input To The Forecasting Algorithm: No
If Yes is selected, a binary file containing all relevant information will be created in

the MTS INPUT directory. This file can be used as the input to the forecasting, simula-
tion and residual-autocorrelation functions.

OUTPUT

Sum of Squares
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This is the modified sum of squares,

Sm(β̂) = F
N∑

t=−∞
â2
t ,

where F is a factor which is determined from the estimated covariance determinant
and/or the Box-Cox transformation. In principle, F , is determined so that the log likeli-
hood is given by

logL = −n
2

log
Sm(β̂)
n

,

where n = N −D. The quantity Sm(β̂) is useful in constructing likelihood ratio tests.

Residual Variance

σ̂2
a =

1
n

N∑
t=−∞

â2
t .

AIC

The observed value of the Akaike Information Criterion is given by

AIC = −2 logL+ 2κ,

where κ is the number of parameters estimated. The best model according to this crite-
rion, is the one with the smallest AIC value.

BIC

The observed value of the Bayes Information Criterion is given by

BIC = −2 logL+ 2κ log(n).

The best model chosen with the BIC usually has fewer parameters than the AIC. For
forecasting purposes, the BIC is recommended.

Deterministic Component

The estimated values of µ and θ0 are given along with their standard errors. If Sam-
ple Mean Correction was set to No, then the values are assumed to be µ = θ0 = 0 and
no output is given here.

Estimated β Parameters

β̂ and se(β̂) are tabulated. The covariance matrix of β̂ is also given.

Transfer-Function Parameters
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The estimates of the transfer-function parameters and their standard deviations are
given.

Intervention Analysis Parameters

The estimates of the intervention analysis parameters and their standard deviations
are given.

Correlation Matrix of Transfer Function & Intervention Analysis Parameters

The order of the parameters in
the correlation matrix is: δ(i)

1 , . . . , δ
(i)
ui , ω

(i)
0 , ω

(i)
1 , . . . , ω

(i)
vi where i = 1, . . . , k + h. Note

that the estimated parameters of the Transfer Function and Intervention Analysis, τ̂ , is
uncorrelated with the estimated parameters in the noise component, β̂.

Lagrange Multiplier Test

Let
τ = (δ(1)

1 , . . . , δ
(1)
ui , ω

(1)
0 , ω

(1)
1 , . . . , ω

(1)
v1 , . . . , δ

(k+h)
1 , . . . , δ

(k+h)
ui , ω

(k+h)
0 , ω

(k+h)
1 , . . . , ω

(k+h)
vk+h ).

We test the null hypothesis: H0 : τ = 0 vs the alternative hypothesis τ 6= 0. The test
statistic we use is X2 = τ̂ ′est.var(τ̂)−1τ̂ which under H0 is χ2 distributed on k + h
df. This type of test is called a Lagrange Multiplier Test and the general properties of
such tests are reviewed in the article by Hosking (1983). The Lagrange multiplier test is
asymptotically equivalent to the likelihood ratio test.

Residual Skewness

g1 =
1
n

∑
â3
t

( 1
n

∑
â2
t )

3
2

So g1 is calculated and is tested for being significantly different from zero using the
method of D’Agnostino, R.B. (1970). Sometimes the use a suitable Box-Cox transfor-
mation is useful in reducing the residual skewness.

Residual Kurtosis

g2 =
1
n

∑
â4
t

( 1
n

∑
â2
t )2
− 3

So g2 is calculated and is tested for being significantly different from zero. The large-
sample approximation g2 ∼ N(0, 24n−1) is used.

Tests For Heteroscedasticity

Two tests for changes in variance are performed. In the first test it is assumed that

var(at) ∝ eτzt−1(1),
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where zt−1(1) denotes the one-step forecast of zt at time t − 1. This test is useful for
detecting changes in variance which depend on the level of the series. In the second test,

var(at) ∝ eτt.

So this test will pick up a trend in the variance over time. For each test, τ̂ , is given
along with its estimated standard error. If τ̂ is significantly different from zero, then a
variance change has likely occurred. These tests were developed by McLeod (1974) and
are described further in Hipel, Lennox and McLeod (1977).

Residual and Squared-Residual Autocorrelations

The following are tabulated for l = 1, 2, . . .,

r̂l =
∑
âtât−l∑
â2
t

the standard error of r̂l

Ql = n

l∑
i=1

r̂2
l +

l(l + 1)
2n

r̂aa(l) =
∑
â2
ta

2
t−l∑
â4
t

Q
(aa)
l = n

l∑
i=1

r̂aa(l)2 +
l(l + 1)

2n

The standard errors of r̂l, l = 1, 2, . . . are calculated from equation (15) of McLeod
(1978) using estimated values of the β–parameters.

The modified portmanteau statistics, Ql and Q
(aa)
l are approximately χ2-distributed

on degrees of freedom l − kβ and l respectively, where kβ is the number of estimated
β-parameters (normally, kβ = p + q + ps + qs, unless some β-parameters have been
constrained to zero). This specific form of the modified portmanteau statistic was in-
troduced by Li and McLeod (1981) and its performance compares favourably with other
tests as shown in Kheoh and McLeod (1991).

The use of squared-residual autocorrelations has been discussed by McLeod and Li
(1984) and other researchers as well. Basically, these tests are useful in detecting nonlin-
earities as well as observational outliers.

Residual and Squared-Residual Seasonal Autocorrelations

The values tabulated as QAS and QAAS are defined respectively as

Ql,s = n
l∑
i=1

r̂2
si
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and

Q
(aa)
l,s = n

l∑
i=1

r̂2
aa(si).

Assuming all β-parameters have been estimated and there is no seasonal residual
autocorrelation then

Ql,s ∼ χ2
(l−ps−qs)

and

Q
(aa)
l,s ∼ χ

2
(l).

These provide more sensitive tests of model inadequacy due to seasonality.

Periodic Autoregression Estimation

Let zt, t = 1, . . . , N denote a periodic time series with period s. Then the time in-
dex can be written t = (s − 1)r + m, where m = 1, 2, . . . , s and r = 1, 2, . . . , n. For
notational convenience, it is assumed in the description below that N = ns, although in
the program itself this assumption is not required, i.e. the length of the time series does
not have to be a multiple of the seasonal period. For seasonal monthly periodically cor-
related time series, s = 12, m represents the month and r represents the year. Thus the
t-th observation may be denoted by zt or zr,m. In general we define zr,m−` to be zt−`.

The periodic autoregression (PAR) of order (p1, p2, . . . , ps) may be written

φm(B)(zt − µm) = at,

where
φm(B) = 1− φm,1B − · · · − φm,pmBpm .

The backshift operator B on t shifts back one time unit. For example,

Bzt = zt−1 = zr,m−1, if m > 2,

= zr−1,s, if m = 1.

More generally, models involving a Box-Cox transformation can be fitted. So the
general form of the PAR model may be written

φm(B)(zλt − µm) = at.

Parameter Estimates
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The mean parameters, µm, m = 1, . . . , s, are estimated by the means

µ̂m = z̄m =
1
n

n∑
`=1

zr,m.

The parameters, (φm,1, . . . , φm,pm), are estimated from the equations,

φ̂m,1rm−i,0 + φ̂m,2rm−i,1 + · · ·+ φ̂m,pmrm−i,pm = rm−i,1, i = 1, . . . , pm,

where rm,` denotes the periodic autocorrelation (PRACF) for period m and lag ` defined
by,

rm,` =
cm,`√

cm,0cm−`,0
,

where
cm,` =

1
n

∑
r

(zr,m − µ̂m)(zr,m−` − µ̂m−`).

The residuals, ât, t = 1, . . . , N , are then obtained from

ât = φ̂m(B)(zt − µ̂m).

For diagnostic checking, the periodic residual autocorrelations, r(a)
m,`, defined by

r
(a)
m,` =

c
(a)
m,`√

c
(a)
m,0c

(a)
m−`,0

,

where
c
(a)
m,` =

1
n

∑
r

âr,mâr,m−`).

Note that the residual variances for each period are given by,

σ2
a(m) = c

(a)
m,0

Log Likelihood

The maximized log-likelihood function is may now be written as

logL = −n
2

s∑
i=1

log(σ2
a(m)).

AIC and BIC

The model order (p1, p2, . . . , ps) may be input by the user or chosen automatically
using either the AIC or BIC criterion. The AIC and BIC values are given by

AIC = −2 logL+ 2k,
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and
BIC = −2 logL+ 2k logN,

where k is the number of parameters estimated. Thus

k = 2s+
s∑
i=0

pi + Iλ6=1,

where
Iλ 6=1 = 1, ifλ 6= 1,

= 0, ifλ = 1.

The model order (p1, p2, . . . , ps) which minimizes the value of the AIC or BIC criterion
is determined.

Model Order Selection

In practice, we have found that using the AIC criterion results in too many param-
eters. So if an automatic criterion is used, we recommend the use of the BIC criterion.
In fact, Noakes, McLeod & Hipel (1985) found that the best approach was to choose the
model order by examining the periodic partial autocorrelation (PRPACF) and deter-
mining the most parsimonious adequate model. In practice this is done by choosing the
model order for the m-th period, pm, by finding the value of the PRPACF after which
the next value is not significantly different from 0. Then after the model order has been
chosen, the portmanteau statistics and residual autocorrelations for the model are exam-
ined. In most cases, pm = 0 or 1.

Residual Autocorrelation

The residual autocorrelations, ra, and their standard deviations, sd(ra), are tab-
ulated for lags 1, . . . , pm. Possible inadequacy is suggested if any of ra are much more
than twice sd(ra) in magnitude.

Squared Residual Autocorrelation

The squared-residual autocorrelations, raa, and their standard deviations, sd(raa),
are tabulated for lags 1, . . . , pm. Possible inadequacy is suggested if any of raa are much
more than twice sd(raa) in magnitude.

Portmanteau Tests

A portmanteau test for using the residual autocorrelations over lags 1, . . . ,M is cal-
culated separately for each period.
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Unit Root Test

Unit root tests provide a test of the null hypothesis that the time series may require
differencing. It should be noted that the null hypothesis being tested is that the time
series is homongenous nonstationary. If this null hypothesis is not rejected, it does not
mean that it is true or even that the best model is necessarily one involving differenc-
ing. For example, the stationary AR(1) model, zt = 0.8zt−1 + at with a series length of
n = 50 was simulated 10 times and it was found that the null hypothesis of homonge-
nous nonstationarity was only rejected at the 5% level 2 times. The Dickey-Fuller type
tests have also been criticized for their lack of power against fractional ARMA models
(Robinson, 1994). Whether to use differencing or not should also be based on nature of
the time series data as well as on the trace plot and the sample autocorrelation function.

Two types of unit root tests, the Dickey-Fuller and the Said-Dickey tests are avail-
able.

In the Dickey-Fuller test (Dickey and Fuller, 1979) the underlying model of the time
series zt, t = 1, . . . , n is assumed to be a stochastic difference equation of the form zt =
µ+ρzt−1+at where at is iid(0,σ2

a), |ρ| ≤ 1 and z0 = 0. This model includes the stationary
AR(1) as well as the ARIMA(0,1,0) as special cases. This model may be written in a
form like a simple linear regression as

yt = µ+ ρxt + at,

where t = 1, . . . , n − 1. xt = zt and yt = zt+1. A consistent estimator for ρ in the
stochastic difference equation model is given by the least squares regression estimator

ρ̂ =

n∑
t=2

(xt − x̄)(yt − ȳ)

n∑
t=2

(xt − x̄)2
,

where

x̄ =
1

n− 1

n∑
t=2

xt

and

ȳ =
1

n− 1

n∑
t=2

yt.

