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Abstract

Hyperbolic decay time series such as, fractional Gaussian noise (FGN) or fractional

autoregressive moving-average (FARMA) process, each exhibit two distinct types of be-

haviour: strong persistence or antipersistence. Beran (1994) characterized the family of

strongly persistent time series. A more general family of hyperbolic decay time series is

introduced and its basic properties are characterized in terms of the autocovariance and

spectral density functions. The random shock and inverted form representations are de-

rived. It is shown that every strongly persistent series is the dual of an antipersistent

series and vice versa. The asymptotic generalized variance of hyperbolic decay time se-

ries with unit innovation variance is shown to be infinite which implies that the variance

of the minimum mean-square error one-step linear predictor using the last k observations

decays slowly to the innovation variance as k gets large.

Keywords. Covariance determinant; duality in time series; fractional differenc-

ing and fractional Gaussian noise; long-range dependence; minimum mean square error

predictor; nonstationary time series modelling.
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1. INTRODUCTION

Let Zt, t = 1, 2, . . . denote a covariance stationary, purely nondeterministic time

series with mean zero and with autocovariance function, γZ(k) = cov(Zt, Zt−k). As is

discussed by Beran (1994), many long memory processes such as the FGN (Mandelbrot,

1983) and FARMA (Granger and Joyeux, 1980; Hosking, 1981) may be characterized

by the property that kαγZ(k) → cα,γ as k → ∞, for some α ∈ (0, 1) and cα,γ > 0.

Equivalently,

γZ(k) ∼ cα,γ k−α. (1)

As noted in Box and Jenkins (1976), the usual stationary ARMA models on the other

hand are exponentially damped since γZ(k) = O(rk), r ∈ (0, 1).

Beran (1994, p.42) shows that an equivalent characterization of strongly persistent

time series is

fZ(λ) ∼ cfλα−1 as λ → 0, (2)

where α ∈ (0, 1), cf > 0 and fZ(λ) is the spectral density function given by fZ(λ) =
∑

γZ(k)e−ikλ/(2π). Theorem 1 below summarizes some results stated without proof in

Beran (1994, Lemma 5.1). Since not all time series satisfying eq. (1) or (2) are invert-

ible, the restriction to invertible processes is required.

Theorem 1. The time series Zt satisfying (1) or (2) may be written in random

shock form as Zt = At +
∑

ψ�At−�, where ψ� ∼ cα,ψ �−(1+α)/2, cα,ψ > 0 and At is

white noise. Assuming that Zt is invertible, the inverted form may be written, Zt = At +
∑

π�Zt−�, where π� ∼ cα,π �−(3−α)/2, cα,π > 0 and At is white noise.

Proof. By the Wold Decomposition, any purely nondeterministic time series may

be written in random shock form. Now assume the random shock coefficients specified in

the theorem and we will derive (1). Assuming var(At) = 1, γZ(k) = ψk +
∑

ψhψh+k

γZ(k) ∼ ψk + c2
α,ψ

∞∑
h=1

h−(1+α)/2(h + k)−(1+α)/2

∼ ψk + c2
α,ψ

∫ ∞

1

h−(1+α)/2(h + k)−(1+α)/2dh + Rk
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where the last step used the Euler summation formula (Graham, Knuth and Patashnik,

1989, 9.78, 9.80) and

Rk = {−1
2
F (h) +

1
12

F ′(h) +
θ

720
F ′′′(h)}

∣∣∣∞
1

,

where θ ∈ (0, 1) and F (h) = h−(1+α)/2(h + k)−(1+α)/2. It is easily shown that kαRk → 0

as k → ∞. Hence,

γZ(k) ∼ ψk + c2
α,ψ

∞∫
1

h−(1+α)/2(h + k)−(1+α)/2dh

∼ ψk + k−αc2
α,ψ

∞∫
1/k

x−β(x + 1)−βdx,

where β = (1 + α)/2. Using Mathematica,

∞∫
0

x−β(x + 1)−βdx =
22 β Γ(1 − β) Γ(−1

2 + β)
4
√

π
,

so (1) now follows with cα,γ = c2
α,ψ2α−1 Γ((1 − α)/2) Γ(α/2)/

√
π, where Γ(•) is the

gamma function. This shows that ψk is a possible factorization of γk and that sufficies

to establish that Zt = At +
∑

ψ�At−�.