A t-like statistic for testing H0 : ρ = 1 is given

τ̂µ =
ρ̂− 1
σ̂τµ

,

where

σ̂τµ =
σ̂2
a

n∑
t=2

(xt − x̄)2
,
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where

σ̂2
a =

1
n− 3

n∑
t=2

â2
t ,

where
â2
t = yt − µ̂− ρ̂xt,

where µ̂ = ȳ − ρ̂x̄. The distribution of τ̂µ is quite complex and percentage points which
were derived by simulation are given by Fuller (1976, p.373). In practice the alternative
hypothesis is Ha : ρ < 1 so a one-sided test is used.

If H0 is accepted we can test for an ARIMA(0,2,0) model by differencing the origi-
nal series and applying the Dickey-Fuller test to the differenced series.

The Said-Dickey test (Said and Dickey, 1984) is more general than the Dickey-Fuller
test. In the Said-Dickey test the underlying stochastic difference equation model for
zt, t = 1, . . . , n is

zt = µ+ ρzt−1 +Nt,

where Nt is assumed to follow a ARMA(p, q) model. Then the ARMA(p, q) model is ap-
proximated by a high order autoregression, AR(p′). As a default p′ = 6 is suggested but
the user can choose a larger or smaller value if it is warranted. The parameters in the
resulting model are then estimated by a multiple linear regression technique. Said and
Dickey showed that the resulting t-like statistic for testing H0 : ρ = 1,

τ̂µ =
ρ̂− 1
σ̂τµ

,

has the same asymptotic distribution as for the Dickey-Fuller statistic. As before a one-
sided significance test is used. As before the test may be used on the differenced series
to test if d = 2 is needed.

Residual Autocorrelation Analysis of Fitted ARIMA Model

A plot of the residual autocorrelations and their 95% significance intervals is given
using the technique derived by McLeod (1978). This plot is sometimes useful in checking
model adequacy and choosing an improved model based on the lags or pattern of lags of
the correlations.

Theoretical Autocorrelation Function Of Fitted ARMA Model

Often it is of interest to compare the sample autocorrelation with that of a fitted
ARMA model. If there is a large discrepancy between these, it likely indicates model
inadequacy. For example, comparing a fitted AR(2) model of the annual sunspot series
(file SUNSPT.1) with the SACF we see their apparent sinusoidal amplitudes are quite
different. This inadequacy is backed up with careful use of other diagnostics.
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Theoretical Partial Autocorrelation Function Of Fitted ARMA Model

Just as a comparison between the fitted ACF and sample ACF is of interest in as-
sessing the goodness-of-fit of a model, so is a comparison between the fitted PACF and
sample PACF.

Theoretical Spectral Density Function Of Fitted ARMA Model

This provides an alternative method for spectral estimation.

Theoretical Impulse-Response Function Of Fitted ARIMA Model

This plot show ψk vs. k, where the ψk are defined by

ψ̂(B) =
θ̂(B)Θ̂(Bs)

φ̂(B)Φ̂(Bs)∇d∇dss
= 1 + ψ̂1B + ψ̂2B

2 + ψ̂3B
3 + . . . .

Theoretical Autocorrelation Function Of Fitted ARMA Model

The theoretical autocorrelation function of the stationary ARMA(p, q) component of
a fitted model is plotted.

The stationary component of a fitted ARIMA(p, d, q) model is defined as follows.
For notational simplicity we shall only consider the ARIMA model since the extension to
the SARIMA model is obvious. The general form of the ARIMA(p, d, q) model equation
for a data series, zt, t = 1, . . . , N , may be written,

φ(B)(wt − µw) = θ(B)at, (1)

where,
wt = ∇d∇dss z

(λ)
t ,

where, z(λ)
t indicates a Box-Cox transformation. Then eq. (1) defines the stationary

component.

Theoretical Partial Autocorrelation Function Of Fitted ARMA Model

The theoretical partial autocorrelation function of the stationary ARMA(p, q) com-
ponent of a fitted model is plotted.
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Theoretical Spectral Density Function Of Fitted ARMA Model

The theoretical spectral density function of the stationary ARMA(p, q) component
of a fitted model is plotted.

Theoretical Impulse Response Function Of Fitted ARMA Model

The theoretical impulse response function of the ARIMA(p, d, q) or
SARIMA(p, d, q)(ps, ds, qs)s model is plotted. In the ARIMA(p, d, q) case the impulse
response form the model is written

zt = µ(t) + ψ(B)at,

where µ(t) is the deterministic part and

ψ(B) =
∞∑
k=0

ψkB
k

=
θ(B)
∇dφ(B)

.

The ψk are computed recursively using the equation

φ(B)∇dψk = −θ′k,

where
θ′k = θk, for k = 1, . . . , q

= −1, for k = 0,
= 0, otherwise,

and B is the backshift operator on k. The extenstion to the SARIMA case is obvious.

Theoretical Inverted Form Coefficients Of Fitted ARMA Model

The theoretical coefficients in the inverted form of the ARIMA(p, d, q) or
SARIMA(p, d, q)(ps, ds, qs)s model are plotted. In the ARIMA(p, d, q) case the inverted
form of the model is written

π(B)zt = µ(t) + at,

where µ(t) is the deterministic part and

π(B) = 1−
∞∑
k=1

πkB
k

=
∇dφ(B)
θ(B)

.
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The πk are computed recursively using the equation

θ(B)∇dπ′k = φ′k,

where
φ′k = φk, for k = 1, . . . , p

= −1, for k = 0,
= 0, otherwise,

π′k = πk, for k ≥ 0,
= −1, for k = 0,

and B is the backshift operator on k. The extenstion to the SARIMA case is obvious.

Spread-Level Diagnostic Check

Spread-level analysis enables one to examine the assumption of constant variance in
a data series zt, t = 1, 2, . . . , n and get a rough estimate of the best Box-Cox transforma-
tion,

z
(λ)
t =

zλt − 1
λ

, if λ 6= 0,

= log(zt), if λ = 0,

to stabilize the variance. Spread-level analysis is based on the theory of variance stabiliz-
ing transformations developed by Bartlett (1947).

Let µt and σzt denote the local mean and standard deviation of zt at time t. If the
standard deviation depends on the mean so that

σzt ∝ µ
p
t ,

then using a Taylor series approximation it can be shown that

σ
z

(λ)
t
∝ µλ+p−1

t .

In order to achieve constant variance, we should choose λ = 1− p.
In the diagnostic plot, we plot the log of the absolute residual vs log of the abso-

lute fitted value. A line is fitted using the robust bisquare method. Then one minus the
slope of this line estimates λ. A 90% confidence interval is obtained by bootstrapping.
using the BCa method of Efron and Tibshirani (1993).

Likelihood Ratio Test

In diagnostic checking, a model is sometimes overfit by introducing one or several
extra parameters. If the original model is denoted by ω and the model containing some
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additional parameters is denoted by Ω. Sometimes Ω is called the full model and ω is
called the reduced model.

To test the adequacy of the reduced model ω we can use a likelihood ratio test. The
likelihood-ratio test statistic is given by

X = −2 log
L(ω)
L(Ω)

,

where L(ω) and L(Ω) denote the maximized value of the likelihoods under each model.
It may be shown that

X = (
S(Ω)
S(ω)

)
n
2 ,

where S(Ω) and S(ω) denote the residual sum-of-squares functions. S(Ω) and S(ω) are
tabulated on the output of the ARIMA Estimation and Transfer-Function-Noise and
Intervention Analysis functions.

Under the assumption of model adequacy of the ω model, X ∼ χ2
k, where k is the

number of additional parameters in the enlarged model Ω. Notice that

k = dim(Ω)− dim(ω),

where dim(Ω) and dim(ω) denote the number of parameters in each model.
For example, if k = 1, so one additional parameter is included then we can reject at

the 1% level the original model is X > 6.635.
The input screen prompts for S(Ω) and S(ω) and the number of parameters in each

model. The output shows X and its observed significance level.

View File in OUTPUT Directory

This utility is used to view or print a text file in the OUTPUT directory. Time se-
ries data files may be viewed with the MTS screen editor.
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Forecast A Fitted ARIMA Model

The purpose of this function is to produce optimal forecasts for any ARIMA mod-
els which have been fitted by the function ARIMA Estimation. Consult the section of the
reference manual entitled “ARIMA Estimation” for the definition of the ARIMA model
and the basic notation. A plot of the forecasts, prediction interval and observed values is
produced. In addition, the minimum-mean-square-error forecasts and their prediction in-
tervals may also be tabulated. The basic notions of minimum-mean-square-error forecast
and the prediction intervals are summarized in the remainder of this section.

The optimal forecast of zn+` given data z1, . . . , zn and a fitted ARIMA model is de-
noted by zn(`), where n is said to be the forecast origin and ` is the forecast lead time.
The optimal forecast zn(`) in the since of minimum-mean-square-error is the conditional
expectation and when there is no Box-Cox transformation then it may be obtained re-
cursively by using

zn(`) = θ0 + ϕ1zn(`− 1) + . . .+ ϕp∗zn(`− p∗) + θ∗1 < at−1 >t + . . .+ θ∗q∗ < at−q∗ >t,

where,
ϕ(B) = ∇d∇dss φ(B)Φ(Bs),

θ∗(B) = θ(B)Θ(B),

< as >t = as, when s ≤ t,

= 0, when s > t,

and
zt(`− i) = zt+`−i when i ≥ `.

The ϕ’s and θ∗’s are referred to as the generalized autoregressive and moving-average
coefficients.

Prediction intervals with coverage probability α for the forecasts are given by

zn(`)∓ P(1− α

2
)
√

(V (`),

where V (`) is the variance of the forecast error and P(α) is the inverse normal cumula-
tive distribution function. Some typical values are α = 0.95, 0.9, 0.75, 0.5 which corre-
spond respectively to the values of P(1− α

2 ) = 1.96, 1.64, 1.15, 0.674.
The error in the lead ` forecast, denoted by, an(`) is given by

an(`) = zn+` − zn(`)

=
`−1∑
i=0

ψ`an+`−i.
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Thus the variance V (`) = var(an(`)) is given by

V (`) = σ2
a

`−1∑
i=0

ψ2
i ,

where,

ψ(B) =
∞∑
i=0

ψiB
i,

=
θ∗(B)
ϕ(B)

.

The ψ’s are referred to as the coefficients in the random shock form of the model.
In the case where λ 6= 1, i.e. the data have been transformed with a Box-Cox trans-

formations, the minimum-mean-square-error forecasts needs a slight adjustment. Data
which have been transformed (for example by taking logs) are said to be in the trans-
formed domain. The original data is said to be in the untransformed domain. For most
forecasting situations we are most interested in the forecasts in the untransformed do-
main.

Forecasts and their prediction intervals are first produced for the transformed do-
main as described above. Next the inverse Box-Cox transformation,

zt = (z(λ)λ+ 1)
1
λ − c,

= ez
(λ)
− c,

is applied to the forecasts and their prediction intervals in the transformed domain
to obtain estimates in the untransformed domain. The forecasts thus produced in
the untransformed domain are said to be naive forecasts since they are not the exact
minimum-mean-square-error forecast but rather an approximation to it. Notice that
the inverse Box-Cox transformation is valid for all zt when λ = 0 but is only valid
for zt > −1/λ when λ 6= 0. It is possible, although extremely rare in practice, that
zt > −1/λ when λ 6= 0 so the inverse transformation can not be made. In this case
a warning message is given and the inverse values are replaced by the smallest feasible
value, i.e. −c.

The exact minimum-mean-square-error forecast in the untransformed domain
is determined from the fact that its transformed value follows a Normal distribution
with expected value z(λ)

n (`) and variance V (`). The expected value of the inverse Box-
Cox transformed value is the desired minimum-mean-square-error forecast. Thus the
minimum-mean-square-error forecast, zt(`), is given by

zt(`) =
1√

2πV (`)

∞∫
−∞

(λy + 1)
1
λ e−

1
2

(y−zt(`))2
V (`) dy, λ 6= 0,

= ez
(λ)
t (`)+ 1

2V (`), λ = 0.
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The required integral may be determined numerically by Hermite polynomial integra-
tion.

In practice, it is found that the minimum-mean-square-error forecasts are slightly
smaller than the naive forecasts. Also, studies with real data have shown that these
minimum-mean-square-error forecasts do perform better than the naive forecasts.

Comparison Of Forecast And Actuality

It sometimes happens that we have knowledge that a possible change or intervention
occurred at some point in a time series. For example, a new pollution abatement reg-
ulation which reduces the amount of phosphates in detergents could be expected to re-
duce the level of phosphorous concentration in river water quality time series. Similarly
seat-belt legislation, may be expected to reduce the number of fatal car accidents. In
fact there are numerous situations with environmental and socio-economic series where
it may be suspected that a known change may have caused a change in the level of the
data. A very simple and intuitive method for examining the statistical significance of the
possible change is to compare the actual data after the intervention with the forecasts
for the data based on a model fit prior to the intervention.

More exactly, suppose that the series z1, . . . , zT represents the data before the in-
tervention has occurred and that we have data zT+1, . . . , zT+L after the intervention has
occurred. Then we fit a suitable ARIMA model to the z1, . . . , zT using the ARIMA Es-
timation function and save the output file in the FITS directory. Next we select the
function Comparison Of Forecast And Actuality and input the fitted model from the
FITS directory and also the second time series zT+1, . . . , zT+L as a separate data file in
the DATA directory.

To test the statistical significance of the discrepancy between these forecasts and
actual values, Box & Tiao (1976) proposed the test statistic

Q = ζ ′Υ−1ζ,

where ζ ′ = (zT+1 − zT (1), . . . , zT+L − zT (L))′, and Υ is the covariance matrix of the
forecast errors. Under the null hypothesis of no intervention effect, Q ∼ χ2

L. In fact, it
can be shown that Q can more easily be obtained using the following result,

Q =
1
σ2
a

L∑
i=1

aT+i−1(1)2,

where aT+i−1(1) = zT+i − zT−i+1(1). The output tabulation includes these one-step
forecasts and forecast errors and the value of Q and its significance level.

Note that the Box-Tiao statistic given above is essentially equivalent to the Janus
quotient proposed by Gadd and Wold (1964). The Janus, J , coefficient is defined as the
ratio of the mean square error of the one-step ahead forecast errors in the prediction pe-
riod divided by the residual variance of the fitted model. Hence,

J =
Q

L
.
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The plot shows the forecasts at origin time T for lead times i = 1, . . . , L, i.e.,
zT (1), . . . , zT (L), and the actual values zT+1, . . . , zT+L. Notice that this is different from
the optional tabulation which just shows the one-step forecast and errors.

Forecast A Fitted Periodic Autoregression

Not available in current version.
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Simulate An ARIMA Model

This function can simulate a time series which can be transformed via a Box-Cox
transformation to normality or a time series with innovations from the Johnson curve
family of distributions (see Appendix 5). The user can select from the menu whether to
use the normal distribution or a Johnson curve distribution. If the Johnson curve is se-
lected, a further menu prompts for the values of the skewness coefficient, g1 and kurtosis
coefficient, g2.

Let z1, . . . , zN denote the time series to be simulated. Then zt satisfies the equa-
tions:

φ(B)Φ(Bs)(wt − µw) = θ(B)Θ(Bs)at,

where,
wt = ∇d∇dss z

(λ)
t ,

z
(λ)
t =

(z + c)λt − 1
λ

, if λ 6= 0,

= log(zt + c), if λ = 0,

φ(B) = 1− φ1B − . . .− φpBp,

θ(B) = 1− θ1B − . . .− θqBq,

Φ(Bs) = 1− Φ1B
s − . . .− ΦpBsps

and
Θ(Bs) = 1−Θ1B

s − . . .−ΘqB
sqs .

It is assumed that
at ∼ NID(0, σ2

a).

The first step in the simulation is to generate the a’s. The random number gen-
erator, Superduper, developed by Marsaglia (1975) is used to generate uniform (0,1)
random variables. The structure of Superduper is described in Appendix 6. Note
that Superduper requires two integer seed values. In the menu prompt the first seed
ISEED refers to the seed for the congruential part of Superduper and JSEED refers
to shift-register part (see Appendix 6for details). The current values of these seeds
are stored in an ASCII file SEEDS.RNG. Next the generated uniform random vari-
ables are transformed to NID(0, 1) via the Marsaglia polar transformation. Then for
t = D + q + 1, . . . , N the a’s are obtained by multiplying by σa.

The next step is to generate the wt’s. This is done by first generating random initial
values of (w1+D, . . . , wp+D, a1+D, . . . , aq+D), where D = d+ sds. These initial values are
generated using the multivariate normal distribution with the correct means and covari-
ance matrix. Then the remaining wt’s are obtained recursively.

After this the transformed sequence z(λ)
t is calculated by integrating the wt’s using

user-supplied starting values z1, . . . , zD. These starting values are first transformed via
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the Box-Cox transformation. The starting values may be supplied either using values at
the beginning or end of another time series data file or may be input directly.

Finally, an inverse Box-Cox transformation is applied to generate the final simulated
series. Sometimes, data can be generated for which the inverse Box-Cox transformation
is not valid. In this case a warning message is produced and the invalid data values are
replaced by the smallest valid values, i.e. −CONS, where CONS is the parameter in the
original Box-Cox transformation.

The series is output for t = Nω+1, . . . , N , where Nω is the number of values allowed
for warm-up. Since an exact procedure is used for stationary series, one should choose
Nω = 0 when D = 0.

Up to 1,000 time series replications can be simulated in one run. The simulations
are put in files SIM000.1, SIM001.1, etc. in the DATA directory.

Another option allows an optional time series plot of the series to be done immedi-
ately after it is generated.

Simulate A Fitted ARIMA Model

This works similar to the function Simulate An ARIMA Model. The main difference
is that the parameters from a fitted ARIMA model can be automatically fed into the
function. Either a normal or Johnson curve distribution may be selected for generating
the white noise.

There is one major difference however. In the case of a fitted model, the user can
select one of three different options for the starting values:

1. Random Starting Values. In this case the starting values are chosen using the cor-
rect joint distribution of the initial time series values and their innovations.

2. Starting Values From Start Of Series. In this case the values of the time series and
estimated innovations at the start of the series are used.

3. Starting Values From End of Series. The most recent time series values and their
innovations are used to start the simulation. This technique is useful if the purpose
of the simulation is to show possible future realizations of a particular time series.
If a Box-Cox transformation is used in the modelling of the original data then an in-

verse Box-Cox transformation must be applied if it is desired to simulate the data in the
untransformed domain. Sometimes, data can be generated for which the inverse Box-
Cox transformation is not valid. In this case a warning message is produced and the in-
valid data values are replaced by the smallest valid values, i.e. −CONS, where CONS is
the parameter in the original Box-Cox transformation.
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MTS Command Editor

The Command Editor can be used to perform many editing and other manipula-
tions of time series. The basic capabilities are now discussed.

(1) Extracting a Subset. Often it is desired to extract a portion of the such as all
values corresponding to say the month of May in a time series of monthly values.
This can be done by choosing a Systematic Sample with k = 1 and dropping the
first 4 values from the beginning of the series.

Another common situation, is to look a just a portion of the series. Say from t = n1
to t = n2.

(2) Reversing the Chronological Order of a Time Series. For example, sometimes
one wishes to provide estimates of the past values. This could be done by modelling
and forecasting the reversed time series.

(3) Converting the Units of Measurement. Sometimes the series is in one unit of
measurement (example, English system) and we wish to convert to metric. This can
be effected by a suitable location-scale transformation,

z′t = α+ δzt.

(4) Recode a Data Value. Values such as missing value codes or detection limits can
be altered.

(5) Numeric Formatting. The series may be re-formatted in either exponential or
fixed form. This is sometimes convenient when the data file is to be listed in a table
in a report.

(6) Concatenation. Time series data files can be concatenated to produce longer se-
ries or bivariate series data files. By repeatedly using the command editor, trivari-
ate series could be also be formed.

Aggregate Time Series

This utility is used to convert seasonal data to non-seasonal data by converting, say,
the monthly series to an annual series either by taking the total or mean of the monthly
values.

ARIMA Filter

Given a data sequence xt, t = 1, . . . , N , an ARIMA filter transformation is applied
to produce the filtered output sequence βt, t = 1, . . . , N . Thus,

xt
ARIMA filter−→ βt.
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The general ARIMA(p, d, q)(ps, ds, qs)s filter for a data series, xt, t = 1, . . . , N , may be
written,

φ(B)Φ(Bs)(wt − µw) = θ(B)Θ(Bs)βt,

where,
wt = ∇d∇dss x

(λ)
t ,

and

x
(λ)
t =

(x+ c)λt − 1
λ

, if λ 6= 0,

= log(xt + c), if λ = 0.

The regular autoregressive operator and regular moving-average components are:

φ(B) = 1− φ1B − . . .− φpBp

and
θ(B) = 1− θ1B − . . .− θqBq.

The seasonal period parameter is s. For example, s = 12, for monthly seasonal data.
The seasonal autoregressive operator and seasonal moving-average components are:

Φ(Bs) = 1− Φ1B
s − . . .− ΦpBsps

and
Θ(Bs) = 1−Θ1B

s − . . .−ΘqB
sqs .

To start the recursive calculation of αt, initial values of αt are set to 0.0.
The principal use of this calculation is in the input prewhitening method of model

identification of single input transfer-functions (see Chapter 11 of Box & Jenkins, 1975).
Some other applications include: calculation of residuals, prefiltering before spectral
analysis, simulation of explosive or non-invertible time series.

Deseasonalize a Trend-Free Time Series

Let zt = zr,m denote a seasonal time series with observation numbers t = 1, . . . , n
and seasonal period s. The notation zr,m means we think of the t-th observation as oc-
curring in the r-th year and m-th season. Thus t = s(r − 1) + m. If the seasonal means
µm and seasonal standard deviations σm of the series were known, the deseasonalized
series is given by,

z̃r,m =
zr,m − µm

σm
.