For any stationary invertible linear process, Zt,

γZ(k) =
∞∑

h=1

πhγZ(k − h). (3)

Assume γZ(k) satisfies eq. (1) and that π� ∼ cα,π�−(3−α)/2 then we will show that eq.

(3) is satisfied.

γZ(k) ∼ γZ(0)πk + c

k−1∑
h=1

h−3/2+α/2(k − h)−α + c

∞∑
h=k+1

h−3/2+α/2(h + k)−α,

where c = cα,πcα,γ . Now γZ(0)πk/γZ(k) ∼ 0 so the first term will drop out. In the

second term, for k >> h, (k − h)−α ∼ k−α and

k−1∑
h=1

h−3/2+α/2 ∼ Hβ as k → ∞,



5

where Hβ =
∞∑

h=1

h−β < ∞, β = 3/2 − α/2. In the final term, when h >> k, (h + k)−α ∼
h−α, so

∞∑
h=k+1

h−3/2+α/2(h + k)−α ∼
∞∑

h=k+1

h−3/2−α/2

∼
∞∫

k+1

h−3/2−α/2dh

∼ (k + 1)−(1+α)/2.

Again the last step uses the Euler Summation Formula. Thus the final term is smaller

asymptotically smaller than γk. This establishes the asymptotic equivalence of the left-

hand side and the right-hand side of eq. (3) and the theorem since γZ(k) uniquely deter-

mines the coefficients π� in the inverted model. �
The FARMA model of order (p, q) (Granger and Joyeux, 1980; Hosking, 1981) may

be defined by the equation,

φ(B)(1 − B)dZt = θ(B)At, (4)

where |d| < 0.5, At is white noise with variance σ2
A, φ(B) = 1 − φ1B − . . . − φpB

p, and

θ(B) = 1 − θ1B − . . . − θqB
q. For stationarity and invertibility it is assumed that all

roots of φ(B)θ(B) = 0 are outside the unit circle and |d| < 0.5. The series is strongly

persistent or antipersistent according as 0 < d < 0.5 or −0.5 < d < 0. The special case

where p = q = 0 is known as fractionally differenced white noise.

Antipersistent series may arise in practice when modelling nonstationary time se-

ries. As suggested by Box & Jenkins (1976) a nonstationary time series can often be

made stationary by differencing the series until stationarity is reached. Sometimes the

resulting stationary time series may be usefully modelled by an antipersistent form of

the FARMA model. An illustrative example is provided by the annual U.S. electricity

consumption data for 1920–1970. Hipel and McLeod (1994, pp.154–159) modelled the

square-root consumption using an ARIMA(0,2,1) but a better fit is obtained by mod-

elling the second differences of the square-root consumption as fractionally differenced
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white noise with d = −0.4477 ± 0.1522 sd. The AIC for the latter model is 1011.5 as

compared with 1020.4. Diebold and Rudebusch (1989) and Beran (1995) also used this

approach for modelling nonstationary data.

The determinant of the covariance matrix of n successive observations, Zt, t =

1, . . . , n, is denoted by GZ(n) = det(γZ(i − j)). It will now be shown in Theorem 2

that for fractionally differenced white noise, gZ(n) = σ−2n
A GZ(n) → ∞ as n → ∞, where

0 < σ2
A < ∞, is the innovation variance given by Kolmogoroff’s formula (Brockwell and

Davis, eq. 5.8.1). In Theorems 7, 8 and 9 this result will be established for a more

general family of processes. Since gZ(n) is the generalized variance of the process Zt/σA,

it will be referred to as the standardized generalized variance. Without loss of generality

we will let σA = 1.

Theorem 2. Let Zt denote fractionally differenced white noise with parameter d ∈
(−1

2 , 1
2 ) and d �= 0. Then gZ(n) → ∞.