When the seasonal variance is the same for each month, then it is simpler to use the de-
seasonalized series given by,

z̃r,m = zr,m − µm.
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In practice, estimates of µm and σm are used. The simplest estimates are just the
sample estimates given by

µ̂m =
1
nm

nm∑
r=1

zr,m,

and

σ̂m =

√√√√ 1
nm

nm∑
r=1

(zr,m − µ̂m)2,

where nm is the number of time series observations occurring in the m-th month.
One way of reducing the number of parameters, 2s in total — counting seasonal

means and standard deviations, is to fit a harmonic regression. This is especially useful
for large values of s. In this approach the seasonal estimates µ̂m and σ̂m are regressed
on cos(ωjm) and sin(ωjm), where j = 1, . . . , J is the harmonic component and

ω =
2π
s

denotes the fundamental frequency.
For brevity we will only discuss the harmonic regression for the seasonal means µ̂m

since the details for the seasonal standard deviations are virtually the same. When J is
chosen equal Fs where

Fs =
1
2
s, if s is even,

=
1
2

(s− 1), if s is odd,

then the full harmonic regression for the seasonal means is given by

µ̂m = A0 +
Fs∑
j=1

{Aj cos(ωj) +Bj sin(ωj)}

where

A0 =
1
s

s∑
m=1

µ̂m

and for j = 1, . . . , Fs,

Aj =
2
s

s∑
m=1

µ̂m cos(ωjk)

and

Bj =
2
s

s∑
m=1

µ̂m sin(ωjk).
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Notice that if s is even, BFs = 0 and

AFs =
s∑

m=1

(−1)j µ̂m.

In the case of the full harmonic regression, there is a perfect fit so the coefficient of de-
termination, R2, which indicates the fraction of variation accounted for the model is
100%. The number of parameters required can be reduced by choosing the number of
harmonic terms, J , to be less than Fs. In this case the estimated seasonal means are
given by,

µ̃m = A0 +
J∑
j=1

{Aj cos(ωj) +Bj sin(ωj)}.

Note that since the independent variables are orthogonal the regression coefficients A0,
Am and Bm for m = 1, . . . , J are identical to the coefficients in the full harmonic regres-
sion. It can be shown that the coefficient of determination for this harmonic regression
based on the first J harmonics is given by

R2
J =

s

2

J∑
j=1

(A2
j +B2

j ).

Our program tabulates the value of R2
J for J = 1, . . . , Fs so the user can decide the num-

ber of terms needed in the harmonic regression. Generally an adequate number of terms
will produce a coefficient of determination in excess of 90%. The same procedure can be
used to obtain the fitted standard deviations σ̂m.

The precise seasonal adjustment is determined by the parameters the user selects
for the Number of Harmonic Components for the mean and standard deviation, say Jµ
and Jσ. The deseasonalized series is given by,

z̃r,m =
(zr,m − µ̃m)

σ̃m
,

or when Jσ = 0 by
z̃r,m = zr,m − µ̃m.

Algebraic Combination Of Two Series

Given two series xt and yt, we may be interested in various combinations such as
zt = 1

2 (xt + yt) or zt = xt − yt. For example, in water quality time series we may be
interested in the total load, zt, given the concentration, xt, and the instantaneous dis-
charge, yt. This would be given by zt = xtyt. As another example, given the original
data, xt, and the residuals, yt, from some model we may wish to calculate the fitted val-
ues zt = xt − yt. As a final example, given the total unemployment series, xt, and the
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total labor force, yt, we may wish to calculate the percentage unemployment given by
zt = 100.0xt ÷ yt.

In general, let
ut = ∇d

(x)
∇
sd

(x)
x

x
(λx)
t ,

where,
ut is the transformed data sequence,
λx is the exponent in the Box-Cox transformation,
∇x is the first differencing operator,
d(x) is the differencing parameter,
∇sx is the seasonal differencing operator,
sx is the seasonal period,
d(x)s is the seasonal differencing parameter,.
and let

vt = ∇d
(y)
∇
sd

(y)
y

y
(λy)
t ,

where,
ut is the transformed data sequence,
λy is the exponent in the Box-Cox transformation,
∇y is the first differencing operator,
d(y) is the differencing parameter,
∇sy is the seasonal differencing operator,
sy is the seasonal period,
d(y)s is the seasonal differencing parameter.

Then the general form of the algebraic combination of xt and yt is given by

zt = (αxut+`) f (αyvt+k),

where αx and αy are user-specified constants, ` and k are user-specified lags, and f de-
notes one of the user-specified binary operations: addition (+), subtraction (−), multi-
plication (×) or division (÷).

Difference Or Integrate A Time Series

Differencing and integrating a time series are inverse operations. They are not pre-
cisely inverse operations however since in differencing a time series we lose the initial val-
ues in the series and in integrating a time series we must start with certain initial values.

Given an observed time series zt, t = 1, . . . , n the differenced series wt, t =
d+ 1, . . . , n satisfies the equation

wt = ∇dzt
where ∇ = 1 − B is the backward difference operator which is equal to the identity
minus the backshift operator B and d is a nonnegative integer which indicates the degree
of differencing. The simplest and best algorithm for differencing a time series involves
applying first differences d times. The length of the resulting series is n− d.
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Given an observed time series zt, t = 1, . . . , n the integrated series ut, t = 1 −
d, . . . , n satisfies the equation

ut = Sdzt

where S = ∇−1 = 1 + B + B2 + B3 + . . . is the backward summation operator which is
equal to the inverse of the backward differencing operator. Notice that when differencing
the series we lose d initial values whereas when integrating with d ≥ 1 we must start
with d initial values u0, . . . , u1−d. The following algorithm produces an integrated time
series of length n+ d:

Step 0: Set i← 1.
Step 1: For t = 1, . . . , n, set u′t ← ut
Step 2: For t = 0, . . . , 1− d− i, set u′t ← ∇d−iut.
Step 3: For t = 1, . . . , n, set u′t ← u′t + u′t−1
Step 4: Increment i← i+ 1
Step 5: If i ≤ d, return to Step 2. Otherwise continue.
Step 6: For t = 1, . . . , n, set ut ← u′t.

Both the differencing and integration algorithms extend directly to the more general
case where seasonal differencing and integration are used. That is in the case of seasonal
differencing we have

wt = ∇dss ∇dzt,

where ∇s = 1 − Bs and s denotes the seasonal period and ds denotes the degree of
seasonal differencing. Similarly in the case of seasonal integration,

ut = Sdss Sdzt,

where Ss = 1 +Bs +B2s + . . ..
In the case of integration the D = d + sds initial values are taken from the be-

ginning of the input time series data file. If necessary you can concatenate the initial
values, u0, . . . , uD with the data series z1, . . . , zn using the Command Editor.

Box-Cox Or Inverse Box Cox Transformation

The Box-Cox transformation of zt, t = 1, . . . , n is given by

z
(λ)
t =

(zt + c)λ − 1
λ

, if λ 6= 0,

= log(zt + c), if λ = 0,

where c is some constant. The Box-Cox transformation is only defined when zt + c > 0
for all t = 1, . . . , n.
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Its inverse is given by

z
[λ]
t = (λzt + 1)

1
λ − c, if λ 6= 0,

= ezt + c, if λ = 0,

where c is some constant. Notice that the inverse Box-Cox transformation is valid for all
zt when λ = 0 but is only valid for zt > −1/λ when λ 6= 0.

An error message is produced for an invalid transformation.
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Data Screen Editor and Viewer

The screen editor may be used to modify an existing file create a new file or simply
to view a data file. When you are prompted for Filename For Output, set this to the
name of the file you wish to save after the editing session is complete. It may be set to
the same name as an existing data file, in which case the file will be overwritten after the
editing session has been complete. You are queried Edit An Existing Dataset. Reply
Yes if you wish to modify or edit an existing data file and No if the file you wish to enter
a new data file using the editor.

The default name for the Filename For Output is left blank. If this is not changed,
then no output will be generated from the editor. This setting should be used if you just
want to look at the data file.

Key Code Function
→ move right one character
← move left one character
↑ move up one line
↓ move down one line

HOME move to beginning of current line
END move to end of current line

PAGEUP move up one screen
PAGEDOWN move down one screen

ALT—S search for text string
ALT—R search for and replace text string
ALT—M turns marking mode on if its off;

turns marking mode off if its on;
GREYPLUS copies the marked block to the cut buffer

GREYMINUS cuts the marked block to the cut buffer
INSERT pastes the cut buffer and the current cursor location
DELETE delete the marked block if there is one else delete single char

In addition to these commands, the contents in the window can be scrolled using
the scroll bar on the right of the text window. At present the Screen Editor can handle
files up 9000 characters (or about 100 lines).

Data Documentation Editor & Viewer

DOC is a subdirectory of the current DATA directory which contains documenta-
tion files for each dataset in the current DATA directory. Initially, the documentation
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file for a particular dataset may contain only the title string from the original data file.
As the analysis of a particular dataset proceeds, the analysis may wish to note some
of the results in this file. Also, special features of the data or work done by other re-
searchers can be noted in this file. The documentation file has the same name as the
dataset file. This function allows one to examine and up-date the documentation file.

Describe DATA Directory

For the current DATA directory, a list showing all the file names and the first line,
which is normally the title string, is shown. This list of files and titles is saved in the
current DATA directory in a file named DESCRIBE.

View or Edit DATA Directory SUMMARY

It is often convenient to give a brief description of the contents of a DATA directory.
For example, the DATA directory may contain a collection of time series all from a cer-
tain project or textbook. The DATA directories supplied with the MTSpackage all have
such summaries. For user created DATA directories, the DATA directory SUMMARY
will initially be empty. The contents of the DATA directory SUMMARY are stored in a
file named SUMMARY in the DATA directory itself.

Set New DATA Directory

The standard default DATA directory when the MTSpackage is installed is called
DATA and it is always a subdirectory of the current working directory. The user may
change his DATA directory to any directory located anywhere on in their computer sys-
tem, although the use of floppy drives or optical drives, is not recommended as these
drives would be too slow. If an invalid drive is entered in the function, the DATA direc-
tory reverts to the original default DATA directory located off the current working di-
rectory. Any change in the DATA directory will be saved and remain effective from the
current session to the next. The DATA directory is saved in the file MTS.CFG which is
located off the current working directory.

Changing the current DATA directory does not in any way affect or change the sub-
directories OUTPUT, INPUT and FITS which remain the same. These directories are
always subdirectories off of the current working directory.

A similar facility has not been provided by the OUTPUT, INPUT and FITS subdi-
rectories since you can conveniently manipulate the contents of these subdirectories by
using the Delete, Copy or Move Files utility.

View File in OUTPUT Directory
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This utility is used to view or print a text file in the OUTPUT directory. Time se-
ries data files may be viewed with the MTS screen editor. For convenience this utility is
also included submenu for model estimation.

Delete, Copy or Move Files

This is a general utility which can be used for cleaning up directories and also back-
ing important files to another directory or drive. Files may be deleted or copied or
moved. Moving a file is the same as copying it to a new directory and deleting it in the
old one. A convenient interface is provided so that the operations can be performed si-
multaneously on selected files in any given directory.

Conversion From Column Format To Row Format

This function is useful for importing data from Spreadsheets to MTS . The input
file is assumed to contain the data by column. So the first column corresponds to the
first time series, the second column to the second time series, etc. No title string on the
input is assumed since the menu prompts for the title for the output file. The extension
of the input file must be .DAT. An output file with extension .k is produced where k is
the number of columns on the .DAT file.

For example, an input .DAT file which looks like this:
200.10 10.01
199.50 10.07
199.40 10.32
198.90 9.75
............................
............................
............................
............................
............................

could be converted to an MTS data file with extension .2 which looks like this:
SERIES M, SALES DATA WITH LEADING INDICATOR
200.10 199.50 199.40 198.90 ...
................................
10.01 10.07 10.32 9.75 ...
................................

Conversion From Row Format To Column Format

Spreadsheets and other statistical packages usually store variables by columns.
However, since the most frequent data type in MTS are univariate time series the most
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natural representation in MTS is by rows. This utility function is provided to make it
convenient to export MTS data files to other Spreadsheets and other packages.

This conversion utility can convert an MTS data file or files to a file with the vari-
ables arranged by column. For example the bivariate data file SERIESM.2 which looks
like this:
SERIES M, SALES DATA WITH LEADING INDICATOR
200.10 199.50 199.40 198.90 ...
................................
10.01 10.07 10.32 9.75 ...
................................
Could be converted to a file which looks like this:

200.10 10.01
199.50 10.07
199.40 10.32
198.90 9.75
............................
............................
............................
............................
............................
The data files to be converted can be a series of MTS data files with extensions .1,

.2, etc. The number of columns on the output file is then the sum of the extensions of
the input files. For example, a data file with extension .1 could be combined with an-
other file containing residuals (which also has extension .1) to produce an output file
with two columns. The output file normally has extension .DAT and is placed in the
DATA subdirectory. There is no title string included on the .DAT output file.
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Appendix 1: Robust Locally Weighted Regression

Introduction and Summary

This methodology was introduced by Cleveland (1979) for modelling and smoothing
bivariate data (xt, yt), t = 1, . . . , n. This technique provides a general and flexible
nonlinear family of models to fit bivariate data. Basically, the model may be written as

yt = αt + βtxt + εt.

The parameters αt and βt are estimated using a locally weighted regression (loess) tech-
nique which puts higher weight on data values close to t than those data values which
are further away. The specific weighting used is determined by the smoothing parameter
f which the user selects. The parameter f indicates the fraction of data used in the pro-
cedure. If f = 0.5, only half the data is used in the estimation and in effect, a moderate
amount of smoothing is done. On the other hand, if f = 0.8, then eighty percent of the
data is used and much more smoothing is done. In all cases however, locally weighing is
used which weights the data close to t more than that further away.

The estimation procedure is not least-squares but rather a robust method which
guards against outliers. A plot of the fitted values

ŷt = α̂t + β̂txt

versus xt is useful for summarizing the relationship between yt and xt. The Bivariate
Scatter Plot function has an option for performing robust loess smoothing. In checking
the goodness of fit of a robust loess regression it is useful to look at the usual regression
residual plots, viz. (i) residual vs. observation number, (ii) residual vs. fitted value, (iii)
residual vs. explanatory variable and (iv) residual normal probability plot. As pointed
out by Cleveland, it may be preferable to use the absolute residual vs. fitted value in-
stead of plot (ii) with a robust loess smooth to check for trends or other systematic fea-
tures.

Another useful application of robust loess is to smoothing a time series. Here yt =
zt and xt = t. Robust loess smooths with a smoothing parameter of around f = 0.8 are
useful in looking for trends in environmental series (McLeod, Hipel & Bodo, 1990). The
Robust Loess Smooth function in MTS calculates and plots the robust loess smooth of a
time series.

Another application is to the diagnostic checking of fitted models (regression or
ARIMA). In diagnostic checking it is often recommended to look at a plot of the fitted
values versus the residual. As pointed out by Cleveland, this can be misleading when
the data is concentrated around the high values. A better technique in this situation is
to plot the absolute residuals versus fitted values and look for a trend using the robust
loess smooth. This can also be done in MTS by importing the fitted values and residuals
as two separate files. Then use the MTS Command Editor to take the absolute values of
the residuals. Next select the Bivariate Scatter Plot. Input first the residuals, then
the fitted values data series and then select the robust loess option.
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When n > 100, the computations can be lengthy. In this case one can take a short-
cut in the calculations by computing the estimates α̂ and β̂ at values separated by at
least δ units. The parameter δ can be selected by the user although it is recommended
to use the default values which are shown on the menu. These default values are deter-
mined as follows:

if n ≤ 100, δ = 0,
if n > 100, δ = 0.03 IQ,where IQ denotes the inter-quartile range.

With these values the full computations are carried out at about 100 data points.

Technical Details

The basic underlying model supposes that

yt = g(xt) + εt, t = 1, . . . , n,

where g(x) is a smooth function and εt is an error which has mean zero and constant
scale. Then by the smoothness of g we can approximate by a locally linear function to
obtain,

yt = αt + βtxt + εt.

In order to define the algorithm, we introduce the concept of the local weight func-
tion, w(xt) and the robustness weights δ(xt).
Local Weight Function.
Let

W (z) = (1− |z|3)3, for |z| < 1,

= 0, for |z| ≥ 1,
.

For the smoothing parameter 0 < f ≤ 1, let r denote the quantity fn rounded to the
nearest integer. Let ht denote the distance to the r-th nearest neighbour of xt. Then the
local weight for xt for any value of x is

wt(x) = W (
(x− xt)
ht

).

Robustness Weight Function.
Let ε̃t denote an initial estimate of the error term εt which is obtained after Step 2 be-
low. Let s denote the median of |ε̃1|, |ε̃2|, . . . , |ε̃n|. Then the robustness weight for (xt, yt)
is denoted by δt and given by

δt = B(
ε̃t
6s

),

where B(z) is the bisquare function defined by

B(z) = (1− |z|2)2, for |z| < 1,

= 0, for |z| ≥ 1,
.
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Robust Loess Method.

Step 1. For each t = 1, . . . , n a weighted simple linear regression of the y’s on the x’s is
fitted using weights wt. This produces estimates α̃t and β̃t. Also a fitted value
ỹt = α̃t + β̃t is produced.

Step 2. The initial residuals are obtained as ε̃t = yt − ỹt. Then the robustness weights δt are
calculated.

Step 3. For each t = 1, . . . , n a weighted simple linear regression of the y’s on the x’s is fit-
ted using weights δtwt. This produces new estimates α̃t and β̃t. Also a fitted value
ỹt = α̃t + β̃t is produced.

Step 4. The next set of residuals are obtained as ε̃t = yt − ỹt. Then the next set of robust-
ness weights δt are calculated.

Step 5. For each t = 1, . . . , n a weighted simple linear regression of the y’s on the x’s is fit-
ted using weights δtwt. This produces the final estimates of α̂t, β̂t, ŷt = α̂t + β̂t and
ε̂t = yt − ŷt.

Cleveland has provided an updating algorithm which speeds the fitting of the n re-
gressions in Steps (1), (3) and (5). However, if n > 100 the computations can still be
quite time-consuming.

Appendix 2: Box-Cox Transformations

In many cases a batch of data may be made more symmetric by use of a power
transformation such as square-root, log or negative reciprocal. All of these transforma-
tions preserve the ordering of the data but change the shape of the distribution. The
shape of the distribution can be seen graphically by examining stem-and-leaf and/or box
plots. Thus by examining these plots for various power transformations we can choose
the most effective transformation.

An alternative method of choosing the transformation is to estimate from the data
the optimal Box-Cox transformation. These method is based on the principle of maxi-
mum likelihood which provides the best estimators in many situations. In addition, this
method can be extended to improve many statistical methods which assume the normal
distribution. These methods include regression, ANOVA, two-sample tests, experimental
design and time series analysis.

The family of Box-Cox transformations (Box & Cox, 1964) for a batch of data
y1, y2, . . . , yn is defined by
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y
(λ)
t =

yλt − 1
λ

, if λ 6= 0,

= log(yt), if λ = 0.

Note that subtracting 1 and dividing by λ do not change the shape of the data, so
λ = 0.5, 0,−1 correspond to the square-root, log and negative reciprocal transforma-
tions. It is also important, that the Box-Cox transformation family may be regarded as
a continuous function of λ.

Application to a Batch of Data

If it is assumed that for some value of λ that y(λ)
1 , y

(λ)
2 , . . . , y

(λ)
n are independent

normal with mean, µ, and variance, σ2, i.e.

y
(λ)
t ∼ NID(µ, σ2).

Then it may be shown using the methods of mathematical statistics that the log
likelihood function for the parameter λ may be written

log(L(λ)) = −n
2

log(σ̂2) + J

where

σ̂2 =
1
n

n∑
t=1

(y(λ)
t − ȳ(λ))2,

ȳ(λ) =
1
n

n∑
t=1

y
(λ)
t ,

and

J = (λ− 1)
n∑
t=1

log(yt).

The function log(L(λ)) can the be tabulated or graphed to determine the value of λ
which maximizes the likelihood. This gives the maximum likelihood estimate of λ which
is denoted by λ̂. The optimal λ̂ may also be determined by numerical optimization as in
the MTS package.

Application to the Random Walk Model

In this case we have a data sequence z1, z2, . . . , zn which are consecutive values at
times t = 1, 2, . . . , n. The model equation may be written,

zt − zt−1 = at

where
at ∼ NID(0, σ2).
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Then to apply the Box-Cox method, we assume that the model holds for some transfor-
mation of zt, z

(λ)
t . Thus the new model may be written

z
(λ)
t − z(λ)

t−1 = at

where
at ∼ NID(0, σ2).

The log-likelihood function for this new model is

log(L(λ)) = − (n− 1)
2

log(σ̂2) + J

where

σ̂2 =
1

n− 1

n∑
t=2

â2
t ,

ât = z
(λ)
t − z(λ)

t−1,

and

J = (λ− 1)
n∑
t=2

log(zt).

As before log(L(λ)) can the be tabulated or graphed to determine the value of λ
which maximizes the likelihood or an exact value may be found with the MTS package.

Application to the ARIMA Model

The general form of the ARIMA(p, d, q) model equation for a data series, zt, t =
1, . . . , N , may be written,

φ(B)(wt − µw) = θ(B)at,

where,
wt = ∇dz(λ)

t ,

and

z
(λ)
t =

(z + c)λt − 1
λ

, if λ 6= 0,

= log(zt + c), if λ = 0.

The regular autoregressive operator and regular moving-average components are:

φ(B) = 1− φ1B − . . .− φpBp

and
θ(B) = 1− θ1B − . . .− θqBq.
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The log-likelihood function of λ maximized over the other parameters is

log(L(λ)) = −n
2

log(σ̂2) + J

where

σ̂2 =
1
n

N∑
t=−∞

â2
t ,

ât denotes the residual at time t, n = N − d and

J = (λ− 1)
N∑

t=d+1

log(zt).

The derivation of the above equation and the application of Box-Cox transformations to
time series data was discussed by Hipel & McLeod (1977).

Appendix 3: Simultaneous Significance Intervals

In the case of the sample autocorrelation function of iid noise, it is known that the
autocorrelations are normally distributed with mean zero and variance 1/n, where n is
the length of the series. Thus a 5% significance limit for the sample autocorrelation at
lag k, rk, is ±1.96/

√
n. For any significance limit α let c denote the value such that

P{|rk| < c, k = 1, . . . ,m} = 1− α.

Since the rk for k = 1, . . . ,M are iid, it follows that c = Φ−1
(

(1 − α/2)1/m
)
/
√
n.

TABLE I

Φ−1
(

(1− α/2)1/m
)

m = 1 m = 2 m = 10 m = 20 m = 40 m = 60

1.96 2.24 2.81 3.02 3.23 3.34

As shown by Hosking and Ravishanker (1993) Bonferroni’s inequality may be used
to determine simultaneous significance intervals which can be used to test if all sample
residual autocorrelations are zero.