Proof. As in McLeod (1978), gZ(n) =
∏n−1

k=0 σ2
k, where σ2

k denotes the variance

of the error in the linear predictor of Zk+1 using Zk, . . . , Z1. From the Durbin-Levinson

recursion,

σ2
k =

{
γZ(0) k = 0,
σ2

k−1(1 − φ2
k,k) k > 0.

where φk,k denotes the partial autocorrelation function at lag k. For the special case p =

q = 0 in (4), Hosking (1981) showed that φk,k = d/(k − d) and γZ(0) = (−2d)!/(−d)!2.

Using the Durbin-Levison recursion,

σ2
k =

k!(k − 2d)!
(k − d)!2

.

Applying the Stirling approximation to log(t!) for large t, log(t!) ∼ (t + 1
2 ) log(t) − t +

1
2 log(2π), yields log σ2

k ∼ a(k), where

a(k) = (k +
1
2
) log

k(k − 2d)
(k − d)2

+ 2d log
k − d

k − 2d
.
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Since σ2
k, is a monotone decreasing sequence and for d �= 0, σ2

k > 1, it follows

that log(σ2
k) is a positive monotone decreasing sequence. By Stirling’s approximation

log(σ2
k)/a(k) → 1 as k → ∞. So for large k, a(k) must be a monotone decreasing se-

quence of positive terms. Expanding a(k) and simplifying

a(k) = (k +
1
2
) log(1 − 2d

k
) + 2(k +

1
2
) log{1 +

d

k
+

(
d

k

)2

+ . . .} + 2d log(1 +
d

k − 2d
)

=
d2

k
+ O(

1
k2

),

where the expansion log(1 + x) = x + x2/2 + x3/3 + . . ., |x| < 1 as been used. Hence,

ka(k) → d2as k → ∞ (5)

and by the Theorem given by Knopp (1951, §80, p.124),
∑

a(k) diverges for d �= 0. So

for d �= 0,
∑

log(σ2
k) diverges and consequently so does gZ(n). �

Eq. (5) shows that σ2
k = 1 + O(k−1) which implies σ2

k decays very slowly. The

divergence of gZ(n) can be slow. See Table I.

Table I.

Generalized variance, gZ(n), for n = 10k, k = 0, 1, . . . , 7

of fractionally differenced white noise, Zt, with parameter d.

d k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

−0.4 1.1831 1.6225 2.3318 3.3685 4.8688 7.0375 10.1725 14.7059

−0.1 1.0145 1.0366 1.0607 1.0854 1.1107 1.1365 1.1630 1.1901

0.1 1.0195 1.0434 1.0678 1.0927 1.1181 1.1442 1.1708 1.1990

0.4 2.0701 3.1588 4.5923 6.6417 9.6009 13.8775 20.0591 28.9951

2. HYPERBOLIC DECAY TIME SERIES
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The stationary, purely nondeterministic time series, Zt, is said to be a hyperbolic

decay time series with decay parameter α, α ∈ (0, 2), α �= 1, if for large k

γZ(k) ∼ cα,γ k−α, (6)

where cα,γ > 0 for α ∈ (0, 1) and cα,γ < 0 for α ∈ (1, 2). When α ∈ (1, 2) the time

series is said to be antipersistent. As shown in the next theorem, antipersistent time se-

ries have a spectral density function which decays rapidly to zero near the origin. The

term antipersistent was coined by Mandelbrot (1983) for FGN processes with Hurst pa-

rameter, 0 < H < 1/2. Hyperbolic decay time series include both FGN time series with

parameter H = 1 − α/2, H ∈ (0, 1), H �= 1/2 and FARMA time series with parameter

d = 1/2 − α/2, d ∈ (−1/2, 1/2), d �= 0.

Theorem 3. The spectral density function of hyperbolic decay time series satisfies

(2).

Proof. Beran (1994) established this result when α ∈ (0, 1) as was noted above in

eq. (2). However the Theorem of Zygmund (1968, §V.2) used by Beran (1994, Theorem

2.1) does not apply to the case where α ∈ (1, 2).

Let Yt have the spectral density, fY (λ) = cα,fλα−1, α ∈ (1, 2).

γY (k) = 2

π∫
0

cα,fλα−1 cos(λk)dλ

= 2cα,fk−α

kπ∫
0

uα−1 cos(u)du,

Using Mathematica,
∞∫
0

uα−1 cos(u)du =
√

π Γ(α
2 )

( 1
4 )

α−1
2 Γ( 1−α

2 )

and so γY (k) ∼ cα,γk−α, where cα,γ = 2cα,f
√

π Γ(α
2 )/{( 1

4 )
α−1

2 Γ( 1−α
2 )} < 0.

Assume fZ(λ) satisfies eq. (2) and we will derive (6). Since fZ(λ)/(cfλα−1) → 1 as

λ → 0, there exists λ0 such that for all λ < λ0, cfλα−1 < 1 and |fZ(λ)/(cfλα−1) − 1| <
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ε/(2π). Hence for all λ < λ0, |fZ(λ) − fY (λ)| < ε/(2π). Consider the systematically

sampled series, Zt,� = Zt� for � ≥ 1. Then Zt,� has spectral density function, fZ(λ/�).

Let L = π/λ0. Then |fZ (λ/�) − fY (λ)| < ε/(2π) for λ ∈ (0, π) provided that � > L.

Hence for any � > L,

|γZ(kl) − γY (k)| < 2

π∫
0

| cos(λk)||fZ(λ/�) − fY (λ)|dλ

< 2

π∫
0

|fZ(λ/�) − fY (λ)|dλ

< ε.

This shows (2) implies (6). Since the spectral density uniquely defines the autocovari-

ance function, the theorem follows. �
Hyperbolic decay time series are self-similar: aggregated series are hyperbolic with

the same parameters as the original.

Theorem 6. Let Zt satisfy eq. (6) then so does Yt, where Yt =
∑m

j=1 Z(t−1)m+j/m

and m is any value.

Proof. For large �,

γY (�) = m−2cov(
m∑

h=1

Z(t−1)m+h,

m∑
k=1

Z(t−1)m+k+�)

∼ m−2
m∑

h=1

m∑
k=1

cα,γ(k + � − h)−α

∼ m−2
m∑

h=1

m∑
k=1

cα,γ�−α(1 +
(k − h)

�
)−α

∼ cα,γ�−α.

3. DUALITY

Duality has provided insights into linear time series models (Finch, 1960; Pierce,

1970; Cleveland, 1972; Box and Jenkins, 1976; Shaman, 1976; McLeod, 1977, 1984). In

general, the dual of the stationary invertible linear process Zt = ψ(B)At is defined to
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be ψ(B)Z̈t = At, where ψ(B) = 1 + ψ1B + ψ2B
2 + . . . and B is the backshift opera-

tor on t. Equivalently, if Zt has spectral density fZ(λ) then the dual has spectral den-

sity proportional to 1/fZ(λ) with the constant of proportionality determined by the in-

novation variance. Thus in the case of a FARMA(p, q) with parameter d the dual is a

FARMA(q, p) with parameter −d. The next theorem generalizes this to the hyperbolic

case.

Theorem 4. The dual of a hyperbolic decay time series with decay parameter α is

another hyperbolic decay series with parameter decay parameter 2 − α.

Proof. The spectral density near zero of the dual of a hyperbolic decay time series

with parameter α is 1/(cfλα−1) = c−1
f λ(2−α)−1 which implies a hyperbolic process with

parameter 2 − α. �
Theorem 5. The time series Zt satisfying (6) may be written in random shock

form as Zt = At +
∑

ψ�At−� where ψ� ∼ cα,ψ�−(1+α)/2 and cα,ψ > 0 for α ∈ (0, 1)

and cα,ψ < 0 for α ∈ (1, 2) and in inverted form as Zt = At +
∑

π�Zt−� where

π� ∼ cα,π�−(3−α)/2 and cα,π > 0 for α ∈ (0, 1) and cα,π < 0 for α ∈ (1, 2)

Proof. The case α ∈ (0, 1) was established in Theorem 1. When α ∈ (1, 2) the

random shock coefficients are given by

ψ� ∼ −c2−α,π�−{3−(2−α)}/2

∼ cα,ψ�−(1+α)/2,

where cα,ψ = −c2−α,π. Similarly for the inverted form. �

4. GENERALIZED VARIANCE

For ARMA processes, Zt, lim gZ(n) is finite and has been evaluated by Finch (1960)

and McLeod (1977). McLeod (1977, eq. 2) showed gZ(n) = mZ +O(rn), where r ∈ (0, 1).