To understand how this works, let’s first consider two random events denoted by E1
and E2. Then

P{E1 ∪ E2} = P{E1}+ P{E2} − P{E1 ∩ E2}

Utilizing the fact that
P{Ei} = 1− P{Ēi} for i = 1, 2,
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and that
P{E1 ∪ E2} ≤ 1,

we obtain Bonferroni’s inequality for the case of two events E1 and E2,

P{E1 ∩ E2} ≥ 1− P{Ē1}+ P{Ē2}

Bonferroni approximation for the joint probability of m events, E1, E2, . . . , Em, is given
by

P{
m⋂
i=1

Ei} ≈ 1−
m∑
i=1

P{Ēi}.

If the events are statistically independent as in the case of the sample autocorrelations of
white noise, the approximation is exact.

Now consider the problem of testing the residual autocorrelations r1, r2, ..., rm from
an observed time series of length n. Then if the model is correct, r1, r2, ..., rm, have
mean zero and some variance, var(rk), which can be calculated using the formula given
by McLeod (1977). Let

Ei = {|ri| <
zα√
n

est.sd.(ri)},

where zα denotes upper 1 − α/2-point of a standard normal distribution. So under H0,
we have for each i = 1, . . . ,m: P{Ēi}

.= α. Hence the simultaneous or joint probabil-
ity of the event ∩mi=1Ei is approximated with the Bonferroni limit mα. It follows that in
order to get a simultaneous bound such that |ri| < c, for all i = 1, . . . ,m we should
take

c =
z α
m√
n
.

The Bonferroni bounds are equivalent to the bounds already derived in Table I
above. However, in this case the events Ei are not statistically independent so the Bon-
ferroni approximation is needed. Hosking and Ravishanker (1993) demonstrated that the
Bonferroni approximation works well for residual autocorrelations.

Appendix 4: Spectral Analysis Primer

Spectral analysis can be regarded as the development of a Fourier analysis for sta-
tionary time series. Just as in classical Fourier analysis a real function z(t) is repre-
sented by a Fourier series, in spectral analysis the autocovariance function of a station-
ary time series has a frequency representation in terms of a Fourier transform. This
representation was first given by Herglotz (1911) who showed that any positive-definite
function, such as the autocovariance function, γk, of a stationary time series can be rep-
resented as

γk =
∫

(−π,π]

eiωkdP (ω), (2)
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where P (ω) is the spectral distribution function. In the case where a spectral density
function exists, we have dP (ω) = p(ω)dω and Herglotz’s equation, eq. (2), can be writ-
ten

γk = 2

π∫
0

p(ω) cos(ωk)dω. (3)

The function p(ω), −π ≤ ω ≤ π is called the spectral density function and shares many
properties of the probability density function. In addition, note that p(ω) is symmet-
ric, p(ω) = p(−ω). For mathematical convenience the units of ω are in radians per unit
time, which is known as angular or circular frequency. In practice, however, it is more
convenient to work in units of cycles per unit time or Hertz, which is related to ω by the
equation ω = 2πf , where f is now in cycles per unit time.

Notice that there is an upper limit to the highest frequency that can be observed in
the time series. This upper limit, which is 0.5 cycles per unit time or π radians per unit
time, is called the Nquist frequency. This upper limit arises because of the discrete time
nature of our time series (there is no such upper limit in the continuous time case). To
see why this occurs, let f̃ denote any frequency in the interval [0, 0.5] and let f̈ = f̃+0.5.
Then it is easily shown for all integer t that cos(f̈) = cos(f̃) and sin(f̈) = sin(f̃). The
frequencies f̃ and f̈ are said to be aliases. Aliased frequencies, such as f̈ , are observa-
tionally indistinguishable from from frequencies in the range [0, 0.5].

A natural estimator of the spectral density function given n observations z1, . . . , zn
from a covariance stationary time series, is given by the periodogram,

I(fj) =
1
n

∣∣∣ n∑
t=1

zte
−2πfj(t−1)

∣∣∣2, (4)

where fj = j
n , j = [−(n − 1)/2], . . . , 0, . . . , [n/2], where [•] denotes the integer part

function. Since I(fj) = I(−fj) the periodogram is symmetric about 0, and so when the
periodogram or spectral density is plotted we only plot the part where fj > 0. When
fj = 0, I(0) = nz̄2, where z̄ =

∑n
t=1 zt/n. This component, I(0), is usually very large

due to a non-zero mean and so usually ignored in the periodogram and spectral plots.
Schuster (1898) developed the periodogram for searching for periodicities in time

series. Sometimes I(fj) is plotted against its period 1/fj .
Taking k = 0 in eq. (3) we obtain for var(zt) = γ0,

var(zt) = 2

2π∫
0

p(ω)dω. (5)

It can be shown that spectral analysis provides an anova like decomposition of a time
series into its frequency components and this fact is illustrated in eq. (5). The sample
analogue of eq. (5) is

n∑
t=1

(zt − z̄)2 = 2
[(n−1)/2]∑
j=1

I(fj) + I(f[n/2]),
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where the last term I(f[n/2]) is omitted when n is an odd.
Another important property for the interpretation is that it can be shown that I(fj)

is proportional to the square of the multiple correlation between the observed data se-
quence z1, . . . , zn and a sinusoid having frequency fj . Specifically, consider the regres-
sion,

zt = A0 +Aj cos(2πfj) +Bj sin(2πfj) + et, (6)

where et is the error term. Then the least-squares estimates of A0, Aj and Bj are given
by

A0 =
1
n

n∑
t=1

zt

Aj =
2
n

n∑
t=1

zt cos(2πfj)

Bj =
2
n

n∑
t=1

zt sin(2πfj).

The multiple correlation coefficient, R2
j , can be shown to be given by

R2
j = A2

j +B2
j .

In terms of the periodogram we have then

I(fj) =
n

2
R2
j .

Thus p(f) can be interpreted as measuring the strength of a random sinusoidal com-
ponent having a period 1/f in the data sequence. Time series exhibiting cycles or os-
cillatory behaviour will have a peak in the spectral density function at the frequency
which corresponds to the cycle period. For example, if there is a ten-year cyclical com-
ponent, then there will be a peak in the spectral density function at f = 0.1. The sharp-
ness of the peak depends on how closely the period 1/f appears in the data sequence,
and the relative size of the peak depends on the relative amplitude of the cycle in the
time series. The units of fj are cycles per unit time. The period corresponding to fj is
Tj = 1/fj . Alternatively, some researchers prefer to work with angular frequencies given
by ωj = 2πfj which has units radians per unit time in which case the period is 2π/ωj .

In the case where the spectral density function exists, the expected value of I(fj)
can be shown to be approximately equal to p(fj), where p(f) is the spectral density
function. In fact, in large samples, I(fj) for j = 1, . . . , [(n − 1)/2] are statistically in-
dependent and exponentially distributed with mean p(fj).

The spectral density function can be derived by taking the inverse Fourier transfor-
mation to eq. (3) which yields,

p(f) =
∞∑

k=−∞

γke
−2πfk, |f | ≤ 0.5,
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The sample analogue of this formula also holds, viz.

I(f) =
n−1∑

k=−(n−1)

cke
−2πfk,

where ck denotes the sample autocovariance function given by

ck =
1
n

n∑
`=k+1

(zt − z̄)(zt−k − z̄) for k ≥ 0,

and for k < 0, ck = c−k.

It should be mentioned that some writers prefer to define the spectral density func-
tion by the equation

p(ω) =
1

2π

∞∑
k=−∞

γke
−ωk, |ω| ≤ π.

Accordingly, the periodogram is then given by

I(ωj) =
1

2πn

∣∣∣ n∑
t=1

zte
−ωj(t−1)

∣∣∣2,

where ωj = 2πj/n, j = [−(n − 1)/2], . . . , 0, . . . , [n/2]. Notice, that since the spectral
function is a density function, like a probability density function, the rules for transfor-
mation of a density function apply here. In other words, the difference in notation arises
according to whether one uses frequency in Hertz or in circular measure.

The periodogram, I(fj), and the estimate of the spectral density function, p(f), are
useful for providing a nonparametric description and characterization of a time series —
particularly a long one. As its name implies it is also useful in determining and charac-
terizing periodicities in the data. Some common types of spectra are listed in the table
below.

Common Types of Spectra
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Spectral Type Illustrative AR Model Example Dataset

high-frequency AR(1) Series F
spectrum φ1 = −0.42 Batch Data

low-frequency AR(3) Mean Annual St.
spectrum φ1 = 0.62, φ2 = 0, φ3 = 0.18 Lawrence Riverflow

peak spectrum AR(9) Annual Sunspot
φ1 = 1.22, φ2 = −0.52 Numbers

φ3 = . . . φ8 = 0
φ9 = 0.20

trough spectrum AR(2) Annual temperature
φ1 = 0.12, φ2 = 0.20 central England

The spectral density, p(f), can be estimated by periodogram smoothing or by by
fitting autoregressive or ARMA models.

Appendix 5: Johnson Curve Distributions

The family of Johnson curve distributions, denoted by S can be used to match the
first four moments or equivalently the mean (µ), variance (σ2), skewness (g1) and kur-
tosis (g2) to a fitted statistical distribution. The family of Johnson curve distribution is
defined in terms of a transformation on a standard normal variable Z (with mean 0 and
variance 1). Let X denote the Johnson curve random variable. Then for some function
f ,

X = ξ + λY,

where
Z = γ + δf(Y).

There are three types of functions f which are used:
1. The unbounded family, SU ,

f(Y) = log{Y + (1 + Y2)
1
2 }

= sinh−1 Y, −∞ < Y <∞.

2. The lognormal family, SL,

f(Y) = logY, 0 < Y <∞.
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3. The bounded range family, SB ,

f(Y) = log
Y

1− Y
, 0 < Y < 1.

The method of moments can be used to fit a Johnson curve distribution to data
(Hill et al., 1976). Then random variables from the Johnson curve distribution can be
simulated (Hill, 1976).

Appendix 6: Random Number Generator Superduper

Marsaglia (1976) has suggested a generator which overcomes the lattice structure
defect of the usual mixed congruential generators. On account of its desirable attributes,
this generator has become known as Superduper. Superduper is comprised of a congru-
ential generator

Xn = 69069 Xn−1 mod 232

and another type of generator which is called a shift-register generator. The shift-
register generator produces a pseudo-random sequence of bits (0s and 1s) using the re-
currence

bi = bi−17 + bi−32 mod 2

Each consecutive 32 bits (b1, . . . , b32), (b33, . . . , b64), . . . forms a random integer

Yn =
32∑
j=1

b32n+j 2j−n

Then Xn and Yn are combined by adding the individual bits modulo 2 in the base 2
(or bit) representations of each one. The resulting integer is divided by 232 to produce a
(0,1) variable.

The maximum period is about 1018. To get the maximum possible period simply
choose the seed of the congruential generator, X0 > 0 and the seed of the shift-register
generator, 0 < Y0 < 2048.

Appendix 7: Parsimony, Model Adequacy & Periodic Correlation

7.1 Introduction

The main purpose of this appendix is to discuss some general statistical principles
which are elucidated by our recent work in Hipel & McLeod (1994) and McLeod (1993).