The evaluation of this limit uses the Theorem of Grenander and Szegö (1984, §5.5)

which only applies to the case where the spectral density, fZ(λ), λ ∈ [0, 2π) satisfies the
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Lipschitz condition |f ′
Z(λ1) − f ′

Z(λ2)| < K|λ1 − λ2|ζ , for some K > 0 and 0 < ζ < 1.

Since when α ∈ (0, 1), f ′
Z(λ) is unbounded, this condition is not satisfied.

Lemma 1. Let Xt and Yt be any independent stationary processes with positive inno-

vation variance and let Zt = Xt + Yt. Then GZ(n) > GX(n)

Proof. This follows directly from the fact that the one-step predictor error vari-

ance of Zt can not be less than that of Xt. �
Theorem 7. Let Zt denote a strongly persistent time process defined in eq. (2).

Then gZ(n) → ∞.

Proof. Since Zt =
∑

ψkAt−k, where At is white noise with unit variance, we can

find a q such that the process Yt, where

Yt =
∞∑

k=q+1

ψkAt−k,

has all autocovariances nonnegative and satisfying eq. (1). By using the comparison test

for a harmonic series, it must be possible to find an N such that for n > N , the covari-

ance matrix ΓY (n) has every row-sum greater than Ξ, for any Ξ > 0. It then follows

from Frobenius Theorem (Minc and Marcus, 1964, p.152) that the largest eigenvalue of

ΓY (n) tends to ∞ as n → ∞. Assume now that inf fY (λ) = m where m > 0 and let mn

denote the smallest eigenvalue of ΓY (n) and let ζn denote the corresponding eigenvector.

Then
mn = mnζ ′nζn

= ζ ′nΓY (n)ζn

=

π∫
−π

∑
h

∑
�

ζn,hζn,�e
−iλ(h−�)f(λ)dλ

≥ 2πm.

So mn ≥ 2πm and hence gY (n) → ∞ as n → ∞. By Lemma 1, gZ(n) → ∞ also.

For the more general case where m = 0, consider a process with spectral density

function f(λ)+ε, where ε > 0. Let gε(n) denote the standardized covariance determinant
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of n successive observations of this process. So gε(n) → ∞ as n → ∞ for every ε > 0.

The autocovariance function corresponding to f(λ) + ε is

γε(k) =
{

γZ(0) + 2πε k = 0,
γZ(k) k �= 0.

By continuity of the autocovariance function with respect to ε, lim gε(n) → gZ(n) as

ε → 0. Let Ξ > 0 be chosen as large as we please and let δ > 0. Then for any ε > 0

there exists an N(ε) such that for all n ≥ N(ε), gε(n) > Ξ + δ. By continuity, there

exists an ε0 such that gZ(N(ε0)) > gε0(N(ε0)) − δ. Hence gZ(N(ε0)) > Ξ. Since gZ(n +

1) = gZ(n)σ2
n,where σ2

n > 1 is the variance of the error of the linear predictor of Zn+1

given Zn, . . . , Z1 we see that gZ(n) is nondecreasing. It follows that gZ(n) > Ξ for all

n > N(ε0). �
Using a Theorem of Grenander and Szegö (1984) this result is easily generalized to

any stationary time series, Zt, for which
∑

γZ(k) = ∞.

Theorem 8. Let Zt denote a time series for which fZ(λ) → ∞ as λ → 0. Then

gZ(n) → ∞.