Also, based on case studies, a new diagnostic check for periodic correlation in the
residuals of fitted ARMA models is developed. This diagnostic check is suitable for rou-
tine use when fitting seasonal ARMA models.
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Briefly our experience with river flow time series suggests that the best fore-
casting results are obtained by following the general model building philosophy im-
plicit in Box & Jenkins (1976) with suitable modifications and improvements. In
general terms, this approach is iterative and advocates choosing the most parsi-
monious adequate statistical model. Two basic principles of special relevance are:

Principle 1: Model Adequacy.

The model is considered adequate if it incorporates all relevant information and if
when calibrated to the data, no
important significant departures from the statistical assumptions made can be found.

Principle 2: Model Parsimony.

The principle of parsimony means that the simplest possible model should be cho-
sen.

One can view the problem of statistical modelling as choosing an adequate statisti-
cal model which is the most parsimonious. In mathematical programming terminology
we could say that the problem of statistical modelling has an objective function which is
to minimize the model complexity (Model Parsimony) subject to the constraint of Model
Adequacy.

In §7.2 the results of a case study of forecasting monthly river flow time series is
summarized. Here the importance of incorporating periodic correlation in the forecasting
model is demonstrated. For a seasonal time series denoted by zr,p where r denotes the
year and p denotes the seasonal period, the periodic correlation coefficient is defined by

ρm(`) =
γm(`)√

(γm(0)γm−`(0))
,

where
γm(`) = cov(zr,m, zr,m−`).

In some situations, as in the case study in §7.3, a comprehensive modelling ap-
proach which satisfies both adequacy and parsimony principles may not be practical
either for reasons of expediency or because a suitable model cannot be found with avail-
able methodology. In this case, we have found combined forecasts to be useful. On the
other hand, if a good model can be found, our experience suggests that the forecast can-
not be significantly improved by combining it with forecasts from models which are less
parsimonious or less adequate. This latter result is at variance with the results reported
by Winkler & Makridakis (1983) and Newbold & Granger (1974). Perhaps this is due to
the fact that the river flow time series used in our studies are generally longer and more
homogeneous than the economic series used by the aforementioned authors. The skill of
the modeller in developing an adequate model could also be a factor.

7.2 Monthly River Flow Case Study
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The data in this case study consisted of thirty mean monthly river flows for periods
of from 37 to 64 years. Various models and model selection procedures were used to cali-
brate a model to each data set omitting the last three years of data. The one-step ahead
forecasts were then compared for the last three years (36 values). The best forecasts as
judged by the root mean-square error and other criteria were obtained with the family of
periodic autoregressive models.

The periodic autoregression model equation may be written

φm(B)(Zr,m − µm) = ar,m (1)

where Zr,m denotes the logarithmic flow for the rth year and mth month, µm denotes
the corresponding monthly mean, ar,m, r = 1, 2, . . . ,m = 1, 2, . . . , 12 are a sequence
independent normal random numbers with mean zero and variance, σ2

m, and

φm(B) = 1− φm,1B − . . .− φm,pmBpm (2)

where B is the backshift operator on t, where t = 12(r − 1) + m. Several model selec-
tion techniques were used to select pm (m = 1, 2, . . . , 12). It was found that a periodic
autoregression which was determined by choosing pm as small as possible to achieve an
adequate fit gave the best forecasts. This was accomplished by initially determining pm
based on a plot of the periodic partial autocorrelation function and then checking the
adequacy of the fitted model. Our approach is thus a natural extension of that of Box &
Jenkins (1970).

On the other hand, a subset periodic autoregression approach was found to produce
comparatively very poor forecasts. In this approach, for each period all possible autore-
gressions with some parameters constrained to zero and with pm = 12 were examined
(212 possibilities) and the best model was selected with the Akaike Information Criterion
(Akaike, 1974) as well as the Bayes Information Criterion (Schwarz, 1978). It was also
noticed that the resulting models were always less parsimonious than that selected by
the first approach.

The seasonal ARMA model developed by Box & Jenkins (1970, Ch. 9) did not per-
form very well either. In this case, the diagnostic check, developed in the next §7.4, indi-
cates that this is due to model inadequacy.

The periodic autoregression and seasonal ARMA represent quite different families
of time series models. Not only do the models differ in the correlation structure but the
specification of seasonality is purely stochastic in the seasonal ARMA model and purely
deterministic in the case of the periodic autoregression. Moreover neither specification is
likely to be absolutely correct. Thus although the periodic autoregression model fore-
casted best and was considered to represent a more valid statistical model, it might
be thought from the experience reported by Newbold & Granger (1974) and Winkler
& Makridakis (1983) that combining the periodic autoregression and seasonal ARMA
forecasts would be helpful. As shown in Hipel & McLeod (1994) this is not the case. In
particular with method 1 of Winkler & Makridakis (1983, p. 152) the periodic autore-
gression forecast had a smaller mean square error at least 17 times out of 30. Thus com-
bined forecasts cannot be recommended in this situation.
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7.3 Quarter-Monthly River Flow Case Study

The object of this study was to obtain one-step-ahead forecasts of the quarter-
monthly, i.e. almost weekly, inflows to the Lac St. Jean reservoir system operated by
Alcan Limited. Complete time series on past quarter-month inflows, precipitation and
snowmelt in the river basin were available for 30 years. A Box-Jenkins multiple transfer-
function noise model with precipitation and snowmelt as inputs was found to provide an
adequate fit to the deseasonalized data in many respects except that it did not account
for the periodic correlation effect. A periodic autoregression model was also fit but this
model did not take into account the covariates precipitation and snowmelt. It could be
suggested that at this stage a periodic-transfer-function noise model should be devel-
oped to take into account both factors. However such a model could easily involve too
many parameters and, in any case, it was not possible to calibrate it with our existing
computer software. Perhaps future work will result in a suitable model. Finally, a third
model which was a semi-theoretical hydrological model which incorporates various hy-
drological and meteorological information in a conceptual model of river flow. The con-
ceptual modelling approach has been strongly advocated by certain hydrologists who feel
that time series methods are too empirical.

All three models were calibrated on data for 27 years and then used to produce one-
step-ahead forecasts over the next three years (144 periods). The root mean square error
for transfer-function noise, periodic autoregression and conceptual model for forecasting
logarithmic flows were respectively 0.2790, 0.3009 and 0.3894. When the forecasts were
combined by simple averaging the root mean square error dropped to 0.1355. More so-
phisticated combination techniques were found to lead to even further improvements.

It is interesting to note that the empirical time series approach outperformed the
more theoretical conceptual approach which has been strongly advocated by some hy-
drologists. A similar phenomenon with macro-economic time series forecasting as previ-
ously been found (Naylor et al., 1972).

7.4 A New Diagnostic Check For Periodic Autocorrelation

The seasonal ARMA model of order (p, d, q)(ps, ds, qs)s may be written

Φ(Bs)φ(B)∇dss ∇dZt = Θ(Bs)θ(B)at, (3)

where Zt is the observation at time t and at is a sequence of independent normal ran-
dom variables with mean zero and variance σ2. For monthly time series s = 12 and
t = 12(r − 1) + m, where r and m represent the year and month respectively. The
polynomials Φ(Bs), φ(B), Θ(Bs) and θ(B) of degrees ps, p, qs and q specify the au-
toregressive and moving average components of the model. The terms ∇s = 1 − Bs

and ∇ = 1 − B represent the seasonal and non-seasonal differencing operators. Us-
ing standard model selection techniques (Hipel & McLeod, 1994) it was found that most
monthly river flow time series could be tentatively modelled as a seasonal ARMA model
of order (p, 0, 1)(0, 1, 1)12, where p = 0, 1 or 2. The diagnostic check described below
can be used to check for model inadequacy due to periodic correlation in the residuals of
such fitted models.
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The residual periodic autocorrelation at lag k ≥ 1 may be written

r̂m(k) =
∑
r âr,mâr,m−k√∑
r â

2
r,m

∑
r â

2
r,m−k

, (4)

where âr,m denotes the seasonal ARMA model residual for period t = 12(r − 1) + m
(r = 1, . . . , N ;m = 1, . . . , 12). If the seasonal ARMA model is adequate then using
the methodology in McLeod (1978) it can be shown for any fixed M ≥ 1,

√
N r̂(m) =√

N(r̂m(1), . . . , r̂m(M)) is asymptotically normal with mean zero and covariance matrix
(1M − Q/12)/N , where 1M is the identity matrix of order M and Q = XI−1XT , where
X and I are given in eq. (44) of McLeod (1978). Moreover,

√
Nr(m) and

√
Nr(m′)

are asymptotically independent when m 6= m′. Since the diagonal elements of Q are
all less than one, it follows that to a good approximation, r̂m(1),m = 1, . . . , 12 are
jointly normally distributed with mean vector zero, diagonal covariance matrix and
var(r̂m(1)) = N−1. A diagnostic check for detecting periodic autocorrelation in seasonal
ARMA model residuals is given by

S = N
12∑
m=1

r̂2
m(1) (5)

which should be approximately χ2-distributed on 12 df.
As a check on the asymptotic approximation involved, a brief simulation experiment

was performed. A (1, 0, 0)(0, 0, 0)12 model with φ1 = −0.9,−0.6,−0.3, 0.3, 0.6 and 0.9
was simulated. Table 1 summarizes the results on S for one thousand simulations with
N = 17. The empirical significance level of a nominal 5% test was estimated by count-
ing the number of times that S exceeded 21.0261. From Table 1, the approximation is
seen to be adequate for practical purposes. In further experiments with N = 34 and
68, the approximation was seen to improve although the empirical significance level was
still slightly less than 0.05 in all cases. This suggests that in general the significance will
be slightly overestimated. For example, if the observed value of S indicates significant
periodic correlation at the 5% level, the true significance level will be slightly less than
5%. The data on the Saugeen River (1915–1976) is illustrative of the usefulness of this
new diagnostic check. A (1, 0, 1) (0,1,1)12 model was fit to the logarithmic flows and
passed all diagnostic checks given in Box & Jenkins (1976). However, it was found that
S = 59.6 indicating very significant residual periodic correlation. As indicated in the
next section, it appears that many seasonal economic time series also exhibit such peri-
odic residual correlations.

Table 1

Empirical mean, variance and significance level of S
with N = 17 in 1000 simulations using a nominal 5% test.
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φ1 Mean Variance Significance
level

–0.9 11.9 19.3 0.032
–0.6 11.5 18.6 0.025
–0.3 11.3 19.0 0.023
0.0 10.9 16.6 0.016
0.3 11.1 19.7 0.027
0.6 11.5 18.6 0.026
0.9 11.7 19.7 0.030

7.5 Application to Forecasting Economic Time Series

Many seasonal economic time series may exhibit periodic correlation which most of
the standard approaches do not take into account. The diagnostic check of §4 may be
applied routinely when fitting seasonal ARMA models. Table 2 shows the results of test-
ing the seasonal ARMA models fitted by Miller & Wichern (1977, p.432) to four Wis-
consin series. It is seen that in two out of the four series there is very significant periodic
correlation. In these cases, models which take this correlation into account may be ex-
pected to produce improved forecasts.

Table 2

Diagnostic Test For Residual Periodic Correlation
For Four Wisconsin Series From Miller & Wichern

Category S d.f. Significance
level

Food Products 25.36 12 0.013
Fabricated Metals 36.8 12 0.0002
Transportation Equipment 11.6 12 0.478
Trade 6.98 12 0.859
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Herglotz, G. (1911), “Über potenzreihen mit positivem reellem teil im einheitskreis”,
Sitzgxber. Sachs Akad. Wiss., Vol.63, pp.501–511.