Proof. From eq. (10) of Grenander and Szegö (1984, §5.2), as n → ∞, the largest

eigenvalue of σ−2
a ΓZ(n) approaches sup fZ(λ) = ∞ while the smallest eigenvalue ap-

proaches 2πm, where m = inf f(λ). Note that Grenander and Szegö’s eq. (10) of §5.2,

applies directly to unbounded spectral densities as is pointed by Grenander and Szegö in

the sentence immediately following eq. (10), §5.2. If it is assumed that m > 0, then the

largest eigenvalue tends to infinity and the smallest one is bounded by 2πm as n → ∞.

Hence, gZ(n) → ∞ for this special case. The more general case where m = 0 is handled

as in Theorem 7. �
In the case of ARMA models, the asymptotic covariance determinant of the dual

and primal are equal (Finch, 1960). Since the hyperbolic decay time series are approxi-

mated by high order AR and MA models, it might be expected that this property holds

for hyperbolic series too. Theorem 9 which uses Lemma 2 proves that this is the case.
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Lemma 2. Let Xt = At +
∑∞

1 ψ�At−�. Let Xt(q) = At +
∑q

1 ψ�At−�, and let gq(n)

denote its standardized covariance determinant. Then for any � > 0, gq+�(n) ≥ gq(n).

Proof. This follows directly from the fact that the one-step predictor error vari-

ance of Xt(q + �) can not be less than that of Xt(q). �
Theorem 9. For hyperbolic decay antipersistent time series, Zt, gZ(n) → ∞.

Proof. Since the dual of the antipersistent time series Zt with parameter

2 − α, α ∈ (0, 1) is a strongly persistent time series Z̈t with parameter α, Z̈t may

be represented in inverted form, Z̈t = At +
∑

πkZ̈t−k, where At is white noise and

for large k, πk ∼ cπk−(3−α)/2. So the antipersistent time series Zt can be written,

Zt = At −
∑

πkAt−k. Let g̈L(n) and gL(n) denote the covariance determinant of n suc-

cessive observations in the AR(L) and MA(L) approximation to Z̈t and Zt

Z̈t(L) = At +
L∑

k=1

πkZ̈t−k(L)

and

Zt(L) = At −
L∑

k=1

πkAt−k.

By Theorem 7, for any Ξ > 0 and δ > 0 there exists an N1 such that for n > N1,

gZ̈(n) > Ξ + δ. Since g̈k(n) → g̈Z(n) as k → ∞ there exists a K1(n) such that g̈k(n) >

g̈Z(n) − δ > Ξ for k > K1(n). From McLeod (1977), g̈k(n) = g̈k(k) for n ≥ k. Hence for

any n > N1, g̈k(m) > g̈Z(n)−δ > Ξ for k > K1(n) and m ≥ k. So g̈k(m) → ∞ as k → ∞
and m ≥ k.

Hence there exists K2 such that g̈k(n) > Ξ + δ for k > K2 and n ≥ k. For any k,

gk(n) = g̈k(n) + O(rn), where 0 < r < 1 (McLeod, 1977). Let k > K2. Then there exists

an N2(k) such that for all n > N2(k), gk(n) > g̈k(n) − δ > Ξ. So gk(n) → ∞ as k → ∞
and n ≥ k.

For any n, gk(n) → gZ(n) as k → ∞. So for any n there exists a K3(n) such that

gZ(n) > gk(n) − δ for all k > K3(n). We have already established that there exists a
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K4 such that gk(n) > Ξ + δ for k > K4 and n ≥ k. Holding n fixed for the moment, let

h > k. By Lemma 2, gh(n) ≥ gk(n). By continuity since h > K4, gZ(n) > gh(n) − δ.

Since gh(n) > Ξ + δ it follows that gZ(n) > Ξ. This establishes that gZ(n) → ∞ as

n → ∞. �

5. CONCLUDING REMARKS

Theorems 7 and 9 show that hyperbolic decay time series, even antipersistent

ones, exhibit a type of long-range dependence. The asymptotic standardized generalized

variance is infinite. This implies that the variance of the one-step linear predictor based

on the last k observations decays very slowly as compared with the ARMA case where

the decay to the innovation variance occurs exponentially fast. Theorem 8 shows that

this is a more general notion of long-range dependence than the customary one.
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