Hipel, K.W. & McLeod, A.I. (1977), “Advances in Box-Jenkins modelling”, Water Re-
sources Research, V.13, pp.567–586.

Hipel, K.W. & McLeod, A.I. (1994), Time Series Modelling of Water Resources and En-
vironmental Systems, Amsterdam: Elsevier. ISBN: 0–444–89270–2

Hipel, K.W., McLeod, A.I. & Fosu, P. (1983), “Empirical power comparisons of some
tests for trend”, in Statistical Aspects of Water Quality Monitoring, Developments in
Water Science, V.27, pp.347–362, Edited by A.H. El-Shaarawi and R.E. Kwiatkowski.

Hill, I.D., Hill, R. & Holder, R.L. (1976), “Algorithm AS 99. Fitting Johnson curves by
moments”, Applied Statistics, V.25, pp.180–189.

Hill, I.D. (1976), “Algorithm AS 100. Normal-Johnson and Johnson-Normal Transforma-
tions”, Applied Statistics, V.25, pp.190–192.

Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982), “Techniques for trend assessment for
monthly water quality data”, Water Resources Research, Vol. 18, pp.107–121.

Hosking, J.R.M. (1983), “Lagrange multiplier test”, Encyclopedia of Statistical Sciences,
Vol. 4, pp. 456–459.



120 References

Hosking, J.R.M. & Ravishanker, N. (1993), “Approximate simultaneous significance in-
tervals for residual autocorrelations of autoregressive moving-average time series mod-
els”, Journal of Time Series Analysis, V.14, pp.19–26.

Hurvich, C. M. (1988), “A mean squared error criterion for time series data windows”,
Biometrika 75, 485–490.

Kendall, M.G. & Stuart, A. (1968), The Advanced Theory of Statistics, Volume 3, 2nd
Ed.

Kheoh, T.S. & McLeod, A.I. (1992), “Comparison of Modified Portmanteau Tests”,
Computational Statistics and Data Analysis, V.14, pp.99–106.

Kendall, M.G. (1970), Rank Correlation Methods, 2nd Ed., New York: Hafner.

Lawrance, A.J. (1991), “Directionality and reversibility in time series”, International
Statistical Review , Vol.59, pp.67–79.

Lawrance, A.J. & Lewis, P.A.W. (1985), “Modelling and residual analysis of nonlin-
ear autoregressive processes”, Journal of the Royal Statistical Society B Vol. 47 No. 2,
pp.165-202.

Lawrance, A.J. & Lewis, P.A.W. (1992), “Reversed residuals in autoregressive time se-
ries analysis”, Journal of Time Series Analysis, Vol. 13, No. 3, pp.253–266.

Lehmann, E.L. (1959). Testing Statistical Hypotheses, New York: Wiley.

Li, W.K. & McLeod, A.I. (1981), “Distribution of residual autocorrelations in multivari-
ate ARMA time series models”, Journal of the Royal Statistical Society, Series B , V.43,
pp.231–239.

Mann, H.B. (1945), “Nonparametric tests against trend”, Econometrica, Vol. 13, 245–
259.

Marsaglia, G. (1976), “Random Number Generation”. In Encyclopedia of Computer Sci-
ence, ed. A. Ralson, pp. 1192-1197. New York: Petrocelli and Charter.

Mackisack, M.S. and Poskitt, D.S. (1979), “Autoregressive frequency estimation”,
Biometrika, Vol.76, pp.565–575.

McLeod, A.I. (1977), “Improved Box-Jenkins estimators”, Biometrika, V.64, pp.531–534.

McLeod, A.I. (1975), “Derivation of the theoretical autocorrelation function of autore-
gressive moving-average time series”, Applied Statistics, V.24, pp.255-256.

McLeod, A.I. (1978), “On the distribution of residual autocorrelations in Box-Jenkins”,
Journal of the Royal Statistical Society, Series B , V.40, pp.296–302.

McLeod, A.I. (1985), “AS R58. Remark on AS 183”, Applied Statistics, V.34, No. 2,
pp.198–200.

McLeod, A.I., (1993), “Parsimony, Model Adequacy and Periodic Correlation in Fore-
casting Time Series”, International Statistical Review, Vol. 61, No. 3, pp.387–393.



References 121

McLeod, A.I. (1994) “Diagnostic Checking Periodic Autoregression Models with Appli-
cation”, The Journal of Time Series Analysis, Vol. 15, No. 2, pp.221-233.

McLeod, A.I. & Li, W.K. (1983), “Diagnostic checking ARMA time series models using
squared-residual autocorrelations”, Journal of Time Series Analysis, V.4, pp.269–273.

McLeod, A.I., Hipel, K.W. & Bodo, B.A. (1990), “Trend analysis methodology for water
quality time series”, Environmetrics, Vol. 2, pp.169–200.

McLeod, A.I. & Hipel, K.W. (1995), “Exploratory spectral analysis of hydrological time
series”, Stochastic Hydrology and Hydraulics, No.2.

McLeod, A.I. & Sales, P.R.H. (1983), “An algorithm for approximate likelihood calcula-
tion of ARMA and seasonal ARMA models”, Applied Statistics, V.32, pp.211–223.

Michael, J.R. (1983), “The stabilized probability plot”, Biometrika, Vol. 70, 11–17.

Miller, R. B. & Wichern, D. W. (1977). Intermediate Business Statistics. New York:
Holt, Reinhart and Winston.

Naylor, T. II, Seaks, T.G. & Wichern, D.W. (1972). Box-Jenkins methods: An alterna-
tive to econometric models. Int. Statist Rev. 40, 123–137.

Newbold, P. & Granger, C. W. J. (1974). Experience with forecasting univariate time
series and the combination of forecasts. J. R. Statist. Soc. A 137, 131–165.

Percival, D.B. & Walden, A.T. (1993). Spectral Analysis For Physical Applications: Mul-
titaper and Conventional Univariate Techniques. Cambridge: Cambridge University
Press.

Ozaki, T. (1991), Contribution to the discussion of the paper “STL: A seasonal-trend
decomposition procedure based on loess”, by R. B. Cleveland, W. S. Cleveland, J. E.
McRae & I. Terpenning, Journal of Official Statistics, Vol. 6, pp.3–73.

Pagano, M. (1978). On periodic and multiple autoregressions. Ann. Statist. 6, 1310–
1317.

Pagano, M. (1972), “An algorithm for fitting autoregressive schemes”, Applied Statistics,
V.21, pp.274–281.

Priestley, M.B. (1981), “Spectral Analysis and Time Series”, New York: Academic Press.

Sakai, H. (1982). Circular lattice filtering using Pagano’s method. IEEE Trans. Acoust.
Speech Signal Process. 30, 279–287.

Schuster, A. (1898), “On the investigation of hidden periodicities with application to a
supposed 26 day period of meteorological phenomena”, Terr. Magn., Vol.3, pp.13–41.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461–464.

Ramsey, F.L. (1988), “The slug trace”, The American Statistician, Vol. 42, No. 4,
p.290.



122 References

Robinson, P.M. (1994), “Efficient tests of the nonstationary hypotheses”, Journal of the
American Statistical Association 89, 1420–1437.

Royston (1982), “The W test for normality. Algorithm AS 181” Applied Statistics, V.31,
pp.176–224.

Royston (1993), “Graphical detection of non-normality by using Michael’s statistic”, Ap-
plied Statistics, V.42, No.1, pp.153–158.

Said, E.S. & Dickey, D.A. (1984), “Testing for unit roots in autoregressive-moving aver-
age models of unknown order”, Biometrika, 71, pp.599–607.

Sakai, H. (1982) “Circular lattice filtering using Pagano’s method”, IEEE, Transactions
on Acoustics, Speech and Signal Processing, Vol. ASSP-30, No.2, pp.279–287

Swed, F.S. & Eisenhart, C. (1943), “Tables for testing randomness of grouping in a se-
quence of alternatives”, Annals of Mathematical Statistics, Vol.14, pp.66–87.

Tukey, J. W. (1967), “An introduction to the calculations of numerical spectrum anal-
ysis” in Advanced Seminar on Spectral Analysis of Time Series, edited by B. Harris,
pp.25–46, Wiley, New York.

Tukey, J.W. (1977), “Exploratory Data Analysis”, Addison-Wesley.

Valz, P.D. & McLeod, A.I. (1990), “A simplified derivation of the variance of Kendall’s
tau.”, The American Statistician, V.44, pp.39–40.

Valz, P., McLeod, A. I. and Thompson, M. E., (1994a, to appear) “Cumulant generat-
ing function and tail probability approximations for Kendall’s score with tied rankings”,
Annals of Statistics.

Velleman, P.F. & Hoaglin, D.C. (1981), “ABC of Exploratory Data Analysis”, Duxbury
Press.

Wichmann, B.A. & Hill, I.D. (1982), “Algorithm AS 183. An efficient and portable
pseudo-random number generator”, Applied Statistics, V.21, pp.188–190.

Winkler, R. L. & Makridakis, S. (1983). The combination of forecasts. J. R. Statist.
Soc. A 146, 150–157.



i

TABLE OF CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
MTS Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Running MTS Under Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Printer Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Menu Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Graphics Hardcopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hardcopy Text Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Trouble Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Trace Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bivariate Trace Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Bivariate Slug-Trace Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Time Series Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Periodic Time Series Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Bivariate Time Series Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Seasonal Subseries Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Normal Probability Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Trend Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Linear or Ratio Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Tukey Smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Cleveland Robust Loess Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Nonseasonal Trend Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Seasonal Trend Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Brillinger Trend Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Seasonal-Trend Loess Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
View File In STL Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Sample Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Sample Partial Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Sample Inverse Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Sample Inverse Partial Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Sample Cross Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Sample Periodic Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Sample Periodic Partial Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



ii

Theoretical Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Theoretical Partial Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Impulse Response or Inverted Form Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Cumulative Periodogram Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Fisher Periodicity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Periodogram Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Autoregressive Spectral Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Theoretical Spectral Density of ARMA Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ARIMA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Transfer-Function Noise Estimation & Intervention Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Periodic AR Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Diagnostic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Unit Root Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Residual Autocorrelation Analysis of Fitted ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Theoretical Autocorrelation Function Of Fitted ARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Theoretical Partial Autocorrelation Function Of Fitted ARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . 74
Theoretical Spectral Density Function Of Fitted ARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Theoretical Impulse-Response Function Of Fitted ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Theoretical Inverted Form Coefficients Of Fitted ARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Spread-Level Diagnostic Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
View File In OUTPUT Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Forecast Fitted ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Comparison Of Forecast and Actuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Forecast A Fitted Periodic Autoregression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Simulate Fitted ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Simulate ARIMA Model (parameters input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Command Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Aggregate Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ARIMA Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Deseasonalize Trend-Free Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Algebraic Combination Of Two Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Difference Or Integrate A Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Box-Cox Or Inverse Box Cox Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Screen Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Data Documentation Editor & Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Describe DATA Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
View or Edit DATA Directory SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



iii

Set New DATA Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
View File in OUTPUT Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Delete, Copy or Move Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Convert From Column Format to Row Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Convert From Row Format to Column Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Appendix 1: Robust Loess Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Appendix 2: Box-Cox Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Appendix 3: Simultaneous Significance Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Appendix 4: Spectral Analysis Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Appendix 5: Johnson Curve Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Appendix 6: Random Number Generator Superduper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Appendix 7: Parsimony, Model Adequacy & Periodic Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117


